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Abstract: In recent years, an increasing number of researchers have applied machine learning techniques to online portfolio selection (OLPS),
aiming to improve the efficiency and effectiveness of portfolio management in the digital field. In this study, we design and implement a novel
OLPS algorithm called “online adaptive asset tracking algorithm” (OAAT). Compared to the peak price tracking (PPT) algorithm, it
complements more historical information of assets in the investment portfolio and provides a more effective solution for parameter
selection of the PPT algorithm. Firstly, the OAAT algorithm updates investment proportions by tracking the historical information of
assets, which includes recent peak prices, historical returns, and historical volatility. Secondly, the OAAT algorithm optimizes
parameters through online learning. The initial parameters are selected based on the minimum sum principle of the ordinal information.
After each phase of trading, the parameters are optimized through the gradient descent algorithm, and the average values of the optimal
parameters in the last 5 days are used as the parameters of the next phase. Finally, with the optimized parameters and the tracked asset
information, the fast error backpropagation algorithm outputs the investment ratio through gradient projection. Compared with the
benchmarks, follow-the-winner, follow-the-loser, and pattern-matching-based algorithms under four Hong Kong stock index constituents
data sets and three US stock index constituents data sets, the empirical comparative analysis and statistical test show that the OAAT
algorithm can effectively determine the investment proportion to balance return and risk.
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1. Introduction

Portfolio selection algorithms refer to decision-makingmethods
rationally allocation and selection of the assets for investors under
uncertain financial market environment (Zhou, 2018). After
Markowitz (1952) proposes the development of mean-variance
model, many researchers have carried out in-depth studies in the
field of static modeling (Esfahani et al., 2016). However, due to
the volatility of the financial market environment, investors need
to constantly adjust their investment algorithms based on
historical information for achievement of the goal of maximizing
returns. On the basis of this fact, portfolio selection is also a
dynamic issue. Therefore, researchers focused on the dynamic
research work and achieved fruitful results in this field
(Moghaddam et al., 2016). Meanwhile, with the gradual discovery
of “abnormal” behavior in financial markets, behavioral finance
has been blooming. In addition, with the rapid development of
computer technology (Ma et al., 2021), sequence data prediction
algorithm (also known as online learning) based on machine
learning provides more robust and precise solutions for portfolio
selection research (Tiwari et al., 2020). Therefore, portfolio
research based on behavioral finance and online learning
technology has become a new research direction and discipline
frontier, namely as online portfolio selection (OLPS).

In financial markets, it is observed that along with the reversal
effect, there is also a momentum effect present. Relevant studies
show that investors’ behavior does not obey the hypothesis of
efficient market due to the abnormal environment. Therefore, they
do not meet the hypothesis of mean regression of securities prices
(Shiller, 2003). In such situation, investors will likely push
securities that have performed better in the previous period higher.
Therefore, Lai et al. (2018) proposed a peak price tracking (PPT)
algorithm based on the inversion method. PPT algorithm, a
follow-the-winner algorithm, measures the possible price of
securities in the future according to the highest price of securities
within a specific time window, aiming to capture the potential
benefits. This algorithm uses the error backpropagation (BP)
algorithm to optimize the objective, which can be applied to
large-scale and rapid trading (Brahma et al., 2016; Lin et al.,
2016; Raitoharju et al., 2016). Compared with some typical OLPS
algorithms, it has better performance and can achieve greater
wealth gains. However, the PPT algorithm only feedbacks the
recent peak price information into the investment ratio, such
information is not enough. In addition, the parameters of PPT
algorithm are difficult to determine directly. To address these dual
challenges, we put forward a novel online adaptive asset tracking
(OAAT) algorithm with ordinal information for OLPS. The
primary contributions of this study can be summarized as follows:

• TheOAAT algorithm updates investment proportions by tracking the
historical information of the assets, which includes not only recent
peak price but also the historical return and volatility of each asset.*Corresponding author: Hongliang Dai, School of Economics and Statistics,
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• The OAAT algorithm optimizes its parameters through online
learning. After each trading period, the algorithm utilizes the
gradient descent algorithm to optimize two parameters, related
to historical information, and update step size separately.

• The OAAT algorithm determines the initial parameters in the online
learning algorithm based on the minimum sum principle of the
ordinal information in the training set, this helps the gradient
descent algorithm to find an approximate optimal solution.

This paper is structured as follows: Section 2 provides an extensive
literature review. Section 3 describes the detailed model of the
OAAT algorithm. Subsequently, Section 4 presents the
comparative analysis of the empirical results of each algorithm.
Section 5 conducts a statistical test on the empirical results in the
previous section. Finally, Section 6 summarizes the OAAT
algorithm and discusses its potential future developments.

2. Literature Review

2.1. Typical algorithms for the OLPS

According to the research result of Li and Hoi (2018), they
summarized typical algorithms for the online portfolio research,
including benchmarks algorithm, pattern-match-based algorithm,
follow-the-winner algorithm, follow-the-loser algorithm, and
pattern-match-based algorithm. The benchmark algorithms mainly
include the buy and hold (BAH) (Cover, 1991) and constant
rebalanced portfolio (CRP) algorithms (Li & Hoi, 2018). BAH is
an algorithm that does not change the allocation of assets after
determination of an appropriate portfolio and holding period. In this
way, the portfolio has the advantage of low transaction costs and
management costs; however, it also exposes the assets completely
to market risks and loses the opportunity of potential profit during
the market fluctuations. CRP is an algorithm that readjusts assets
allocation at the end of each trading cycle and puts all the assets
into the fastest-growing securities. However, in the complex
markets, where prices sometimes change rapidly, it becomes too
risky to follow the best CRP as an investor’s target. In pattern-
match-based algorithm, historical data are used to fit and optimize
the model for the prediction of future prices (Györfi et al., 2006).
Typical pattern-match-based algorithms mainly include the
correlation-driven nonparametric learning approach (CORN) (Li &
Hoi, 2018), etc. In the follow-the-loser algorithm, it is assumed that
stocks will reverse in the future and will reduce the proportion of
investment in securities with good returns in the past and will also
increase the securities with poor returns in the past. This algorithm
is also known as reverse (mean regression) trading algorithm
(Borodin et al., 2004). Typical algorithms of this algorithm mainly
include the Anticor system (Borodin et al., 2004), the OLMAR (Li

