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Abstract: Implantable medical devices are commonly used to treat various medical conditions. These devices, however, may cause serious adverse
events, including repeated surgical intervention and death. Prolonged use of some implantable medical devices can shorten life expectancy and
significantly decrease a person’s quality of life. Large adverse event databases can be used to predict serious adverse events by training machine
learning (ML) models on available data. However, the large volume of data and long free-text response make it challenging to use the databases
effectively. This study focuses on one such dataset: the Australian Database of Adverse Event Notifications, comprising text written by patients,
or healthcare professionals, or pharmaceutical industry. The study focuses on predicting three significant events: Injury, No Injury, and Death,
based on the adverse events reported about the implanted device. A new ML approach called the random regression voting classifier, which
combines random forest (RF) and logistic regression (LR), is proposed. The model’s efficiency is evaluated through experiments using
techniques, such as Bag of Words, Term-Frequency-Inverse-Document Frequency, and Global Vector, and is compared to existing ML models
such as decision tree, RF, kernel support vector machine, Naive Bayes, LR, and XGboost. The results demonstrate a higher performance in
predicting adverse events than other considered approaches. The various experimental analyses showed that the proposed approach performed
better than other ML models.
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1. Introduction

TheWorldHealthOrganization (WHO) defines amedical device as
“any instrument, apparatus, implement, machine, appliance, implant,
reagent for in vitro use, software, material, or another similar or
related article, intended by the manufacturer to be used, alone or in
combination, for human beings, for one or more specific medical
purpose” (World Health Organization, 2022). These devices play a
crucial role in preventing, diagnosing, treating, and rehabilitating
illnesses and diseases in a safe and effective manner. Examples of
medical devices include surgical equipment, pacemakers, mesh,
incubators, and implants. According to the WHO, there are
approximately 2 million different types of medical devices available
on the global market. Prior to their release onto the market, these
devices undergo thorough testing. However, post-market surveillance
reveals a significant number of unfavorable symptoms caused by
implant devices every year (World Health Organization, 2022).
Adverse medical device events (AMDEs), specifically those associated
with higher-risk medical devices that significantly impact patient
outcomes, have captured widespread attention and prompted calls for
action to establish approaches that effectively address both access to

innovative medical devices and the need to minimize risks, ensuring
enhanced patient safety (Shuren & Califf, 2016). Post-market
surveillance is a valuable approach that entails the systematic
collection and analysis of a substantial amount of data over a period
to detect any potential adverse events associated with medical devices
(Maisel, 2004). In this regard, the data collected through spontaneous
reporting play a critical role in evaluating product performance and
ensuring patient safety. Spontaneous reporting relies on voluntary
reports of adverse events or side effects from healthcare professionals,
patients, or consumers and is an important tool for identifying
previously unknown or unanticipated adverse events associated with
medical devices. However, the effectiveness of this approach relies
heavily on the quality of the information provided by healthcare
professionals and consumers in their reports.

A complete adverse event report may include several key pieces of
information, such as the product name, mode and serial numbers (in the
case of medical devices), demographic data, and a concise clinical
description of the adverse event (Bleu-Laine et al., 2021; World
Health Organization, 2022). Additionally, temporal information,
including the date of event onset and start/stop dates for the use of the
medical product, the dose/frequency of use (if applicable), and
outcome, can also be included. However, the dataset generated by
post-market surveillance is often enormous, and the information
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provided may be in an unstructured format, which can make extracting
data on adverse events more complicated. However, if the ability to
interpret, analyze, and utilize unstructured medical data is enhanced,
increased benefits can be achieved in terms of patient treatment,
public health management, and medical research (Bala, 2023). This
task can be accomplished manually but will require significant
resources. Therefore, a robust methodology for interpreting and
analyzing the data is required. The most common and effective way
to deal with unstructured data is through the use of machine learning
(ML) techniques.

ML is a self-regulated discovery of potentially valid or useful
knowledge and novel hidden patterns from datasets (Hussain et al.,
2019). ML techniques have been widely applied in the healthcare
sector for forecasting patient outcomes and evaluating medical devices
(Jagadeesh & Rajendran, 2021). The clinical reports generally contain
a high level of noise, sparsity, complex medical vocabularies, medical
measures, abbreviations, misspelled words, and poor grammatical
sentences (Mujtaba et al., 2019; Nguyen & Patrick, 2016). In the
context of data analysis, noisy data refer to data that contain a
substantial amount of irrelevant or meaningless information, which is
commonly referred to as noise. This can manifest as data corruption
or other forms of errors that render the data inaccurate or incomplete.
So, the first task for text classification is reducing the noise from the
dataset. To address this issue, Nguyen and Patrick (2016) developed a
lexical technique and a preanalysis of corpora to reveal the linguistic
characteristics. Subsequently, many predictive modeling approaches
have been developed to analyze large datasets and better predictions.
Likewise, Zhang et al. (2016) presented a method for semantic role
labeling (SRL) of clinical text. SRL aims to identify the different roles
that different parts of a sentence play in the overall meaning. The
authors evaluated their approach using three state-of-the-art parsers
and compared their performance on a clinical text corpus. The work
provided a formal evaluation of SRL performance on clinical text,
which has unique challenges compared to other types of text due to
the specialized language used in healthcare. Similarly, Renganathan
(2017) presented text mining approaches with a focus on biomedical
clustering. The author presented a method for partitioning text into
small clusters before testing.

