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Simulation on Supplier Side
Bidding Strategy at Day-ahead
Electricity Market Using
Ant Lion Optimizer
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Abstract: In this article, Ant Lion Optimizer (ALO) is used for supplier side optimal bidding strategy in a day-ahead Electricity Market (EM).
Optimal bidding is one of the major challenges of EM after deregulation. Deregulation is nothing but abolishing the market rules and
unbundling the vertically integrated utilities. In EM, the main objective of Generating Companies (GenCos) is to bid optimally that
maximizes its profit. Thus, for attaining maximum profit every supplier makes a strategy for acquiring the profitable bids. The strategic
bidding technique for a GenCo in a day-ahead market for multi-hour selling is developed. The challenge of determining the market
clearing pricing, load dispatch, and bid cost under three distinct capacities and price blocks is handled by the algorithm using this
procedure. In this model, different probability distribution functions are used to explain rivals bidding behavior: normal, lognormal,
gamma, and Weibull. Monte Carlo simulations are also carried out. The ALO is applied to maximize the profit of GenCos. The
described method was implemented in MATLAB (2019) and evaluated using a standard test case from the literature. The numerical
simulations are also displayed and contrasted. It is worth noting that the offered strategy produces the best profit outcomes.
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Nomenclature

Pmin Minimum limit of ith block of GenCo-C (MW)
Pmax Maximum limit of ith block of GenCo-C (MW)
UiðtÞ Binary variable, which is equal to 1, if the ith block is

committed at hour t; otherwise, 0
Mut

i Minimum up time of ith block of GenCo-C (hr)
Mdt

i Minimum down time of ith block of GenCo-C (hr)
honiðtÞ At the end of hour t (hr), the number of hours the ith

block of GenCo-C has been continually ON

hoffiðtÞ At the end of hour t (hr), the number of hours the ith

block of GenCo-C has been continually OFF
CminðtÞ GenCo’s operating expenses for the ith block

C̄ Bid price cap

1. Introduction

Since the1980s,much effort has beenput towards revamping the
conventionalmonopolistic power industry in order to provide enough
competitiveness and improve financial efficiency. The production of
parts for power producers, aswell as, in certain cases,massive buyers,
to simply interchange energy, is at the heart of this transformation.

Preferably, the marketplace configuration and board instruments or
instructions in Electricity Market (EM) are well planned and well
coordinated among members in order to increase social
government support. As a result, in a meticulously structured EM,
no gaps can be abused, and no opportunity is left for gaming,
which brings down duties and expenses. Regardless, the new EM
structure resembles an oligopoly rather than a perfect market. This
is due to unique structures of the energy industry, such as a
specified number of generators, a large venture size (obstruction to
passage), transmission requirements that inhibit consumers from
reaching multiple generators, and transmission miseries that
prevent customers from buying energy from distant providers.
Every one of them makes it possible for a couple of new
organizations to support a specific geographic area, and in this
environment, every provider can maximize advantage by
investigating strategic bidding (SB) aims.

One of the key tenets of SB research is to recognize the potential
formarketpowermisuse throughescapeclauses that canbeexploited in
marketplace configurationandexecutive rules, because theseoutcomes
have substantial strategic insinuations. In recent years, there has been
some research on developing optimal biddingmethods for competitive
generators and/or large buyers, as well as researching relevant market
power in poolco-type EMs where the fixed bid closeout and uniform
value rule are widely applied. David and Wen (2000) presented a
detailed literature appraisal of numerous bidding systems in the
Abhyankar (2013) and Khaparde (2013) presented a deregulation
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introduction in the power industry.Hogan (2002) offered an analysis of
the history and identified some options for the future. Several research
articles have been available on the optimal bidding issue in EMs, such
as the enhancement of bidding procedures using dynamic
programming (Ansari & Rahimi-Kian, 2015) and stochastic
optimization (Bajpai & Singh, 2007; Herranz et al., 2012; Huse
et al., 1999; Kazempour et al., 2014; Ma et al., 2002; Richter et al.,
1999; Song et al., 2000; Wen & David, 2001) techniques.

Wen and David (2001) presented a dynamic programming
method based on SB on England–Wales EM. Ansari and
Rahimi-Kian (2015) devised a risk-limited bidding model for
GenCos operating in a pool-based electricity sector. Huse et al.
(1999) suggested a heuristic solution to address the SB difficulty in
EM. Ma et al. (2002) suggested a Monte Carlo (MC) technique to
find the best outcome in EM. The authors developed a bidding
strategy model based on the Zhejiang provincial EM. Song et al.
(2000) tackled a multistage probabilistic bidding choice problematic
in the spot market. Wen and David (2001) devised two bidding
topologies for a day-ahead energy market utilizing a Genetic
Algorithm (GA) to construct bidding strategy.

