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RESEARCH ARTICLE

Convex Soft Geometries

José Carlos R. Alcantud1,*

1BORDA Research Unit and IME, University of Salamanca, Spain

Abstract: This paper introduces convex soft geometries. The import of this model is that it extends a successful field of research, namely
convex geometries, to account for alternatives characterized by a multiplicity of attributes. Related concepts include soft convex hulls and a
notion of extreme elements. Some fundamental results are proven. Among them, we guarantee that an anti-exchange property holds true.
Importantly, the existence of extreme elements is guaranteed, hence proving their suitability for applied studies. Both results are natural
(but non-trivial) extensions of comparable outputs for convex geometries. We present a detailed research program that might stimulate
future investigations on this new research area.
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1. Introduction

This article lies at the crossroads of two subjects, specifically
convex geometry and soft set theory. This blend initiates a new
area of research for which many successful parallels exist in the
soft computing literature.

Indeed, from themoment Zadeh (1965) launched fuzzy set theory,
interest on fuzzy models grew and substantial research on hybrid
constructions was conducted. Thus, for example, topological notions
were soon combined with fuzzy set theory and its extensions. Chang
(1968) defined fuzzy topology, and the notion was reformulated by
Goguen (1973), Lowen (1976) (who clarified the links between
fuzzy topologies and point-set or set-theoretic topologies), Hutton
(1980) (who insisted on “pointless” definitions for both structures
and properties), or Šostak (1985). Katsaras and Liu (1977) initiated
the study of fuzzy (topological) vector spaces (Katsaras, 1981;
Katsaras, 1984) for deeper investigations on fuzzy topological vector
spaces). Also fuzzy group theory (Mordeson et al., 2005) was
developed soon after the inception of fuzzy sets.

Many other models of uncertain knowledge were proposed after
the advent of fuzzy set theory, for example, rough set theory (Pawlak,
1982) or soft set theory (Molodtsov, 1999). The latter uses
parameterized descriptions of the alternatives in terms of a set of
attributes. These descriptions are binary in Molodtsov (1999) and
multinary in Fatimah et al. (2018). Thus, whereas fuzzy sets allow
us to represent alternatives whose unique identifying characteristic
can be partially fulfilled, soft sets are designed to represent
alternatives with a multiplicity of crisp characteristics, each of which
can be either fulfilled or not in the case of Molodtsov (1999), or
occur in various grades in Fatimah et al. (2018). Mixed opinions can
be taken, for example, with fuzzy soft sets (Maji et al., 2001).

In particular, topology has exerted a special pull among
researchers on soft set theory since Shabir and Naz (2011)
launched soft topology. It stems from the hybridization of the

axioms of topology with soft set theory. Beyond this model,
Tanay and Kandemir (2011) defined fuzzy soft topological spaces,
which extended the applicability of fuzzy soft sets (Maji et al.,
2001) in multi-criteria group decision making (in medical practice,
Hassan et al. (2017), for example) to a topological context
(Khameneh et al., 2017). Tradeoffs between both models have
been stated recently (Alcantud, 2021).

Admittedly, this paper is inspired by the success of soft topological
studies, and it ismotivated by the remarkable appeal of this abstract soft
structure and its applications to decision-making theory (Al-shami,
2021a, 2021b; Alcantud, 2021). Our main goal, however, is the
introduction of a totally new soft structure with an inclination
toward abstract convexity. Now the inspirational model is
convex geometries (Edelman & Jamison, 1985). This is a
combinatorial abstraction of convexity that embraces all standard
examples and allows one to make use of techniques from convexity
theory, the theory of ordered sets, and graph theory.

It is timely to clarify that already Deli (2013) and afterwards
Majeed (2016) studied convex and concave soft sets. But these
models require an infinite set of attributes, on which convex
combinations can be defined properly. Our approach to “soft
convexity” is radically different. To begin with, we shall work in a
totally finite environment where both the sets of alternatives and
relevant attributes are finite. Importantly, no further requirements
are imposed on these sets. Then we consider that a way to
incorporate convexity considerations consists of extending the idea
of a convex geometry (Edelman & Jamison, 1985) to a soft set
context. We can regard this extension from two perspectives. Since
convex geometries are defined on a set, we can faithfully assume
that this set is defined by a unique attribute (the one that defines
“belongingness” to it). From this viewpoint, our model shall extend
the ethos of convex geometries to sets whose alternatives are
characterized by a multiplicity of attributes. Alternatively, from the
perspective of soft set theory we are introducing a novel convexity
structure that is free from any constraints on the ground set or the
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relevant attributes. Another remarkable advantage of this abstract
structure is that it builds upon a strong theoretical foundation.

In addition, it is important to highlight that this mostly theoretical
approach has its upside. A rigorous theoretical foundation of abstract
convexity in soft set theory should forward this discipline and guarantee
its interest for formal studies. This pioneering analysis can also promote
the study of relationships with other types of abstract soft structures like
soft topologies or others (Akram et al., 2018; Akram et al., 2019), for
which a considerable theoretical background already exists.

This research article is divided into the following parts. Section 2
gives necessary notions from soft set theory and soft topology, and
convex geometries. We provide some examples too. Section 3
introduces the formal model consisting of convex soft geometries. In
addition, we study how we can associate a convex geometry with
each convex soft geometry, and conversely. We prove some
preliminary results and define concepts for the development of this
new theory. These ideas include soft convex hulls and extreme
elements for a soft set (in a given convex soft geometry). Section 4
provides two core results. Our first theorem proves that convex soft
geometries satisfy an anti-exchange property. With this result, we
prove another technical theorem that in particular, ensures the
existence of extreme elements for any soft set. The aim of Section 5 is
to end this paper. We give a concise summary of our main findings.
And especially, we state various lines for future research. To facilitate
the reading of our results, a summary of notation is given after Section 5.

