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Energy Storage Systems in Photovoltaics
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Abstract: In a photovoltaic system, the electricity generated bya solar panel candependon the amount of sunlight available at anygiven time.Due
to the nonlinear behavior of this energy, the storage component of the system is critical. As a result, many solar panel systems are equipped with
batteries.However, changes in environmental and other conditions can cause damage to these batteries. This study explores novel technologies for
detecting thermal runaway failures in lithium-ionbatteries.Specifically, the studyemploys imageprocessing techniques todetect structural failures
and applies deep learning techniques for automatic classification. Thermal damage to a battery can result in irreparable harm, making design and
construction considerations crucial. Through image analysis, any internal changes in the battery can be transformed into a measurable variable,
providing a reliable indication of potential failure. The study compares the current series with previous ones to highlight the structural differences.
Results confirm that the proposed approach has significant potential for detecting and estimating internal variations during production.Overall, the
proposed method can serve as a valuable tool for drafting and implementing a comprehensive plan to address early problems in the battery.
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1. Introduction

In today’s world, the harvesting of energy from the environment
has become a significant research and industrial operation due to its
crucial importance (Rahimzadeh et al., 2021). Energy can be
harvested from various sources, ranging from small-scale
environmental vibration (Rahimzadeh et al., 2023) for use in
transportation systems (Guido et al., 2022) or in large-scale from
solar energy for agrivoltaics applications (Mouhib et al., 2022).
Among these, solar panels, also known as photovoltaic (PV)
panels, are capable of generating electricity by converting sunlight
energy into electrical energy. However, the amount of electricity
generated by a solar panel is subject to variation, depending on the
availability of sunlight at any given time. Due to the nonlinear
nature of this energy (Samadi et al., 2022), many solar panel
systems are equipped with batteries that ensure a stable supply of
electricity (Abbott & Cohen, 2020). These batteries store the
excess electricity produced by the solar panels during periods of
high sunlight intensity, which can be used later when the demand
for electricity exceeds the amount produced by the solar panels
(Richardson & Harvey, 2015), when the system is disrupted, or
when access to electricity is limited. This mechanism helps to
ensure a constant supply of electricity, irrespective of the level of
sunlight at any given time (Nabil & Mardaljevic, 2006). When it
comes to selecting a battery for a solar panel system (Khatib et al.,
2016), there are various factors that need to be considered. These

include the size and type of the solar panel system, the amount of
energy required by the system, and the environmental conditions in
which the system will operate. It is important to note that the
system may be exposed to harsh weather conditions, which could
potentially damage or even destroy the battery, leading to a loss of
energy from the solar panel system (Boxwell, 2010). Therefore, it
is crucial to take into account the environmental conditions of the
installation location when selecting a battery. The battery should
be chosen based on its ability to withstand the specific
environmental conditions of the installation location and provide
reliable performance throughout its expected lifetime (Dehghani-
Sanij et al., 2019). Thermal runaway can potentially occur in
various types of batteries, but it is more commonly associated with
certain battery chemicals due to their specific characteristics. The
most notable battery types that are susceptible to thermal runaway
are lithium-polymer batteries, lithium-ion phosphate (LiFePO4)
batteries, lithium cobalt oxide (LiCoO2) batteries, lithium iron
phosphate (LiFePO4) batteries, lead-acid batteries, lithium-ion
batteries, etc. (Kim et al., 2020). Lithium-ion batteries are known
for their high-energy density but can be prone to thermal runaway
if subjected to overcharging, over discharge, physical damage, or
exposure to high temperatures. Compared to other high-energy
density batteries, Kamali-Heidari et al. (2018) noted that lithium-
ion batteries are a relatively new technology that offers several
advantages, including lightweight, low maintenance, and a longer
lifespan. However, it is crucial to consider temperature as a critical
factor in the design of solar panel systems that use lithium-ion
batteries (Amelia et al., 2016). Extreme heat or cold can
significantly impact the performance of these batteries, and the
thermal band level of lithium-ion batteries used in PV panels can
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varybasedonvarious factors, suchas the typeandqualityof thebattery,
the operating conditions of the PVpanel system, and the specific safety
mechanisms that are in place. The most notable battery types that are
susceptible to thermal runaway are lithium-polymer batteries,
lithium-ion phosphate (LiFePO4) batteries, lithium cobalt oxide
(LiCoO2) batteries, lithium iron phosphate (LiFePO4) batteries,
lead-acid batteries, lithium-ion batteries, etc. (Xu et al., 2021).
Therefore, it is essential to thoroughly assess these factors to ensure
that the lithium-ion battery is optimally utilized and can deliver
consistent and reliable performance throughout its lifetime.