Later, Turner et al. (2017) automated manual chart review of
doctors’ notes using text classifiers based on NLP techniques and
pattern recognition ML algorithms. The authors evaluated the
performance of traditional classifiers for identifying patients with
systemic lupus erythematosus (SLE) compared to a newer Bayesian
word vector method. Moreover, Tripoliti et al. (2017) used ML
techniques for predicting heart diseases, and Forsyth et al. (2018) used
ML algorithms to extract patient-reported symptoms from unstructured
notes in electronic health records. It showed how NLP techniques can
be applied to extract meaningful information from free-text notes,
which can be difficult to process using traditional methods. In
addition, Yang et al. (2020) used a transfer learning approach to
classify electronic discharge summaries based on their clinical
concepts. The method achieved high accuracy and reduced the need
for manual feature engineering. Alsentzer et al. (2019) explored BERT
models for clinical text and demonstrated that using domain-specific
models yields performance improvements on three common clinical
NLP tasks compared to nonspecific embeddings. This work
highlighted the importance of using domain-specific models for
clinical text, which has unique challenges compared to other types of
text. Later, Martenot et al. (2022) developed an augmented
intelligence methodology for automatically identifying relevant
publications mentioning an established link between a drug and a
serious adverse event. This work demonstrated the potential for NLP

techniques to be used in drug safety monitoring, which is critical for
ensuring patient safety.

In short, the need for implant devices to enhance health can
potentially lead to more significant issues if not in advance
assessed. Proactive decision-making is invaluable, and delving
into the analysis of unstructured free-text inputs from patients
during treatment emerges as a promising avenue for making
informed decisions. This serves as the primary motivation for our
study. Our objective is to develop a robust ML technique that
predicts adverse events by scrutinizing patients’ reports,
anticipating outcomes that could pose serious risks. This
predictive insight holds the potential to empower healthcare
organizations in making informed decisions regarding medical
devices, anticipating, and preventing serious outcomes.

This study makes the following contributions:

i. An overview of efficient methods to investigate the adverse
events due to implanted medical devices leading to serious
injury or death. The prognosis is based on three significant
events including “No Injury,” “Injury,” and “Death”.

ii. A vote-based classifier random regression voting classifier (RRVC)
is devised that combines the approach of random forest (RF) and
logistic regression (LR) classifier under soft voting criterion.

iii. To analyze the influence of data balancing on the Australian
Database of Adverse Event Notifications (DAEN) dataset, the
performance of unbalanced dataset results is compared with
the balanced dataset.

The paper is organized as follows: Section 2, “Materials and
Methods,” presents the DAEN dataset description, ML-based
models, and the proposed approach. Section 3, “Result Analysis
and Discussion,” describes the experiments and outcomes. Finally,
the study is concluded in Section 4.

2. Materials and Methods

The aim of this study is to predict the risk of serious injury or death
in patients who have reported adverse events following the implantation
of amedical device. The study uses amulticlass classificationmethod to
categorize the reported adverse events in the dataset as “Injury,” “No
Injury,” or “Death.” The following section provides a brief overview
of the dataset and the methodology used in this study.

2.1. Dataset description

The Australian DAEN dataset contains spontaneous reports of
medicines and medical devices and is maintained by the
Therapeutic Goods Association (TGA). The TGA is the regulatory
body responsible for evaluating, assessing, regulating, and
monitoring medicines, medical devices, and biological to ensure
public health and safety. This study utilizes the DAEN database,
which has not been extensively studied for medical devices. The
data are available on the Therapeutic Goods Administration website
(2023). The data, which were extracted from reported adverse
events regarding implanted medical devices between 2013 and
2019, consist of 21,381 elements (after removing duplicate rows)
and includes 17 columns, as detailed in Table 1. This study focuses
on investigating the risk of death in patients due to implanted
medical devices and uses the “Reported source category” and
“Event description” variables for this purpose. The “Reported
source category” column includes “Injury,” “No-Injury,” “Death,”
and “Not Known” cases, while the “Event description” column
includes patients’ reviews during treatment and symptoms.
However, the “Not Known” category in the “Reported source
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category” variable is not informative and represents only 2% of the
data. Therefore, it is excluded from the analysis, and the model is
trained on the remaining three meaningful categories. The
distribution of these categories is presented in Figure 1.

2.2. Problem statement

In this study, our focus is the analysis of reported adverse events
post-medical device implantation. Recognizing that certain side effects
may be transientwhile others pose the risk of severe problems, our study
aims to pinpoint potential adverse events, specifically serious injuries or
deaths resulting from medical device implantation. To accomplish this
objective, we employ a multiclass classification approach, categorizing
events intoDeath, Injury, orNo Injury. This study provides an improved
model to predict the likelihood of adverse events based on patient data,

with the aim of aiding the TGA to identify potential issues early and take
appropriate action.

