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Abstract: Compared to previous extensions, the q-rung orthopair fuzzy sets are superior to intuitionistic ones and Pythagorean ones because they
allow decision-makers to use a more extensive domain to present judgment arguments. The purpose of this study is to explore the multicriteria
group decision-making (MCGDM) problemwith the q-rung orthopair trapezoidal fuzzy (q-ROTrF) context by employing Einstein t-conorms and
t-norms. Firstly, some arithmetical operations for q-ROTrF numbers, such as Einstein-based sum, product, scalar multiplication, and
exponentiation, are introduced based on Einstein t-conorms and t-norms. Then, Einstein operations-based averaging and geometric
aggregation operators (AOs), viz., q-ROTrF Einstein weighted averaging and weighted geometric operators, are developed. Further, some
prominent characteristics of the suggested operators are investigated. Then, based on defined AOs, a MCGDM model with q-ROTrF
numbers is developed. In accordance with the proposed operators and the developed model, two numerical examples are illustrated. The
impacts of the rung parameter on decision results are also analyzed in detail to reflect the suitability and supremacy of the developed approach.

Keywords: Multicriteria group decision-making, q-rung orthopair trapezoidal fuzzy number, Einstein operations, weighted averaging and
weighted geometric aggregating operators

1. Introduction

Multicriteria group decision-making (MCGDM) is a technique for
choosing the most desirable alternatives from a collection of finite
alternatives based on a group of decision-makers’ (DMs) aggregate
assessment values. However, because it incorporates the complexity of
human cognitive thinking, the MCGDM process tends to be vague
and imprecise, making it difficult for DMs to provide precise
evaluations or preference information during the evaluation process.
To cope with such issues, Atanassov’s intuitionistic fuzzy set (IFS)
(Atanassov, 1986) might be considered an appealing method for
dealing with data fuzziness and inaccuracy. IFS is characterized by
membership and nonmembership degrees in which their sum is not
beyond one. Despite numerous IFS’s advantages, there may be
situations in which the sum of membership and nonmembership
degrees is greater than 1. Yager (2013a) and Yager (2013b)
introduced the Pythagorean fuzzy set (PFS) to address these issues,
ensuring that the squared sum of its degree of membership and degree

of nonmembership is ≤1. As a result, PFS have a more extensive
region to model real-life situations than IFSs. Wang and Garg (2021)
introduced Archimedean t-conorm and t-norm-based Pythagorean
fuzzy interactive weighted averaging (WA) and weighted geometric
(WG) operators as novel interaction Pythagorean operators. After the
inception of PFS, it has been broadly studied and employed by
scholars (Fei & Deng, 2020; Zeng et al., 2016; Sarkar & Biswas, 2019).

However, in real-world situations, the square sumof the degrees of
membership and degree of nonmembership is more than 1. In such
situations, PFS and IFS are inadequate for describing DMs’
evaluation information. To address this flaw, Yager (2016) redefined
the notion of q-rung orthopair fuzzy (q-ROF) set (q-ROFS) as a
generalization of PFS and IFS, wherein the sum of qth power of
membership and nonmembership degrees is less than or equal to
unity. It is important to keep in mind that the space of admissible
orthopairs expands as the rung q increases, making q-ROFs better
suited to unpredictable environments. Based on q-ROF environment,
Peng et al. (2021) defined entropy measure, distance measure, and
similarity measure and solved decision-making problems utilizing
those measures. Under q-ROF context, Riaz et al. (2021a)
established numerous WA and WG aggregation operators (AOs),
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viz., q-ROF fuzzy interaction-ordered and hybrid averaging AOs as
well as geometric versions of these AOs. Zeng et al. (2021) defined
induced weighted logarithmic-based two distance measures of q-
ROFSs. Recently, Alkan and Kahraman (2021) developed two
different TOPSIS methods under the q-ROF context and applied to
determine the most appropriate strategy. Ever since q-ROFSs’
appearance, many studies (Liu et al., 2018; Liu & Wang, 2020;
Sarkar & Biswas, 2021) have been conducted on decision-making
methods under q-ROF environment.

The use of trapezoidal fuzzy numbers (TrFNs) (Abbasbandy &
Hajjari, 2009) has also become increasingly widespread as a starting
point for developing fuzzy sets. TrFN is the best fit for conveying
the uncertainty of the alternative. If the alternative’s uncertainty is
expressed as an interval, TrFN is the best choice for representing it.
Gupta et al. (2021) presented the notion of q-rung orthopair TrFNs
(q-ROTrFNs), which was inspired by the ideas of q-ROFS (Yager,
2016) and TrFN (Wang & Zhang, 2009). For q-ROTrFNs, Wan
et al. (2021a) established a novel ranking algorithm and Hamming
distance measure. They also recommended using q-ROTrFNs for
developing a new TODIM group decision-making approach.

1.1 Motivations

It is worth noting that operational regulations play a crucial role in
data integration. Gupta et al. (2021) proposed the basic operations laws
and definedWAandWGAOs for q-ROTrFNs andmoreover developed
a TOPSIS approach for solving theMAGDMproblem.As an alternative
to algebraic sum and product, Einstein-based t-norm and t-conorm
provide the best approximation for sum and product of q-ROTrFNs.
The AOs are most typically employed to aggregate each individual
preference into the overall preference information and generate a
collective preference value for each alternative. There appear to be
limited studies into aggregation approaches for aggregating a
collection of q-ROTrF data in the literature. From the above
motivation, the aim of this research is to design some information
AOs using Einstein operations on q-ROTrFNs.

1.2 Contributions

In the present paper, we will research some Einstein-based
operational laws of the q-ROTrNs. Moreover, as the applications,
we give two novel AOs. As can be summarized from the
motivations above, the contributions are shown in the following:

• Using Einstein t-conorm and t-norms, the current study prolonged
the concept of aggregating distinct q-ROTrFNs. For this purpose,
firstly Einstein operating laws for q-ROTrFNs have been devised.

• Using defined operational rules, a set of q-ROTrF Einstein WA
(q-ROTrFEWA) and q-ROTrF Einstein WG (q-ROTrFEWG)
operators have been proposed for integrating q-ROTrF
information. Some desirable properties of these developed
operators are also investigated in detail.

• A novel MCGDM method based on the proposed operators has
been described under q-ROTrF context.

• By comparing the proposed approach to the existing method, it is
determined that the method proposed in this study has proven to be
useful in q-ROTrFNs research.

The following is the outline of the paper: Section 2 briefly recalls
fundamental conceptions related to q-ROFS, q-ROTrFN, and Einstein
operations. Based on Einstein operations, some basic operational rules
for q-ROTrFN are defined in Section 3. To aggregate q-ROTrFNs,
Section 4 introduces some operators based on Einstein operations,
viz., q-ROTrFEWA and q-ROTrFEWG operators. Further, some

characteristics of these developed operators are also exhibited in this
section. Section 5 illustrates a MCGDM approach utilizing the
developed AOs. Utilizing the proposed approach, two numerical
examples have been solved in Section 6, and comparative and
sensitivity analyses are also presented here. Finally, in Section 7, an
overall summary of the current study is depicted.

2. Preliminaries

Several basic principles that will be used throughout the
article are briefly reviewed in this section. In order to better
understand this paper, we will introduce some basic and useful
concepts of q-ROFSs (Yager, 2016), q-ROTrFN (Gupta et al.,
2021), and Einstein operations (Klement et al., 2004) in this section.

2.1 q-ROFS

The notion of q-ROFS is introduced by Yager (2016). In the
following, some basic notions pertaining to q-ROF sets are
presented from Yager (2016).

Definition 2.1. (Yager, 2016) On a universal set X, a q-ROFS, P is
presented by:

P ¼ x;µPðxÞ; νPðxÞð Þjx 2 Xf g;

where the values of µP and νP that lie in the closed unit interval
designate membership and nonmembership values, respectively,
following the requirement that

µPðxÞð Þq þ νPðxÞð Þqð Þ 2 0; 1½ �; where rung parameter q � 1:

For convenience, Yager (2016) named the pair µPðxÞ; νPðxÞð Þ
as a q-ROF number (q-ROFN) and symbolized it by }̃ ¼ µ; νð Þ.