& Hoi, 2018), and the robust mean regression (RMR) algorithms
(Huang et al., 2016). These algorithms mainly use the average
value regression theory and classification perceptron algorithm, and
having the advantage of easy calculation. Ortobelli Lozza et al.
(2022) compared the performance of two follow-the-loser
algorithms, Passive aggressive mean reversion algorithm (PAMR)
and Online portfolio selection algorithm with moving average
reversion (OLMAR), with the classical mean-variance method in
the US stock market, and discussed their advantages and
limitations. The follow-the-winner algorithm generally believes that
securities that have shown good performance in the early stages are
likely to continue performing well in later stages (Frost et al.,
2020). This algorithm is also known as momentum algorithm due
to the ability of increment of the holding of the securities with
good returns in the past and reduction of the securities with poor
returns in the past (Dong & Zhou, 2019). Typical follow-the-
winner algorithms mainly includes the universal portfolios (UPs)
(Stella & Ventura, 2011), online newton step (Wu et al., 2019), and
so on. The UP algorithm does not make any assumptions about the
random return distribution of the stock market; however, this
algorithm requires multiple integrals calculation. When the number
of securities is large, it will bring the disadvantage of higher
calculation cost. The current momentum effect systems have
shortcomings in effective trend pattern learning mechanisms,
making them unable to compete with state-of-the-art reversal effect
systems and have certain limitations in capturing excess returns. In
addition, there are some other types of OLPS algorithms. Zimmert
et al. (2022) introduced a new OLPS algorithm – BISONS, which
achieves near optimal regret in the optimal portfolio problem
without requiring any assumptions on the gradient. Yao and Zhang
(2023) introduce an OLPS optimization algorithm utilizing an
elastic-net for regularization and a linearized augmented Lagrangian
method for solution, which demonstrates superior efficiency and
performance compared to state-of-the-art algorithms on benchmark
data sets. Zhang et al. (2023) propose a novel OLPS algorithm that
uses mirror descent and Bregman divergence to obtain low
dimension regret and computational complexity, outperforming
other algorithms in the Chinese futures market.

2.2. PPT algorithm

Lai et al. (2018) introduced the PPT algorithm as a solution to
the limitations of current follow-the-winner algorithms in predicting
asset prices. The algorithm identifies the highest asset prices within a
specified time window width and considers them as the potential
peak prices for the next period. To maximize cumulative wealth
(CW), the forecasted price is then incorporated into the
investment proportion using the fast error BP algorithm. Figure 1
illustrates the PPT algorithm.

Figure 1
Diagram of the PPT algorithm
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Building on their previous work, Dai et al. (2022) introduced
the trend promote price tracing (TPPT) in 2022, which applies a
unique slope-based method to effectively predict upcoming price
trends. Compared to the previous PPT algorithm, TPPT boasts
significantly improved price tracking capabilities. Dai et al. (2023)
developed an adjusted PPT approach. By introducing specific
parameters, the algorithm is able to fine-tune the influence of peak
price and residual factor, resulting in a more accurate prediction
of future prices.

2.2.1. Parameter selection of the PPT algorithm
The PPT algorithm sets the highest prices of assets within the

time window as the potential highest prices for the next period
and then uses the fast error BP algorithm to feed back the
potential highest prices into the investment ratio to maximize CW
(Lai et al., 2018). In the PPT algorithm, we need to set two
parameters, namely the window width of recent peak price (w)
and the update step size parameter (ε). First of all, in the usual
setting, the window width of recent peak price is represented as
w= 5, which is suitable for the stock’s 5-day moving average
(Cover, 1991; Huang et al., 2016; Li & Hoi, 2018). In previous
studies, short-term asset price analysis based on the recent 5-day
window can provide significant and dependable information. In
addition, both active and defensive investors tend to adopt the
5-day moving average to specify the investment algorithm.
Therefore, w= 5 is set. Another parameter ε describes the
updating step size of the investment portfolio, which is set based
on testing the performance at different scales such as 5, 10, 50,
100, 500, and 1000.

2.3. BP algorithm

The fast error BP algorithm is a kind of simple and explicit
matrix calculation method, which has certain application value in
large-scale and time-limited cases. Lin et al. (2016) proposed an
innovative and efficient network that utilizes a new type of type-2
fuzzy cerebellar model articulation controller as the built-in
structure of the adaptive filters to solve some complex signal
processing problems. Raitoharju et al. (2016) conducted research
on the training process of Radial basis function neural network
(RBFNN) and compared the differences in classification
performance and computational efficiency between class-specific,
input, and input–output clustering methods. The research results
indicate that using class-specific clustering methods to train radial
basis function neural networks can significantly reduce the
complexity of overall clustering. Brahma et al. (2016) proposed
multiple metrics to measure manifold entanglement based on
specific assumptions and conducted experiments using both
synthetic and real-world data sets to validate their approach.
However, to solve the portfolio vector, the BP algorithm in the
PPT algorithm is different from the recent BP algorithms above
(Lai et al., 2018). Lai et al. (2018) devises a fast BP algorithm
through the gradient projection. Instead of the output bias, it
feedbacks the increasing power (Bertsekas, 1997).

