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Abstract: The Cable-Trench Problem (CTP) is defined as a combination of the Shortest Path and Minimum Spanning Tree Problems.
Specifically, let G ¼ V ; Eð Þ be a connected weighted graph with specified vertex v1 2 V (referred to as the root), length l eð Þ � 0 for each
e 2 E, and positive parameters τ and γ. The Cable-Trench Problem is the problem of finding, for given values of τ and γ, a spanning tree
T of G such that τlτ Tð Þ þ γlγ Tð Þ is minimized, where lτ Tð Þ is the total length of the spanning tree T, and lγ Tð Þ is the total path length in T from
v1 to all other vertices ofV . Consider the ratioR= τ/γ. ForR large enough, the solutionwill be aminimum spanning tree, and forR small enough, the
solution will be a shortest path. This is the first article to present a methodology that iteratively uses integer programming software (CPLEX in this
article) to efficiently generate all optimal spanning trees (GEAOST) for a CTP (for all values of R). An example will illustrate how sensitive the
spanning trees solution can be to small changes in edge lengths. Also, GEAOSTwill be used to generate all optimal spanning trees for graphs based
on a real-world radio astronomyapplication.How the sequence of all optimal spanning trees can be used for sensitivity analysiswill be demonstrated.
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1. Introduction

Vasko et al. (2002) defined the Cable-Trench Problem (CTP) as a
way to combine the shortest path spanning tree problem and the
minimum spanning tree problem in a weighted graph with a specified
root. The name “Cable-Trench” comes from the fact that a physical
application of the CTP is the problem of minimizing the cost to create
a campus network in which each building on a campus is connected
to a central server with its own dedicated, underground cable. Since
the seminal CTP paper (Vasko et al., 2002), there have been a
number of publications describing the applications and extensions of
the CTP. A representative sample of these publications will be
discussed in the literature review section.

Formally, let V ¼ v1; . . . ; vnf g be a set of vertices, and let
E � f vi; vj

� �j1 � i; j � n; i 6¼ jg be a set of edges. As defined in
Vasko et al. (2002), for a connected weighted graph G ¼ V ; Eð Þ
with specified root vertex v1 2 V , let l eð Þ � 0 be the length of the
edge e 2 E, and let τ and γ denote positive weighting parameters.
For given values of τ and γ, a solution to the CTP is any spanning
tree T of G that minimizes τlτ Tð Þ þ γlγ Tð Þ, where lτ Tð Þ is the total
length of T, and lγ Tð Þ is the total path length in T from v1 to all other
vk 2 V . The cost of digging the trench is τ per unit length, and the
cost of the cable required is γ per unit length.

If γ> 0 and τ= 0, then the solution to the CTP is any shortest
path solution from v0 to all other vertices of G. In contrast, if τ> 0

and γ= 0, then the solution to the CTP is any minimum spanning
tree. Thus, the solutions to the two limiting cases can be found
efficiently.

In Vasko et al. (2002), a heuristic is developed to solve the CTP
for all values of R= τ/γ. The main contribution of this current article
is that it is the first to present a methodology that iteratively uses
integer programming software (CPLEX in this article, but Gurobi
and others can be used) to efficiently generate all optimal
spanning trees for a CTP (for all values of R). Additionally, how
this sequence of all optimal spanning trees can be used for
sensitivity analysis will be demonstrated. It is important to note
that, up to this point, all the applications and extensions of the CTP
have dealt with solving a CTP at particular values for τ and γ. In
other words, applications and extensions of the CTP have focused
on particular unit “cable” and unit “trench” costs.

In the next section, publications dealing with the CTP will be
discussed. Then some important properties of the CTP will be
reviewed. This will be followed by a presentation of our methodology
for generating all optimal spanning trees (GEAOST) for a CTP. An
example will be used to illustrate this methodology. Next, GEASOST
will be used to demonstrate how sensitive the spanning trees in a
solution can be to small changes in edge lengths. This will be
followed by GEAOST used to solve for all optimal CTP spanning
trees for graphs based on an actual radio astronomy application. Next,
how the sequence of all optimal spanning trees can be used for
sensitivity analysis will be demonstrated. Finally, a summary and
potential future work will be provided.