2. Preliminary Concepts

Henceforth, X shall denote a fixed nonempty set, and E shall
denote a set of characteristics of the alternatives in X. When A is a
set, PðAÞ shall refer to the set of all the subsets of A, also called
the set of parts of A or 2A. Set complements in A are denoted by
the n symbol, thus A n B means the elements in A that are not in B.

Section 2.1 recalls fundamental concepts from soft set theory,
with some examples. Then Section 2.2 states the definition of a
soft topology. And Section 2.3 recalls the definition of a convex
geometry and states some important facts about them.

2.1. Elements of soft set theory

A soft set on X consists of (F, E), E being the characteristics
that fully describe the members of X, such that F : E�!PðXÞ.
Mathematically, it is a correspondence or multi-valued mapping
from the set of attributes to the set of alternatives. We can therefore
describe a soft set over X by a collection of subsets of X parameter-
ized by E. The set of all soft sets on X characterized by E shall be
represented by SSEðXÞ or simply SS(X) if E is common knowledge.

For each e 2 E, FðeÞ � X can be denoted as (F, E)(e) in more
accurate notation. It is the set of e-approximate elements of X, also
called the subset of X approximated by e. In the particular case
E ¼ feg, the soft set (F, E) can be naturally identified with the subset
FðeÞ � X. Therefore, SSEðXÞ can be identified withPðXÞ. In the case
of a generalE, we can regard SSEðXÞ as an extension of the concept of
PðXÞ to the case where membership is multiply (or “softly”) defined.

And then each soft set ðF; EÞ 2 SSEðXÞ corresponds to an extended
version of the idea of a subset of X that embeds all subsets of X
approximated by the attributes in E.

A soft set (F, E) on X is also represented by fða; FðaÞÞ : a 2 Eg.
It can be described in tabular form if E and X are finite (Maji et al.,
2003). (F, E) is called finite (respectively, countable) when F(e) is
finite (respectively, countable) for each e 2 E (Das & Samanta,
2013; Nazmul & Samanta, 2014).

The absolute and null soft sets on X are basic examples. The
absolute soft set eX ¼ ðeX;EÞ satisfies eXðeÞ ¼ X for all e 2 E [Maji
et al., 2003, Definition 8]. The null soft set Φ ¼ ðΦ; EÞ satisfies
ΦðeÞ ¼ ∅ for all e 2 E [Maji et al., 2003, Definition 7].

Special soft sets are “soft points.” The next remark explains that
some issues arise with this term.

Remark 1. Let us summarize the terminological problem with the
utilization of the expression “soft point”:
1. In [Das and Samanta, 2013, Definition 1], a “soft point” is (F,E) for

which x 2 X and a 2 E exist such that FðaÞ ¼ fxg and Fða0Þ ¼ ∅
if a 6¼ a0. However [Nazmul & Samanta, 2014, Definition 1] refers
to this definition as a “soft element.” This particular soft set shall be
denoted ðfxge;EÞ, and it is called a “soft spot” in Alcantud (2021).

2. “Soft points” in [Zorlutuna et al. (2012), Definition 7] are
different: they are soft sets (F, E) such that there is a 2 E with
FðaÞ 6¼ ∅, and Fða0Þ ¼ ∅ if a0 6¼ a.

3. “Soft points” in Shabir andNaz (2011) and Terepeta (2019) are soft
sets (F, E) such that x 2 X exists with the property FðaÞ ¼ fxg for
all a 2 E. Here (x, E) shall denote this special soft set.

4. Finally, [7, Definition 11] defined “soft point” with a concept
more general than the definition in Shabir and Naz (2011) and
Terepeta (2019): for Aygünoğlu and Aygün (2012), (F, E) is a
“soft point” when A � E and x 2 X exist, with the properties
FðaÞ ¼ fxg when a 2 A, Fða0Þ ¼ ∅ when a0 6¼ a.

Unless otherwise stated, in this article the term “soft point” will
exclusively refer to the concept defined in Shabir and Naz (2011)
and Terepeta (2019). Hence as said above, we shall denote by
(x, E) the soft point (F, E) with FðaÞ ¼ fxg for all a 2 E. This notion
has been used to define important axioms in soft topology (Shabir
and Naz, 2011; Terepeta, 2019).

Tables 1 and 2 give a visual example to help intuition when
jXj ¼ jEj ¼ 2. Under these assumptions, jSSEðXÞj ¼ 16. Table 1
contains tabular representations of some of the concepts defined
in Remark 1. Table 2 completes the list of 16 soft sets on X. We shall
use them in subsequent sections.

Soft set theory has incorporated some basic set-theoretic
operations. For example, on SSEðXÞ one can define intersections,
unions, and inclusions in the following way (Maji et al., 2003):
for every ðF1;EÞ; ðF2; EÞ 2 SSEðXÞ,
(1) ðF1;EÞ t ðF2;EÞ is ðF3; EÞ 2 SSEðXÞ that satisfies

F3ðaÞ ¼ F1ðaÞ [ F2ðaÞ for each a 2 E.
Alternatively, we can write ððF1; EÞ t ðF2;EÞÞðaÞ ¼

F1ðaÞ [ F2ðaÞ for each a 2 E.
Notice that unions of arbitrary collections of soft sets can

be defined similarly to the case of two soft sets.