2.4. Online learning

Online learning refers to a learning process in which it is not
necessary to fully obtain all data samples, but instead, new
samples from data streams are processed incrementally, and the
learning algorithm of the model is updated in real-time (Singh &
Thurman, 2019). Online learning also has many applications in
the financial field. Tantisripreecha and Soonthomphisaj (2018)

proposed an online learning method, called LDA-Online
algorithm, for predicting stock trends. In both batch processing
and online learning scheme, LDA-Online algorithm demonstrated
the most superior performance in the study. Salas (2020)
developed a Bayesian treatment of the online passive-aggressive
and gradient descent algorithms, implementing uncertainty
modeling, probabilistic predictions, and automatic, data-dependent
hyperparameter tuning. Soleymani and Paquet (2021) conducted
online learning through a passive concept drift method to manage
unforeseen variations in the data distribution, allowing for real-
time processing and updating of the DeepPocket model. Li et al.
(2023) converted the online factor selection task into an online
learning challenge, effectively balancing the cost and accuracy in
an online portfolio algorithm.

3. Online Adaptive Asset Tracking Algorithm with
Ordinal Information

3.1. OLPS problem setting

The basic algorithmic structure of the OLPS algorithm is
illustrated by the following trading scheme: it is assumed that the
investor intends to invest in m types of assets and each type of
assets has n transactions, and the asset price of phase t is denoted
as pt ¼ p1t ; p

2
t ; � � � ; pmtð Þ 2 Rm. The relative price of phase t is

denoted as:

xt ¼ x1t ; x
2
t ; � � � ; xmtð Þ 2 Rm; t ¼ 1; 2; : : : ; n (1)

where Rm is the set of vectors in m-dimensional space where all com-

ponents are positive real numbers; xit ¼ pit
pit�1

is the relative price of

phase t of the ith assets. Therefore, the net investment of the ith assets
at phase t is xit; therefore, the investment in the ith assets in phase t
will be increased by a factor. The price changes in the financial mar-
ket from t1 to t2 are denoted as xt2

t1 and xt2
t1 ¼ xt1; � � � ; xt2f g. So the

price change in the market through the course of the transaction is

xn
1 ¼ x1; � � � ; xnf g (2)

At the beginning of period t, the investment ratio of assets can be
represented by the vector bt , whereas b

ið Þ
t represents the proportion

invested in the ith assets. Obviously, the sum of the weights equals to
1; therefore, in the case of restricted short selling, it can be stated that
the weight of the portfolio vector is always non-negative, namely:

bt 2 Δm;Δm ¼ b : b > 0;bT1 ¼ 1 (3)

An investment algorithm consisting of n trading period is represented
by bn

1 ¼ b1; � � � ;bnf g. In the portfolio vector bt , bT1 is the dot prod-
uct of b and 1 with a value of 1. At the start of the trading period t,
capital can be allocated to various assets in accordance with the cor-
responding ratio and then change as the relative price of each asset.
The capital growth multiple can be expressed as bT

t xt ¼
P

m
i¼1 b

i
tx

i
t .

Since there are T trading periods, the proceeds from the previous
period and also can be invested in the next trading period. The
relative price reinvestment principle is adopted in the model.
Therefore, the cumulative return of the portfolio after the end of
the nth trading period can be calculated by multiplying the net
worth with the growth multiple of each period as follows, which
represents the combined effect of the portfolio’s growth over
multiple periods.
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Sn bn
1ð Þ ¼ S0

Yn
t¼1

bT
t xt ¼ S0

Yn
t¼1

Xm
i¼1

bitx
i
t (4)

where S0 is the initial capital, generally set S0 ¼ 1. The exponential
growth rate of bn

1 is defined as wn bn
1ð Þ:

wn bn
1ð Þ ¼ 1

n
log Sn bn

1ð Þð Þ ¼ 1
n

Xm
i¼1

log bitx
i
tð Þ (5)

Portfolio selection enables trading online and dynamically. After the
manager determines the best portfolio proportion bt based on histori-
cal data of assets xit�1, the portfolio growth multiple of the current
period can be rewritten as bT

t xt . Repeat the above procedure until
the final trading period, and the cumulative net worth of Sn can be
calculated.

The trading algorithm implemented under this framework has
three assumptions:

• This study assumes that there are transaction costs and tax burdens
in trading algorithms (transaction cost (tc= 0.001) in parameter
settings).

• This study assumes high market liquidity, allowing individuals to
freely trade assets at the closing price. Therefore, in the selection of
stock index constituents data sets, we choose the stocks with high
trading volume in the index.

• This study assumes that any OLPS algorithm has no impact on the
market behavior.

3.2. Asset information tracking algorithm

The asset information tracking (AIT) algorithm enhances the
PPT algorithm by incorporating additional historical asset
information, including historical returns and volatility.

3.2.1. Asset information model
Due to the different dimensions of different stocks, it is difficult

to directly compare the changes of stock prices to reflect the actual
changes of different stocks. Therefore, the relative price vector is
used to eliminate the influence of different stock dimensions,
which is expressed as;

xt ¼
pt

pt�1
(6)

According to follow-the-winner principle and the PPT algorithm, the
OAAT algorithm sets the highest stock price in the historical window
as the highest possible price for the next period. It is expressed as

P̂itþ1 ¼ max
0�k�ω1�1

Pit�k; i ¼ 1; 2; � � � ;m (7)

where Pit�k represents the price of the ith stock under the previous
time window; P̂itþ1 represents the highest possible price of the ith
stock in the next period; and ω1 represents the time window of recent
peak price (usually set to 5).

In addition to the recent peak price, we also incorporate the
historical return and volatility of each asset to complement
historical information. Since the proposition of the mean-variance
model, researchers have often used the mean to describe return and
the variance to characterize volatility (Markowitz, 1952). We have
also adopted this approach in our analysis. Therefore, the model we

have constructed to describe historical asset information is as follows:

Hi
tþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
t�ω2þ1

pi
t

pit�1
� 1

� �
2

r

1
ω2

P
t
t�ω2þ1

pit
pi
t�1

� � ; i ¼ 1; 2; � � � ;m (8)

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
T
T�ω2þ1

pi
t

pi
t�1

� 1
� �

2
r

refers to the standard deviation of the
relative price of the ith assets, that is, the historical volatility,
1
ω2

P
T
T�ω2þ1

pi
t

pi
t�1

� �
refers to the mean value of the relative price of

the ith assets, that is, the historical return, Hi
Tþ1 represents the histori-

cal information of ith assets, and ω2 represents the time window of
historical information (usually set to 120 (half year) or 240 (1 year)).