2.3. Methodology

Initially, the DAEN dataset was obtained from the TGAwebsite,
comprising of 92702 reports. However, the data were found to be
highly inconsistent and contained a significant number of duplicate
entries. Therefore, a data preprocessing technique was implemented
to improve the accuracy of the classification results. The
experiments were conducted using the Python platform.
a) Data preprocessing:

i. Spell Checking: To ensure the accuracy of the data used in
this study, an automated spell-checking software was
utilized to identify and correct any misspelled words
within the medical database consisting of patient reviews.
The spell-checker lexicon was consulted for each word in
the text dataset (Gupta & Mathur, 2012; Manconi et al.,
2022). If a word was not found in the dictionary, an error
was detected. However, as the data may contain errors that
the automated software is unable to fix, manual spell
checking was also employed. This approach presented a
set of possible options for any misspelled words and
enabled the user to make the most appropriate selection
within the context of the reports.

ii. Tokenization: In this step, the process of breaking down a long
text into smaller units, known as tokens (words), is applied to
the “Event Description” containing the patient’s review.

iii. Clean Data: In this step, the data undergo a thorough cleaning
process to prepare it for natural language processing (NLP)
tasks. Two methods are employed: converting all text data to
lowercase and removing all special characters and symbols.
This ensures that the data are in a standard and easily
comprehensible format for the machine. Additionally, any
missing values are handled appropriately, and duplicate and
empty rows are eliminated, resulting in a final dataset of
21381 entries.

iv. Removing Stop Words and Irrelevant English Words: In this
step, we eliminated those words that had minimal
contributions, such as common pronouns and articles, as
well as medical measurements; they are {“patient,” “mg,”
“doctors,” “B,” “case,” “always,” “getting”} omitted to
streamline the data and improve the accuracy of our analysis.

b) Feature Extraction:
In this step, the text data have been cleaned and prepared for

ML techniques. To achieve this, a technique called feature
extraction is utilized to extract the most relevant and
significant features from the preprocessed data, to improve
the performance of the model (Giveki, 2021). Three different
feature extraction techniques have been used in this study,
including Bag of Words (BoW), Global Vector for Word
Representation (GloVe), and Term-Frequency-Inverse
Document Frequency (TF-IDF). BoW is a method of
converting text data into numerical features, where each
word is considered as a feature, regardless of the number of
times it appears in the documents (Meijer et al., 2021).
TF-IDF is a technique that calculates the weight of each
word, which shows the importance of that word in the text.
The weight is determined by two metrics: Term frequency
(TF) and inverse document frequency (IDF) (Obayed et al.,
2021). GloVe, on the other hand, generates word embedding
of the document by mapping the relationship between
words, which is achieved by aggregating global

Figure 1
Class distribution

Table 1
Data description

Variables Descriptions

Report number Identification of each patient case
Report date Receiving date of adverse events

report
Trade name Name of the trader of medical device
Sponsors Sponsor company of the device
Manufacturer Manufacturer of the device
ARTG number The register number of Australian

register of Therapeutic Goods
(ARTG)

GMDN term International nomenclature for
describing medical devices.

Device classification Class of device
Sterile Use of sterile during treatment (Y/N)
Single use Use of sterile once or more (Y/N)
Model number Device model number
Software version Software version details
Reported event outcome Outcome of adverse event during

treatment
Reported source category. Adverse event reported source.
Event type Type of medical device
Event description Reported symptoms and reviews.
Other medical devices
reported as being used

Another device is being used during
treatment (Y/N)
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co-occurrence matrices (Batista et al., 2004). This technique
groups similar words together and rejects different words
based on the co-occurrence matrix of the corpus. The
framework of devised process is presented in Figure 2.

c) Machine Learning Models:
We utilized ML algorithms commonly discussed in the

literature. Detailed descriptions of the employed algorithms
and their hyperparameters used in this study are discussed
as follows:
i. Decision Tree (DT): A DT is a popular supervised ML

algorithm used for both classification and regression tasks.
It works by recursively partitioning the training data into
smaller subsets based on the values of the input features,
until a stopping criterion is met. The tree structure consists
of internal nodes that represent a feature or attribute, and
branches that represent the possible values of the feature.
The leaves of the tree correspond to the predicted class
label or output value. During training, the algorithm
determines the optimal split at each node by maximizing
the information gain or minimizing the impurity of the
subsets (Kadhim, 2019). One of the advantages of DTs is
their interpretability, as the resulting tree can be easily
visualized and understood by humans. DTs are also robust
to noisy data and can handle both categorical and
numerical features. They can also handle missing data by
using surrogate splits. This study involves tuning various
hyperparameters of the algorithm to improve its predictive
power and performance, as well as to speed up its
execution. The values of the max_depth, and random_state
hyper parameters are adjusted according to the specific
requirements. The max_depth parameter is used to improve
the predictive power of the algorithm by limiting the
maximum depth of tree. It limits the number of nodes in
the tree and can help prevent overfitting. We set it to 300
for this study. The random_state parameter is set to 50 to
control the randomness of the samples and ensure that the
model produces consistent outcomes, which also helps to
enhance the computational speed of the algorithm.