Richter et al. (1999) developed a bidding method based on
Genetic Programming (GP). Bajpai and Singh (2007) used a
specific model of nonlinear operating cost function and unit
commitment minimum up-down restraints to solve an effective
bidding strategy for a thermal generator in a uniform price spot
market. Herranz et al. (2012) provided a short-term EM and
addressed the difficulty of SB in the face of uncertainty. Jalal
et al. (2014) established a precise model for large consumers in
order to regulate pool prices and design a robust competitive
platform in bidding procedures. To model ambiguity, a stochastic
complementary framework was utilized. Risk management
modeling was not included in their study. Akash Saxena et al.
(2018) suggested an intelligent Grey Wolf Optimizer (IGWO) to
deal with profit maximization in constantly changing EM. Hybrid
model using Salp Swarm Algorithm (SSA) optimization and
neural network is suggested to optimize the issues of bidding
strategy in EM (Jain & Saxena, 2021).

Techniques of optimization inspired by nature Swarm
intelligence is a popular branch of artificial intelligence in which
algorithms are created by replicating the smart behavior of various
animals such as wolves, whales, ants, lions, crows, and bees.

Mirjalili (2015) introduced the ALO algorithm. It is a
metaheuristic method. The antlions belong to the Myrmeleontidae
native of predatory insects, which gets its name from their unusual
dietary behavior as larvae. The ALO algorithm imitates the
antlion’s larval hunting mechanism. The casual walking process of
ants, establishing a trap, capturing in the antlion’s pits, sliding ants
towards the antlion, grabbing the prey, and repairing the pit are the
five key phases (Kılıç & Yüzgeç, 2017; Mirjalili, 2015).

There have been a few research published in the works about
implementing practical optimization or improving the ALO
algorithm’s performance. Multi-objective optimal generation
scheduling (Chopra & Mehta, 2015), optimal nonconvex and
dynamic economic load (Kamboj et al., 2017), automatic generation
control of interconnected power industry (Gupta & Saxena, 2016),
optimal flexible process planning (Petrović & Miljković, 2017),
optimal route planning for unmanned aerial vehicle (Yao & Wang,
2017), decisive optimal coefficients of infinite impulse response
(IIR) filters (Nair et al. 2017), proportional integral derivative (PID)
controller parameter design (Saikia & Sinha, 2016), and feature
selection problem (Emary & Zawbaa, 2019; Gupta & Saxena, 2016;
Zawbaa et al., 2018) are some of them.

The unvarying price spot market, in which all successful supply
bidders receive the same market clearing price, has been explored in
this work. Probability distribution functions are used to model the
bids of other competitors (Bialek et al., 1996). These distribution
functions can be created by analyzing past market data. The
evaluation of a provider’s bidding choice is expressed as a
stochastic optimization problem, which is then turned into a
deterministic counterpart using MC simulation (Boyle, 1977).

The following are the significant contributions to this work.

• Using the block bid concept, bidding techniques for multi-hourly
trading a day-ahead market have been devised.

• Intertemporal operational limitations (Arroyo&Conejo, 2000) have
been introduced, such as minimum up and minimum down times.

• The running cost function includes a sinusoidal nonlinear
manufacture cost and an exponential start-up cost function
(Wood et al., 2013). Some other type of cost function, on the
other hand, can be added into the calculation.

• The SB problem was defined in a continuously changing context
with frequent changes in load and generation.

• The ALO was introduced for the bidding problem. The
effectiveness of ALO algorithm in appraisal of bidding
strategies in an economical EM has been established on four cases.

2. Problem Statement

This section provides a brief description about GenCo’s bidding
strategy with mathematical formulation of the problem. The
following subsections go through it all mentioned earlier.

2.1. Bidding strategy

In order to thrive in a competitive climate, a GenCo must
operate at a high level of efficiency. However, in the energy
marketplace, successful implementation may not be enough
because it must offer its products at competitive prices in order to
make the most profit.

A GenCo’s profit is influenced by various factors, including
its own bids, bids submitted by rivals, total energy requirements,
and so on. Although a generating firm has no influence over its
rivals’ bids or the energy demand, it can devise its own strategy
for placing a bid that maximizes profit while minimizing risk
explained in Figure 1.

Figure 1
Supplier side’s bidding strategy
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2.2. Mathematical formulation

After receiving the bids from the GenCos, the system operator
plots a supply curve in upward sloping and a vertical line is drawn for
the forecasted demand. The point at which the two curves intersect
each other is equilibrium of the market and the horizontal line from
equilibrium point on y-axis determines the market clearing price of
the system (Jain & Saxena, 2021).