To sum up, the asset information model we constructed is
expressed as:

x̂tþ1 ¼
P̂tþ1

pt
þ αHtþ1 (9)

where P̂tþ1 represents the highest possible price in the next period,pt

represents the stock price in the current period, Htþ1 represents the
historical information, and α represents the historical information
parameter.

Due to the presence of both momentum and reversal effects in
financial markets, it is challenging to determine whether historical
information has a positive or negative impact on assets, as well as
to set the strength of its effect. Therefore, the setting of α is optimized
by online learning algorithm, allowing for updates in each period.
Detailed online learning methods of parameter optimization are
described in Section 3.4.

3.2.2. Solving the portfolio vector with the BP algorithm
In the framework of the portfolio management, the primary

objective is to accumulate more wealth over time. By ensuring
that the growth factors at each stage are as optimal as possible,
the algorithm is able to gain as much CW as possible. Therefore,
the optimization goal of maximizing the wealth accumulation can
be expressed as:

b̂tþ1 ¼ argmax
bεΔd

bT
tþ1x̂tþ1; s:t: k b� b̂t k � ε; ε > 0 (10)

In the process of using the BP algorithm to solve the portfolio ratio
problem, we decomposed the investment proportion of the next
phase btþ1 into two parts: the current investment proportion bt

and an additional increment ctþ1. This decomposition enables us
to further optimize the objective function:

btþ1 ¼ bt þ ctþ1 (11)

1Tctþ1 ¼ 1btþ1 � 1b̂t ¼ 0 (12)

k ctþ1 k ¼ k btþ1 � b̂t k � ε (13)

max
btþ1

bT
tþ1x̂tþ1 , max

ctþ1

cTtþ1x̂tþ1 (14)

Then, based on the fast BP algorithm, we further decompose the asset
information vector into perpendicular and parallel sections and solve
the increment. The specific process is as follows:

If x̂tþ1;? ¼ 0; then ĉtþ1 ¼ 0 (15)
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Otherwie x̂tþ1;? 6¼ 0; ĉtþ1 ¼
εx̂tþ1;?

k x̂tþ1;? k (16)

Finally, we feed back the increment to the investment vector
proportion and obtain the next investment proportion btþ1 by projec-
ting it onto a space with a value range from 0 to 1. This step can be
described as follows:

b̃tþ1 ¼ b̂t þ ĉtþ1 (17)

b̂tþ1 ¼ arg min
btεΔd

b� b̃tþ1

�� ��2 (18)

3.3. Online adaptive parameter optimization

3.3.1. The setting of the initial parameter with ordinal
information

In the OAAT algorithm, we have two parameters that need to be
updated through online learning: historical information parameter α
and update step size parameter ε. Due to our inability to determine
whether historical information has a favorable or unfavorable influ-
ence on assets, we set the initial point of the parameter α as 0. How-
ever, we still need to examine the initial update step size parameter ε
for the portfolio. In the training set, we use an ordinal information
method to determine the initial parameter.

To solve the average order value by “rank” in the nonparametric
test, firstly, the values are sorted, and then the corresponding average
ranking score are calculated (Delgado & Song, 2018; Huang et al,
2016). Based on the test results of each algorithm in each data set,
the sorting value of the ith data set in the jth algorithm is
expressed as rji . After sorting, the corresponding value is assigned,
for example, the sorting value of the largest CW is 1 and so on.
The average order values of the algorithm under each data set are
calculated according to the order values, and the average order values
of the jth algorithm are recorded as

Dj ¼
1
m

Xm
i¼1

rji (19)

For evaluation of the effect of indicators, the difference between each
order value and the first-order value is used to measure the gap
between the best performance and the current performance as
follows:

S�j ¼
Xm
i¼1

max
Δε

S ið Þ
tþ1 � S ið Þ

tþ1;j

� �
(20)

According to the parameter performance of average order value and
order value gap feedback, the initial point of the update step size
parameter ε is optimized in the training set as follows:

ε ¼ argmin
j2Δε

Dj þ S�J
� 	

(21)

3.3.2. Online learning and gradient descent
We employ online learning and gradient descent algorithm for

parameter optimization in this section. Online learning is an iterative
approach that continuously updates model parameters based on real-
time data. Compared to traditional batch learning, online learning
offers higher efficiency and lower storage requirements, making it

particularly suitable for handling large-scale data sets. Through
online learning and gradient descent, we achieve continuous
optimization and learning of model parameters. During the
iterative process, we continually input new assets prices data to
the model, compute gradients through portfolio vector, and update
parameters based on the direction and magnitude of the gradients.
Through this iterative optimization, our aim is to obtain optimal
model parameters that maximize the performance and
generalization capabilities of the model.

Due to the difficulty in solving the objective function of the AIT
algorithm directly to obtain gradients, we need to employ a numerical
approximation method. After setting appropriate initial points and
step sizes, we use the central difference method to calculate
gradients for iterative purposes. Through this process, we aim to
determine the parameters that maximize the returns of the AIT
algorithm given the price fluctuations of current period. The
detailed formulas are as follows:

gradα ¼ 1
2h1

AIT ~; αþ h1ð Þ � AIT ~; α� h1ð Þð Þ (22)

α ¼ αþ learningrateαgradα (23)

gradε ¼
1
2h2

AIT ~; εþ h2ð Þ � AIT ~; ε� h2ð Þð Þ (24)

ε ¼ εþ learningrateεgradε (25)

where gradα, gradε, respectively, represents the gradient of the
parameters α and ε, and learningrateα, learningrateε, respectively,
represents the learning rate of the parameters α and ε.