ii. Random Forest (RF): The RF classification algorithm is a
versatile method that can be used for both regression and
classification tasks (Biau & Scornet, 2016). It is a

supervised learning algorithm that builds a multitude of DTs
and combines their outputs to produce a final prediction.
The main idea behind RF is to create a set of DTs that are
independent of each other, but when combined, provide a
more accurate and robust prediction. Each DT in the forest
is constructed by selecting a random subset of the training
data and a random subset of features. This process helps to
reduce overfitting and improve the generalization of the
model (Khanday et al., 2020). One of the advantages of RF
is that it can handle high-dimensional data and large
datasets with many features. It is also a nonparametric
model, which means it can capture complex nonlinear
relationships between features and the target variable. The
n_estimator parameter represents the number of DTs to be
assembled by the algorithm before making predictions. For
this study, a value of 100 is set for this parameter to obtain
highly accurate results, as this value is considered to be the
number of weak learners in the algorithm. The max_depth
and random_state set to 300 and 50, respectively.

iii. Multinomial Naive Bayes Model (MNB): The Multinomial
Naive Bayes (MNB) model is a probabilistic model used for
text classification tasks. It is based on the Bayes theorem,
which states that the probability of a hypothesis given
evidence is proportional to the probability of the evidence
given the hypothesis, multiplied by the prior probability of
the hypothesis. In the case of text classification, the
hypothesis is the class label of a document, and the evidence
is the set of words or features that occur in the document.
The MNB model assumes that the frequency of occurrence of
each word or feature in a document follows a multinomial
distribution. It also assumes that the occurrence of each word
or feature is independent of the occurrence of all other words
or features in the document, which is known as the “naive”
assumption. To train the MNB model, the frequency of
occurrence of each word or feature is computed for each
class in the training data. Then, the probabilities of each word
or feature occurring in each class are calculated using the
maximum likelihood estimation (MLE) method. These
probabilities are used to compute the conditional probability
of a document belonging to each class, given the observed
set of words or features in the document (Bilal et al., 2016).
To classify a new document, the MNB model computes the
conditional probability of the document belonging to each
class, given the observed set of words or features in the
document, using the probabilities computed during training.
The class with the highest probability is then assigned as the
predicted class for the document. The hyperparameters set as
random_state= 50, multi_class = “ovr”.

iv. Logistic Regression (LR): The LR algorithm is a statistical ML
classifier that maps input features to discrete target variables by
estimating probabilities using a sigmoid function. This function
constrains the probability values between the target variables,
forming an “S”-shaped curve. LR is widely used for efficient
classification tasks and represents an advanced version of
linear regression, applicable to complex linear and nonlinear
datasets for both classification and prediction tasks. One of its
common applications is modeling binary data. The LR
technique involves multiplying input values with weight
values. It is renowned for its effectiveness in detecting
defaulters and is a popular choice among ML classifiers due to
its simplicity and reliance on fewer assumptions (Kurnia et al.,
2020; LaValley, 2008). In this study, the LR algorithm utilized
the “saga” solver for faster computation and improved results

Figure 2
Architecture of the methodology devised
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when handling large datasets. The “multi_class” parameter was
set to “ovr” as it excels in binary classification tasks. The inverse
regularization parameter “C” was assigned a value of 3.0, which
is inversely proportional to the Lambda regulator and determines
the strength of the regularization. This parameter aids in reducing
the risk of model overfitting, with smaller values indicating
stronger regularization.

v. Support Vector Machine (SVM): It belongs to parametric test
family and can be applied for regression and classification.
However, it is considered best for classification problem
(Yang et al., 2020). In SVM algorithm, a line is drawn in
form of hyperplane that divides a feature space into two
subspaces. One subspace contains vectors that belong to a
category, and another contains vector that do not belong to
that category. The optimal hyperplane is the one with the
largest distance between two subspaces called as maximum
margin hyperplane (Kurnia et al., 2020). If the data are
nonlinear and complex, then kernel function can be used to
form the multidimensional hyperplane. The choice of kernel
depends on the complexity and features of the dataset, which
makes understanding the data crucial for achieving good
accuracy and performance. In this study, the radial basis
function kernel was used along with C= 1.0, epsilon= 0.2.