2.2.1. Objective function
The profit of GenCo is calculated using the given equation.

Gencoi;profit ¼ Revenue� Gencoi;cost (1)

Here,

Revenue ¼ MCP � Pi (2)

Gencoi;cost ¼ aiPi þ biP
2
i (3)

where Pi is the amount of quantity of ith GenCo trade in the market.
ai and bi are the cost coefficients.

2.2.2. Operating constraints

(i) Generation limits

PminUiðtÞ � PiðtÞ � PmaxUiðtÞ; 8t 2 T (4)

(ii) Intertemporal constraints

ð1� Uiðtþ1ÞÞMut
i � honiðtÞ; if UiðtÞ ¼ 1 (5)

Uiðtþ1ÞMdt
i � hoffiðtÞ; if UiðtÞ ¼ 0 (6)

(iii) Bid price limits

CminðtÞ � Gencoi;cost � C̄ (7)

3. Ant Lion Optimizer

ALO algorithm is a metaheuristic algorithm that is offered by
Mirjalili (2015). The ALO metaheuristic algorithm mimics the
antlions’ adaptive approach when hunting ants in the field. In this
division, the motivation and mathematical model of the ALO
algorithm are detailed.

3.1. Motivation

Antlions are members of the Myrmeleontidae group, which is
part of the Neuroptera class. Antlions have dual stages in their life
cycle: larvae and adults. Their normal whole life span upmost to
3 years, with the majority of that time spent as larvae (adulthood
lasts just 3–5 weeks). Their labels come from their distinct
hunting performance and desired target. An antlion larvae house a
cone-shaped pit inside the sand by crawling in a round motion
and throwing sand out with its huge jaw. The larvae hide beneath
the base of the cone after excavating the traps and wait for targets
(ideally ants) to be surrounded in the pit. When an antlion notices
a prey is caught in a trick, it attempts to catch it. Insects, on the
other hand, rarely get trapped right away and strive to flee the

trap. In this case, antlions ingeniously hurl sands towards the pit’s
edge, allowing the prey to sink into the pit’s base. When a prey is
captured in the mouth, it is dragged underneath the earth and
eaten (Mirjalili, 2015). The ALO algorithm is based on how ants
and antlions behave in a trap. Ants are obligatory to move
throughout the search space(s) in order to mimic such interactions,
while antlions are free to kill insects and become fitter utilizing
traps. It is worth noting that ants are similar to particle swarm
optimization (PSO) particles or GA individual. An ant’s position
denotes the criteria for a certain solution.

For optimization, a fitness (objective) function is used to
evaluate individual ant, and the fitness values of all the ants
are recorded in the following matrix (Kılıç & Yüzgeç, 2017;
Mirjalili, 2015).

OAM ¼

f ð½A1;1; . . . :;A1;Dim�Þ
f ð½A2;1; . . . :;A2;Dim�Þ

..

.

..

.

..

.

f ð½AN;1; . . . :;AN;Dim�Þ

2
666666664

3
777777775

(8)

where OAM is the matrix of preserving every ant’s fitness, Ai,j is the
value of the xth ant’s yth dimension, N is the quantity of ants, and f is
the objective function in (8).

The antlions, in accumulation to ants, are thought to be hidden
somewhere in the search space. The accompanying matrices [see (9)
and (10)] are used to save their locations and fitness values.

AntlionM ¼

AL1;1; . . . . . . AL1;Dim
AL2;1 . . . . . . AL2;Dim
..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
.

ALN;1 . . . . . . ALN;Dim

2
6666664

3
7777775

(9)

where AntlionM is the antlion position saving matrix. ALx,y denotes
the value of the xth antlion’s yth dimension, andDim denotes the size
of the antlion variable count (dimension).

OALM ¼

f ð½AL1;1; . . . :;AL1;Dim�Þ
f ð½AL2;1; . . . :;AL2;Dim�Þ

..

.

..

.

f ð½ALN;1; . . . :;ALN;Dim�Þ

2
6666664

3
7777775

(10)

where OALM is the matrix for preserving each antlion’s fitness and
ALx,y is the xth antlion’s yth dimension value.

3.2. Characteristics

The random movement of prey (ant), antlion pit trapping,
constructing traps, ant moving towards the antlion, and prey
capture and trap re-building are the five key processes of prey
hunting (Mirjalili, 2015).