Table 1
The case X ¼ fx; yg;E ¼ fe; e0g: tabular representations of the null soft set; ðfxge;EÞ and ðfxge0 ;EÞ, which are “soft
points” in the sense of Das and Samanta (2013) or “soft spots” in Alcantud (2021); a soft point (x, E); ðF1;EÞ, which is

“soft point” in the sense of Zorlutuna et al. (2012); and the full soft set eX
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(2) ðF1;EÞ u ðF2; EÞ is ðF4;EÞ 2 SSEðXÞ that satisfies F4ðaÞ ¼
F1ðaÞ \ F2ðaÞ for each a 2 E.

Alternatively, we can write ððF1;EÞ u ðF2; EÞÞ ðaÞ ¼
F1ðaÞ \ F2ðaÞ for each a 2 E.

Notice that intersections of arbitrary collections of soft
sets can be defined similarly to the case of two soft sets.

(3) We write ðF1;EÞ v ðF2; EÞwhen F1ðaÞ � F2ðaÞ for every a 2 E.

If ðF; EÞ 2 SSEðXÞ, its complement ðF; EÞc is the soft set
ðFc;EÞ 2 SSEðXÞ defined by FcðaÞ ¼ X n FðaÞ for each a 2 E [Maji
et al., 2003, Definition 6].

The soft equality ðF; EÞ ¼ ðF0;EÞ means FðaÞ ¼ F0ðaÞ for each
a 2 E [Maji et al., 2003, Definition 4]. Thus ðF;EÞ ¼ ðF0;EÞ is
equivalent to ðF;EÞ v ðF0;EÞ and ðF0;EÞ v ðF;EÞ. Soft sets that
are not soft equal are called different.

Example 1. To illustrate the concepts defined above, consider
X ¼ fx; yg with attributes E ¼ fe1; e2; e3g. Define the following
two soft sets ðF0

1; EÞ and ðF0
2;EÞ:

F0
1ðe1Þ ¼ fyg, F0

1ðe2Þ ¼ X, F0
1ðe3Þ ¼ ∅,

F0
2ðe1Þ ¼ F0

2ðe2Þ ¼ fyg, and F0
2ðe3Þ ¼ X.

In Table 3, we can see tabular representations for these soft sets,
and also for ðF0

1; EÞ t ðF0
2;EÞ, ðF0

1; EÞ u ðF0
2;EÞ, and ððF0

2Þc;EÞ.

2.2. Elements of soft topology

Let us fix a set of attributes E. We can now define soft topology
on X as any collection of soft sets, τ � SSEðXÞ, such that three
suitable axioms hold true for it. These axioms replicate those of
point-set (or crisp) topology as follows:

Definition 1. (Çağman et al., 2011; Shabir & Naz, 2011) A soft
topology τ over X is τ � SSEðXÞ, a collection of soft sets on X, that
satisfies:

(1) The null and absolute soft sets belong to τ.
(2) If a soft set is a union of soft sets from τ, then the soft set also

belongs to τ.
(3) If a soft set is an intersection of any finite collection of soft sets

from τ, then the soft set also belongs to τ.

The members of τ are usually called soft open sets.
For future reference, we state a proposition that produces

soft topologies from point-set topologies, and conversely. It
summarizes results from various papers:

Proposition 1. (Shabir &Naz, 2011; Terepeta, 2019) Let τ be a soft
topology on X. Then for all a 2 E, Σa ¼ fFðaÞjðF;EÞ 2 τg is a
point-set topology on X.

Conversely, when Σ ¼ fΣaga2E is a collection of point-set
topologies over X, the family of soft sets

τðΣÞ ¼
n
ðF;EÞ for which FðaÞ 2 Σa when ever a 2 E

o
; (1)

is a soft topology over X.

2.3. Elements of convex geometry

This section owes to Edelman and Jamison (1985). Here we
recall the concept of convex geometry. We also state some
fundamental results in this interesting theory.

Definition 2. (Edelman & Jamison, 1985) A convex geometryG on
a nonempty finite set X is a family G � PðXÞ that satisfies:
(1) ∅ 2 G.
(2) The family G is closed under intersection, that is, A \ B 2 G

whenever A;B 2 G.
(3) When A 2 G and A 6¼ X, there is x 2 X n A such

that A [ fxg 2 G.

The members of G are usually called convex sets.
Observe that the application of axiom (3) in Definition 2 to

A ¼ ∅ guarantees the existence of a singleton that is convex.
When it is the case that x 2 G for all x 2 X, we say that G is atomic
(Edelman & Jamison, 1985).

Example 2. Obviously, PðXÞ is an atomic convex geometry on X,
for all X.

When X ¼ fx; yg, there are only three convex geometries on X,
namely f∅; fxg;Xg, f∅; fyg;Xg, and f∅; fxg; fyg;Xg. Only the
last one is atomic. There is an isomorphism between f∅; fxg;Xg
and f∅; fyg;Xg. Intuitively, this means that if we permute the labels
of the alternatives in X, each of these two convex geometries
becomes the other.

When X ¼ fx; y; zg, there are six non-isomorphic convex
geometries on X (cf., [8, Example 3]). For example, we have

G1 ¼ f∅; fxg; fx; yg; fx; zg;Xg, which is not atomic, and
G2 ¼ f∅; fxg; fyg; fzg; fx; yg; fx; zg;Xg, which is atomic.