*Corresponding author: Francis J. Vasko, Kutztown University, USA. Email:
vasko@kutztown.edu

Journal of Computational and Cognitive Engineering
2022, Vol. 1(1) 13–20

DOI: 10.47852/bonviewJCCE208918205514

© The Author(s) 2022. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

13

mailto:vasko@kutztown.edu
https://doi.org/10.47852/bonviewJCCE208918205514
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2. Literature Review

Since the seminal CTP paper (Vasko et al., 2002), there have
been a number of publications describing applications of the CTP
to model analogous situations. Examples include the application
of the CTP to significantly reduce the cost to upgrade and deploy
wired and wireless access networks by Nielsen et al. (2008).
Marianov et al. (2012) formulated the p-cable trench problem
(p-CTP) and generalized the CTP to forests (disjoint unions of
trees) to optimize the construction of roads and sawmills for a
logging operation and to optimize the construction of canals and
wells for irrigation. Both Calik et al. (2017) and Lalla-Ruiz et al.
(2016) developed solution procedures for solving the p-CTP based
on mathematical programming concepts. Gutiérrez-Jarpa et al.
(2015) and Marianov et al. (2012) extended the p-CTP to the p-
cable trench problem with covering (p-CTPC) that has an
application of locating Wi-Fi antennas in Viña del Mar, Chile.
Jamill and Ramezankhani (2015) used the CTP formulation to
route power transmission in a metro depot. Schwarze (2015)
defines the Multi-Commodity Cable Trench Problem in which a
network structure is designed such that different cable types
(commodities) are inserted into the same trenches. Most recently,
Schwarze et al. (2021) further generalized the problem approach of
Marianov et al. (2012) and presented the capacitated cable trench
problem with facility costs (cCTP-FL), where the opened facilities
have a cost and limitation on the number of associated customers,
so that facility location decisions in wire-based networks can be
taken under a more realistic cost scenario. The CTP is generalized
and used to solve a nontrivial application to vascular image
analysis by Jiang et al. (2011) and Vasko et al. (2015).

An interesting logistical problem formulated as a CTP by Girard
(2013) and Zyma et al. (2017) is the problem of connecting 96 low-
frequency antenna arrays forming a new radio telescope distributed
across a 400× 450-meter area in the Nançay radio observatory in
France to a central control facility via coaxial cables. To protect the
cables, trenches are dug for the cables to run underground. Also, any
number of cables can be laid in a given trench. A minimum cost
(combining both cable and trench costs) configuration will necessarily
be a spanning tree of the 96 antenna arrays with the central control
facility as the root. For brevity, we refer to this problem as the radio
astronomy antenna connection problem (RAACP). In a subsequent
section, we will define several graphs based on the RAACP and
solve for all optimal spanning trees using the GEAOST algorithm.

All of the applications and extensions of the CTP mentioned
above have dealt with solving a CTP at particular values for τ and
γ. In other words, applications and extensions of the CTP have
focused on particular unit cable and unit trench costs. Researchers
(Jeng et al., 2006, 2007) have attempted to use DNA-based
evolutionary computing to solve small CTPs. The largest CTP-
type problems solved (approximately) involved the vascular
imaging application (Vasko et al., 2015). Stochastic greedy and
semi-greedy based heuristics were used to efficiently solve, for
particular values of τ and γ, graphs with up to 25,000 vertices and
11 million edges. For these instances, 60 solutions were generated
in about 30 min on a standard PC, and the best solution among
the 60 was chosen as the answer. In terms of applications using
exact solution methods, the radio astronomy application (Zyma
et al., 2017) used CPLEX to solve, again for particular values of τ
and γ, graphs with 97 vertices (root node and 96 antenna arrays),
and almost 3000 edges in about 10 min on a standard PC.