3.2.1. Random movement of prey (ant)
At each stage of optimization, ants use random walk to modify

positions themselves. The random walks are standardized by the
subsequent equation (min–max normalization) to maintain them
within the search space.
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Zl
x ¼

ðZl
x � axÞ � ðbx � clxÞ

ðdlx � axÞ
þ cx (11)

3.2.2. Antlion pit trapping
Antlion trapping alter antlions’ random walks, as previously

mentioned. The set of equations is presented in Saikia and Sinha
(2016) to numerically model this premise.

clx ¼ Antlionly þ cl (12)

dlx ¼ Antlionly þ dl (13)

where cl represents the least of all variables at the lth iteration, clx rep-
resents the lowest of all variables for the xth ant, dl represents the
vector comprising the extreme of all variables at the lth iteration,
dlx represents the extreme of all variables for the xth ant, and
Antlionly represents the position of the selected yth antlion at the
lth iteration. In a hypersphere defined by the vectors c and d, ants
walk around a designated antlion, as shown in (12) and (13).

3.2.3. Constructing traps
In Mirjalili (2015), a roulette wheel is used to depict the

antlion’s hunting capability. It is supposed that the ants are only
held inside by one antlion. Throughout optimization, the ALO
algorithm must use a roulette wheel operator to identify antlions
depending on their fitness. The healthier antlions have a higher
risk of contracting ants because of this technique.

3.2.4. Prey (ant) moving towards the antlion
Antlions can build traps that are comparative to their fitness

level, and ants wander at random. When an ant is caught in the
trap, though, antlions hurl sands outwards from the pit’s center.
This behavior is carried out by the surrounded ant who is
attempting to flee. According to the mathematical behavior, the
radius of the ant’s random walks hypersphere is flexibly lowered.
In accordance with Kılıç & Yüzgeç (2017), the set of analysis
equations is utilized.

cl ¼ cl=R (14)

dl ¼ dl=R (15)

where R is a ratio, cl is the lth iteration’s least of all variables, and dl is
the vector containing the lth iteration’s maximum of all variables.

In (14) and (15), R= 10 wi/I, where i is the present iteration, I is
the maximumnumber of iterations, andw is a constant determined by
the current iteration.

w ¼

2 if i > 0:1I
3 if i > 0:5I
4 if i > 0:75I
5 if i > 0:9I
6 if i > 0:95I

8>>>><
>>>>:

9>>>>=
>>>>;

Essentially, this constant w can be used to vary the level of
exploitation precision.

3.2.5. Prey capture and trap re-building
The hunt is over when an ant hits the lowest of the pit and is

captured in the antlion’s jaws. The antlion then drags the ant into
the sand and eats it at this point. To replicate this procedure, it is
hypothesized that ants get fitter (travel deeper into the sand) than

their counterpart antlion. To improve its prospects of getting new
prey, an antlion must appraise its position to the most recent
position of the chased ant. This theory is represented by the
equation (Kılıç & Yüzgeç, 2017).

Antlionly ¼ Antlx if f ðAntlionlyÞ � f ðAntlxÞ (16)

where l denotes the present iteration, Antlionly signifies the location
of the yth antlion at the lth iteration, andAntlx signifies the position of
the xth antlion at the lth iteration.

3.2.6. Elitism
Each iteration best antlion is preserved and regarded as

exceptional. The superior one must be effective in influencing the
movements of all the ants throughout iterations because it is the
fittest antlion. As a result, it is thought that every ant, guided by
the roulette wheel and the elite, wanders around a picked antlion
at random, as shown below (Mirjalili, 2015).

Antlx ¼
ðRl

a þ Rl
eÞ

2
(17)

whereRl
a represents the randomwalk round the antlion designated by

the roulette wheel at the lth iteration, Rl
e represents the random

movement round the elitist at the lth iteration, and Antlx represents
the location of the xth ant at the lth iteration.

The flowchart of ALO for the application of optimal bidding is
displayed in Figure 2.

Figure 2
Flowchart of ALO for optimal bidding problem of EM
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4. ALO for the Application of Optimal
Bidding in EM

The variant is programmed in MATLAB 2019 and runs on an
i5 processorCPU, 4.00GHz and 8GBof RAM.Todraw an evaluation
of optimization routines, the number of iterations and population size
for all algorithms are maintained the same (i.e., maximum number of
iteration= 500 and number of search agents= 50). The efficacy of the
suggested ALO is experimented over IEEE-14 bus system constructed
for the problem described in Section II. The optimization process is
examined for a dynamically varying setting and bidding strategies
are acquired for a day-ahead EM in multi-hour power system.
GenCo-C, along with its four competitors, attempts to trade energy
through a mart in this trade. The bid proposals are analyzed and
arranged from minimum to maximum value. The MCP is calculated
by the bid price of the previous executed block once the system
demand has been met. Table 6 lists the cost coefficients for
generator C as well as other pertinent information such as up and
down time, block capacities, and other time constants. For all
committed blocks, a consistent MCP is taken into account. Blocks
with a low bid price and a large bid amount can earn good profits.
It is vital to remember that the ideal bid price for each block
commit should be less than or similar to the marginal trading price.
The optimization technique defined in Section II resolves the
procedure in such a way that the optimum bid price is less than the
marginal bid price, allowing for the commitment of the maximum
unit of GenCo-C. The results of the suggested approach are
shown below.