2.2 q-ROTrFN

The concept of q-ROTrFN suggested by Gupta et al. (2021) as a
generalization of intuitionistic TrFN and Pythagorean fuzzy number
is as follows:

Definition 2.2. (Gupta et al., 2021) Suppose X be a fixed set.
A q-ROFN R̃ is said to be q-ROTrFN explained on [0,1], denoted
by R̃ ¼ h a; b; c; d½ �; γR̃ð Þ; a1; b; c; d1½ �; δR̃ð Þi if

γR̃ðxÞ ¼

x�að ÞµR̃
b�að Þ ; a � x � b
µR̃; b � x � c
d�xð ÞµR̃
d�cð Þ ; c � x � d
0 Otherwise

8>><
>>: (1)

δR̃ðxÞ ¼

b�xð Þþ x�a1ð ÞνR̃
b�a1ð Þ ; a1 � x � b

νR̃; b � x � c
x�cð Þþ d1�xð ÞνR̃

d1�cð Þ ; c � x � d1
1 Otherwise

8>><
>>: (2)

where a, a1, b, c, d, and d1 are given numbers, and γR̃ðxÞ 2 0; 1½ �
denotes the degree of membership and δR̃ðxÞ 2 0; 1½ � denotes the
degree of nonmembership with the condition that 0 � ðγR̃ðxÞÞq
þðδR̃ðxÞÞq � 1 where x 2 X and rung parameter q � 1.

For convenience, consider a ¼ a1 and d ¼ d1; therefore, the
real numbers a, b, c, and d and µr̃, νr̃ define the q-ROTrFN r̃ which
is denoted by h a; b; c; d½ �;µr̃; νr̃i. The membership function γ R̃ðxÞ
and nonmembership function δR̃ðxÞ of a q-ROTrFN have a graphical
representation, as shown in Figure 1, of a trapezoidal with a; d½ � being
the base of the trapezoidal.
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• When q ¼ 1 is considered, q-ROTrFN reduces to an intuitionistic
trapezoidal fuzzy number (Ye, 2011).

• For q ¼ 2, q-ROTrFN reduces to the Pythagorean trapezoidal
fuzzy number (Shakeel et al., 2018; Shakeel et al., 2019).

• If q ¼ 1 and b ¼ c are considered, q-ROTrFN is converted to an
intuitionistic triangular fuzzy number (Riaz et al., 2021a).

• The q-ROTrFN is converted to Pythagorean triangular fuzzy
number (Zhang & Liu, 2010) for considering q ¼ 2 and b ¼ c.

• When b ¼ c, q-ROTrFN changes in q-rung orthopair triangular
fuzzy number (Fahmi & Aslam, 2021; Wan et al., 2021a).

There are many different t-conorms and t-norms families to choose
from when modeling intersections and unions, and Einstein product
and Einstein sum are good choices because they typically yield the
same smooth approximation as algebraic product and algebraic sum,
respectively.

2.3 Einstein operations

Klement et al. (2004) introduced one of generalized t-norm and
t-conorm, which is known as Einstein t-norms and t-conorms and
expressed as:

• Einstein t-norm: TE x; yð Þ ¼ xy
1þ 1�xð Þ 1�yð Þ ;

• Einstein t-conorm: SE x; yð Þ ¼ xþy
1þxy.

2.4 Score and accuracy functions

Wan et al. (2021b) proposed the definition of a score and
accuracy functions for q-ROTrFNs in order to compare them.

Definition 2.3. (Wan et al., 2021b) Let r̃ ¼ h a; b; c; d½ �;µ; νi be a
q-ROTrFN, then score function S r̃ð Þ and accuracy function A r̃ð Þ
are presented as:

S r̃ð Þ ¼ aþ bþ cþ d
4

µq � νqð Þ; (3)

A r̃ð Þ ¼ aþ bþ cþ d
4

µq � νqð Þ: (4)

To effectively compare the two q-ROTrFNs, using the score
S r̃ð Þ and accuracy A r̃ð Þ functions, Wan et al. (2021b) defined a com-
parison law presented as follows:

Definition 2.4. (Wan et al., 2021b) Let r̃1 ¼ h a1; b1; c1; d1½ �;µ1; ν1i
and r̃2 ¼ h a2; b2; c2; d2½ �;µ2; ν2i are any two q-ROTrFNs, then com-
parison rule between r̃1 and r̃2 are presented in the following way:

(i) If S r̃1ð Þ > Sðr̃2Þ, then r̃1 � r̃2;
(ii) If S r̃1ð Þ ¼ Sðr̃2Þ, then

• If A r̃1ð Þ < Aðr̃2Þ, then r̃1 � r̃2;
• If A r̃1ð Þ ¼ Aðr̃2Þ, then r̃1 � r̃2.

3. Einstein Operations-Based q-ROTrF AOs

This section first introduces some basic operational laws for
q-ROTrFNs based on Einstein t-norm and t-conorm, and then
using defined operational rules, two new AOs were constructed.

3.1. Einstein operations for q-ROTrFNs

In this part, the Einstein t-conorm, SE, and t-norm, TE, are used
to propose several q-ROTrF Einstein AOs.

The Einstein sum and product on two q-ROTrFNs r̃1 and r̃2 are
also be a q-ROTrFN denoted by r̃1	Er̃2 and r̃1
Er̃2, respectively, as
follows.

Definition 3.1. Let r̃i ¼ h ai; bi; ci; di½ �;µi; νii, i ¼ 1; 2ð Þ and
r̃ ¼ h a; b; c; d½ �;µ; νi be any three q-ROTrFNs, then their addition,
r̃1	E r̃2, multiplication, r̃1
E r̃2, λ > 0ð Þ

(i) r̃1	E r̃2 ¼
D
a1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2½ �; µ1

qþµ2
q

1þµ1
qµ2

q

� �1
q;

ν1
qν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ
� �1

q

E
;

(ii) r̃1
E r̃2 ¼ a1a2; b1b2; c1c2; d1d2½ �; µ1
qµ2

q

1þ 1�µ1
qð Þ 1�µ2

qð Þ
� �1

q;
D

ν1
qþν2

q

1þν1
qν2

q

� �1
q

E
;

(iii) λ�E r̃ ¼ λa; λb; λc; λd½ �; 1þµqð Þλ� 1�µqð Þλ
1þµqð Þλþ 1�µqð Þλ

� �1
q; 2νqλ

2�νqð Þλþνqλ

� �1
q

D E
;

(iv) r̃λ ¼ aλ; bλ; cλ; dλ½ �; 2µqλ

2�µqð Þλþµqλ

� �1
q; 1þνqð Þλ� 1�νqð Þλ

1þνqð Þλþ 1�νqð Þλ
� �1

q

D E
.

Proof (i). Since ai; bi; ci; di 2 R, then it is evident that
a1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2 2 R.

We have to show that µ1
qþµ2

q

1þµ1
qµ2

q

� �1
q

� �q
þ ν1

qþν2
q

1þ 1�ν1
qð Þ 1�ν2

qð Þ
� �1

q

� �q � 1, i.e., µ1
qþµ2

q

1þµ1
qµ2

q þ ν1
qþν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ � 1.