Because we will be using the sequence of all optimal spanning
trees to perform sensitivity analyses on the ratio of trench to cable
cost, we will now provide a brief background on linear

programming and mixed integer programming sensitivity analysis.
Classic linear programming sensitivity analysis (Hillier &
Lieberman, 2010; Winston, 2004) deals with determining how
much an objective function coefficient or constraint right-hand side
coefficient can be perturbed, and the current optimum remains the
same. This analysis assumes that only one coefficient is modified
at a time. The 100% Rule (Bradley et al., 1977) for linear
programming analyzes the impact of several objective function
coefficients or several constraint right-hand sides changing at the
same time. Sensitivity analysis results for mixed integer linear
programming problems (MILP), such as the MFCTP, are more
limited and largely derived from the idea of inference duality
(Cook et al., 1986; Dawande & Hooker, 2000). The inference dual
of a MILP asks how the optimal value can be deduced from the
constraints. Yi and Lu (2019) studied MILP sensitivity analysis
applied to haul road layout design for earth-moving operations.

3. Important Solution Properties of the
Cable-Trench Problem

In this section, we will summarize some important properties (first
discussed inVaskoet al. (2002))of thespanning trees in theCTPsolution
overallvaluesofR= τ/γasRvaries from0to∞.LetT1beaspanning tree
that is a shortest path solution from v0 to all other vertices in V such that
total edge length is minimized. Let lτ(T1) be the total trench length
corresponding to T1, and let lγ(T1) be the total cable length
corresponding to T1. Let TΩ be a minimum spanning tree that
minimizes the total path length from v0 to all other vertices in V, and
let lτ(TΩ) be the total trench length corresponding to TΩ, and let
lγ(TΩ) be the total cable length corresponding to TΩ. If lτ(T1) =
lτ(TΩ), then T1 is the optimal spanning tree for all values of τ/γ> 0.
Otherwise, lτ(T1) > lτ(TΩ), lγ(T1) < lγ(TΩ), and T1 ≠ TΩ.

If T1 ≠ TΩ, then the optimal solution to the CTP is a sequence of
spanning trees such that as the τ/γ value increases, the total length of the
spanning trees strictly decreases each time another spanning tree
becomes optimum, and the total path length from v0 to all vertices of
V strictly increases each time another spanning tree becomes optimum.

4. GEAOST Algorithm and Illustrated Example

4.1. Introduction

The heuristic outlined in Vasko et al. (2002) starts by generating
the spanning tree T1 and then uses a neighborhood search
methodology to heuristically generate a sequence of spanning
trees. Although this heuristic performed well on the examples
analyzed in Vasko et al. (2002), it typically did not generate all
the optimal spanning trees.

Given the current power of integer programming software and
PC hardware, the main purpose of this article is to demonstrate a
methodology we refer to as GEAOST that will efficiently generate
all optimal spanning trees for graphs with up to 30 nodes and 68
edges in at most 6 min on a standard PC for all values of R = τ/γ
in [0,∞). To solve a CTP for specified values of τ and γ, the
mathematical formulation for the CTP (MFCTP) from Section 3.1
in Zyma et al. (2017) will be used.

Without loss of generality, we assume that γ= 1, and we will
determine all optimal spanning trees for τ in [0,∞). T1 and TΩ are as
defined previously. Now define CF(Ti(τ)) to be the total CTP cost func-
tion for spanning tree Ti at τ and CF(Tτi(τ)) to be the total CTP cost
function at τ for the spanning tree that is optimum (minimum cost)
when τ= τi. We will now outline the GEAOST logic. Detailed pseudo-
code and a flowchart (Figure A1) are provided in an appendix.
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4.2. Outline of GEAOST logic

STEP1: Determine T1 and TΩ using MFCTP discussed previously.

STEP2: If T1= TΩ, then T1 is the optimal spanning tree for all τ in
[0, ∞) and terminate.

If T1≠ TΩ, label T1 as LSST (left-side spanning tree) and
TΩ as RSSP (right-side spanning tree) and go to STEP3.

STEP3: Let τ0 be the breakeven point for LSSP and RSSP. That is,
CF(LSSP(τ0)) = CF(RSSP(τ0)).
Solve MFCTP at τ0 (recall γ= 1). If the optimal cost is the
same as CF(LSSP(τ0)), then γ0 is an optimal breakeven
point, and no spanning tree needs to be added to the solution.

However, if the optimal spanning tree has a smaller cost than
LSSP=RSSP, then this spanning tree denoted as BETTER
must be inserted between LSSP and RSSP.