In this work, the bidding cost of the competitors and system
demand is exhibited as per Figures 3 and 4, respectively. The
particulars of the rivals bid mean, cap size, and standard
deviations for three blocks are displayed in Table 1.

The parameters of all three blocks of GenCo-C are given in
Table 2 (David, 1993).

David and Wen (2000) following four cases are taken to show
the efficacy of the optimizer on the application of optimal bidding in
EM. In these cases, the bidding data of opponents are constructed
using these four different probability distribution functions:

Case I: Normal Distribution
Case II: Lognormal Distribution
Case III: Gamma Distribution
Case IV: Weibull Distribution

Figure 3
Cost modal of different distributions

Figure 4
System demand for a day-ahead EM
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The bidding performance of rivals is modeled in this case study,
as seen in Figure 3. Table 1 provides information about opponent
bid cap size, mean, and standard deviations for all blocks
in a normal distribution. Table 2 indicates the power block details
of GenCo-c.

4.1. Case I: Normal distribution

The normal probability distribution is used in this case. ALO
provides a solution to the difficulty of achieving optimal bidding
strategy. We saw that the ALO results resist and deliver optimum
profit for the GenCo-C for multi-exchanging hour in a day
market. Figure 5 shows the optimal block bid price and MCP of
GenCo-C using a normal distribution and the ALO method. The
bidding prices of GenCo-C in three blocks are shown in this
diagram with MCP.

Figure 6 depicts the profit obtained by ALO using the MCP
curve. The profitability of the GenCo-C increases dramatically
in the 10th and 14th hours, reaching $6535 and $7195,
correspondingly. The profit for block 2 dropped sharply to $4834
at the 13th hour due to a drop in MCP to 23.51 $/MWh. Due to
the high MCP of 30.13 $/MWh, the profits increase to $7195 at
the 14th hour. The total profit, as computed by ALO, is $110,467.

Table 3 presents the load dispatch acquired from ALO
algorithm for all the GenCos participating in a mart under a
uniform MCP.

• Because of its high manufacturing cost and small system demand,
the third block of GenCo-C is not dispatched during the hours of
adverse profit (from 1 to 9 hr).

• Because it has been shut down for a long period, cold start-up costs
are accounted for in themanufacturing cost of third blockwhen it is
delivered at 10 hr (9 hr).

• At the end of the 12-hr period, the third block is no longer sent due
to low system demand, and the minimum downtime constraint
kicks in at 13–14 hr.

• The third block is dispatched again at 15–17 hr, and the cost of a
hot start-up is included in the hour’s production cost because it was
shut down for a brief time.

• Due to low system demand, the third block will not be dispatched
from 20 to 24 hr.

• Optimal bid price of third block is shown zero during 1–9, 13–14,
18, and 20–24 hr, when it is nondispatched.

4.2. Case II: Lognormal distribution

The lognormal probability distribution is used in this case.
Figure 7 shows the optimal block bid price and MCP of GenCo-C
using a normal distribution and the ALO method. The bidding
prices of GenCo-C in three blocks are shown in this diagram
with MCP.

Figure 8 displays the profit chart acquired by ALO. A sharp rise
in the profit is perceived in the 9th and 14th hour as the profit of the
GenCo-C becomes $7737 and $7994, respectively. For block 2, the
profit trails a sharp decrement to $5356 in at 13th hour due to the
drop in MCP to 24.57 $/MWh. Cumulative profit calculated
through ALO is $180,616.