Table 2
The case X ¼ fx; yg;E ¼ fe; e0g: tabular representations of other soft sets

Table 3
Soft union, intersection, and complement: their tabular representation for the soft sets defined in Example 1
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Definition 3. (Edelman & Jamison, 1985) The convex hull of
Y � X in the convex geometry G is the smallest convex superset
of Y. Formally:

convðYÞ ¼
\

fG 2 G such thatY � Gg: (2)

Any convex geometry G on X satisfies the following
anti-exchange property [Edelman & Jamison, 1985, Theorem 1]:

SupposeG 2 G; x; y 62 G; and x 6¼ y:Then

y 2 convðG [ fxgÞ implies x 62 convðG [ fygÞ: (3)

As Koshevoy puts it, Equation (3) arises as a combinatorial
abstraction of one of the geometric properties of the standard
convex closure defined in any Euclidean space [Koshevoy (1999),
Section 3].

Finally, for any convexgeometryG onX, any nonempty subset of
X has at least one extreme element. This concept is defined as follows:

Definition 4. (Edelman & Jamison, 1985) Let us fix a convex
geometry G on X. When ∅ 6¼ Y � X, we say that x 2 Y is an
extreme element of Y if x 62 convðY n fxgÞ. We denote by exðYÞ
the set of extreme elements for Y (in the convex geometry G).

One reason for the existence of extreme elements is the next
remarkable property:

Proposition 2. [Monjardet & Raderanirina, 2001, Theorem 2 (2)]
Let us fix a convex geometry G on X. If Y � X, then
convðexðYÞÞ ¼ convðYÞ.

3. Introducing Convex Soft Geometries

This section is dedicated to produce our new model. As argued
above, it intends to incorporate abstract convexity considerations
into soft set theory on finite sets with a finite collection of
attributes. The new model is motivated by Definition 2 and in
some sense, it extends it to a finite soft set scenario (Remark 2
below gives the formal expression of this “extension”). The model
adopts the following form:

Definition 5. Suppose that E is a nonempty finite set of attributes.
A convex soft geometry G on a nonempty finite set X is G � SSEðXÞ,
a collection of soft sets on X, such that the following properties
hold true:

(G.1) Φ 2 G.
(G.2) The intersection of soft sets in G belongs to G, that is, if

ðF; EÞ; ðF0;EÞ 2 G, then ðF; EÞ u ðF0;EÞ 2 G.
(G.3) For each ðF;EÞ 2 G n eX, there is x 2 X such that

ðx;EÞ v ðF;EÞ is false, and ðx;EÞ t ðF;EÞ 2 G.
The members of G are called soft convex sets, or soft G-convex

sets for better clarity.
Axioms (G.1) and (G.2) are self-explanatory. Axiom (G.3)

requires that any non-absolute soft G-convex set can be extended
by adding a soft point, in a way that produces another “strictly larger”
soft G-convex set: notice that the requirement ðx;EÞ 6v ðF; EÞ
guarantees ðF;EÞ 6¼ ðx;EÞ t ðF;EÞ.

As a trivial example, G ¼ SSEðXÞ is the discrete convex soft
geometry onX. Another simple universal construction is given below
in Example 5.

The next Remark explains why and how Definition 5 extends
Definition 2:

Remark 2. The case E ¼ feg, or jEj ¼ 1, produces a convex
soft geometry that can be identified with a convex geometry on X
in a trivial manner. To make this formal, notice that any
ðF;EÞ 2 SSEðXÞ can be identified with FðeÞ � X when E ¼ feg, thus
G � SSEðXÞ can be identified with a familyG � X. This collection of
subsets of X satisfies Definition 2. Conversely, a convex geometry
G � X can be identified with a convex soft geometry on X for
E ¼ feg (with any arbitrarily chosen attribute e) in a similar manner.

As in the case of (soft) topologies, convex soft geometries can
be compared by inclusion. Suppose that G and G0 are convex soft
geometries on X such that G � G0. Then we say that G0 is finer (or
stronger, or larger) than G, and that G is coarser (or weaker, or
smaller) than G0. The next example clarifies these concepts:

Example 3. To illustrate Definition 5, we shall take advantage of the
notation adopted in Tables 1 and 2, which give names to all soft sets
on X ¼ fx; yg and the set of attributes is E ¼ fe; e0g. Taking into
account the characteristics explained above, the next collections
define convex soft geometries on X:

Gx ¼ fΦ; ðx;EÞ; eXg and Gy ¼ fΦ; ðy;EÞ; eXg
G1 ¼ fΦ; ðx; EÞ; ðy;EÞ; eXg
G2 ¼ fΦ; ðfxge;EÞ; ðx; EÞ; eXg

and G3 ¼ fΦ; ðfxge0 ; EÞ; ðx;EÞ; eXg
G4 ¼ fΦ; ðx; EÞ; ðF5;EÞ; ðF6; EÞ; eXg
G5 ¼ fΦ; ðx; EÞ; ðF5;EÞ; eXg

and G6 ¼ fΦ; ðx;EÞ; ðF6;EÞ; eXg
G7 ¼ fΦ; ðfxge;EÞ; ðx; EÞ; ðF7;EÞ; eXg

and G8 ¼ fΦ; ðfxge0 ; EÞ; ðx;EÞ; ðF8;EÞ; eXg
All these convex soft geometries contain (x, E), except Gy

that contains (y,E). One can easily design symmetric expressions for con-
vex soft geometries that contain (y, E), by swapping the roles of x and y.