d) Data Sampling using Synthetic Minority Oversampling Technique
(SMOTE) SMOTE is a popular data augmentation technique used
in ML and data science to balance class distribution in imbalanced
datasets, such as when the minority class is significantly smaller
than the majority class. The basic idea behind SMOTE is to create
synthetic samples of the minority class by interpolating between
existing minority class instances. The algorithm works by selecting
an instance from the minority class and finding its k nearest
neighbors in the feature space. It then creates new instances by
interpolating between the selected instance and its k nearest
neighbors, effectively creating new instances in the feature space
(Chawla et al., 2002). The SMOTE algorithm has several
parameters that can be tuned to control the number and
distribution of synthetic samples generated. The most important
parameters are the number of nearest neighbors’ k to consider, and
the amount of interpolation to use when generating new samples.
Other parameters include the random seed used for reproducibility,
and the balance ratio, which specifies the desired ratio of minority
to majority class instances after augmentation. We set hyper
parameters as: sampling_strategy = “str,” random_state= 50,
weight = “equal,” k= 5, n_features= 20, n_clusters_per_class= 1.

2.4. Proposed random regression voting classifier
(RRVC)

We proposed a new ensemble method RRVC that combines the
predictions of two individual classifiers, RF and LR, to generate a
final output. The reason for suggesting RRVC is to take
advantage of the ensemble capabilities of RF and LR and to
adjust the parameters to decrease the error.

The leverage of RF used in this proposed RRVC lies in its
learning strategies, which involve creating multiple DTs and
combining their predictions to make a final decision. RF is
particularly useful for large datasets as it can determine the
significance of each feature and select the most important ones. It
also deals effectively with high-dimensional data, making it
suitable for multiclass classification. The randomizing property of
RF helps prevent overfitting, ensuring that the model generalizes
well to unseen data. On the other hand, we leverage LR for its

successful implementation, extensively used for binary and
multiclass classification in comparison to statistical methods. LR
provides probability predictions and is computationally less
expensive. It also offers built-in flexibility, enabling fine-tuning of
the model’s fit or reduction of errors through regularization
parameters. The detailed implementation is illustrated in Figure 3.

The proposed RRVC classifier also uses a soft voting scheme to
generate a final prediction (Bleu-Laine et al., 2021; Manconi et al.,
2022). Soft voting classifies input data based on the probabilities of
all the predictions made by classifiers. This means that the final
prediction is obtained by averaging the probability p given by
both the RF and LR classifiers to each target class. This approach
helps to select incidents from the data that contain valuable
information, enhancing accuracy. The RRVC framework is
described in Algorithm 1. It also incorporates similar parameter
tuning described in the Section 2.3(c).

We can compute the target class for the weights assigned to
predictions r1; r2; r3; . . . ; rn made by classifier RF and
l1; l2; l3; . . . ; ln by classifier LR, respectively, as

P Rð Þ ¼ r1; r2; r3; . . . ; rn (1)

P lð Þ ¼ l1; l2; l3; . . . ; ln (2)

Final Prediction ¼ argmax
Xn

i¼0
P Rð Þ þ P Lð Þ (3)

where P Rð Þ and P Lð Þ are predictions made by RF and LR, respec-
tively. Soft voting classifies input data based on the probabilities
of all the predictions made by classifiers. Weights applied to each
classifier in the soft voting scheme get applied appropriately based
on the Equation (3). The weight parameter controls the contribution
of each classifier to the final prediction therefore we set equal weights
criteria for this study so that all classifiers are given equal importance
in making the final prediction. Let us understand this using an
example. For a particular record, the two classifiers RF and LRmake

Figure 3
Framework of random regression voting classifier
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the following predictions in terms of probabilities in favor of classes
[Injury, No Injury, Death]:

RF� > ½0:1; 0:3; 0:6�; LR� > ½0:3; 0:3; 0:4�

With equal weights, the probabilities will get calculated as the
following:

Prob of Class ‘Injury’ ¼ 0:5 � 0:1þ 0:5 � 0:3 ¼ 0:2

Prob of Class “No Injury” ¼ 0:5 � 0:3þ 0:5 � 0:3 ¼ 0:3

Prob of Class “Death” ¼ 0:5 � 0:6þ 0:5 � 0:4 ¼ 0:5

The probability predicted by RRVC will be [20, 30, and 50%].
The class will most likely be “Death”.

In summary, RRVC is an influential classifier that combines the
strengths of both RF and logistic regression. It utilizes the feature
selection capability of RF and the probability prediction and
regularization flexibility of LR to generate accurate and robust
predictions.

Algorithm1: Proposed approach: randomregressionvoting classifier

3. Results Analyses and Discussion

In this section, we conduct experiments and analyze the results
of various methods, comparing their performance with the proposed
RRVC using various performance measures.

3.1. Evaluation measures

In this study, we employed cross-validation techniques to
evaluate the performance of the considered algorithms, ensuring the
robust generalization of the model, mitigating bias, and preventing
overfitting. A fivefold cross-validation technique was adopted for
this purpose, involving iterative training and evaluation with
different combinations of training and test sets. This approach
allows for a comprehensive assessment of the model’s performance,
enhancing reliability by averaging results across multiple iterations

(Bleu-Laine et al., 2021). The dataset was divided into two parts
using an 80:20 ratio (Manning & Schutze, 1999).