Table 1
Data of opponent’s bidding parameters (Bajpai & Singh, 2007)

Block 1 Block 3 Block 3

QI µn
i σn

i QI µn
i σn

i QI µn
i σn

i

Opponent 1 (n= 1) 200 10 2.5 300 20 3 400 30 3
Opponent 2 (n= 2) 300 15 3 400 30 2 500 50 4
Opponent 3 (n= 3) 250 10 2 300 15 2.5 300 20 2.5
Opponent 4 (n= 4) 300 20 4 350 25 5 450 40 5

Table 2
Data of GenCo-C power blocks

C0

(MW2h)
C1

($/MWh)
C2

($/h)
C3

($/h)
C4

(rad./MW)
Qmax

(MW)
Qmin

(MW)
MUT
(hr)

MDT
(hr)

H
($)

δ
($)

τ
(hr)

Cd
i

($)

Block 1 0.00482 7.97 78 150 0.063 200 50 1 1 1000 1500 1 100
Block 2 0.00194 15.85 310 200 0.042 400 100 1 1 1500 2500 1 200
Block 3 0.001562 32.92 561 300 0.0315 600 100 1 1 2000 4000 8 400

Figure 5
Optimal block bids and MCP graph using normal PDF

Figure 6
Profit and MCP graph using normal PDF
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Table 4 presents the load dispatch achieved from ALO algorithm
for all the GenCo’s partaking in a mart underneath a uniform MCP.

• Because of its high manufacturing cost and small system demand,
the third block of GenCo-C is not dispatched during the hours of
negative profit (from 1 to 8 hr).

• Because it has been shut down for a long period, cold start-up costs
are included for in the manufacturing cost of third block when it is
transmitted at 9 hr (8 hr).

• After 12hr, the third block is no longer sent due to low systemdemand,
and the minimal downtime constraint persists for another 2 hr.

• The third block is re-dispatched at 15 hr, and the cost of a hot start-
up is included in the hour’s manufacture cost because it was shut
down for a brief period.

• Owing to reduced system demand, the third block will not be
dispatched from 20 to 24 hr.

• Optimal bid price of third block is shown zero during 1–8, 13–14,
18, and 20–24 hr, when it is nondispatched.

4.3. Case III: Gamma distribution

The gamma probability distribution is used in this case. Figure 9
shows the optimal block bid price and MCP of GenCo-C using a
normal distribution and the ALO method. The bidding prices of
GenCo-C in three blocks are shown in this diagram with MCP.

ALO’s profit graph is depicted in Figure 10. Given the high
MCP 28.89 $/MWh and 27.86 $/MWh, the profit of the GenCo-C

Table 3
Load dispatch using normal PDF

Load Dispatch of Normal Distribution Using ALO of 5 GenCos and 3 Blocks

Hour Load

Opponent 1 Opponent 2 Opponent 3 Opponent 4 GenCo-C

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3
200 300 250 300 200 300 400 300 350 400 400 500 300 450 600

1 1500 200 300 n/d 300 n/d n/d 250 n/d n/d n/d n/d n/d 200 250 n/d
2 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d
3 1500 200 n/d n/d 300 n/d n/d 250 n/d n/d 150 n/d n/d 200 400 n/d
4 1500 200 300 n/d 300 n/d n/d 250 n/d n/d n/d n/d n/d 200 250 n/d
5 2000 200 n/d n/d 300 n/d n/d 250 300 300 n/d n/d n/d 200 400 n/d
6 2000 200 300 n/d 300 n/d n/d 250 n/d 300 300 n/d n/d 200 150 n/d
7 2000 200 n/d n/d 300 n/d n/d 250 300 300 50 n/d n/d 200 400 n/d
8 2500 200 300 n/d 300 n/d n/d 250 300 300 300 n/d n/d 200 350 n/d
9 3000 200 300 n/d 300 400 n/d 250 300 n/d 300 350 n/d 200 400 n/d
10 3500 200 300 200 300 200 n/d 250 300 300 300 n/d n/d 200 400 550
11 3500 200 300 200 300 400 n/d 250 300 n/d 300 350 n/d 200 400 300
12 3500 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
13 2500 200 300 n/d 300 n/d n/d 250 300 n/d 300 350 n/d 200 300 n/d
14 3000 200 300 400 300 n/d n/d 250 300 n/d 300 350 n/d 200 400 n/d
15 3500 200 300 n/d 300 n/d n/d 250 300 300 300 n/d n/d 200 400 600
16 3500 200 300 350 300 n/d n/d 250 300 300 300 n/d n/d 200 400 600
17 3500 200 300 400 300 n/d n/d 250 300 300 300 350 n/d 200 400 200
18 3000 200 300 n/d 300 100 n/d 250 300 300 300 350 n/d 200 400 n/d
19 3000 200 300 n/d 300 400 n/d 250 300 300 300 n/d n/d 200 400 50
20 2500 200 300 n/d 300 n/d n/d 250 300 300 250 n/d n/d 200 400 n/d
21 2000 200 n/d n/d 300 n/d n/d 250 300 n/d 300 350 n/d 200 100 n/d
22 2000 200 n/d n/d 300 n/d n/d 250 300 n/d n/d 350 n/d 200 400 n/d
23 1500 200 n/d n/d 300 n/d n/d 250 n/d n/d 300 n/d n/d 200 200 n/d
24 1500 200 n/d n/d 300 n/d n/d 250 250 n/d n/d n/d n/d 200 250 n/d