From the definition of q-ROTrFNs, r̃i, the membership and
nonmembership degrees satisfy the condition that

µ1
q þ ν1

q � 1; (5)

and

µ2
q þ ν2

q � 1; (6)

i.e., µ1
q � 1� ν1

q, µ2
q � 1� ν2

q,

) µ2
qµ2

q � 1� ν1
qð Þ 1� ν2

qð Þð∵µi; νi 2 0; 1½ �
) 1þ µ2

qµ2
q � 1þ 1� ν1

qð Þ 1� ν2
qð Þ: (7)

Adding (5) and (6),

µ1
q þ ν1

q þ µ2
q þ ν2

q � 2; (8)

and since µi 2 ½0; 1�

Figure 1
Graphical representation of q-ROTrFN r̃ ¼ h a; b; c; d½ �;µr̃; νr̃i
Note. Several fuzzy numbers can be generated from q-ROTrFN

based on changing the rung parameter q
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µ1
qµ2

q � 1; i:e:; 1þ µ1
qµ2

q � 2: (9)

From (8) and (9),

µ1
q þ µ2

q þ ν1
q þ ν2

q

1þ µ1
qµ2

q � 1; or;
µ1

q þ µ2
q

1þ µ1
qµ2

q þ
ν1

q þ ν2
q

1þ µ1
qµ2

q � 1;

Now using (3.3), µ1
qþµ2

q

1þµ1
qµ2

q þ ν1
qþν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ � 1.

So r̃1	E r̃2 is an q-ROTrFN.
In a parallel way, it can be proven that each of r̃1
E r̃2, λ�E r̃,

and r̃λ is a q-ROTrFN.

Example 1: Let r̃1 ¼ 0:4; 0:5; 0:6; 0:7½ �; 0:7; 0:3h i and r̃2 ¼
0:3; 0:4; 0:6; 0:8½ �; 0:8; 0:5h i be any two q-ROTrFNs. Then for taking

q ¼ 3, some Einstein operations of r̃1 and r̃2 can be defined as
follows:

r̃ 1	E r̃2 ¼ 0:4þ 0:3; 0:5þ 0:4; 0:6þ 0:6; 0:7þ 0:8½ �; 0:73 þ 0:83

1þ 0:730:83

� �1
3

;

�

0:330:53

1þ 1� 0:33ð Þ 1� 0:53ð Þ
� �1

3
E
;¼ 0:7; 0:9; 1:2; 1:5½ �; 0:8993; 0:1222i;h

r̃1
E r̃2 ¼
D

0:4� 0:3; 0:5� 0:4; 0:6� 0:6; 0:7� 0:8½ �½ �;

0:730:83

1þ 1� 0:73ð Þ 1� 0:83ð Þ
� �1

3

;
0:33 þ 0:53

1þ 0:330:53

� �1
3
E
;

¼ 0:12; 0:2; 0:36; 0:56½ �; 0:5104; 0:5331h i;
2�E r̃1 ¼

D
2� 0:4; 2� 0:5; 2� 0:6; 2� 0:7½ �;

1þ 0:73ð Þ2 � 1� 0:73ð Þ2
1þ 0:73ð Þ2 þ 1� 0:73ð Þ2

� �1
3

;
2� 0:33�2

2� 0:33ð Þ2 þ 0:33�2

� �1
q
E
;

¼ 0:8; 1:0; 1:2; 1:4½ �; 0:8498; 0:0721h i;

r̃21 ¼ 0:42; 0:52; 0:62; 0:72½ �; 2�0:73�2

2� 0:73ð Þ2 þ 0:73�2

� �1
3

;

�

1þ 0:33ð Þ2 � 1� 0:33ð Þ2
1þ 0:33ð Þ2 þ 1� 0:33ð Þ2

� �1
3
E
;¼ 0:16; 0:25; 0:36; 0:49½ �; 0:4348; 0:3779h i:

3.2 Einstein operations-based q-ROTrF AOs

With the help of Einstein operations, the q-ROTrF averaging
and geometric AOs are introduced in the section.

• q-ROTrFEWA operator

Definition 3.2. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νj
	 
j j ¼ 1; 2; . . . ; n

� �
be

a collection of q-ROTrFNs. The q-ROTrFEWA operator is defined
as follows:

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼ 	E
n
j¼1 ωj�E r̃j
 �

; (10)

In which addition 	E and scalar multiplication �E, laws are
presented in Definition 3.1, where ω ¼ ðω1;ω2; . . . ;ωnÞT is a weight
vector of q-ROTrFNs r̃j with ωj 2 0; 1½ � andPn

j¼1ωj ¼ 1.

Theorem 3.1. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νj
	 
jj ¼ 1; 2; . . . ; n

� �
be a

group of q-ROTrFNs and ω ¼ ðω1;ω2; . . . ;ωnÞT be a weight vector
of r̃j where ωj 2 0; 1½ �, Pn

j¼1ωj ¼ 1. Then aggregated value of

r̃1; r̃2; . . . ; r̃nf g by the q-ROTrFEWA operator is still a q-ROTrFN
and

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼
Xn
j¼1

ωjaj;
Xn
j¼1

ωjbj;
Xn
j¼1

ωjcj;
Xn
j¼1

ωjdj

" #
;

*

Q
n
j¼1 1þ µj

q
 �

ωj �Qn
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

n
j¼1νj

qωjQ
n
j¼1 2� νj

q
 �

ωj þQn
j¼1νj

qωj

 !1
q

+
:

(11)
Proof. Based on Definition 3.1,

ωj�E r̃j ¼ ωjaj;ωjbj;ωjcj;ωjdj
� �

;
1þ µj

q
 �

ωj � 1� µj
q

 �
ωj

1þ µj
q

 �
ωj þ 1� µj

q
 �

ωj

 !1
q

;

*

2νj
qωj

2� νj
q

 �
ωj þ νj

qωj

 !1
q

+
; now; ω1 r̃1	E ω2 r̃2

¼ ω1a1 þ ω2a2;ω1b1 þ ω2b2;ω1c1 þ ω2c2;ω1d1 þ ω2d2½ �;h
Q

2
j¼1 1þ µj

q
 �

ωj �Q2
j¼1 1� µj

q
 �

ωjQ
2
j¼1 1þ µj

q
 �

ωj þQ2
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

2
j¼1νj

qωjQ
2
j¼1 2� νj

q
 �

ωj þQ2
j¼1νj

qωj

 !1
q

+

i.e., the theorem holds for n ¼ 2. Now, assume that the theorem is
valid for n ¼ k.

Hence, q� ROTrFEWA r̃1; r̃2; . . . ; r̃kð Þ ¼
D P

k
j¼1 ωjaj;

h
P

k
j¼1 ωjbj;

P
k
j¼1 ωjcj;

P
k
j¼1 ωjdj�;

Q
k
j¼1 1þ µj

q
 �

ωj �Qk
j¼1 1� µj

q
 �

ωjQ
k
j¼1 1þ µj

q
 �

ωj þQk
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

k
j¼1νj

qωjQ
k
j¼1 2� νj

q
 �

ωj þQk
j¼1νj

qωj

 !1
q

+
:

Then for n ¼ kþ 1,

q� ROTrFEWA r̃1; r̃2; . . . ; r̃k; r̃kþ1ð Þ
¼ q� ROTrFEWA r̃1; r̃2; . . . ; r̃kð Þ	E ωkþ1 r̃kþ1ð Þ

¼
Xk
j¼1

ωjaj;
Xk
j¼1

ωjbj;
Xk
j¼1

ωjcj;
Xk
j¼1

ωjdj

" #
;

*

Q
k
j¼1 1þ µj

q
 �

ωj �Qk
j¼1 1� µj

q
 �

ωjQ
k
j¼1 1þ µj

q
 �

ωj þQk
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

k
j¼1νj

qωjQ
k
j¼1 2� νj

q
 �

ωj þQk
j¼1νj

qωj

 !1
q

+

	E ωkþ1akþ1;ωkþ1bkþ1;ωkþ1ckþ1;ωkþ1dkþ1½ �; 1þ µkþ1
qð Þωkþ1 � 1� µkþ1

qð Þωj

1þ µkþ1
qð Þωj þ 1� µkþ1

qð Þωj

� �1
q;

�

2νkþ1
qωkþ1

2� νj
q

 �
ωkþ1 þ νkþ1

qωkþ1

 !1
q

+
;¼

Xkþ1

j¼1

ωjaj;
Xkþ1

j¼1

ωjbj;
Xkþ1

j¼1

ωjcj;
Xkþ1

j¼1

ωjdj

" #
;

*

Qkþ1
j¼1 1þ µj

q
 �

ωj �Qkþ1
j¼1 1� µj

q
 �

ωjQkþ1
j¼1 1þ µj

q
 �

ωj þQkþ1
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Qkþ1

j¼1 νj
qωjQkþ1

j¼1 2� νj
q

 �
ωj þQkþ1

j¼1 νj
qωj

 !1
q

+
:

Therefore, the theorem is true for n ¼ kþ 1 also and
is valid 8n.