We can observe that G2 � G7, thus G7 is finer than G2, or G2 is
coarser than G7. Similarly, we notice G3 � G8, Gx � G1, Gy � G1,
G5 � G4, or G6 � G4.

Remark 3. It is possible to develop other related notions of convex
soft geometry, which would rely on a different choice of “soft
points.” We refrain from giving more definitions to avoid
confusion at this early stage of development.

In the next Section 3.1, we proceed to investigate fundamental
properties of convex soft geometries. Subsequent sections will
investigate the interplay between convex soft geometries and
convex geometries on a given set. Two types of constructions
will be discussed in connection with this issue (cf., Sections 3.2
and 3.3). Related concepts are introduced in Section 3.4.
Examples illustrate the main ideas.

3.1. Basic properties

We proceed to present some basic properties of the concept of
convex soft geometry that are worth mentioning.

Notice first that we do not lose generality if in Definition 5,
axiom (G.1) is strengthened to the following requirement:

(G 0.1) Φ; eX 2 G.
The reason is that axioms (G.1) and (G.3) guarantee that eX 2 G,

because X is finite. Hence, G � SSEðXÞ satisfies axioms (G.1), (G.2),
and (G.3) if and only if it satisfies (G 0.1), (G.2), and (G.3)

Also observe that for any convex soft geometry G � SSEðXÞ,
theremust be x 2 X such that ðx;EÞ 2 G; (4)

that is, in all convex geometries there is a soft point that is convex. To guar-
antee this property, we just need to apply axiom (G.3) to the null soft set.
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When ðx;EÞ 2 G for all x 2 X, we say that the convex soft
geometry G is atomic.

3.2. Relationships between concepts: First approach

In this subsection, we explain one procedure that produces a
convex geometry on X from an arbitrary convex soft geometry
(cf., Proposition 3 below). The next section revisits this problem
from a different perspective, and there we shall produce a second
procedure. Example 4 will illustrate the construction proposed in
this section. Afterwards we shall construct convex soft geometries
from arbitrary convex geometries (cf., Proposition 4 below). And
then Example 6 will demonstrate how this procedure works.

Both transitions are done with the aid of the following auxiliary
definitions:

Definition 6. The selection mapping operates on SSEðXÞ and
produces subsets of X as follows:

η: SSEðXÞ ! PðXÞ

ðF;EÞ 7! fx 2 X j ðx;EÞ v ðF; EÞg: (5)

Conversely, we define the following soft-making mapping that
operates on subsets of X and produces soft sets on X:

ψ:PðXÞ ! SSEðXÞ

Y 7! ðF;EÞ defined by FðaÞ ¼ Y for alla 2 E: (6)

Alternatively, the soft-making mapping can be expressed
by the compact expression ψðYÞ ¼ ty2Yðy; EÞ for each Y � X.

Both mappings are monotonic. More precisely:

ðF;EÞ v ðF0; EÞ implies ηðF;EÞ � ηðF0; EÞ; (7)

and

Y � Y 0 , ψðYÞ v ψðY 0Þ: (8)

In relation with Equation (7), notice that ðF5;EÞ 6v ðF6; EÞ
but ηðF5;EÞ ¼ ηðF6; EÞ ¼ fxg. Hence, the relationship stated by
Equation (7) cannot be improved to become an equivalence.

The next two propositions formalize the constructions that we
have announced. Their proofs are straightforward.

Proposition 3. Let G � SSEðXÞ be a convex soft geometry on X.
Then G ¼ ηðGÞ ¼ fηðF;EÞjðF;EÞ 2 Gg is a convex geometry
on X.

Example 4. Let us place ourselves in the framework of
Example 3. Using Proposition 4, the convex soft geometries
Gx , G2, G3, G4, G5, G6 on X ¼ fx; yg produce the convex
geometry f∅; fxg;Xg on X. Besides, G1, G7, and G8 in Example 3
produce f∅; fxg; fyg;Xg. And Gy in Example 3 yields
f∅; fyg;Xg.

Proposition 4. Let G � X be a convex geometry on X. Then
G ¼ ψðGÞ ¼ fψðGÞjG 2 Gg is a convex soft geometry on X.

Proposition 4 facilitates the construction of another remarkable
class of examples:

Example 5. Suppose X ¼ fx1; . . . ; xng. Then

fΦ;ψðfx1gÞ;ψðfx1; x2gÞ; . . . ;ψðfx1; x2; . . . xn�1gÞ; eXg;
is a convex soft geometry because f∅; fx1g;
rfx1; x2g; . . . ; fx1; x2; . . . xn�1g;Xg is a convex geometry.

Example 6. Using Proposition 4, the convex geometry G1 in
Example 2 produces the following convex soft geometry on
X ¼ fx; y; zg, for each set of attributes E:

G1 ¼ ψðG1Þ ¼ fΦ; ðx; EÞ; ðx;EÞ t ðy; EÞ; ðx;EÞ t ðz;EÞ; eXg;
whereas G2 in Example 2 produces

G2 ¼ψðG2Þ ¼ fΦ; ðx;EÞ; ðy; EÞ; ðz; EÞ; ðx;EÞ t ðy; EÞ; ðx;EÞ
t ðz;EÞ; eXg:

One should wonder whether the processes defined by
Propositions 3 and 4 are inverse to each other. The next result
clarifies this issue:

Proposition 5. If Y � X, then ηðψðYÞÞ ¼ Y . Conversely, if
ðF;EÞ 2 SSEðXÞ, then ψðηðF; EÞÞ v ðF;EÞ, but ψðηðF; EÞÞ ¼
ðF;EÞ is in general false.