Figure 7
Optimal block bids and MCP graph using lognormal PDF

Figure 8
Profit and MCP graph using lognormal PDF
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increases dramatically in the 11th and 17th hours, reaching $8588
and $7745, respectively. The profit for block 2 fell sharply at the
13th hour to $4834 due to a drop in MCP from 26 $/MWh to
23.5 $/MWh. Due to the high MCP of 30.13 $/MWh, the profit of
$7195 increases again at the 14th hour. ALO calculated a total
profit of $108,410 for the year. Table 5 presents the load dispatch
attained from ALO algorithm for all the GenCo’s partaking in a
mart under a uniform MCP.

• Because of its high manufacturing cost and low system demand,
the third block of GenCo-C is not dispatched during the hours
of negative benefit (from 1 to 9 hr).

• Because the third block has been shut down for a long period, the
cold start-up cost is accounted for in the manufacturing cost when
it is dispatched at 10 hr (9 hr).

• After 12 hr, the third block is no longer sent due to low system load,
and the minimal downtime constraint is active for 1 hr.

• The third block is re-dispatched at 14 hr, and the price of a hot
start-up is included in the hour’s output cost since it was shut
down for a brief period.

• Due to reduced system load, the third block will not be dispatched
from 20 to 24 hr.

• Best bid price of third block is shown zero during 1–9, 13, and
20–24 hr, when it is nondispatched.

Table 4
Load dispatch using lognormal PDF

Load Dispatch of Lognormal Distribution Using ALO of 5 GenCos and 3 Blocks

Hour Load

Opponent 1 Opponent 2 Opponent 3 Opponent 4 GenCo-C

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3
200 300 250 300 200 300 400 300 350 400 400 500 300 450 600

1 1500 200 300 n/d 300 300 n/d n/d 300 n/d n/d n/d n/d 200 200 n/d
2 1500 200 n/d n/d 300 n/d n/d 100 300 n/d n/d n/d n/d 200 400 n/d
3 1500 200 300 n/d 300 300 n/d n/d 300 n/d n/d n/d n/d 200 200 n/d
4 1500 200 n/d n/d 300 n/d n/d n/d 300 n/d 300 n/d n/d 200 200 n/d
5 2000 200 300 n/d 300 300 n/d 250 300 n/d n/d 50 n/d 200 400 n/d
6 2000 200 n/d n/d 300 n/d n/d 250 300 n/d 300 50 n/d 200 400 n/d
7 2000 200 n/d n/d 300 n/d n/d 250 300 n/d n/d 350 n/d 200 400 n/d
8 2500 200 300 n/d 300 300 n/d 250 300 n/d 300 250 n/d 200 400 n/d
9 3000 200 300 400 300 300 n/d 250 300 300 300 n/d n/d 200 400 50
10 3500 200 300 n/d 300 300 n/d 250 300 300 300 350 n/d 200 400 600
11 3500 200 300 400 300 300 n/d 250 300 300 300 n/d n/d 200 400 550
12 3500 200 300 n/d 300 300 n/d 250 300 300 300 350 n/d 200 400 600
13 2500 200 300 n/d 300 300 n/d 250 300 n/d 300 250 n/d 200 400 n/d
14 3000 200 300 450 300 300 n/d 250 300 300 300 n/d n/d 200 400 n/d
15 3500 200 300 n/d 300 300 n/d 250 300 300 300 350 n/d 200 400 600
16 3500 200 300 n/d 300 300 n/d 250 300 300 300 350 n/d 200 400 600
17 3500 200 300 n/d 300 300 n/d 250 300 300 300 350 n/d 200 400 600
18 3000 200 300 400 300 300 n/d 250 300 n/d 300 350 n/d 200 400 n/d
19 3000 200 300 n/d 300 300 n/d 250 300 n/d 300 350 n/d 200 400 400
20 2500 200 300 n/d n/d 300 n/d 250 300 300 300 250 n/d 200 400 n/d
21 2000 200 50 n/d 300 50 n/d 250 300 n/d 300 n/d n/d 200 400 n/d
22 2000 200 n/d n/d 300 n/d n/d 250 300 300 50 n/d n/d 200 400 n/d
23 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d
24 1500 200 n/d n/d 300 n/d n/d 250 300 n/d 250 n/d n/d 200 250 n/d

Figure 9
Optimal block bids and MCP graph using gamma PDF

Figure 10
Profit and MCP graph using gamma PDF
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4.4. Case IV: Weibull distribution

The Weibull probability distribution is used in this case.
Figure 11 shows the optimal block bid price and MCP of
GenCo-C using a normal distribution and the ALO method. The
bidding prices of GenCo-C in three blocks are shown in this
diagram with MCP.