Example 2: Let r̃1 ¼ 0:4; 0:5; 0:6; 0:7½ �; 0:4; 0:3h i, r̃2 ¼
0:1; 0:2; 0:3; 0:4½ �; 0:5; 0:2h i, and r̃3 ¼ 0:4; 0:5; 0:7; 0:8½ �; 0:2; 0:5h i
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be a collection of q-ROTrFNs. If the weights of three q-ROTrFNs are
taken, respectively, such as 0.3, 0.25, and 0.35, then their aggregated
value by using the q-ROTrFEWA operator is also a q-ROTrF and
obtained as:

q� ROTrFEWA r̃1; r̃2; r̃3ð Þ

¼
X3
j¼1

ωjaj;
X3
j¼1

ωjbj;
X3
j¼1

ωjcj;
X3
j¼1

ωjdj

" #
;

*

Q
3
j¼1 1þ µj

3
 �

ωj �Q3
j¼1 1� µj

3
 �

ωjQ
3
j¼1 1þ µj

3
 �

ωj þQ3
j¼1 1� µj

3
 �

ωj

 !1
3

;
2
Q

3
j¼1νj

3ωjQ
3
j¼1 2� νj

3
 �

ωj þQ3
j¼1νj

3ωj

 !1
3

+
;

¼ 0:2850; 0:3750; 0:5000; 0:5900½ �; 0:3765; 0:5734h i:

Now, some fundamental characteristics of the proposed
q-ROTrFEWA operator are stated in the following section.

Theorem 3.2. (Idempotency) Suppose r̃j ¼ h aj; bj; cj; dj
� �

;µj; νj
� 


j ¼ 1; 2; . . . ; nj g be a group of q-ROTrFNs. If r̃j ¼ r̃ ¼
h a; b; c; d½ �;µ; νi 8j, then

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃:

.
Proof. q� ROTrFEWAðr̃1; r̃2; . . . ; r̃nÞ ¼

Xn
j¼1

ωjaj;
Xn
j¼1

ωjbj;
Xn
j¼1

ωjcj;
Xn
j¼1

ωjdj

" #
; 1�

Yn
j¼1

1� µj
q

 �
ωj

 !1
q

;
Yn
j¼1

νj
ωj

* +
:

Since r̃j ¼ r̃ 8j,

q� ROTrFEWA r̃; r̃; . . . ; r̃ð Þ

¼
Xn
j¼1

ωj

 !
a;

Xn
j¼1

ωj

 !
b;

Xn
j¼1

ωj

 !
c;

Xn
j¼1

ωj

 !
d

" #
;

*

1� 1� µqð Þ
P

j¼1
ωj

� �1
q
; ν
P

n
j¼1

ωj

+
¼ h a; b; c; d½ �;µ; νi ¼ r̃:

Theorem 3.3. (Monotonicity) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
� �

and

r̃j 0 ¼ h a0j; b
0
j; c

0
j; d

0
j

h i
;µ0

j; ν
0
ji

n o
be two collections of n q-ROTrFNs. If

aj � a0j; bj � b0j; cj � c0j; dj � d0j, µj � µ0
j and νj � ν0j 8j, then,

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ≼ q� ROTrFEWA r̃10; r̃20; . . . ; r̃n0ð Þ:
(12)

Proof. Let gðtÞ ¼ 1þt
1�t, t 2 0; 1½ Þ, then g0ðtÞ ¼ 2

1�tð Þ2 > 0, thus g is an
increasing function. Since for every r̃j and r̃j 0, µj � µ0

j,

1þ µj
q

 �
1� µj

q
 � � 1þ µ0

j
q

� �
1� µ0

j
q

� � : So; 1þ µj
q

1� µj
q

 !
ωj

� 1þ µ0
j
q

1� µ0
j
q

 !
ωj

;

,
Y

n
j¼1

1þ µj
q

1� µj
q

 !
ωj

�
Y

n
j¼1

1þ µ0
j
q

1� µ0
j
q

 !
ωj

;

,
Y

n
j¼1

1þ µj
q

1� µj
q

 !
ωj

þ 1 �
Y

n
j¼1

1þ µ0
j
q

1� µ0
j
q

 !
ωj

þ 1;

, 1Q
n
j¼1

1þµj
q

1�µj
q

� �
ωj þ 1

� 1Q
n
j¼1

1þµ0
j
q

1�µ0
j
q

� �
ωj þ 1

;

, 2
Q

n
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

�
2
Q

n
j¼1 1� µ0

j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

, 1� 2
Q

n
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

� 1�
2
Q

n
j¼1 1� µ0

j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

,
Q

n
j¼1 1þ µj

q
 �

ωi �Qn
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

�
Q

n
j¼1 1þ µ0

j
q

� �
ωj �Qn

j¼1 1� µ0
j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

(13)

Again let f ðuÞ ¼ 2�u
u , u 2 0; 1ð �, then f 0ðuÞ ¼ � 2

u2 < 0, thus
f ðuÞ is a decreasing function.

Since, νjq � ν
0q
j 8j, then

2� νj
q

νj
q � 2� ν

0q
j

ν
0q
j

; thus;
2� νj

q

νj
q

 !
ω

j

� 2� ν
0q
j

ν
0q
j

 !
ωj

;

,
Y

n
j¼1

2� ν
q
j

ν
q
j

 !
ωj

�
Y

n
j¼1

2� ν
0q
j

ν
0q
j

 !
ωj

;,
Y

n
j¼1

2� ν
q
j

ν
q
j

 !
ωj

þ 1 �
Y

n
j¼1

2� ν
0q
j

ν
0q
j

 !
ωj

þ1;, 1Q
n
j¼1

2�νj
q

νj
q

� �
ωjþ1

� 1Q
n
j¼1

2�ν0j
q

ν0j
q

� �
ωjþ1

;, 2
Q

n
j¼1νj

qωjQ
n
j¼1 2� νj

q
 �

ωj þQn
j¼1νj

qωj

� 2
Q

n
j¼1ν

0
j
qωjQ

n
j¼1 2� ν0j

q
� �

ωj þQn
j¼1ν

0
j
qωj

:

(14)

From (13) and (14) and using the relationsP
n
j¼1 ωjaj �

P
n
j¼1 ωja

0
j,

P
n
j¼1 ωjbj �

P
n
j¼1 ωjb

0
j,

P
n
j¼1 ωjcj �P

n
j¼1 ωjc0j and

P
n
j¼1 ωjdj �

P
n
j¼1 ωjd0j, it is clear that

S q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þð Þ
� S q� ROTrFEWA r̃10; r̃20; . . . ; r̃n0ð Þð Þ:

Therefore; q�ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ≼ q�ROTrFEWA r̃10; r̃20; . . . ; r̃n 0ð Þ.
Hence, inequality (12) follows.
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Theorem 3.4. (Boundedness) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
�

j ¼ 1; 2; . . . ; nj g be a group of q-ROTrFNs and assume

r̃j� ¼ minj aj
� �

;minj bj
� �

;minj cj
� �

;minj dj
� �� �

;minj µj

� �
;maxj νj

� �	 

; and

r̃jþ ¼ maxj aj
� �

;maxj bj
� �

;maxj cj
� �

;maxj dj
� �� �

;maxj µj

� �
;minj νj

� �	 

;

then, r̃j� � q� ROTrFEWAðr̃1; r̃2; . . . ; r̃nÞ � r̃j
þ.