Finally, we use the average value of the best parameters in the
last five periods as the optimal parameters in the next phase.

αopt ¼
1
ω1

X
t
t�ω1

αbest;t (26)

εopt ¼
1
ω1

X
t
t�ω1

εbest;t (27)

3.4. OAAT algorithm flow

Algorithm 1 outlines the basic flow of the AIT algorithm, while
Algorithm 2 describes the fundamental flow of the OAAT algorithm.

Algorithm 1. AIT algorithm

Require: Recent window closing price fpt�kgω1�1
k¼0 ; historical

window closing price fpt�kgω2�1
k¼0 ; current portfolio b̂t ; historical

information parameter α; update step size parameter ϵ.
Ensure: The next portfolio b̂tþ1; the cumulative wealth change
for the current period Utþ1.
1: Calculate x̂tþ1 ¼ P̂tþ1

pt
þ αHtþ1 by Equations (6)–(9).

2: Calculate x̂tþ1;? ¼ I� 1
m 11T

� 	
x̂tþ1.

3: if x̂tþ1;? 6¼ 0 then
4: ĉtþ1 ¼ εx̂tþ1;?

x̂tþ1;?k k
5: else
6: ĉtþ1 ¼ 0
7: end if
8: Calculate b̃tþ1 ¼ b̂t þ ĉtþ1.
9: Projection: b̂tþ1 ¼ arg min

btεΔd

b� b̃tþ1

�� ��2.
10: Calculate Utþ1 ¼ b̂T

tþ1xtþ1.
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Algorithm 2. OAAT algorithm

Require: Train set ptrain
tf g; test set ptest

tf g; current portfolio b̂t ;
initial investment capital S0; update step size parameter set Δε;
historical information parameter α; max optimized iterations Imax

Ensure: The optimal parameter αopt and εopt ; the next portfolio

b̂tþ1; cumulative wealth Stþ1

1: for εj 2 Δε do
2: for t= 1 to Ttrain do

3: b̂t = AIT( ptrain
tf g, εj, α=0, b̂t�1)

4: Calculate Stþ1;opt ¼ S0
Q

n�1
t¼0 b̂

T
tþ1xtþ1

5: end for
6: end for
7: Calculate the average order values and by Equations (17) and
(18), Optimize the initial update step size parameter ε by
Equation (19).
8: for t= 1 to Ttest do
9: Utþ1; b̂t = AIT( ptest

tf g, εj, α, b̂t�1)
10: Calculate Stþ1 ¼ StUtþ1

11: for i =1:Imax do
12: Optimize α and ϵ through gradient descent by Equations
(23)–(27), and get optimal parameters αopt and εopt

13: end for
14: end for

3.5. OAAT flow chart

The flow chart depicting the OAAT algorithm is presented in
Figure 2.

4. Experimental Analysis

In this paper, 10 classical portfolio algorithms are selected for
experimental analysis on four Hong Kong stock index data sets and
three US stock index data sets to compare the effectiveness and
stability of the OAAT algorithm. The experimental result of six of
these algorithms (UBAH, UP, Anticor, EMA, RMR, CORN-U) is
solved by the OLPS toolbox (Li et al., 2016). The experimental
environment of this paper is Core (TM) i5-7300HQ CPU and
32GB memory card; programming language: MATLAB.

4.1. Introduction of the data sets

We collect four constituent stock data sets of Hong Kong
indexes (from January 1, 2017 to December 31, 2022 (5 years
totally)) and three constituent stock data sets of US indexes (from
January 1, 2017 to December 31, 2021 (4 years totally)) for
experimental analysis, as shown in Table 1. The selected stocks
are all characterized by high trading volumes in the indexes.

4.2. Introduction to the OLPS algorithms

The selected OLPS algorithms in this experiment are presented
in Table 2. Time complexity of these algorithms in the table refers to
the summary and analysis of the research work from Li and Hoi,
(2018). Time complexity of the algorithm provides an important
basis for the efficiency of the algorithm, which has great
importance on the reference value for the investment transaction
process, where m represents the number of assets; n represents the
number of trading periods; and M represents the maximum
iteration count. Due to the OAAT algorithm uses online learning

Figure 2
The flow chart of OAAT algorithm
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and gradient descent algorithm to optimize parameters, its time
complexity is slightly higher than other algorithms.

4.3. Empirical results of parameter optimization

The OAAT algorithm mainly includes four important
parameters: transaction cost (tc), the window width of recent peak
price (ω1), historical information parameter (α), and update step size
parameter (ϵ). The first two parameters are manually set. It is
assumed that the transaction cost rate is 0.001. The window width
of recent peak price ω1 is 5, which is suitable for the stock’s
5-day moving average. The other two parameters are dynamically
adjusted by our online learning algorithm.

Initial step size ϵ is optimized and adjusted through the ordinal
information principle of CW. The specific method presents different
results value of ϵ in seven data sets. The more the CW, the better the
parameter ϵ is set. Table 3 displays the CW and its corresponding
ordinal value under different ϵ for each data set. From Table 3, it is
obvious that when ϵ= 1000, the average ranking score and the gap
with the first order value are the smallest. Therefore, in the OAAT
algorithm, initial step size ϵ will be set as 1000 in subsequent
experiments.

We can also observe that when the parameter ϵ is set to 5, the
average rank of each data set is also good, but the order value gap is
larger. This is because when we set ϵ=5, it means that the update step
is small, and the changes in the investment portfolio of are limited. In
data sets with lower returns such as HSCIU and SP500-B, this
approach helps to reduce transaction costs and control risks.
However, this approach is not conducive to pursuing higher
returns. Therefore, when ϵ=5, compared to the other settings, the
order value gap is the largest.

Then, we optimize the historical information parameter α and
update step size parameter ϵ through online learning and gradient
descent, and some optimization results are shown in Figure 3. We
can see that α and ϵ are adaptively adjusted over time. When α
becomes greater than 0, it means that the OAAT algorithm
determines that the current market has larger reversal effect than
momentum effect. On the other hand, when α becomes less than 0, it
means that the OAAT algorithm determines that the current market
has larger momentum effect than reversal effect. When α equals 0, it
means that the OAAT algorithm does not consider historical asset
information into the construction of the current investment portfolio.