Moreover, the proposed algorithm’s effectiveness was evaluated
using multiple metrics, including accuracy, F-Measure, precision, and
recall (Sebastiani, 2002). Additionally, we employed the receiver
operating characteristic (ROC) curve and the area under the ROC
curve (AUC) to evaluate the algorithm’s performance. The ROC
curve displays the classification model’s performance at all
classification thresholds by plotting the false-positive rate (FPR)
against the true-positive rate (TPR) (Aguilar-Ruiz & Michalak,
2022). AUC provides an aggregate measure of all possible
classification thresholds and can be interpreted as the probability that
the model ranks a random positive example higher than a random
negative example. In summary, we used a combination of these
diverse evaluation metrics to comprehensively evaluate the
effectiveness of the proposed RRVC approach.

3.2. Result analysis

The six most used algorithms in the literature were compared to
the proposed RRVC approach in terms of multiclass classification in
two distinct scenarios. In the first scenario, the data had an imbalanced
class distribution, while in the second scenario, the data were made
balanced by using oversampling techniques SMOTE. The results of
these two scenarios will be discussed separately.

3.2.1. Results analysis for scenario 1
In this case, the data used in the experiment are imbalanced, with

more instances of injury classes than others. The proposed classifier,
RRVC, was compared with other ML algorithms to determine its
effectiveness. The results of this comparison were presented in
tables, with Table 2 showing the results when using TF-IDF as the
feature extraction method. In this table, the proposed classifier
attained the highest accuracy of 84%. Other algorithms such as
XGboost and RF also performed well, with accuracy rates of 80%.

Random regression voting classifier (RRVC)

Input: Event description
Output: Patient having implanted device Serious injury or
no injury or death
Procedure: Data splitting
Training_set = (Event description, labels)
Testing_set = (Event description)
Training_set, testing_set
Procedure: Voting classifier
Voting_criterion = “soft (set equal weights criteria and thresh-
old = 0.5)
R = Random_forest (Training_set)
L =Logistic regression (Training_set)
Procedure: Predictions made by R

P Rð Þ  Testing set
P Rð Þ ¼ r1; r2; r3; . . . ; rn

Procedure: Predictions made by S
P Lð Þ  Testing set
P Lð Þ ¼ l1; l; l3; . . . ; ln

Final Prediction ¼ argmax
Pn

i¼0
P Rð Þ þ P Lð Þ

Table 2
Classification results of ML algorithms using TF-IDF without

SMOTE (Scenario-1)

ML-Algorithms Parameters Precision Recall
F1

score
Accuracy

(%)

Random forest Death 0.77 0.44 0.56 80
Injury 0.83 0.86 0.81
No-injury 0.81 0.64 0.67

Decision tree Death 0.44 0.42 0.43 69
Injury 0.84 0.83 0.84
No-injury 0.58 0.59 0.58

Naïve Bayes Death 0.53 0.62 0.56 70
Injury 0.84 0.52 0.66
No-injury 0.47 0.68 0.56

Kernel SVM Death 0.83 0.12 0.43 79
Injury 0.84 0.94 0.89
No-injury 0.74 0.53 0.62

Logistic
regression

Death 0.13 0.59 0.51 72
Injury 0.93 0.69 0.79
No-injury 0.55 0.77 0.66

XGboost Death 0.85 0.51 0.63 80
Injury 0.81 0.95 0.88
No-injury 0.77 0.43 0.59

RRVC Death 0.95 0.64 0.76 84
Injury 0.85 0.95 0.89
No-injury 0.78 0.56 0.63
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Table 3 shows the results when using BoW as the feature
extraction method. In this table, the proposed RRVC scored a
maximum accuracy of 79%. However, the use of BoW did not
improve the results of the classifiers, and, in fact, a significant
drop in performance was observed for most of the ML algorithms.
The exception to this was the DT classifier, which had a 2%
increase in performance compared to the TF-IDF results.

Table 4 demonstrates the results of ML algorithms using GloVe
as the feature representation method. The performance of the
proposed RRVC dropped compared to the TF-IDF feature
extraction approach. The performance of other algorithms also
dropped, but the DT classifier improved by 2%. The performance
of LR was equal to the TF-IDF approach and better than the BoW
approach. Similarly, RF performed well and scored 72% accuracy.
The XGboost method and RRVC scored the maximum accuracy
among all. Additionally, Tables 2, 3 and 4 also illustrate the
precision and recall scores of the proposed RRVC classifier, and
the results are better than other classifiers. The best results are
emphasized in bold. Furthermore, ROC curve is a more
appropriate method of calibrating the probability threshold in an
imbalanced dataset. Figure 6 depicts the TPR versus FPR in terms
of the ROC curve, utilizing IT-IDF as the feature extraction
method. Additionally, for further evaluation, the AUC has been
incorporated into the ROC for each corresponding category. From
Figure 6, it is evident that the maximum AUC is achieved by the
proposed RRVC in the categories of Death (89%), Injury (88%),
and No-Injury (88%). This demonstrates that the proposed
classifier effectively handles the data.