Proof. Since min aj
� � � aj � max aj

� �
, min bj

� � � bj
� max bj

� �
, min cj

� � � cj � max cj
� �

, min dj
� � � dj � max dj

� �
,

min µj

� � � µj � max µj

� �
and min νj

� � � νj � max νj
� �8j,

then r̃j
� � r̃j8j.

Thus, from monotonicity

q� ROTrFEWA r̃j�; r̃j�; . . . ; r̃j�
 �

� q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ:

Now applying the idempotency theorem, the above inequality
takes the form as:

r̃j� � q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ: (15)

Similarly, it can be shown that

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ � r̃jþ: (16)

So, by combining (15) and (16), it follows that

r̃j� � q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ � r̃jþ:

• q-ROTrFEWG operator
In this subsection, q-ROTrFEWG operator is developed based

on Einstein operational rules.

Definition 3.3. Let r̃j ¼ h aj; bj; cj; dj
� �

;µj;νjijj ¼ 1; 2; . . . ; n
� �

be a
collection of q-ROTrFNs. The q-ROTrFEWG operator is defined as
follows:

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃1ω1
E r̃2ω2
E . . .
Er̃nωn ; (17)

In which multiplication 
E and exponential laws are presented
in Definition 3.1, where ω ¼ ðω1;ω2; . . . ;ωnÞT is a vector of
q-ROTrFNs r̃j with ωj 2 0; 1½ � andPn

j¼1ωj ¼ 1.

Theorem 3.5. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νjijj ¼ 1; 2; . . . ; n
	 ��

be a
set of q-ROTrFNs and ω ¼ ðω1;ω2; . . . ;ωnÞT represent the weight
vector of r̃j where ωj 2 0; 1½ �, Pn

j¼1ωj ¼ 1. Then their aggregated

value using q-ROTrFEWG operator is furthermore a q-ROTrFN and

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ

¼
Yn
j¼1

aj
ωj ;
Yn
j¼1

bj
ωj ;
Yn
j¼1

cj
ωj ;
Yn
j¼1

dj
ωj

" #
;

2
Q

n
j¼1µj

qωjQ
n
j¼1 2� µj

q
 �

ωj þQn
j¼1µj

qωj

 !1
q

;

*

Q
n
j¼1 1þ νj

q
 �

ωj �Qn
j¼1 1� νj

q
 �

ωjQ
n
j¼1 1þ νj

q
 �

ωj þQn
j¼1 1� νj

q
 �

ωj

 !1
q

+
: (18)

Proof. The proof is same as Theorem 3.1.
Example 3:. In Example 2, if the geometric aggregation

operator is used q-ROTrFEWG, then the aggregating values of the
three q-ROTrFNs, r̃1, r̃2, and r̃3, are computed as:

q� ROTrFEWG r̃1; r̃2; r̃3ð Þ ¼
Y3
j¼1

aj
ωj ;
Y3
j¼1

bj
ωj ;
Y3
j¼1

cj
ωj ;
Y3
j¼1

dj
ωj

" #
;

*

2
Q

3
j¼1µj

3ωjQ
3
j¼1 2� µj

3
 �

ωj þQ3
j¼1µj

3ωj

 !1
3

;

Q
3
j¼1 1þ νj

3
 �

ωj �Q3
j¼1 1� νj

3
 �

ωjQ
3
j¼1 1þ νj

3
 �

ωj þQ3
j¼1 1� νj

3
 �

ωj

 !1
3

+
;

¼ 0:3100; 0:4262; 0:5604; 0:6609½ �; 0:7112; 0:3780h i:

Next, the characteristics of the defined q-ROTrFEWG operator are
presented.

Theorem 3.6. (Idempotency) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
j ¼ 1; 2; . . . ; nð Þ be a set of n Lq-ROFNs. If r̃j ¼ r̃ ¼
h a; b; c; d½ �;µ; νi 8j, then

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃

.
Proof. The proof is same as Theorem 3.2.

Theorem 3.7. (Monotonicity) Suppose r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
and r̃j 0 ¼ h a0j; b

0
j; c

0
j; d

0
j

h i
;µ0

j; ν
0
ji be two set of n q-ROTrFNs. If

aj � a0j; bj � b0j; cj � c0j; dj � d0j, µj � µ0
j and νj � ν0j 8j, then

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ � q� ROTrFEWG r̃1
0; r̃20; . . . ; r̃n0ð Þ

.
Proof. The proof is similar as Theorem 3.3.

Theorem 3.8. (Boundedness) If r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
� �

represents a set of n q-ROTrFNs, and

r̃j� ¼ minj aj
� �

;minj bj
� �

;minj cj
� �

;minj dj
� �� �

;min µj

� �
;maxj νj

� �	 

and

r̃jþ ¼ maxj aj
� �

;maxj bj
� �

;maxj cj
� �

;maxj dj
� �� �

;maxj µj

� �
;minj νj

� �	 

; then

r̃j
� � q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ � r̃j

þ:

Proof. The proof is same as Theorem 3.4.

4. MCGDM Approach Based on the Proposed AOs
under q-ROTrF Environment

In this part, a novel MCGDM method has been propounded in
which the evaluation information is in the form of q-ROTrFNs.

For a MCGDM problem, let E ¼ eð1Þ; eð2Þ; . . . ; e kð Þ� �
be the

group of the DMs with their associated weight vector
Ω ¼ Ω1;Ω2; . . . ;Ωkð ÞT . Suppose A ¼ Aif ji ¼ 1; 2; . . . ;mg be a set
of m discrete alternatives and C ¼ Cjjj ¼ 1; 2; . . . ; n

� �
represents

the set of n criteria along with their weight vector
ω ¼ ω1;ω2; . . . ;ωnð ÞT , satisfying ωi 2 0; 1½ � and

P
n
i¼1ωi ¼ 1.

DMs give their assessment values in terms of q-ROTrFNs. The
DMs use q-ROTrFNs to express their judgment values, and q-ROTrF
decision matrix (q-ROTrFDM) is provided as

DðlÞ ¼�r̃ðlÞij �m�n
¼�	�aðlÞij ; bðlÞij ; cðlÞij ; dðlÞij i;µðlÞ

ij ; ν
ðlÞ
ij

Ei
m�n

ðl¼1; 2; . . .; kÞ,
where r̃ðlÞij ¼ aðlÞij ; b

ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
;µðlÞ

ij ; ν
ðlÞ
ij

D E
denotes a q-ROTrFN

given by the DM eðlÞ for the alternative Ai under the criteria Cj.
The purpose is to find the best suitable alternative(s) in light of

the presented approach. The following is a step-by-step breakdown
of the computing procedure.
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Step 1. Normalize DðlÞ, if required, into N ðlÞ ¼ }̃ij
ðlÞ

h i
m�n

as
follows:

}̃ij
ðlÞ ¼

aðlÞij ; b
ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
;µðlÞ

ij ; ν
ðlÞ
ij

D E
if Cj is type of benefit criteria

aðlÞij ; b
ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
; νðlÞij ;µ

ðlÞ
ij

D E
if Cj is type of cost criteria;

8<
:

(19)

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n:
Step 2. Utilize q-ROTrFEWA (or q-ROTrFEWG) operator to

aggregate all the individual normalized q-ROTrFDMs,

N ðlÞ ¼ }̃ij
ðlÞ

h i
m�n

ðl ¼ 1; 2; . . . ; kÞ into a single

q-ROTrFDM,

N ¼ }̃ij

h i
m�n

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nð Þ as:

}̃ij ¼
X3
l¼1

ΩðlÞaðlÞij ;
X3
l¼1

ΩðlÞbðlÞij ;
X3
l¼1

ΩðlÞcðlÞij ;
X3
l¼1

ΩðlÞdðlÞij

" #
;

*

Q
3
l¼1 1þ µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

�Q3
l¼1 1� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

Q
3
l¼1 1þ µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 1� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

0
B@

1
CA

1
q

;

2
Q

3
l¼1 ν

ðlÞ
ij

� �
qΩðlÞ

Q
3
l¼1 2� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 ν

ðlÞ
ij

� �
qΩðlÞ

0
B@

1
CA

1
q+

; (20)

or }̃ij
0 ¼ Y3

l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
" #

;

*

2
Q

3
l¼1 µ

ðlÞ
ij

� �
qΩðlÞ

Q
3
l¼1 2� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 µ

ðlÞ
ij

� �
qΩðlÞ

0
B@

1
CA

1
q

;

Q
3
l¼1 1þ ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

�Q3
l¼1 1� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

Q
3
l¼1 1þ ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 1� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

0
B@

1
CA

1
q

i:

(21)

Step 3. Aggregate the q-ROTrFN }̃ij (or }̃ij
0) for each

Ai ði ¼ 1; 2; . . . ;mÞ applying q-ROTrFEWA (or q-ROTr-
FEWG) operator as follows:

}̃i ¼ q� ROTrFEWA }̃i1; }̃i2; . . . ; }̃inð Þ; (22)

or,

}̃i
0 ¼ q� ROTrFEWG }̃i1; }̃i2; . . . ; }̃inð Þ: (23)

Step 4. Compute the score values S }̃ið Þ (or S }̃0
ið Þ) of the }̃i (or }̃0

i)
for obtaining ordering among the alternatives, Ai.