STEP4: Now determine the breakeven points for LSSP and BETTER
and for BETTER and RSSP, and insert into the solution the
optimal spanning trees at the breakeven points if the costs are
improved by these spanning trees. Otherwise, these points
are optimal breakeven points.

STEP5:Continue this process until all breakeven points are optimum.
The resulting spanning trees and breakeven points will be an
optimal CTP solution over all values of τ in [0, ∞).

It is obvious that by inserting “enough” spanning trees, for each τ in
[0, ∞), there will be a spanning tree in the GEAOST ordered set of
spanning trees denoted as Tτ such that the difference between the
optimal MFCTP objective function value for τ and the objective
function value of Tτ at τ can be made arbitrarily small.

GEAOST was programmed using the control language
JavaScript, and the MIP language was OPL (Optimization
Programming Language). All executions of CPLEX were on a
standard PC with the following specifications: 16 GB of memory,
Intel processor with 2.9 GHz, 1000 GB hard drive, andWindows 10.

4.3. Example solved using GEAOST

The following problem, which is Example 2 in Vasko et al.
(2002), will illustrate the logic of GEAOST.

Specifically, let V = {1,2,3,4,5,6,7} and E = {(1,2),(1,3),(1,7),
(2,4),(3,4),(3,5),(3,6),(3,7),(4,5),(5,6),(6,7)} with edge lengths
50,60,60,30,30,40,40,10,30,30, and 39.

GEAOST Solution: As previously, assume γ= 1.

CF(T1(τ))= 449+ 279τ and CF(TΩ(τ))= 610+ 180τ.
Setting CF(T1(τ)) = CF(TΩ(τ)) implies that τ= 161/99.

Solving the MFCTP (given above) for τ= 161/99 and γ= 1
gives a new spanning tree with CF(T(161/99)(τ))= 469+ 219τ.
Since CF(T(161/99)(161/99)) < CF(T1(161/99)) = CF(TΩ(161/
99)), the spanning tree T(161/99) needs to be inserted in the
solution between T1 and TΩ.

Now we need to determine the breakeven points between T1
and T(161/99) and between T(161/99) and TΩ.

First find the breakeven points between T1 and T(161/99).

CF(T1(τ)) = CF(T(161/99)(τ)) implies τ= 1/3 and CF(T(1/
3)(τ)= 4670+ 230τ.
SinceCF(T(1/3)(1/3))<CF(T1(1/3))=CF(T(161/99)(1/3)), the
spanning tree T(1/3) needs to be inserted in the solution between
T1 and T(161/99).

First, we find the breakeven point between T(161/99) and TΩ.

CF(T(161/99)(τ)) = CF(TΩ(τ)) implies τ= 141/39.

Since CF(T(161/99)(141/39)) = CF(TΩ(141/39)), 141/39 is an
optimal breakpoint between T(161/99) and TΩ.

Now we insert T(1/3) between T1 and T(161/99).

Start by finding the breakeven point between T1 and T(1/3).

CF(T1 (τ)) = CF(T(1/3)(τ) implies τ= 11/49.

Since CF(T(11/49)(τ)) = CF(T(1/3)(τ)), 11/49 is an optimal
breakpoint between T1 and T(1/3).

Nowdetermine thebreakevenpointbetweenT(1/3) andT(161/99).

CF(T(1/3(τ)) = CF(T(161/99)(τ) implies τ= 9/11.

Since CF(T(9/11)(τ)) = CF(T(161/99)(τ)), 9/11 is an optimal
breakpoint between T(1/3) and T(161/99).

All optimal breakpoints have been determined and the optimal
spanning trees are as follows:

T1 with CF(T1(τ))= 449+ 279τ for 0≤ τ≤ 11/49,

T(11/49) with CF(T(11/49)(τ))= 460+ 230τ 11/49≤ τ≤ 9/11,

T(9/11) with CF(T(9/11)(τ))= 469+ 219τ 9/11≤ τ≤ 141/39,

T(141/39) = TΩ with CF(TΩ (τ))= 610+ 180 141/39≤ τ.
In this example, GEAOST solved the MFCTP integer programming
formulation five times (five breakeven points) and determined three
optimal break points. For this example, the heuristic in Vasko et al.
(2002) did not find optimal spanning trees for τ in the interval (9/11,
141/39).