Thermal runaway can potentially occur in various types of
batteries, but it is more commonly associated with certain battery
chemicals due to their specific characteristics. Lithium-ion batteries
are widely used in portable electronics, electric vehicles, and energy
storage systems. Thermal runaway is a serious concern for lithium-
ion batteries used in PV panel systems (Golubkov et al., 2014). Such
batteries can experience thermal runaway due to exposure to high
temperatures, mechanical damage, or internal component failure.
Overcharging a battery can cause excessive heat generation and
potentially lead to thermal runaway. If a battery is continually
charged beyond its recommended voltage or current limits, it can
become unstable. Also, discharging a battery beyond its specified
lower voltage limit can lead to thermal runaway. This can occur
when a battery is drained to the point where it reverses its chemical
reactions, releasing heat in the process (Finegan et al., 2017). When
thermal runaway occurs, the heat generated by the battery’s
chemical reactions causes further breakdown of the electrolyte and
electrodes, leading to the release of flammable gases such as
hydrogen and carbon monoxide. As the heat and gas production
continue to increase, the battery becomes increasingly unstable, and
the pressure inside the battery can rise rapidly. If the pressure
becomes too high, the battery can rupture or explode, resulting in
potential fires or the release of toxic gases (Tran et al., 2022). Once
thermal runaway has begun, it is challenging to stop, and it can
spread to other cells in a battery pack, making it a severe safety
hazard. To prevent thermal runaway in a PV panel system, it is vital
to follow proper safety protocols during battery production and
testing (Chen et al., 2021) and to have accurate information about
the battery’s tolerance levels, such as monitoring the battery’s
temperature and voltage and designing an appropriate storage
system. By controlling such factors, it is possible to prevent damage
from occurring in the battery and avoid costly repairs or
replacements. Investigating such cases can be achieved through the
utilization of image processing techniques. Furthermore, the
identification of battery failure is a crucial technical task that
demands the utmost precision and accuracy. Given the importance
of this issue, this article used histogram analysis and Fourier
transform (FT) image analysis to investigate and identify battery
damage from thermal runaway video (Afifah et al., 2020; Jung et al.,
2019; Tsai et al., 2012). Then, using the convolutional neural
network (CNN) method (Wang et al., 2017), the failure rate was
categorized into four stages. These methods can be used to analyze
the distribution of the battery’s lifecycle, identify any performance
trends or patterns, and compare the performance of different battery
designs or manufacturing processes.

2. Research Methodology

2.1. Dataset

The 18650 battery is a popular type of lithium-ion rechargeable
battery known for its high-energy density and versatile applications
and portable devices but requires careful handling to ensure safety.

Table 1 shows the specifications of four models of 18650
batteries, and in this study, the Soteria 18650 model was
investigated through high-speed radiography during thermal
runaway.

The radiography video that we analyzed depicts a Soteria Li-ion
18650 cell in a 100% state of charge undergoing thermal abuse inside
a fractional thermal runaway calorimeter. The radiography was
recorded at a rate of 2000 frames per second at the European
Synchrotron Radiation Facility. The location of the field of view
longitudinally was top of the battery which the image consisted of
2016 × 1111 pixels with a pixel size of 10 μm (Keyser et al.,
2015; National Renewable Energy Laboratory, 2020).