Step 5. Sort the scores of all the alternatives in descending order,
then choose the one with the highest score function.

The flowchart of the above methodology is presented through
the Figure 2.

5. Illustrative Examples

In this part, two numerical examples, previously studied by Aydin
et al. (2020) and Zhao et al. (2017), are given to illustrate the application
of the proposed q-ROTrFEWA and q-ROTrFEWG operators.

5.1 Example 4

The human resources department of a corporation is looking to
hire a sales consultant. Three human resource specialists will assess
the four candidates based on the following criteria:

C1: experience;
C2: competencies;
C3: foreign language skills;
C4: human relationship management.

where C1, C2, and C3, are benefit type, and last one is cost type. DMs
evaluate four candidates A1;A2;A3;A4f g with q-ROTrFNs
presented in Tables 1, 2 and 3. Let ω ¼ 0:15; 0:25; 0:25; 0:35ð ÞT
and Ω ¼ 0:45; 0:25; 0:30ð ÞT represent the weight vector of criteria
and DMs, respectively.

Now q-ROTrFEWA and q-ROTrFEWG operators are
implemented to choose the ideal candidate.

Step 1: The criteria are classified into two groups: criteria C1 � C3
are classified as benefit criteria. The cost criterion is C4. So,
by using Eq. (19), the normalized q-ROTrFDMs is
obtained, which is shown in Tables 4, 5 and 6, respectively.

Step 2: Apply the q-ROTrFEWA operator, presented in
Eq. (20), to aggregate all the normalized q-ROTrFDM
N ðlÞ ¼ �}̃ij

ðlÞ�
m�n ðl ¼ 1; 2; 3; 4Þ. The integrated

q-ROTrFDM, N ¼ �}̃ij

�
m�n is shown in Table 7.

Step 3: Again, by Eq. (22) and Table 7, the final aggregated values
}̃i of Ai are found as:

Figure 2
Flowchart of the proposed methodology
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Table 1
q-ROTrFDM eð1Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:6; 0:7; 0:8; 0:9½ �; 0:5; 0:2h i 0:4; 0:7; 0:8; 0:9½ �; 0:7; 0:4h i 0:2; 0:3; 0:4; 0:5½ �; 0:6; 0:9h i
A2 0:2; 0:3; 0:5; 0:6½ �; 0:3; 0:6h i 0:1; 0:3; 0:6; 0:9½ �; 0:7; 0:2h i 0:4; 0:6; 0:7; 0:9½ �; 0:3; 0:3h i 0:5; 0:6; 0:7; 0:8½ �; 0:4; 0:8h i
A3 0:3; 0:4; 0:5; 0:9½ �; 0:4; 0:8h i 0:2; 0:3; 0:5; 0:7½ �; 0:6; 0:1h i 0:3; 0:4; 0:5; 0:6½ �; 0:4; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:6h i
A4 0:5; 0:7; 0:8; 0:9½ �; 0:8; 0:4h i 0:2; 0:4; 0:6; 0:8½ �; 0:3; 0:8h i 0:4; 0:5; 0:8; 0:9½ �; 0:8; 0:5h i 0:3; 0:5; 0:6; 0:8½ �; 0:6; 0:4h i

Table 2
q-ROTrFDM eð2Þ

C1 C2 C3 C4
A1 0:4; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:1; 006h i 0:5; 0:6; 0:7; 0:8½ �; 0:3; 0:6h i 0:4; 0:5; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:5; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:3; 0:4h i 0:1; 0:3; 0:5; 0:6½ �; 0:9; 0:5h i 0:3; 0:6; 0:7; 0:8½ �; 0:5; 0:6h i
A3 0:6; 0:7; 0:8; 0:9½ �; 0:6; 0:9h i 0:2; 0:4; 0:5; 0:7½ �; 0:4; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:2; 0:6h i 0:4; 0:5; 0:7; 0:8½ �; 0:2; 0:3h i
A4 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:4; 0:5; 0:6; 0:7½ �; 0:3; 0:8h i 0:4; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:3; 0:4; 0:7; 0:9½ �; 0:6; 0:4h i

Table 3
q-ROTrFDM eð3Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:3; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:6; 0:7; 0:8; 0:9½ �; 0:4; 0:6h i 0:3; 0:5; 0:7; 0:9½ �; 0:9; 0:5h i 0:4; 0:5; 0:7; 0:9½ �; 0:4; 0:3h i 0:3; 0:5; 0:8; 0:9½ �; 0:6; 0:3h i
A3 0:5; 0:6; 0:7; 0:8½ �; 0:1; 0:3h i 0:2; 0:3; 0:5; 0:7½ �; 0:5; 0:8h i 0:3; 0:4; 0:5; 0:6½ �; 0:6; 00:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:4h i
A4 0:1; 0:3; 0:5; 0:7½ �; 0:2; 0:7h i 0:2; 0:3; 0:4; 0:5½ �; 0:3; 0:2h i 0:1; 0:2; 0:4; 0:5½ �; 0:3; 0:7h i 0:3; 0:5; 0:6; 0:8½ �; 0:7; 0:2h i

Table 4
Normalized q-ROTrFDM N ð1Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:6; 0:7; 0:8; 0:9½ �; 0:5; 0:2h i 0:4; 0:7; 0:8; 0:9½ �; 0:7; 0:4h i 0:2; 0:3; 0:4; 0:5½ �; 0:9; 0:6h i
A2 0:2; 0:3; 0:5; 0:6½ �; 0:3; 0:6h i 0:1; 0:3; 0:6; 0:9½ �; 0:7; 0:2h i 0:4; 0:6; 0:7; 0:9½ �; 0:3; 0:3h i 0:5; 0:6; 0:7; 0:8½ �; 0:8; 0:4h i
A3 0:3; 0:4; 0:5; 0:9½ �; 0:4; 0:8h i 0:2; 0:3; 0:5; 0:7½ �; 0:6; 0:1h i 0:3; 0:4; 0:5; 0:6½ �; 0:4; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:6; 0:3h i
A4 0:5; 0:7; 0:8; 0:9½ �; 0:8; 0:4h i 0:2; 0:4; 0:6; 0:8½ �; 0:3; 0:8h i 0:4; 0:5; 0:8; 0:9½ �; 0:8; 0:5h i 0:3; 0:5; 0:6; 0:8½ �; 0:4; 0:6h i

Table 5
Normalized q-ROTrFDM N ð2Þ

C1 C2 C3 C4
A1 0:4; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:1; 0:6h i 0:5; 0:6; 0:7; 0:8½ �; 0:3; 0:6h i 0:4; 0:5; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:5; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:3; 0:4h i 0:1; 0:3; 0:5; 0:6½ �; 0:9; 0:5h i 0:3; 0:6; 0:7; 0:8½ �; 0:6; 0:5h i
A3 0:6; 0:7; 0:8; 0:9½ �; 0:6; 0:9h i 0:2; 0:4; 0:5; 0:7½ �; 0:4; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:2; 0:6h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:2h i
A4 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:4; 0:5; 0:6; 0:7½ �; 0:3; 0:8h i 0:4; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:3; 0:4; 0:7; 0:9½ �; 0:4; 0:6h i