Proof. Both implications are straightforward. To prove that
ψðηðF; EÞÞ ¼ ðF;EÞ is not true in general, a counter example
is in order. Consider X ¼ fx; yg and select an arbitrary e 2 E
with jEj > 1. Then ψðηðfxge; EÞÞ ¼ ψð∅Þ ¼ Φ hence ðfxge;EÞ
6v ψðηðfxge;EÞÞ. This proves that for ðF;EÞ ¼ ðfxge;EÞ, the
property ðF; EÞ ¼ ψðηðF;EÞÞ is false. □

In words, Proposition 5 states that if we start with a convex
geometry, then produce its associated convex soft geometry, and
afterwards we generate the convex geometry associated with the
later, then we end up with the original convex geometry. For
example, in the situation of Example 6, ηðψðG1ÞÞ ¼ ηðG1Þ ¼ G1.
But the analogous reasoning when we start with a convex soft
geometry fails to hold true.

Next we proceed to discuss a possible alternative to the
constructions studied in this section.

3.3. Relationships between concepts:
Second approach

In this subsection, we present a different procedure that
produces a family of convex geometries on X, indexed by E,
from an arbitrary convex soft geometry on X. This is done in
Proposition 6 below. However, Example 7 will show that the
analogous inverse process in general fails to produce convex
soft geometries from convex geometries. Admittedly, the
attempt in this section is motivated by Proposition 1, a more
favorable result in soft topology.

Proposition 6. Let G � SSEðXÞ be a convex soft geometry on X.
Then Ge ¼ fFðeÞjðF;EÞ 2 Gg is a convex geometry on X, for
each e 2 E.

Proof. Let us prove that Ge satisfies Definition 2, with e 2 E
arbitrary but fixed. Condition (1) is obvious: ΦðeÞ ¼ ∅ and
Φ 2 G. Also (2) follows easily from a routine argument: select
A;B 2 Ge, then there are ðF;EÞ; ðF0; EÞ 2 G with FðeÞ ¼ A
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and F0ðeÞ ¼ B, therefore ðF; EÞ u ðF0;EÞ 2 G satisfies
ððF; EÞ u ðF0;EÞÞðeÞ ¼ FðeÞ \ F0ðeÞ ¼ A \ B, which justifies
A \ B 2 Ge.

In order to prove (3) in Definition 2, let us fix A 2 Ge

with A 6¼ X. Select ðF;EÞ 2 G with FðeÞ ¼ A. We apply a
recursive argument based on (G.3) and the finiteness
assumption. Since ðF;EÞ 6¼ eX, there is x 2 X such that
ðx;EÞ 6v ðF;EÞ and ðx;EÞ t ðF;EÞ 2 G by (G.3). We distinguish
two cases.
Case 1: x 62 FðeÞ. Then we conclude because the soft
convex set ðF0;EÞ ¼ ðx; EÞ t ðF; EÞ 2 G satisfies F0ðeÞ ¼ FðeÞ[
fxg ¼ A [ fxg, hence A [ fxg 2 Ge by definition.
Case 2: x 2 FðeÞ. Then we repeat the argument with
ðF0;EÞ ¼ ðx; EÞ t ðF; EÞ 2 G, since it still satisfies ðF0;EÞ 6¼ eX
and F0ðeÞ ¼ A 6¼ X.

The finiteness assumption assures that this process eventually ends
upwith an extension that pertains to Case 1, due to ðF; EÞ 6¼ ðF0;EÞ and
ðF; EÞ v ðF0;EÞwhich produce strict soft inclusion. □

It would be very convenient if we could use an inverse process
to define convex soft geometries from an indexed family of convex
geometries on the same set X. However, the next simple example
shows that this is not a valid procedure for the production of
convex soft geometries:

Example 7. Consider X ¼ fx; yg and E ¼ fe1; e2g. Define the
convex geometries

G0 ¼ f∅; fxg;Xg and G00 ¼ f∅; fyg;Xg.
Now define G ¼ fðF;EÞ 2 SSEðXÞjFðe1Þ 2 G0; Fðe2Þ 2 G00g.

This family of soft sets on X is not a convex soft geometry, because
neither ðx;EÞ 2 G nor ðy; EÞ 2 G, contradicting Equation (4). In
words, no soft point belongs to G defined above.

This disappointing setback has motivated us to prove
Proposition 4 as a correct methodology for the construction of
convex soft geometries from known convex geometries. Notice
that Proposition 4 uses a process that reverses the operations in
Proposition 6 with a common convex geometry, that is, we can
circumvent the problem posed by Example 7 with the utilization
of the same convex geometry for all the parameters.

3.4. Other relevant concepts: Soft convex hulls
and extreme elements

Let us fix a convex soft geometry G on X for the remaining of
this section.

By inspiration of Definition 3, soft convex hulls can be defined
for every soft set, in the convex soft geometry G, as follows:

Definition 7. The soft convex hull of ðF;EÞ 2 SSEðXÞ in the convex
soft geometry G is the smallest convex soft set that contains (F, E).
Formally:

convGðF;EÞ ¼ ufðF0; EÞ 2 G such that ðF;EÞ v ðF0; EÞg: (9)

When G is clear from the context, we may drop the subindex to
denote convGðF;EÞ as convðF;EÞ.