4.4. Test set results and analysis

This paper evaluates and compares the performance of the
algorithm according to several common indicators. The specific
introduction and analysis are as follows.

CW quantifies the overall capital growth achieved throughout
the entire trading cycle. It is determined by dividing the total capital
at the end of the period by the total capital at the start of the period.
Table 4 shows that the OAAT algorithm is the most advantageous of
10 algorithms during three data sets including HSCIT, HSCIU, and
SP500-B data set. In the remaining four data sets, OAAT algorithm
performs little worse. In the HK50, it ranks third with a score of
1.128, falling behind the Anticor-1 and UP algorithms. In the
HSCIIG, it ranks second with a score of 1.680, trailing the
Anticor-1 and RMR algorithms. Similarly, in the SP500-A data
set, the OAAT algorithm comes in second place, just behind
UBAH. Lastly, in the NDX data set, the OAAT algorithm ranks
second, with RMR algorithm taking the lead. It can be seen that
OAAT algorithm is an algorithm with strong profitability.

Table 2
Summary of algorithms used for experimental analysis

Category Algorithm Time complexity Explanation

Benchmark UBAH o(m+n) Buy and hold algorithm
Follow the winner UP o(nm) Pan securities portfolio algorithm
Follow the loser Anticor O(m2n) Anti-Correlation algorithm
Pattern matching CORN o(mn2) Relevance driven nonparametric learning
Follow the loser EMA o(mn) Online moving mean regression algorithm
Follow the loser RMR o((M+1) mn) Robust mean regression algorithm
Follow the winner PPT o(m2n) Peak price tracking algorithm
Follow the winner TPPT o(m2n) Trend promote price tracing ensemble algorithm
Follow the winner APPT o(m2n) Adjusted peak price tracking algorithm
Online learning OAAT (ours) o(Mm2n) Online adaptive asset tracking algorithm

Table 1
The summary of four Hong Kong data sets and three US data sets used for this experimental analysis

Data set Abbreviation Main constituent stocks Number of stocks

Hong Kong Hang Seng HK50 0175, 0288, 0386, 0535, 0728, 0857, 0883, etc. 18
Hang Seng Composite Industry HSCIIG 0144, 0152, 0489, 0586, 0631, 0658, 0732, etc. 17
Hang Seng Composite Industry Telecom HSCIT 0008, 0215, 0728, 0762, 0941, 1883, 6823 7
Hang Seng Composite Industry Utilities HSCIU 0002, 0003, 0006, 0135, 0257, 0270, 0371, etc. 24
S&P500 (Group A) SP500-A TSLA, BAC, FRC, AMD, F, AAPL, CCL, etc. 14
S&P500 (Group B) SP500-B T, META, USB, RF, C, MU, TFC, CMCSA, etc. 14
NASDAQ 100 NDX INTC, GOOGL, MSFT, META, MU, CMCSA, etc. 13
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Ŝn ¼ max
bεΔdf gnt¼1

Yn
i¼1

ðbT
t xtÞ (28)

Annualized return (AR) reflects the compound effect of the actual
returns of the algorithm. Actually, when converting the current yield
into the annual yield under the consideration of compound interest,
the larger index value will be better. Table 5 shows that the AR of the
OAAT algorithm ranks first in the HSCIT, HSCIU, and SP500-B
data set, second in the SP500-A, NDX data set, and third in the
HSCIIG and HK50. It is found that the OAAT algorithm is
capable of constructing investment portfolios with strong potential
for returns. AR can be calculated as follows:

AR ¼ S
252
n �1
n (29)

Sharpe ratio (SR) quantifies the amount of additional return that an
investment portfolio generates per unit of total risk taken. The higher
the SR value, the better the performance of the financial asset in
balancing returns and risks. Table 6 indicates that the OAAT
algorithm is a feasible algorithm balancing both benefits and risks.
The OAAT algorithm ranks first among the HSCIT, HSCIU, and
SP500-B data set. In the remaining HK50, HSCIIG, SP500-A,
and NDX, although OAAT algorithm does not occupy the first

place, however, it is generally above average. SR can be
calculated as follows:

SR ¼ E Rp

� 	� Rf

σp
(30)

where E Rp

� 	
represents the expected yield for investors; Rf repre-

sents the risk-free yield; and σp represents the standard deviation
of the portfolio.

Calmar ratio (CR) refers to the ratio of determinate return to
diminishing risk in a hedge fund. CR represents the ratio of the AR to
max drawdown. Table 7 indicates that the risk management of the
OAAT algorithm is comparatively strong. Despite ranking third in
the SP500-A data set and fourth in the HK50 data set with scores
of 0.865 and 0.057, respectively, this algorithm outperforms
others in various data sets. This implies that the OAAT algorithm
possesses a substantial advantage across a majority of the data
sets under consideration.

CR ¼ AR
MDD

(31)

Figure 4 displays the CW trend chart, which is based on the
experimental outcomes derived from seven portfolio data sets

Table 3
The cumulative wealth and ordinal information of seven data training sets

Project ε
5 50 100 500 1000

CW Rank CW Rank CW Rank CW Rank CW Rank

HK50 4.903 5 5.791 3 5.706 4 5.897 2 5.977 1
HSCIIG 4.308 5 4.948 4 5.051 3 5.312 2 5.358 1
HSCIT 1.082 5 0.955 3 0.929 5 0.947 4 0.961 2
HSCIU 1.573 1 1.519 4 1.421 5 1.527 3 1.535 2
SP500-A 2.911 1 2.270 2 2.217 5 2.222 4 2.234 3
SP500-B 0.998 1 0.888 5 0.915 2 0.904 3 0.900 4
NDX 2.209 1 2.764 4 2.766 3 2.943 2 3.000 1
Average order value 2.714 3.571 3.857 2.857 2
Order value gap 2.915 1.764 1.892 1.146 0.934

Note: The bold value represents the parameters with the highest average ranking in the training set.