ALO’s profit graph is depicted in Figure 12. Due to the high
MCP, the profit of the GenCo-C increases dramatically in the
12th and 14th hours, reaching $10,104 and $8306
correspondingly. The profit for block 2 dropped dramatically at

the 13th hour, to $4749. The total profit, as determined by ALO,
is $115,206.9064.

Table 6 shows the load dispatch calculated using the ALO
algorithm for all units participating in an auction with the sameMCP.

• Because of its high manufacturing cost and low system
consumption, the third block of GenCo-C is not dispatched
during the hours of negative benefit (from 1 to 8 hr).

• Because it has been stopped down for a long period, cold start-up
costs are included for in the production cost of third block when it
is dispatched at 9 hr (8 hr).

Table 5
Load dispatch using gamma PDF

Load Dispatch of Gamma Distribution Using ALO of 5 GenCos and 3 Blocks

Hour Load

Opponent 1 Opponent 2 Opponent 3 Opponent 4 GenCo-C

B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3 B1 B2 B3
200 300 250 300 200 300 400 300 350 400 400 500 300 450 600

1 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d
2 1500 200 n/d n/d n/d n/d n/d 250 300 n/d 300 n/d n/d 200 250 n/d
3 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d
4 1500 200 300 n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 150 n/d n/d
5 2000 200 300 n/d 300 n/d n/d 250 300 50 n/d n/d n/d 200 400 n/d
6 2000 200 n/d n/d 300 n/d n/d 250 300 50 300 n/d n/d 200 400 n/d
7 2000 200 300 n/d 300 n/d n/d 250 300 n/d 50 n/d n/d 200 400 n/d
8 2500 200 250 n/d 300 n/d n/d 250 300 200 300 350 n/d 200 400 n/d
9 3000 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 n/d
10 3500 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
11 3500 200 300 100 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
12 3500 200 300 n/d 300 350 n/d 250 300 300 300 n/d n/d 200 400 600
13 2500 200 300 n/d 300 n/d n/d 250 300 n/d 300 n/d n/d 200 350 n/d
14 3000 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 100
15 3500 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
16 3500 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
17 3500 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 600
18 3000 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 100
19 3000 200 300 n/d 300 n/d n/d 250 300 300 300 350 n/d 200 400 100
20 2500 200 300 n/d 300 n/d n/d 250 300 250 300 n/d n/d 200 400 n/d
21 2000 200 50 n/d 300 n/d n/d 250 300 n/d 300 n/d n/d 200 400 n/d
22 2000 200 n/d n/d 300 n/d n/d 250 300 n/d n/d 350 n/d 200 400 n/d
23 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d
24 1500 200 n/d n/d 300 n/d n/d 250 300 n/d n/d n/d n/d 200 250 n/d

Figure 11
Optimal block bids and MCP graph using Weibull PDF

Figure 12
Profit and MCP graph using Weibull PDF
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• At the end of the 12-hr period, the third block is no longer
dispatched due to low system consumption, and the minimal
downtime constraint is in effect (1 hr).

• The third block is re-dispatched at 14 hr, and the cost of a hot start-
up is included in the hour’s output cost because it was closed down
for a brief period.

• Due to low system consumption, the third block will not be
dispatched from 20 to 24 hr.

• Best bid price of third block is shown zero during 1–8, 13, and
20–24 hr when it is nondispatched.

Figure 13 shows the profit comparison chart for the above four
distribution cases. From the figure it is clear that the profit earn
by using lognormal PDF is larger than the others.

5. Conclusion and Future Scope

The application of ALO for bidding strategy problem of
providers and large customers in a competitive energy market is
recommended in this research. In this technique, each participant
uses the information provided by the system operator to try to
maximize his or her profit.

The differences between symmetrical and asymmetrical
competitive information are addressed, and it is concluded that
individuals with defective information will lose money. The ALO
approach is efficient and preferable due to the benefits of interacting
with only one operation and the capacity to maintain convergence.
These benefits of ALO are also proven by the simulation findings of
this research.

For stiffer competition in the real-time operations of power
grids under deregulation, a more realistic SB dilemma for
producing companies and consumers can be established.
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