In the context of video processing, a frame refers to a static
image from a collection of images that constitute a video.
Essentially, a video is a sequence of frames that are displayed
rapidly in succession. Each frame in a video contains information
about the position, color, and intensity of every pixel in the
image. The resolution of a video frame is determined by its width
and height in pixels, and frames can be examined and processed
individually or in sequence to extract information about motion,
object detection, and other features.

Figure 1 shows the process of battery damage under the effect of
thermal runaway.

In this article, we extracted 1192 continuous images from 64 s
of high-speed X-ray radiography videos of lithium-ion batteries.
These images were compared at intervals of every 0.001 s to
observe the behavior of the battery during the test. For example,
an image can be compared to its preceding or succeeding image at

Table 1
Specifications of models of 18650 batteries

Model
Capacity
(Ah)

Voltage
(V)

Wall
thickness

Bottom
vent

Storia 18650 2.1 Ah 4.2 V 250 μm No
KULR 18650-K330 3.3 Ah 4.2 V 220 μm Yes
LG 18650-M36 3.4 Ah 4.2 V 250 μm No
MOLiCEL 18650-j 2.3 Ah 4.2 V 203 μm No

Figure 1
The different stages of the battery’s behavior: (a) Stage 1: The
battery is in good working condition, (b) Stage 2: Involves a

minor shift of the electrode assembly toward the vent, (c) Stage 3:
Involves the stretching of the spin groove due to the force applied

by the electrode assembly on the crimp components, and
(d) Stage 4: Ejection of the electrode assembly, completing the

bursting process

(a) (b)

(c) (d)
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various time intervals, or a particular image can be compared to a
sequence of other images. Although changes that occur over time
in batteries may not be perceptible to the naked eye, it is
exceedingly difficult to determine the precise location where the
change began or the exact point at which it initiated in the early
stages. The analyses from this pilot study furnish valuable
information to guide future research and establish initial
definitions for the four stages. The size of the input images is
(224, 224, 3) for grayscale images and the numbers of images
available for each stage are detailed in Table 2. Since the number
of images varied for each failure stage, it was essential to partition
the stage-level classes based on these proportions.

Consequently, the data for each of the three divided datasets
(train, validation, and test) were stored in separate files, each
associated with a specific path and label.

2.2. Monitoring and diagnosis methods

Generally, various methods are employed to analyze and
diagnose system failures. For example, one method is to use
thresholding and check binary images. Various features can be
extracted from the binary image that are indicative of the failure,
like area, perimeter, shape factors, etc. These features can then be
used as inputs for a classifier. Also, one of the best ways to find
the right threshold for an image is to check its histogram. This
involves constructing a histogram of the relevant data and
analyzing the distribution of values to identify any patterns or
abnormalities that may indicate a failure.

A histogram is a chart frequently utilized in data analysis for
depicting the distribution of values within a dataset and for
identifying patterns in the data. To improve the visual clarity of
images, an equalization process is often applied. This process
involves redistributing the most common intensities with a nearly
linear cumulative distribution, which allows for a certain level of
tolerance intensity values when comparing consecutive images.
The formula for histogram equalization is typically expressed in a
general form as follows:

T kð Þ ¼ cdf kð Þ � cdfm
N � cdfm

� �
(1)

The formula for histogram equalization involves the output value of
input intensity k after undergoing grayscale transformation T,
denoted by T kð Þ. The cumulative distribution function value of input
intensity k is represented by cdf kð Þ, while cdfm denotes the minimum
non-zero value of the cumulative distribution function. N represents
the total number of pixels in the image matrix.

In the realm of Li-ion batteries, a histogram analysis can be
employed to investigate the distribution of key performance

metrics, such as capacity, energy density, or cycle life, throughout
a population of batteries. This technique can be utilized to identify
any patterns or trends in the data, as well as to detect any outliers
or anomalous behavior that may indicate defects or other issues
with the batteries. In Figure 2, we examined the histogram of a
part of the internal texture of the stage 1 and stage 4 battery images

As demonstrated in Figure 2, the histogram analysis of two
images showed considerable disparities when comparing normal
values to error values. By examining the histogram pattern of a
healthy battery, it is feasible to detect any abnormalities in a
damaged battery by comparing the two histograms. The histogram
of a healthy battery is typically characterized by a nearly
symmetrical distribution of values, whereas a defective battery’s
histogram is often asymmetrical or skewed. Also, the histogram
pattern of a healthy battery can exhibit variability depending on
the performance metric being analyzed, such as capacity, energy
density, or cycle life. Conversely, a damaged battery’s histogram
pattern will typically feature a wider and more varied distribution
of values, as depicted in the image of the defective battery.