Figure 3
Online learning adaptive values of α and epsilon under the SP500 (Group A) constituent stock data set
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executed under distinct algorithms. Two significant observations can
be made from Figure 4. Firstly, the OAAT algorithm witnesses a
downturn during period 800 (early March 2020, the
commencement phase of the pandemic), but its recovery is fast,
and it attains a prominent position in the succeeding stages,
signifying its capability to handle unforeseen events relative to
other algorithms. Secondly, throughout the simulation process, the

OAAT algorithm essentially maintained its position around the
top three in terms of performance, with particular emphasis on its
superiority in the later stages (e.g., period 1000–1500).

According to the trend of wealth accumulation shown in
Figure 4 and index evaluation in Tables 4, 5, 6, and 7, OAAT is a
robust and effective algorithm and outstanding algorithm of
follow the winner. Figure 4 shows the trend of accumulated

Table 4
Cumulative wealth of 10 OLPS algorithms in 7 portfolio data sets

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX

UBAH 1.049 1.584 0.784 1.256 5.530 1.749 6.184
UP 1.285 1.662 0.839 1.328 3.887 1.682 4.780
Anticor-1 1.633 2.110 1.266 3.054 2.374 1.764 6.044
CORN-U 0.780 0.359 0.351 1.190 3.861 1.979 3.482
EMA 0.362 0.920 1.257 3.956 1.704 1.108 6.995
RMR 0.470 1.712 0.980 5.287 1.002 1.048 13.290
PPT 0.697 0.960 0.916 2.683 3.909 1.694 4.822
TPPT 0.555 0.918 0.999 2.401 0.707 2.586 8.731
APPT 1.017 1.218 0.875 2.474 0.727 2.824 10.012
OAAT 1.128 1.680 1.520 15.110 5.297 5.626 11.025

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.

Figure 4
The trend of accumulated wealth of portfolio data sets under different algorithms

Table 5
Annualized returns of 10 OLPS algorithms in 7 portfolio data sets

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX

UBAH 0.008 0.082 −0.041 0.040 0.408 0.118 0.440
UP 0.044 0.091 −0.030 0.050 0.312 0.110 0.368
Anticor-1 0.087 0.136 0.041 0.210 0.189 0.120 0.434
CORN-U −0.042 −0.161 −0.164 0.030 0.311 0.146 0.284
EMA −0.159 −0.014 0.040 0.265 0.113 0.021 0.476
RMR −0.121 0.096 −0.004 0.329 0.000 0.010 0.678
PPT −0.060 −0.007 −0.015 0.184 0.314 0.111 0.370
TPPT −0.096 −0.014 0.000 0.162 −0.067 0.209 0.543
APPT 0.003 0.034 −0.023 0.167 −0.062 0.231 0.586
OAAT 0.021 0.093 0.074 0.591 0.396 0.413 0.617

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.
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wealth of various portfolio data sets. Among 10 types of algorithm,
the OAAT algorithm shows a relatively significant advantage in
several test sets, maintaining its superiority until the end. The
asset under OAAT algorithm shows a good growth trend, which
indicates that OAAT algorithm is an effective and robust portfolio
algorithm. Compared with other algorithms in the data set, OAAT
algorithm is more effective than other algorithms in balancing the
benefits and risks. Under the evaluation of accumulated wealth,
AR, SR, and CR, although OAAT algorithm does not perform
best in each data set, it has obvious advantages in multiple data
sets, with an indication of that OAAT algorithm is an efficient
and feasible OLPS algorithm with strong generalization ability.

5. Statistic Test

Based on the aforementioned empirical comparative analysis, it
is apparent that the OAAT algorithm outperforms certain OLPS
algorithms in terms of performance. However, it does not provide
conclusive evidence to establish the OAAT algorithm as the
ultimate best performer across various data sets and algorithms.
Hence, we will now evaluate the overall performance of the
OAAT algorithm, selecting two indicators, CW and SR, to assess
its profit-generating ability and risk aversion through a non-
parametric test.

5.1. Nonparametric tests of CW

Nonparametric statistical tests were conducted on 10 OLPS
algorithms under 7 portfolio data sets to obtain the average order
value of accumulated wealth and the Friedman statistic, where

N= 7, k= 10, χ2 = 18.83, and the Friedman statistic at the level
of significance α =0.05 is Ff=2.56∼F(9,54). Due to the Friedman
statistic is greater than the critical value of the F-distribution 2.06,
the assumption that these nine OLPS algorithms have similar perfor-
mance as the OAAT algorithm is rejected. After that, we employ the
Denferroni–Dunn test to evaluate and compare the performance of
the OAAT algorithm with the other nine OLPS algorithms compre-
hensively. Additionally, it determines the critical value range of the
difference between the average order value:

CD ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ

6N

r
(32)

In the Denferroni–Dunn test, it is assumed that if the disparity
between the mean rankings of any two algorithms surpasses the
critical threshold (CD), it is considered that one algorithm is
superior to the other under the corresponding confidence level. At

the confidence level of 0.10: CD =2.529
ffiffiffiffiffiffiffiffiffiffi
10�11
6�7

q
, comparing the

first-order values of various algorithms, the difference between the
OAAT algorithm and the other three OLPS algorithms (UP,
CORN-U, EMA, PPT, TPPT) is higher than the critical value of
4.09, which shows that the performance of these three OLPS algo-
rithms is worse than that of the OAAT algorithm. Although the
remaining algorithms do not meet the alternative hypothesis of Den-
ferroni–Dunn test, the average performance of OAAT algorithm
ranks first and performs best in multiple data sets. Therefore, the
OAAT algorithm remains the best algorithm among other OLPS
algorithms in terms of comprehensive performance, as shown in
Table 8.