In conclusion for this scenario, the findings indicate that the
GloVe approach outperformed the BoW method, likely attributed
to optimal word co-occurrence. However, the TF-IDF approach
demonstrated the best results among all three feature
representation techniques. The proposed classifier, RRVC,

exhibited strong performance in the imbalanced data scenario,
achieving the highest accuracy rate when employing TF-IDF as
the feature extraction method. Notably, other algorithms, such as
XGBoost and RF, also delivered good performance.

Table 3
Classification results of ML algorithms using BoW approach

without SMOTE (Scenario-1)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.70 0.40 0.53 73
Injury 0.76 0.73 0.73
No-injury 0.71 0.52 0.61

Decision tree Death 0.24 0.39 0.33 71
Injury 0.75 0.70 0.71
No-injury 0.49 0.41 0.46

Naïve Bayes Death 0.03 0.60 0.32 59
Injury 0.94 0.42 0.65
No-injury 0.47 0.68 0.56

Kernel SVM Death 0.78 0.12 0.45 71
Injury 0.84 0.94 0.87
No-injury 0.72 0.53 0.62

Logistic
regression

Death 0.13 0.59 0.36 70
Injury 0.93 0.69 0.79
No-injury 0.55 0.82 0.66

XGboost Death 0.14 0.30 0.28 73
Injury 0.89 0.72 0.79
No-injury 0.54 0.78 0.64

RRVC Death 0.84 0.60 0.71 79
Injury 0.80 0.86 0.82
No-injury 0.72 0.73 0.71

Table 4
Classification results of ML algorithms using GloVe approach

without SMOTE (Scenario-1)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.69 0.48 0.52 72
Injury 0.72 0.65 0.67
No-injury 0.71 0.50 0.61

Decision tree Death 0.34 0.31 0.34 71
Injury 0.67 0.73 0.69
No-injury 0.42 0.42 0.42

Naïve Bayes Death 0.23 0.42 0.29 62
Injury 0.67 0.40 0.49
No-injury 0.52 0.45 0.47

Kernel SVM Death 0.57 0.12 0.29 55
Injury 0.84 0.94 0.89
No-injury 0.54 0.53 0.52

Logistic
regression

Death 0.70 0.58 0.59 72
Injury 0.72 0.71 0.69
No-injury 0.42 0.70 0.52

XGboost Death 0.72 0.55 0.60 73
Injury 0.71 0.75 0.72
No-injury 0.70 0.42 0.59

RRVC Death 0.72 0.52 0.62 73
Injury 0.73 0.74 0.72
No-injury 0.72 0.71 0.70

Table 5
Classification results of ML algorithms using TF-IDF approach

without SMOTE (Scenario-2)

Model Parameters Precision Recall
F1

score
Accuracy

(%)

Random
forest

Death 0.90 0.39 0.59 81
Injury 0.86 0.90 0.85
No-injury 0.71 0.59 0.61

Decision tree Death 0.74 0.47 0.57 73
Injury 0.88 0.86 0.82
No-injury 0.63 0.69 0.61

Naïve Bayes Death 0.74 0.44 0.55 74
Injury 0.87 0.89 0.84
No-injury 0.69 0.65 0.66

Kernel SVM Death 0.37 0.58 0.45 79
Injury 0.87 0.78 0.82
No-injury 0.58 0.79 0.64

Logistic
regression

Death 0.33 0.41 0.37 76
Injury 0.86 0.80 0.81
No-injury 0.54 0.63 0.55

XGboost Death 0.85 0.51 0.60 80
Injury 0.81 0.95 0.84
No-injury 0.77 0.43 0.58

RRVC Death 0.95 0.66 0.78 85
Injury 0.85 0.90 0.85
No-injury 0.80 0.62 0.70
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3.2.2. Results analysis of scenario 2
In this study, the data instances of the minority class were

increased by oversampling in order to balance the classes in the
“Reported Event Outcome” column of the dataset. Subsequently,
the ML algorithms were trained using the BoW, TF-IDF, and
GloVe approaches on the SMOTE-balanced datasets. The results
using the TF-IDF approach are presented in Table 5. It was
observed that the results improved significantly, particularly for
Naive Bayes and logistic regression. The proposed RRVC classifier
also exhibited improved accuracy, but its better results with respect
to precision and recall indicate its suitability for the task. The ROC
curve is presented in Figure 7, and the AUC attained by the RRVC
for instances of Death, Injury, and No-Injury were 92, 89, and
89%, respectively. This indicates that the model is capable of
predicting deaths and serious injuries with good accuracy.

In Table 6, satisfactory results are presented using the BoW
approach. The proposed classifier and the XGboost classifier
achieved the same level of accuracy, while the other algorithms
performed well.