We will next use Example 4 from Vasko et al. (2002) to
demonstrate how sensitive the optimal CTP solution of spanning
trees can be to small changes in edge lengths.

4.4. An example of CTP solution sensitivity to edge
length changes

We will now use Example 4 from Vasko et al. (2002) to
demonstrate how the optimal CTP spanning trees solution can be
significantly impacted by just changing the edge length of one edge
one unit in length. Example 4 is the following problem. For the graph
G = (V, E), let V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and E = {(1,2), (1,3),
(1,4), (2,4), (2,6), (3,4), (3,5), (4,5), (4,6), (4,7), (5,7), (5,8), (6,7),
(6,9), (7,9), (8,9)} with edge lengths 7, 10, 8, 6, 7, 4, 3, 6, 5, 8, 6, 8,
4, 7, 5, and 9, respectively. The graph is given below (See Figure 1).

Figure 1
Graph of Example 4 (Vasko et al., 2002)
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The GEAOST CTP spanning trees solution and the intervals
over which each spanning tree is optimum are given in Table 1.

Now suppose the length of edge (3,5) is reduced just one unit
from 3 to 2. In this case, the GEAOST CTP spanning trees solution
and the intervals over which each spanning tree is optimum remain
exactly the same as for the original Example 4. However, suppose
instead of reducing the length of edge (3,5) one unit, the length is
increased one unit from 3 to 4. In this case, the GEAOST CTP
spanning trees solution now contains seven spanning trees instead
of five. The GEAOST CTP spanning trees solution and the
intervals over which each spanning tree is optimum when the
length of edge (3,5) is increased to four units are given in Table 2
with the two new spanning trees denoted in bold.

Hence, this small edge length change of one unit for just one
edge resulted in two additional spanning trees being added to the
optimal CTP spanning trees solution. The GEAOST solutions for
Examples 2 and 4 required just a few seconds on the PC specified
above and used CPLEX to solve the MFCTPs.

5. Examples Based on a Radio Astronomy
Application

As briefly mentioned earlier, an interesting logistical problem
formulated as a CTP by Girard (2013) and solved for particular
values of τ and γ by Zyma et al. (2017) is the problem of
connecting 96 low-frequency (LF) antenna arrays forming a new
radio telescope distributed across a 400 × 450-meter area in the
Nançay radio observatory in France to a central control facility
via coaxial cables. To protect the cables, trenches will be dug for
the cables to run underground. Also, any number of cables can be
laid in a given trench. In order to preserve the nature and quality
of the signal (i.e., no analog to digital conversion, nor
multiplexing), each of the 96 antenna arrays must be connected
directly to the central control facility, which will digitize the
signals. A minimum cost (combining both cable and trench costs)
configuration will necessarily be a spanning tree of the 96 antenna
arrays with the central control facility as the root. For brevity, we
refer to this problem as the radio astronomy antenna connection
problem (RAACP). The layout of the antennas and central
processing station (labeled “Root”) is given in Figure 2.

Each black dot in Figure 2 represents a low-frequency antenna
array composed of 19 LF antennas arranged in a hexagon that needs
to be connected to the central station.

In this article, we will define two CTPs based on actual data
from this radio astronomy application. Specifically,

Radio Astronomy Problem 1 (RSP1): Is the CTP formed
using the root node and the nine closest antenna arrays (10
nodes)? There are 22 edges each of length less than 200 meters.

Radio Astronomy Problem 2 (RSP1): Is the CTP formed
using the root node and the 29 closest antenna arrays (30 nodes)?
There are 68 edges each of length less than 100 meters.

The GEAOST solutions for these two problems are given in
Tables 3 and 4, respectively.