Table 7
Calmar ratios of 10 OLPS algorithms in 7 portfolio data sets

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX

UBAH 0.016 0.142 −0.097 0.074 1.102 0.307 1.303
UP 0.105 0.169 −0.074 0.107 0.741 0.279 1.143
Anticor-1 0.150 0.231 0.073 0.509 0.253 0.280 1.218
CORN-U −0.061 −0.184 −0.224 0.044 0.752 0.329 0.555
EMA −0.173 −0.019 0.069 0.465 0.136 0.025 0.830
RMR 0.130 0.137 −0.007 0.600 −0.001 0.010 1.232
PPT −0.165 −0.020 −0.066 0.574 1.371 0.517 1.825
TPPT −0.264 −0.042 0.000 0.504 −0.146 0.645 1.628
APPT 0.008 0.101 −0.100 0.523 −0.135 0.711 1.756
OAAT 0.057 0.272 0.330 2.135 0.865 1.271 2.015

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.

Table 6
Sharpe ratios of 10 OLPS algorithms in 7 portfolio data sets

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX

UBAH −0.130 0.152 −0.548 −0.001 1.284 0.346 1.377
UP 0.017 0.196 −0.440 0.049 1.018 0.306 1.294
Anticor-1 0.137 0.276 0.006 0.593 0.334 0.274 1.213
CORN-U −0.207 −0.498 −1.058 −0.026 0.618 0.321 0.557
EMA −0.363 −0.104 0.000 0.483 0.124 −0.047 0.903
RMR −0.304 0.109 −0.153 0.644 −0.069 −0.075 1.327
PPT −0.174 −0.086 −0.185 0.291 1.024 0.312 1.304
TPPT −0.238 −0.100 −0.136 0.246 −0.175 0.405 1.018
APPT −0.065 −0.010 −0.211 0.258 −0.166 0.455 1.099
OAAT −0.041 0.098 0.112 1.187 0.583 0.882 1.187

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.
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5.2. Nonparametric tests of the CR

Similar to the previous test, 10 algorithms in seven data sets are
used to solve the average order value of CR in Friedman statistics,
N= 7, k= 10, χ2 = 21.02, Ff =3.003∼F(9,54). Therefore, the Fried-
man statistic, which is equal to 3.003, is greater than the critical value
of 2.138, so the original assumption that all of the 10 OLPS algo-
rithms perform equally has been disproven. It can be clearly seen that
the difference between OAAT algorithm and four OLPS algorithms
(UP, CORN-U, EMA, TPPT) is higher than the critical value of 4.09,
which shows that the performance of these OLPS algorithms is
slightly inferior to that of OAAT algorithm. In the seven data sets,
the OAAT algorithm stands out from the other nine algorithms by
securing the highest number of first-place rankings and achieving
the top average ranking across all data sets. Table 9 shows that
the OAAT algorithm is proficient in effectively balancing income
and risk, demonstrating exceptional comprehensive abilities. It is a
trustworthy and highly generalizable OLPS algorithm.

6. Conclusion

Aiming at the problem of how to use asset historical information
to mine portfolio potential returns and parameter settings in OLPS, we
propose a novel online adaptive asset tracking algorithm (OAAT) for
OLPS. The OAAT algorithm updates investment proportions by
considering various factors such as recent peak prices, historical
returns, and historical volatility. It optimizes parameters through
online learning, starting with initial parameters based on the
minimum sum principle of ordinal information. After each trading
phase, parameter optimization is performed using the gradient
descent algorithm, and the average values of the optimal parameters

from the last five days are used for the next phase. The results of
the empirical analysis and statistical tests indicate that the OAAT
algorithm effectively determines the investment proportion to
balance return and risk, demonstrating superior performance
compared to the other nine OLPS algorithms. However, there are
more optimization algorithms that can be tried in this experiment.
Therefore, further research is needed on the OAAT algorithm.

Funding Support

This work was supported by the National Social Science
Foundation of China (18BTJ029), Key Projects of National
Statistical Science Research Projects (2020LZ10), and Tertiary
Education Scientific Research Project of Guangzhou Municipal
Education Bureau (202235324).

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to this
work.

Data Availability Statement

Data sharing is not applicabe to this article as no new data were
created or analyzed in this study.

Table 8
Nonparametric tests of cumulative wealth

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX Avg rank Diff

UBAH 4 5 9 9 1 6 6 5.71 3.86
UP 2 4 8 8 4 8 9 6.14 4.29
Anticor-1 1 1 2 4 6 5 7 3.71 1.86
CORN-U 6 10 10 10 5 4 10 7.86 6.00
EMA 10 8 3 3 7 9 5 6.43 4.57
RMR 9 2 5 2 8 10 1 5.29 3.43
PPT 7 7 6 5 3 7 8 6.14 4.29
TPPT 8 9 4 7 10 3 4 6.43 4.57
APPT 5 6 7 6 9 2 3 5.43 3.57
OAAT 3 3 1 1 2 1 2 1.86 0.00

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.

Table 9
Nonparametric tests of Calmar ratio

Project HK50 HSCIIG HSCIT HSCIU SP500-A SP500-B NDX Avg rank Diff

UBAH 5 4 8 9 2 6 5 5.57 3.86
UP 3 3 7 8 5 8 8 6.00 4.29
Anticor-1 1 2 2 5 6 7 7 4.29 2.57
CORN-U 7 10 10 10 4 5 10 8.00 6.29
EMA 9 7 3 7 7 9 9 7.29 5.57
RMR 2 5 5 2 8 10 6 5.43 3.71
PPT 8 8 6 3 1 4 2 4.57 2.86
TPPT 10 9 4 6 10 3 4 6.57 4.86
APPT 6 6 9 4 9 2 3 5.57 3.86
OAAT 4 1 1 1 3 1 1 1.71 0.00

Note: The bold value represents the algorithm that has the most cumulative wealth growth in different data sets.
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