Table 2
Stage-level quantities

Stage level Image label Image quantity

Stage 1 1 206
Stage 2 2 540
Stage 3 3 325
Stage 4 4 121
Total 1192

Figure 2
(a) Histogram of stage 1, (b) Histogram of stage 4, and (c)

Comparison of the histogram of stage 1 and stage (a)

(a)

(b)

(c)
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Bycomparing the histogrampatterns of healthy anddamaged batteries,
it is possible to detect any abnormalities or issues that may require
further investigation or correction. Also, another suitable way to
analyze is the FT of the image. Unique frequencies present in
different failure types can act as features for classification. This
transformation enables the analysis and interpretation of frequency
components present in the image, including edges, textures, and
patterns that may not be easily discernible in the spatial domain. The
discrete Fourier transform (DFT) of an image is computed by taking
the 2D FT of each pixel in the image, resulting in a matrix.

Suppose f x; yð Þ represents the gray level at pixel coordinates
x; yð Þ in an image of size M×N. The two-dimensional DFT of
f x; yð Þ can be expressed as follows:

F u; vð Þ ¼
XN�1

y¼0

XM�1

x¼0

f x; yð Þ: exp �j2π
ux
M

þ vy
N

� �h i
(2)

For spectral variables u ¼ 0; 1; 2; . . . ; M � 1 and v ¼ 0;
1; 2; . . . ; N � 1. The DFT is typically complex, that is:

F u; vð Þ ¼ R u; vð Þ þ j:I u; vð Þ (3)

whereR u; vð Þ and I u; vð Þ are the real and imaginary parts ofF u; vð Þ, i.e.,

R u; vð Þ ¼
XN�1

y¼0

XM�1

x¼0

f x; yð Þ: cos 2π
ux
M

þ vy
N

� �h i
(4)

I u; vð Þ ¼
XN�1

y¼0

XM�1

x¼0

f x; yð Þ: sin 2π
ux
M

þ vy
N

� �h i
(5)

As the input image f x; yð Þ is a real-valued function, the FT of the
image exhibits conjugate symmetry. This means that the FT
of the image is symmetric with respect to the origin, and the magni-
tude of the frequency component at a particular position is the same
as the magnitude of the corresponding position reflected across the
origin. The conjugate symmetry property simplifies the computation
of the FT and allows for more efficient algorithms to be used.
According to the binary image obtained, in stage 1 and stage 4 in
Figure 3, the DFT image lines are extracted.

In stage 1, the lines are energized and appear in the Fourier
spectrum with a zero and perpendicular angle. But in the image
obtained from the stage 4 because the internal tissue of the battery
is damaged, the high and low frequencies in the image are not
regular, and in its FT, you can clearly see this change and
distinguish a defective battery from a healthy battery.

So, in short, preprocessing the raw image to a binary form and
then extracting relevant features it using techniques like DFT are a
good starting point that can be improved with hybrid and more
complex techniques.