Table 1
CTP optimal spanning trees for Example 4

(Vasko et al., 2002)

Spanning trees Optimal intervals

{(1.2), (1,3), (1,4), (3,5), (4,6),
(4,7), (5.8), (6,9)}

0≤ τ≤ 1/4

{(1.2), (1,3), (1,4), (3,5), (4,6),
(5,8), (6.7), (6,9)}

1/4 ≤ τ≤ 1

{(1.2), (1,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

1≤ τ≤ 7

{(1.4), (2,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

7≤ τ≤ 28

{(1.2), (2,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

28≤ τ

Table 2
CTP optimal spanning trees for Example 4

(Vasko et al., 2002) with (3,5) edge
length equal to 4

Spanning trees Optimal intervals

{(1.2), (1,3), (1,4), (3,5), (4,6),
(4,7), (5.8), (6,9)}

0≤ τ≤ 1/4

{(1.2), (1,3), (1,4), (3,5), (4,6),
(5,8), (6.7), (6,9)}

1/4≤ τ≤ 1/2

{(1.2), (1,4), (3,4), (4,), (4,6),
(5,8), (6.7), (6,9)}

1/2≤ τ≤ 1

{(1.2), (1,4), (3,4), (4,5), (4,6),
(5,8), (6.7), (7,9)}

1≤ τ≤ 2

{(1.2), (1,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

2≤ τ≤ 7

{(1.4), (2,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

7≤ τ≤ 28

{(1.2), (2,4), (3,4), (3,5), (4,6),
(5,8), (6,7), (7,9)}

28≤ τ

Figure 2
Layout of 96 LF antennas, with the central processing

station (Girard 2013)
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As indicated in Table 3, GEAOST generated seven optimal
spanning trees for RSP1. This required about a minute of
execution time. In Table 4, summary information for the 20
optimal spanning trees generated by GEAOST for RSP2 is
provided. The execution time for GEAOST to completely solve
RSP2 was about 6 min.

6. CTP Sensitivity Analysis

Although efficiently generating all optimal spanning trees to a
CTP may seem more theoretical than practical, we will now
demonstrate how these optimal spanning trees can be used to
perform straightforward practical sensitivity analyses dealing with
perturbations in the per unit cable and trench costs of a CTP.
Suppose that for a certain application, there was a need to solve the
CTP mixed integer programming problem (MFCTP) at particular
values for τ and γ. To illustrate, let us consider three τ/γ ratios of
2, 5, and 8. In other words, suppose that three scenarios are being
considered in which the per unit trench cost was 2, 5, and 8 times
the per unit cable cost. The MFCTP solved at each of these ratios
(assume γ= 1) will give one optimal spanning tree for each ratio,
but how sensitive are these solutions to these specific ratio values?
In Table 5, information from the GEAOST optimal spanning trees
solutions for Example 2, Example 4, Example 4 modified, RSP1,
and RSP2 is given demonstrating how interval sensitive these
solutions are at the ratios 2, 5, and 8.

The entries in Table 5 give the intervals for τ over which the
optimal spanning tree found by solving the MFCTP remains the
optimum. For instance, in Example 4, the optimal spanning tree
remains optimum as long as τ is in the interval [1, 7] or in the
interval [7, 28]. Hence, a ratio of 2 or 5 can vary and still have
the same optimal spanning tree as long as the ratio value is in the
interval [1, 7]. Furthermore, for Example 4, the optimal spanning
tree for the ratio value of 8 remains optimum for τ in the interval
[7, 28]. So, if τ is expected to have a value of 8 but is actually
less than 7, the optimal spanning tree at a ratio of 8 is no longer
optimum. Let us now consider the modified Example 4 where
edge (3, 5) has length 4 instead of 3. In this case, there are two
optimal spanning trees when the ratio is exactly 2. However, if
the ratio is even slightly less than 2 or slightly greater than 2, then
there is only one optimal spanning tree, and it differs based on if
the ratio is less than or greater than 2. Finally, consider the first
CTP (RSP1) based on the radio astronomy application. In this
case, for the ratio of 2, the optimal spanning tree remains
optimum if τ is in the interval [0.2973, 2.0851]. However, once τ
is greater than 2.0851, the optimal spanning tree changes and
remains optimal as long as τ is in the interval [2.0851, 2.625].