Additionally, the results of the ML algorithms using the GloVe
approach are presented in Table 7. These results were better than the
BoW model, but not as strong as the IT-IDF approach. In all feature
extraction methods, the proposed RRVC outperformed the other

classifiers and effectively carried out the prediction task. Further
analysis of the average F1 score was conducted using Pareto
charts for Death and Injury in Figure 8(b) and (d). These two
categories of predictions are particularly important, with the death
category being of particular significance. A correct prediction in
the death category indicates the efficiency of the classifier, as this
category had the least representation in the dataset. Figure 8(b)
and (d) indicate that the proposed RRVC approach successfully
predicted these vulnerable categories.

In conclusion of this scenario, the TF-IDF approach yielded the
most significant improvements, with the proposed RRVC classifier
consistently outperforming other algorithms in accuracy, precision,
and recall. The ROC curve and AUC values confirmed the model’s
capability, particularly in predicting instances of Death and Injury.

3.2.3. Performance evaluation of ML algorithms using
different feature extraction approaches

Here, in this analysis, we will evaluate the performance of
different feature extraction techniques. Figure 4(a) illustrates the
accuracy comparison of ML classifiers using BoW, TF-IDF, and

Figure 5
Performance analysis of TF-IDF, BoW, and GloVe with or

without SMOTE
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Figure 4
Performance analysis of classification model based on accuracy
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Figure 6
ROC curve of ML classifiers (without SMOTE technique) based on TF-IDF
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Figure 7
ROC curve of ML classifiers (with SMOTE technique) based on TF-IDF
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GloVewithout the SMOTE technique, while Figure 4(b) presents the
comparison of the same approaches with the SMOTE technique. It
can be observed that some classifiers, such as Naive Bayes, LR, and
SVM, have substantially improved performance after using SMOTE.
However, some classifiers, such as RF, DT, and the proposed RRVC
classifier, have shown less improvement. The main reason for this is
that the classifier’s inbuilt algorithm is strong enough to handle
imbalanced datasets, or the construction itself requires fine-tuning,
where the user can choose the best possible parameters for the
dataset. This requires a deep understanding of the dataset and
their parameter behavior. We carefully chose and fine-tuned the
parameters, as described in the section on ML classifiers. As a
result, the proposed classifier RRVC’s performance did not
diverge much when we changed the feature extraction.

Figure 5 shows the accuracy comparison of the ML classifier
using the TF-IDF, BoW, and GloVe approaches with and without
the SMOTE technique. It shows that the results obtained by using
the TF-IDF approach with SMOTE are better than the other
approaches.

The Pareto chart comparison of the average F1 score for the
“Death” and “Injury” categories without SMOTE is shown in
Figure 8(a) and (c), while the comparison with SMOTE is shown

in Figure 8(b) and (d). In Figures 8(a), (b) and (d), the highest F1
score is achieved by the proposed RRVC approach, which
demonstrates its superiority as a predictive model. In Figure 8(c),
SVM leads the comparison, with the proposed RRVC following
in second place. These results collectively validate the
effectiveness of the proposed RRVC model.

The concluding analysis above showcases the effectiveness of
the proposed RRVC model in predicting adverse events caused by
medical devices. Healthcare practitioners can utilize the model’s
output to prioritize incidents with a higher risk of adverse events.
The model’s insights can contribute to proactive measures,
leading to a more informed and timely healthcare response.
Integrating the model into clinical workflows involves aligning its
predictions with existing protocols, ensuring a seamless
incorporation of predictive analytics into routine healthcare
practices.

While the RRVC classifier shows promise in predicting adverse
events related to medical devices, it is important to acknowledge
potential limitations. The model’s performance could be
influenced by the quality and quantity of the training data, making
it essential to ensure diverse and representative datasets. Regular
updates and fine-tuning may be necessary to maintain

Figure 8
Pareto chart for F1 score (a) death category without SMOTE,

(b) death category with SMOTE, (c) injury category without SMOTE, (d) injury category with SMOTE
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effectiveness as new data becomes available. Ongoing evaluation
and validation are crucial to addressing and mitigating these
limitations for robust and reliable performance.

4. Conclusion

In conclusion, this study introduces a framework for analyzing
adverse events associated with implanted devices. The proposed
RRVC model introduced in this study effectively predicts adverse
events linked to implanted medical devices by utilizing the DAEN.

The proposed RRVC was evaluated and compared to six other
ML algorithms using BoW, TF-IDF, and GloVe. To address data
imbalance, experiments were conducted using both the original
dataset (after appropriate preprocessing) and a balanced dataset
created using the SMOTE technique. Through extensive
experiments, it was concluded that the proposed classifier with the
SMOTE-balanced dataset and TF-IDF feature extraction showed
the best results on this dataset. This study also highlights the
potential of ML in improving patient safety and enhancing the
effectiveness of medical treatments through better decision making.

Future investigations might delve into advanced feature
engineering techniques, real-time prediction capabilities, enhanced
interpretability, and cross-domain applicability within healthcare
scenarios. This all-encompassing strategy ensures the ongoing
evolution of RRVC as a valuable tool for forecasting adverse events
and enhancing patient outcomes across diverse medical contexts.
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