Inmethods that are basedon the analysis of intrinsic features based
on the pixels of the image (such as the value of pixels in the histogram
method and examination in another space such as the FT), although it
can be effective and lead to. These methods can detects failure, but can
not perform well in classification and achieving high accuracy in stage
identification. To solve this challenge, image classification methods
based on neural networks such as CNN can be used. In general, for
classifying the level of failure in images, using CNN classification

will yield better results compared to binary and DFT image features.
CNNs can automatically learn relevant features directly from the
input images during training, whereas binary and DFT features
require manual, feature engineering. CNNs can learn hierarchical
features at different levels of abstraction, allowing them to extract
more discriminative information. They are specially designed for
image classification tasks, with layers optimized for processing visual
data. CNNs can also handle variations in scale of images, pose and
lighting and other condition environment better, improving their
robustness. When trained on large, labeled datasets, CNNs can
achieve very high classification accuracy, outperforming traditional
feature-based classifiers. In summary, while binary and DFT features
provide some information about failures, CNNs are purpose-built
end-to-end models that can learn the most discriminative features
directly from images to achieve the best classification performance,
provided there is sufficient labeled training data.

2.3. Classification of failure stage with improved
CNN algorithm

CNNs were first introduced by Hinton and Salakhutdinov
(2006) and have since become a popular type of neural network
for image classification tasks. One of the key advantages of CNNs
over other classifiers is their ability to identify local and higher-
level abstract features. In the present study, we designed a CNN
network to classify the stages of battery failure.

Our approach involves using convolution layers to extract
features from the spatial structure of input images, followed by
integration layers to reduce the spatial dimensions of the features.
Finally, fully connected layers are utilized to perform the final
classification. To train and evaluate our model, we used 60% of
the available data for training, 20% for parameter optimization,
and 20% for testing. The dataset consisted of four stages of

Figure 3
(a) Fourier transform of part of the internal texture of the

battery in step 1 and (b) Fourier transform of part of the internal
texture of the battery in step 4
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battery failure, and an example of each stage is provided in the
accompanying Figure 4.

In our CNN model, we employ 3 × 3 convolutional layers that
utilize a set of learnable filters to extract feature maps from the input
image. Each filter interacts with the input image to generate a feature
map that accentuates specific aspects such as edges, corners, or
textures. These feature maps undergo downsizing through 2 × 2
pooling layers, reducing spatial dimensions while preserving
essential information. The fully connected layers process the
flattened feature maps obtained from the convolutional and
pooling layers, culminating in the final classification. We use the
modified linear unit (ReLU) as the activation function in each
layer, except for the output layer. The output of the fully
connected layers is subjected to a softmax activation function,
producing a probability distribution across potential classes. Once
CNN is trained, it becomes capable of classifying new images.
This involves passing these images through the network and using
the resulting probability distribution to predict the most probable
class. The overall processing flow of our method and the CNN
architecture employed for image classification are illustrated in the
accompanying figure, divided into four main parts: data division
into training, validation, and test sets, preprocessing of original
images, training of the constructed CNN model, and finally,
testing its performance.

Various techniques have been employed to enhance the
performance of CNNs, including data augmentation (van Dyk &

Meng, 2001), increasing the number of layers (Nagamura et al.,
2020), and modifying the loss function (Pandey et al., 2019),
among others. Various techniques exist for enhancing the efficacy
of neural networks. One such method involves the incorporation of
a kernel into the fundamental framework of these networks. In this
study, data augmentation and kernel regularization were utilized to
improve the algorithm’s performance (Micchelli & Pontil, 2005).
This technique helps prevent overfitting by adding a penalty term
to the kernel function. The penalty term controls model complexity
by discouraging the model from over-relying on a single feature or
combination of features. There exist several forms of kernel
regularization, such as L1 regularization, L2 regularization, and
pure elastic regularization. L1 regularization, also known as lasso
regularization, encourages sparse solutions by penalizing the
absolute value of the coefficients. In our analysis, we employed L1
regularization with a coefficient of 0.001 for each layer.

In this study, we employ the sparse categorical cross-entropy
loss as our chosen loss function. This loss function serves to
quantify the dissimilarity between the predicted probability
distribution and the true class labels, which are represented as
integers. It computes the cross-entropy loss by comparing the
predicted probabilities to the actual labels, applying greater
penalties to the model for inaccurate predictions that deviate
significantly from the true labels. The mathematical formula for
the sparse categorical cross-entropy loss is expressed as follows:

LOSS ¼ � 1
N

XN
i¼1

XC
c¼1

yi;c : logðŷi;cÞ
� �

(6)

where:
yc is a binary indicator (0 or 1) of whether class c is the correct

classification for the given example.
ŷc is the predicted probability that the example belongs to

class c.
C is the total number of classes.
N is the batch size.