The next properties of soft convex hulls are immediate:
1. ðF; EÞ v convðF; EÞ 2 G, for all ðF; EÞ 2 SSEðXÞ.
2. ðF; EÞ ¼ convðF; EÞ if and only if ðF;EÞ 2 G.
3. The operator conv is monotonic with respect to soft inclusion:

ðF; EÞ v ðF0;EÞ implies convðF;EÞ v convðF0;EÞ for all
ðF; EÞ; ðF0;EÞ 2 SSEðXÞ.

4. Suppose that G0 is another convex soft geometry on
X such that G � G0. Then for all ðF;EÞ 2 SSEðXÞ:
convG0 ðF; EÞ v convGðF;EÞ.

Example 9 below gives explicit examples of this property
which means that finer convex soft geometries produce
“smaller” convex hulls (in terms of soft inclusion). □

Remark 4. Property 4 is reminiscent of a property of topological
closures: the closure of a subset in a finer topology is a subset of
its closure in a coarser topology.

Example 8. Some tedious but straightforward computations allow
us to calculate the soft convex hull of various soft sets
from Tables 1 and 2, in the convex soft geometries defined in
Example 3. The result appears in Table 4.

Example 9. The data in Example 8 help us check property 4 of the
soft convex hull against concrete examples. Noticing that G2 � G7,
we confirm that convG7

ðF ; EÞ v convG2
ðF ; EÞ for all the soft sets

considered in that example. It is also the case that G3 � G8, and we
confirm that convG8

ðF ; EÞ v convG3
ðF ; EÞ for all these soft sets.

Similarly, we can repeat this exercise with Gx � G1, Gy � G1,
G5 � G4, or G6 � G4.

It is natural to wonder, how do the selection and soft-making
mappings interact with (soft) convex hulls? The next two
propositions dissect the behavior of (soft) convex hulls with respect
to them:

Table 4
The soft convex hulls of various soft sets in the convex soft geometries defined in

Example 3. See Tables 1 and 2 for notation
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Proposition 7. Let G be a convex soft geometry on X. Then
convηðGÞηðF; EÞ � ηðconvGðF;EÞÞ, for each ðF;EÞ 2 SSEðXÞ.
However, convηðGÞηðF;EÞ ¼ ηðconvGðF;EÞÞ is not in general true.

Proof. On one hand, x 2 convηðGÞηðF ; EÞ if and only if x 2 ηðF0;EÞ,
for each ðF0; EÞ 2 G with ηðF;EÞ v ηðF0; EÞ. Therefore,
x 2 convηðGÞηðF ; EÞ implies x 2 ηðF0; EÞ, for each ðF0;EÞ 2 G with
ðF; EÞ v ðF0;EÞ, by virtue of Equation (7).

On the other hand, x 2 ηðconvGðF ; EÞÞ if and only
if ðx;EÞ v ðF0; EÞ, for each ðF0;EÞ 2 G with ðF; EÞ v ðF0;EÞ.
Therefore, x 2 ηðconvGðF ; EÞÞ if and only if x 2 ηðF0;EÞ, for each
ðF0;EÞ 2 G with ðF; EÞ v ðF0;EÞ

It is now apparent that x 2 convηðGÞηðF ; EÞ implies
x 2 ηðconvGðF ; EÞÞ, hence convηðGÞηðF ; EÞ � ηðconvGðF ; EÞÞ.

To prove that this inclusion cannot be improved to become an
equality, consider the convex soft geometry G1 defined in
Example 3 (the argument remains valid with G2;G4;G5;G6,
or G7). Notice that convηðGÞηðfxge0 ; EÞ ¼ ∅ for each convex
soft geometry on X, because ηðfxge0 ;EÞ ¼ ∅. However,
Table 4 shows convG1

ðfxge0 ; EÞ ¼ ðx; EÞ, which ensures
ηðconvG1

ðfxge0 ; EÞÞ ¼ fxg. □

Proposition 8. Let G � X be a convex geometry on X. If Y � X,
then convψðGÞψðYÞ ¼ ψðconvGðYÞÞ.

Proof. By construction, convψðGÞψðYÞ ¼ ufψðY0ÞjY0 2 G;ψðYÞ
v ψðY 0Þg. And by definition, ψðconvGðYÞÞ ¼
ψð\fY 0 2 GjY � Y 0gÞ.

To prove the soft equality of these soft sets, let us fix e 2 E. On
one hand,

convψðGÞψðYÞðeÞ ¼ \fψðY0ÞðeÞjY0 2 G;ψðYÞ v ψðY0Þg:

We resort to Equation (8) in order to transform the equality
ψðYÞ v ψðY 0Þ into Y � Y 0, thus

convψðGÞψðYÞðeÞ ¼ \fψðY0ÞðeÞjY0 2 G;Y � Y0g:

Now the definition of ψ produces

convψðGÞψðYÞðeÞ ¼ \fY0jY0 2 G;Y � Y0g:
On the other hand,

ψðconvGðYÞÞðeÞ ¼ convGðYÞ;

by the definition of ψ. Now Equation (2) proves the coincidence of
ψðconvGðYÞÞðeÞ and convψðGÞψðYÞðeÞ. □

Now we turn our attention to extreme elements. We shall need
the following auxiliary notation in order to adapt the idea from
convex geometries (cf., Definition 4) to our soft context: when
ðF;EÞ 2 SSEðXÞ and x 2 X, the soft set ðF;EÞ n fxg is (F’, E) such
that F0ðeÞ ¼ FðeÞ n fxg, for all e 2 E.