7. Summary and Future Work

The CTP, first defined by Vasko et al. (2002) in 2002, has been
shown in numerous publications (as illustrated in the literature
review section) to have diverse real-world applications beyond the
original application of digging trenches and laying cables in a
minimum cost manner. However, these applications typically

Table 3
CTP optimal spanning trees cost functions for RSP1

Spanning trees cost
functions (γ= 1) Optimal intervals

1047τ+ 1412 0≤ τ≤ 0.290322581
954τ+ 1439 0.290322581≤ τ≤ 0.297297297
917τ+ 1450 0.297297297≤ τ≤ 2.085106383
870τ+ 1548 2.085106383≤ τ≤ 2.625
838τ+ 1632 2.625≤ τ≤ 6.35
818τ+ 1759 6.35≤ τ≤ 15.2
808τ+ 1911 15.2≤ τ

Table 4
CTP optimal spanning trees cost functions for RSP2

Spanning trees cost functions
(γ= 1) Optimal intervals

2024τ+ 5662 0≤ τ≤ 0.09375
1992τ+ 5665 0.09375≤ τ≤ 0.25
1984τ+ 5667 0.25≤ τ≤ 0.260869565
1961τ+ 5673 0.260869565≤ τ≤ 0.428571429
1919τ+ 5691 0.428571429≤ τ≤ 0.5
1865τ+ 5718 0.5≤ τ≤ 0.52
1840τ+ 5731 0.52≤ τ≤ 0.625
1824τ+ 5741 0.625≤ τ≤ 0.8125
1776τ+ 5780 0.8125≤ τ≤ 0.851851852
1722τ+ 5826 0.851851852≤ τ≤ 1.13333
1707τ+ 5843 1.13333≤ τ≤ 1.25
1691τ+ 5863 1.25≤ τ≤ 1.782608696
1668τ+ 5904 1.782608696≤ τ≤ 2.551724138
1610τ+ 6052 2.551724138≤ τ≤ 6.53125
1578τ+ 6261 6.53125≤ τ≤ 9.545454545
1567τ+ 6366 9.545454545≤ τ≤ 12.9090909
1545τ+ 6650 12.9090909≤ τ≤ 16.166667
1533τ+ 6844 16.166667≤ τ≤ 35.2
1528τ+ 7020 35.2≤ τ≤ 88.3125
1512τ+ 8433 88.3125≤ τ

Table 5
CTP sensitivity analyses

Ratios (assumes γ= 1)

CTPs 2 5 8

Example 2 9/11≤ τ≤ 141/39 τ≥ 141/39 τ≥ 141/39
Example 4 1≤ τ≤ 7 1≤ τ≤ 7 7≤ τ≤ 28
Example 4 (modified) 1≤ τ≤ 2

2≤ τ≤ 7
2≤ τ≤ 7 7≤ τ≤ 28

RSP1 0.2973≤ τ≤ 2.0851
2.0851≤ τ≤ 2.625

2.625≤ τ≤ 6.35 6.35≤ τ≤ 15.2

RSP2 1.7826≤ τ≤ 2.5517 2.5517≤ τ≤ 6.5312 6.5313≤ τ≤ 9.5454
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solve a problem for particular “cable” and “trench” per unit costs.
This is the first article to document an efficient algorithm
(GEAOST) that generates all guaranteed optimal spanning trees
for a CTP. Furthermore, it was demonstrated how the sequence of
all optimal spanning trees can be used for sensitivity analysis.

Applications modeled as CTPs with graphs having up to 30
nodes and 68 edges were successfully solved by the GEAOST
algorithm generating all optimal spanning trees in at most 6 min on
a standard PC. Sensitivity analyses performed on five CTPs
discussed in this article confirmed the practical benefit of
generating all optimal spanning trees for a CTP. We intend to
refine GEAOST and use it to completely solve larger CTPs. Also,
we plan on using different integer programming software.
Specifically, we plan to use the latest version of Gurobi (9.5) as the
“engine” for GEAOST.
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Appendix

GEAOST pseudocode

1. Find (SP/MST) : the strategy first solves the MFCTP with τ= 0,
and γ= 1. The objective function is the minimum cable length.
In the MFCTP, now add a constraint that forces the cable
length equal to the minimum cable length determined in
the previous MFCTP where τ= 0 and γ= 1, but now set τ= 1
and γ= 0.