To implement data augmentation, considered a rotation range from 0
to 50 degrees, width shift ranges from 0 to 0.2, height shift ranges
from 0 to 0.2, and a zoom ranges from 0 to 0.3. Additionally,
random horizontal and vertical flips are incorporated, as shown in
Figure 5.

Figure 4
CNN algorithm used for 4-stage classification of battery images

Figure 5
Implement data augmentation of battery images

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 1 2024

19



This loss function encourages the predictedprobabilities (ŷc) to be
close to1 for thecorrect class andclose to0 for the incorrect classes.The
negative sign is used to turn the minimization problem into a maximi-
zation problem (maximizing the log-likelihood of the true class).

Another way to increase the accuracy of CNN is to add transfer
learning (TL) to this structure. Weiss et al. (2016) stated that TL is a
machine learning technique that involves reusing knowledge
acquired from one task to enhance performance on a related task,
making it possible to train and fine-tune a classification model
using features acquired from other datasets. This is particularly
beneficial when data are limited, and training sets lack sufficient
images for diverse feature extraction.

To adapt the pretrained model to our specific task, we discard the
original classification layers of the pretrained model. These layers are
designed for a different classification task and need to be replaced to
suit our battery classification problem. Typically, this involves adding
one or more fully connected layers followed by an output layer. The
output layer has as many neurons as there are battery classes we want
to identify. We fine-tune the customized model using our battery
image dataset. During training, with trial and error, we adjust
hyperparameters such as learning rates, batch sizes, and the number
of epochs to optimize the model’s performance. After training, we
evaluate the model’s performance using a validation set. This helps
us assess the model’s ability to generalize to unseen battery images
and make accurate predictions.

One of the famous networks used in TL is DenseNet121. Deep
neural network DenseNet121 is a well-known architecture for deep
neural networks, which is used for image classification and image
processing problems. The most important feature of DenseNet121
is that it uses an idea called “skip connections” or “residual
connections” throughout its architecture (Zhou et al., 2022). This
idea allows the network to pass information from the lower layers
directly to the higher layers, which helps to improve the
performance and increase the accuracy of the network. This
architecture uses convolutional layers and combinational layers
and creates a deep and high-precision network by repeating small
blocks.

DenseNet121 consists of a number of convolutions and
combinational layers and is used in various applications from
object recognition to medical disease diagnosis. This network is

known as one of the effective architectures in the field of image
processing.

3. Results

Incorporating the kernel regularizer into the network structure
resulted in a decrease in system speed, but the positive impact on
accuracy results, particularly on validation error, was observed
and the batch size was 23 with a learning rate of 0.001. Table 3
displays a comparison of the results obtained by applying the
kernel regularization technique in the algorithm versus running the
algorithm without kernel regularization.

The comparison process and outcomes after 10 epoch are
presented in Figure 6, revealing that the CNN’s results were
achieved despite the limited dataset.

TL was employed, utilizing the pretrained model’s parameters
as initial values. All layers’ parameters were a dropout rate of 0.3 and
fine-tuned with a learning rate of 0.001. The corresponding results
are presented in Table 4.

Figure 7 shows DenseNet121 had a good convergence rate, and
excellent results were achieved despite the limited dataset.

To compare the performance accuracy of the proposed method
in Table 5, the results were compared with other TL methods
(VGG16, MobileNet121) in 10 epochs. The parameters in all
layers were trained at a rate of 0.001 and used the sparse
categorical cross-entropy loss function.

Although the results were suitable for other methods as well, the
results show that Densenet121 has performed better than other
methods.