Table 6
Normalized q-ROTrFDM N ð3Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:3; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:6; 0:7; 0:8; 0:9½ �; 0:4; 0:6h i 0:3; 0:5; 0:7; 0:9½ �; 0:9; 0:5h i 0:4; 0:5; 0:7; 0:9½ �; 0:4; 0:3h i 0:3; 0:5; 0:8; 0:9½ �; 0:3; 0:6h i
A3 0:5; 0:6; 0:7; 0:8½ �; 0:1; 0:3h i 0:2; 0:3; 0:5; 0:7½ �; 0:5; 0:8h i 0:3; 0:4; 0:5; 0:6½ �; 0:6; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:4; 0:3h i
A4 0:1; 0:3; 0:5; 0:7½ �; 0:2; 0:7h i 0:2; 0:3; 0:4; 0:5½ �; 0:3; 0:2h i 0:1; 0:2; 0:4; 0:5½ �; 0:3; 0:7h i 0:3; 0:5; 0:6; 0:8½ �; 0:2; 0:7h i
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}̃1 ¼ 0:4285; 0:5982; 0:7270; 0:8270½ �; 0:6121; 0:4502h i;
}̃2 ¼ 0:3420; 0:5125; 0:7270; 0:6840½ �; 0:6637; 0:4140h i;
}̃3 ¼ 0:3490; 0:4552; 0:6090; 0:7542½ �; 0:4905; 0:4070h i;
}̃4 ¼ 0:3483; 0:4207; 0:6302; 0:7810½ �; 0:5182; 0:5811h i:

Step 4: Utilizing Eq. (3), calculate the scores of }̃1, }̃2, }̃3, and }̃4

as S }̃1ð Þ ¼ 0:0891, S }̃2ð Þ ¼ 0:1254, S }̃3ð Þ ¼ 0:0274, and
S }̃4ð Þ ¼ �0:0312.

Step 5: Conferring to the score function, using Definition 2.4,
alternatives’ ranking is achieved as follows:

A2 � A1 � A3 � A4. Thus, the best alternative is A2.

Now, developed geometric operator, i.e., q-ROTrFEWG is used
to aggregate the separable q-ROTrF data into a communal one.

Step 3: Apply the geometric operator, q-ROTrFEWG, to aggregate
all the individual q-ROTrFDMs into a collective
q-ROTrFDM N 0 ¼ �}̃ij

0�
m�n, as shown in Table 8.

Step 4: For collecting overall values }̃i
0, aggregate all the prefer-

ence values }̃ij
0 i ¼ 1; 2; . . . ; 4; j ¼ 1; 2; . . . ; 4ð Þ.

}̃1
0 ¼ 0:4071; 0:5125; 0:5756; 0:8108½ �; 0:4258; 0:5093h i;

}̃2
0 ¼ 0:2991; 0:4922; 0:6775; 0:8258½ �; 0:5255; 0:4738h i;

}̃3
0 ¼ 0:3288; 0:4414; 0:5985; 0:7477½ �; 0:4212; 0:5941h i;

}̃4
0 ¼ 0:2753; 0:4374; 0:6152; 0:7674½ �; 0:3882; 0:6393h i:

Step 5: Use the score function, as displayed in Eq. (3), for
finding the score value of }̃1

0, }̃2
0, }̃3

0, and }̃4
0. The score

values are found as S }̃1
0ð Þ ¼ �0:0352, S }̃2

0ð Þ ¼ 0:0178,
S }̃3

0ð Þ ¼ �0:0792, and S }̃4
0ð Þ ¼ �0:1100.

Step 6: Rank the alternatives based on the above score values,
S }̃i

0ð Þ, using Definition 2.4. Alternatives’ ordering is
obtained as A2 � A1 � A3 � A4. So, the best alternative
is identified as A2.

We can see that the rankings are the same in two cases, viz., using
q-ROTrFWA and q-ROTrFWG operators. Hence, the candidate
A2 is the most potential sales consultant over the other three
candidates. As q is assigned different values, the developed
approach provides more general and versatile properties when
combined with Einstein operations. The proposed approach is
superior to other recent research works in real practical decision-
making situations.

5.2 Example 5

Another MCGDM problem is previously studied by Zhao et al.
(2017) which is looking for the best green supplier for one of the
essential components in the automobile production process.
Suppose a company sets up a panel with three DMs, viz., e1, e2
and e3, whose weighting vector is Ω ¼ 0:35; 0:4; 0:25ð ÞT . Let there
be five supplier Ai i ¼ 1; 2; 3; 4; 5ð Þ. We have to evaluate the most
suitable alternative through the evaluation process on the basis of
four criteria: product quality C1, technology capability C2, pollution
control C3, and environment management C4, whose weighting vec-
tor is ω ¼ 0:2; 0:1; 0:3; 0:4ð ÞT ), and construct the following three
normalized intuitionistic trapezoidal fuzzy decision matrices,
N ðlÞ ¼ }̃ij

ðlÞ�
5�4 l ¼ 1; 2; 3ð Þ as shown in Tables 9, 10 and 11.
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After evaluation, the final score values of alternatives are
achieved by the proposed methodology as shown in Table 12.

5.2.1 Result and discussion
Using q-ROTrFEWA and q-ROTrFEWG operators, the

achieved results are discussed by varying rung parameter, q,
continuously in a specified interval as shown in Figures 3 and 4.

Using the q-ROTrFEWA operator and adjusting the rung
parameter, q, between 1 and 10, Figure 2 provides the graphical
clarification of the score values of the alternatives.

As the value of q changes from 1 to 10, it is noticed in Figure 3
that several ranking results are obtained.

When q 2 1; 2:1061½ �, the alternative’s rank is achieved
as A2 > A5 > A3 > A4 > A1.

When q 2 2:377; 3:3901½ �, the alternative’s rank is achieved as
A2 > A5 > A4 > A3 > A1. And when q 2 3:3901; 10½ �, the alterna-
tive’s rank is achieved as A2 > A4 > A5 > A3 > A1.

Further, Figure 4 signifies the graphical interpretation of score
values of the alternatives by varying the rung parameter, q, between 1
and 10, using q-ROTrFEWG operator.

From Figure 4, it is experimental that many ordering results are
obtained, as q changes from 1 to 10.

When q 2 1; 4:1443ð Þ, the ranking of alternatives is achieved
as A2 > A5 > A3 > A4 > A1.

And when q 2 4:1443; 10ð Þ, the ranking of alternative is
achieved as A2 > A3 > A5 > A4 > A1. So in all cases, we obtained
that the A2 is the best alternative and A1 is the worst alternative.

5.3 Comparative analysis

The newmethod is compared to various existingmethods in this
section.

First, we have compared the results of Example 4 with Aydin’s
(Aydin et al., 2020) method. The rankings of the Aydin’s method
(Aydin et al., 2020) and our method are presented in Table 13.
The rankings of both Aydin’s (Aydin et al., 2020) and proposed
methods are the same. However, the score value difference of two
consecutive alternatives (rank-wise) in the proposed method is
higher than existing Aydin’s method (Aydin et al., 2020) almost
everywhere.

Next, Example 5 is compared with some existing operators
such as ITFWAA (Wang & Zhang, 2009), ITFWG (Wu & Cao,
2013), ITFEWA and ITFEWG (Zhao et al., 2017), PTFWA
(Shakeel et al., 2019), and PTFEWG (Shakeel et al., 2019)
operators. The score values and rankings of alternatives are
described in Table 14.

Table 14 shows that the rankings of the alternatives acquired by
different operators are almost identical to the proposed operators,
indicating that the proposed ranking technique is effective.