2. Find (MST/SP) : The strategy first solves the MFCTP with
τ= 1, and γ= 0. The objective function is the minimum trench
length. In the MFCTP, now add a constraint that forces the
trench length equal to the minimum trench length determined
in the previous MFCTP where τ= 1 and γ= 0, but now set
τ= 0 and γ= 1.

3. Label 4 variables capturing the four figures found in steps 1 and 2.
They will be referred to as:
• C_SP/MST where τ= 0 and γ= 1
• T_SP/MST where τ= 1 and γ= 0 with cable length constraint
• T_MST/SP where τ= 1 and γ= 0
• C_MST/SP where τ= 0 and γ= 1 with trench length constraint

4. Declare the following variables with initial values:
• count= 1
• t= 0
• idx= 2
• rows= (depends on size of CTP)
• cols= 4
• τ= 0
• γ= 1

5. Construct empty matrix of size rows X cols we will call
M[rows][cols]

GEAOST functions

1. calcT
returns (M[1][1] −M[0][1])/(M[0][0] −M[1][0])

2. sortFunction
sorts M on first column descending order

3. overwriteRow
removes the first row by shifting all rows up

4. displayFull Matrix
prints out M to log (can toggle off for more compact log

report)

GEAOST execution

1. Write the following to the first row in empty matrix M:
• M[0][0]= T_SP/MST
• M[0][1]=C_SP/MST
• M[0][2]= t
• M[0][3]= (M[0][0] * t)+M[0][1]

2. Print out to log:
• T_SP/MST(T)+C_SP/MST(C)=matrix[0][3]
• τ/γ= t

3. Write the following to the second row of matrix M:
• M[1][0]= T_MST/SP
• M[1][1]=C_MST/SP
• set t= calcT() then assign M[1][2]= t
• M[1][3]= (M[0][0] * t)+M[0][1]

4. Print out to log:
• T_MST/SP(T)+C_MST/SP(C)=matrix[1][3]
• τ/γ= t

5. Main Loop
WHILE M[0, 0] does not equal T_MST/SP:

Initiate MIP program and declare the following variables
that will be passed back and forth from the MIP program
and process control program.
• τ= t (is sent to the MIP program)
• coefT=CoefT (this coefficient for T is retrieved from the MIP
program)

• coefC=CoefC (this coefficient for C is retrieved from the MIP
program)

• OBJ_VAL= objective value solution (this is the solution from
MIP program)

IF coefT equals M[0, 0]:

Print: OPTIMUM FOUND− left side equality
Print: coefT(T)+ coefC(C)=OBJ_VAL
Print: τ/γ= t
call overwriteRow()
decrement idx by 1

ELSE IF coefT equals M[1][0]:

Print: OPTIMUM FOUND− right side equality
Print: M[0, 0] (T)+M[1][0](C)=OBJ_VAL
Print: τ/γ= t
call overwriteRow()
decrement idx by 1

ELSE IF coefT is greater than M[0, 0]:

Print: coefT is greater than left hand side of equation
Print: coefT(T)+ coefC(C)=OBJ_VAL
Print: τ/γ= t
call overwriteRow()
decrement idx by 1

ELSE IF coefT is less than M[1][0]:

Print: coefT is less than right hand side of equation
Print: coefT(T)+ coefC(C)=OBJ_VAL
Print: τ/γ= t
call overwriteRow()
decrement idx by 1
Update Matrix M
M[0, 0]= coefT
M[1][0] = coefC
M[1][0] = t
M[1][0] =OBJ_VAL

ELSE

Update Matrix M
M[idx][0]= coefT
M[idx[1]= coefC
M[idx] [1]= t
M[idx] [1]=OBJ_VAL

Print: coefT(T)+ coefC(C)=OBJ_VAL
Print: τ/γ= t
increment idx by 1
call sortFunction()
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IF M[0, 0] does equal T_MST/SP:

Print: “END”
Terminate MIP
Break While Loop
END

t= calcT()
increment count by 1
Terminate MIP
Continue While Loop

Figure A1
GEAOST flowchart.

GEAOST
Flow
chart 
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