This set of comparative experiments illustrates that, in the
context of data augmentation, kernel regularizer and TL prove to
be effective methods for enhancing accuracy. When kernel
regularizer is integrated into the network architecture, the
outcomes surpass those obtained with a standalone CNN. Through
empirical development, a classification model that amalgamated
TL with kernel exhibited notably high classification accuracy.
Furthermore, the use of TL and data augmentation reduced the
reliance on extensive training datasets. Table 6 provides a
summary of the results, from initial model selection to subsequent
model optimization.

Table 3
Data obtained from CNN algorithm training in 10 epochs

epoch

Training
loss with
kernel

Training
loss

without
kernel

Training
accuracy
with
kernel

Training
accuracy
without
kernel

Validation
loss with
kernel

Validation
loss

without
kernel

Validation
accuracy
with
kernel

Validation
accuracy
without
kernel

1 1.5658 1.9041 0.5296 0.5164 1.0504 1.2517 0.2778 0.4074
2 0.6398 0.7257 0.7493 0.7096 0.5306 0.5463 0.7037 0.6250
3 0.3113 0.3423 0.8795 0.8740 0.1326 0.3347 0.9630 0.6991
4 0.2222 0.1961 0.9151 0.9247 0.1194 0.3847 0.9630 0.9074
5 0.0646 0.1270 0.9849 0.9493 0.2053 0.1300 0.9683 0.9630
6 0.1581 0.1010 0.9507 0.9616 0.2095 0.0687 0.9583 0.9722
7 0.1502 0.0736 0.9507 0.9767 0.1485 0.1882 0.9583 0.9583
8 0.0734 0.0452 0.9808 0.9863 0.0715 0.1976 0.9583 0.9583
9 0.0797 0.0580 0.9740 0.9808 0.1152 0.1188 0.9722 0.9630
10 0.0539 0.0461 0.9890 0.9863 0.1100 0.1529 0.9630 0.9583
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Figure 7
(a) Comparison training loss with kernel regularizer and without
kernel regularizer and transfer learning, (b) Comparison training
accuracy with kernel regularizer and without kernel regularizer
and transfer learning, (c) Comparison validation loss with kernel
regularizer and without kernel regularizer and transfer learning,
and (d) Comparison validation accuracy with kernel regularizer

and without kernel regularizer and transfer learning

Figure 6
(a) Comparison training loss with kernel regularizer andwithout
kernel regularizer, (b) Comparison training accuracy with

kernel regularizer and without kernel regularizer,
(c) Comparison validation loss with kernel regularizer and
without kernel regularizer, and (d) Comparison validation

accuracy with kernel regularizer and without kernel regularizer
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4. Conclusion

The aim of this study is to diagnose issues in PV storage systems
by analyzing the image characteristics of defective batteries under the
influence of thermal runaway. The proposed method successfully
distinguishes between normal and inefficient components by
examining four stages of battery degradation caused by thermal
runaway. The analysis of the obtained images has led to the
development of analysis methods that utilize DFT and histogram
evaluation for the identification of defective and healthy battery
images. Additionally, a classifier based on CNN was proposed to
determine the stage of damage. In our experiments, adding a kernel
regularizer significantly improved the classification performance in
the validation phase, but for the training phase, DenseNet121 was
better. Overall, this study presents a promising method for
diagnosing problems in PV systems and detecting battery failures
caused by thermal runaway. Short circuits within the battery, caused
by manufacturing defects, wear and tear, or other factors, can
generate excess heat and initiate thermal runaway, and physical
damage to a battery, such as punctures, crushing, or short circuits,
can disrupt the internal structure and trigger thermal runaway.
Future research can include tests on other series. A dataset of
batteries can also be based on the analysis of other methods of
abuse, including nail penetration, thermal abuse, and internal short-
circuiting, and it can also be compared and measured with other

algorithms. Also, it is possible to separate the stages more precisely,
regarding shorter time intervals and more classes, and increase the
accuracy of its calculation. Battery cells with manufacturing defects,
including contaminants, internal shorts, or poor quality control, can
be prone to thermal runaway. This approach has the potential to
serve as a foundation for a new monitoring system and contribute
to the development of storage analysis programs in innovative PV
systems. These programs can lead to more efficient design,
standards, policies, and management of PV structures.
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