The suggested MCDM strategy based on q-ROTrFN AOs
is found to have two key advantages. On the one hand, the
q-ROTrFNs used in this work can be used to represent assessment
data in a variety of ways. They can also manage a variety of
specific situations where a variety of alternative values can cause
confusion about the best option while maintaining the accuracy of
the original data. The proposed operators, on the other hand, are
based on Einstein t-norms and t-conorms, which makes them
more beneficial than regular algebraic operations. Furthermore,
the proposed approach can provide a variety of options for
implementing decision-making with q-ROTrF data. This
circumstance can prevent the preferred information from being
lost or distorted. As a result, the final outcomes are more closely
related to real-world decision-making issues.
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Table 9
Normalized decision matrix given by DM e1

C1 C2 C3 C4
A1 0:5; 0:6; 0:7; 0:8½ �; 0:5; 0:4h i 〈[0.1,0.2,0.3,0.4]; 0.6,0.3〉 〈[0.5,0.6,0.8,0.9]; 0.3,0.6〉 〈[0.4,0.5,0.6,0.7]; 0.2,0.7〉
A2 0:6; 0:7; 0:8; 0:9½ �; 0:7; 0:3h i 〈[0.5,0.6,0.7,0.8]; 0.7,0.2〉 〈[0.4,0.5,0.7,0.8]; 0.7,0.2〉 〈[0.5,0.6,0.7,0.9]; 0.4,0.5〉
A3 0:1; 0:2; 0:4; 0:5½ �; 0:6; 0:4h i 〈[0.2,0.3,0.5,0.6]; 0.5,0.4〉 〈[0.5,0.6,0.7,0.8]; 0.5,0.3〉 〈[0.3,0.5,0.7,0.9]; 0.2,0.3〉
A4 0:3; 0:4; 0:5; 0:6½ �; 0:8; 0:1h i 〈[0.1,0.3,0.4,0.5]; 0.6,0.3〉 〈[0.1,0.3,0.5,0.7]; 0.3,0.4〉 〈[0.6,0.7,0.8,0.9]; 0.2,0.6〉
A5 0:2; 0:3; 0:4; 0:5½ �; 0:6; 0:2h i 〈[0.3,0.4,0.5,0.6]; 0.4,0.3〉 〈[0.2,0.3,0.4,0.5]; 0.7,0.1〉 〈[0.5,0.6,0.7,0.8]; 0.1,0.3〉

Table 10
Normalized decision given by DM e2

C1 C2 C3 C4
A1 〈[0.4,0.5,0.6,0.7]; 0.4,0.3〉 〈[0.1,0.2,0.3,0.4]; 0.5,0.2〉 〈[0.4,0.5,0.7,0.8]; 0.2,0.5〉 〈[0.3,0.4,0.5,0.6]; 0.1,0.6〉
A2 〈[0.5,0.6,0.7,0.8]; 0.6,0.2〉 〈[0.4,0.5,0.6,0.7]; 0.6,0.1〉 〈[0.3,0.4,0.6,0.7]; 0.6,0.1〉 〈[0.3,0.4,0.6,0.8]; 0.3,0.4〉
A3 〈[0.1,0.2,0.3,0.4]; 0.5,0.3〉 〈[0.1,0.2,0.4,0.5]; 0.4,0.3〉 〈[0.4,0.5,0.6,0.7]; 0.4,0.2〉 〈[0.2,0.4,0.6,0.8]; 0.5,0.2〉
A4 〈[0.2,0.3,0.4,0.5]; 0.7,0.1〉 〈[0.1,0.2,0.3,0.5]; 0.5,0.2〉 〈[0.1,0.2,0.4,0.6]; 0.2,0.3〉 〈[0.5,0.6,0.7,0.8]; 0.1,0.5〉
A5 〈[0.1,0.2,0.3,0.4]; 0.5,0.1〉 〈[0.2,0.3,0.4,0.5]; 0.3,0.2〉 〈[0.1,0.2,0.3,0.4]; 0.6,0.2〉 〈[0.4,0.5,0.6,0.7]; 0.4,0.2〉

Table 11
Normalized decision by DM e3

C1 C2 C3 C4
A1 〈[0.6,0.7,0.8,0.9]; 0.4,0.5〉 〈[0.2,0.3,0.4,0.5]; 0.5,0.4〉 〈[0.6,0.7,0.9,1.0]; 0.2,0.7〉 〈[O.5,0.6,0.7,0.8]; 0.1,0.8〉
A2 〈[0.7,0.8,0.9,1.0]; 0.6,0.4〉 〈[0.6,0.7,0.8,0.9]; 0.6,0.3〉 〈[0.5,0.6,0.8,0.9]; 0.6,0.3〉 〈[0.6,0.7,0.8,1.0]; 0.3,0.6〉
A3 〈[0.2,0.3,0.5,0.6]; 0.5,0.5〉 〈[0.3,0.4,0.6,0.7]; 0.4 0.5〉 〈[0.6,0.7,0.8,0.9]; 0.4,0.4〉 〈0.4,0.6,0.8,1.0]; 0.5,0.4〉
A4 〈[0.4,0.5,0.6,0.7]; 0.7,0.2〉 〈[0.2,0.4,0.5,0.6]; 0.5,0.4〉 〈[0.2,0.4,0.6,0.8]; 0.2,0.5〉 〈[0.7,0.8,0.9,1.0]; 0.6,0.3〉
A5 〈[0.3,0.4,0.5,0.6]; 0.5,0.3〉 〈[0.4,0.5,0.6,0.7]; 0.3,0.4〉 〈[0.3,0.4,0.5,0.6]; 0.6,0.2〉 〈[0.6,0.7,0.8,0.9]; 0.4,0.4〉

Table 12
Score values obtained through the proposed method

Proposed method Score values Ranking
S(A1) S(A2) S(A3) S(A4) S(A5)

q-ROTrFEWA −0.0646 0.0989 0.0377 0.0513 0.0571 A2 > A5 > A4 > A3 > A1

q-ROTrFEWG −0.1143 0.0392 0.0177 −0.0237 0.0195 A2 > A5 > A3 > A4 > A1

Figure 3
Effect of rung parameter (q) on q-ROTrFEWA operator
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Figure 4
Effect of rung parameter (q) on q-ROTrFEWG operator
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6. Conclusion

This research looks into the MCGDM problem using assessment
values in the form of q-ROTrFN and proposes a novel MCGDM
approach. On the basis of Einstein t-conorm and t-norm, some
basic operation laws for q-ROTrFNs are defined. Two AOs based
on Einstein operations, q-ROTrFEWA and q-ROTrFEWG, are
introduced in this study. Their appropriate characteristics, viz.,
idempotency, monotonicity, and boundedness, are also defined.
Two motives for these expansions are as follows: (1) q-ROTrFN
comprise more information than other kinds of fuzzy numbers and
(2) Einstein averaging and Einstein geometric operators have
the capability to catch the value if there are outliers of data.
So, merging Einstein averaging and geometric operators and
q-ROTrFN provides advantages in the MCGDM problem. This
article tackles a personnel selection problem to demonstrate
the applicability of the presented methodology. It proves that the
proposed methodology can handle the MCGDM problem efficiently.

However, our study still has some limitations. Our methodology
will be unable to determine the best alternative whenDMs’ and criteria
weight are totally unknown. The developed AOs are insufficient to
evaluate information when DMs hesitate to make the decision. Our
proposed method neglects the preference information of DMs.

In the future, we will develop the concept of hesitant
q-ROTrFN. Moreover, various decision-making methods will be
extended to handle hesitant q-ROTrFNs. The proposed operators
could be used in a variety of domains, viz., bipolar fuzzy (Poulik &
Ghorai, 2021), cubic fuzzy (Riaz et al., 2021b), T-spherical fuzzy
(Chen, 2021), and other environments. We will continue to work on
expanding and applying the proposed operators to other disciplines,
such as medical diagnostics (Šušteršič et al., 2021) and pattern
recognition (Sánchez-Salgado et al., 2021) and, in the future.
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