Definition 8. Let us fix a convex soft geometry G on X. When
Φ 6¼ ðF; EÞ 2 SSEðXÞ, we say that

x 2 X is an extreme element for ðF;EÞ inGwhen

ðx;EÞ u ðF; EÞ 6¼ Φ and ðx;EÞ 6v convððF ; EÞ n fxgÞ: (10)

We shall denote by exGðF ; EÞ, or simply exðF ; EÞ if G is common
knowledge, the set of extreme elements for (F, E) in the convex soft
geometry G.

Also, ðexGðFÞ; EÞ or simply ðexðFÞ; EÞ will denote the soft
set associated with the extreme elements for (F, E) in G,
that is, ψðexGðFÞ; EÞ. Thus, it is the soft set such that
exðFÞðeÞ ¼ exGðF ; EÞ, for all e 2 E.

Example 10. Some tedious but straightforward computations,
which use the information in Table 4, allow us to calculate the
extreme elements for various soft sets from Tables 1 and 2, in the
convex soft geometries defined in Example 3. The result is
displayed in Table 5.

The soft sets associated with the extreme elements for the
soft sets in Table 5 are of three types: ðfxg;EÞ, ðfyg;EÞ
and ðfx; yg; EÞ ¼ eX. Table 6 displays examples of these
three cases. Notice ðexGx

ðF2Þ; EÞ ¼ ðy; EÞ, ðexGy
ðF2Þ; EÞ ¼ ðx; EÞ,

and ðexG1
ðF2Þ; EÞ ¼ eX.

Besides, ðexGx
ðF2Þ; EÞ ¼ ðexGx

ðF6 Þ; EÞ ¼ ðexGx
ðF8Þ; EÞ,

ðexGy
ðF2Þ; EÞ ¼ ðexGy

ðF6 Þ; EÞ ¼ ðexGy
ðF8Þ; EÞ, and ðexG1

ðF2Þ; EÞ
¼ ðexG1

ðF6 Þ; EÞ ¼ ðexG1
ðF8Þ; EÞ. The reader can easily produce

the other instances by reference to these examples.

4. Main Results

The aim of this section is to provide two non-trivial results
about convex soft geometries. As in the inspirational case of
convex geometries, both are connected. First we prove that an

Table 5
The extreme elements for three soft
sets on X ¼ fx; yg, in the convex soft
geometries defined in Example 3. See

Tables 1 and 2 for notation, and
Table 4 for intermediate calculations

Table 6
Soft sets associated with the extreme elements for ðF2;EÞ: see Table 5
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anti-exchange property holds true for any convex soft geometry.
Then we use this feature of convex soft geometries to assure the
existence of extreme elements for any soft set. We present both
results separately in respective subsections. We emphasize that
they are extensions of classical results in the investigation of
convex geometries (cf., Section 2.3), which correspond to the case
jEj ¼ 1 under the natural identification explained in Remark 2.

4.1. The anti-exchange property

Equation (3) defined the anti-exchange property that all convex
geometries must satisfy. This section proves that convex soft
geometries satisfy the following extended property:

Definition 9. Let us fix a convex soft geometry G on X.
The anti-exchange property of G states that when ðF; EÞ 2 G,
and x; y 2 X with x 6¼ y are such that ðx; EÞ 6v ðF;EÞ and
ðy;EÞ 6v ðF;EÞ,

ðy; EÞ v convððF ; EÞ t ðx; EÞÞ ) ðx; EÞ 6v convððF ; EÞ t ðy; EÞÞ:
(11)

The demonstration of that property uses the following auxiliary
result:

Lemma 1. Let G � SSEðXÞ be a convex soft geometry on X.
Then when x 2 X and ðF; EÞ 2 G satisfies ðx;EÞ 6v ðF;EÞ,
there exists ðFx; EÞ 2 G with ðF; EÞ v ðFx;EÞ, ðx; EÞ 6v ðFx;EÞ,
and ðx;EÞ t ðFx; EÞ 2 G.

Proof. With (F, E) and x 2 X we associate ðFx; EÞ 2 G, a maximal
soft set with respect to v among those that satisfy ðx;EÞ 6v ðF0; EÞ
and ðF;EÞ v ðF0; EÞ 2 G. In other words, ðx;EÞ 6v ðFx; EÞ;
ðF; EÞ v ðFx;EÞ; and if ðx;EÞ 6v ðF0; EÞ and ðF;EÞ v ðF0; EÞ 2 G,
then ðF0; EÞ v ðFx;EÞ 2 G. Its existence is guaranteed by a recursive
argument based on (G.3), and the finiteness assumption.

Consider ðFx; EÞ 2 G n eX. Property (G.3) of a convex soft
geometry assures the existence of x0 2 X such that
ðx0;EÞ 6v ðFx; EÞ and ðx0; EÞ t ðFx; EÞ 2 G.

It must be the case that x ¼ x0 due to the construction of ðFx; EÞ:
if we suppose x 6¼ x0, then the soft set ðF0;EÞ ¼ ðx0; EÞ t ðFx;EÞ 2 G
would satisfy ðx; EÞ 6v ðF0;EÞ and ðF; EÞ v ðFx;EÞ v ðF0; EÞ 2 G,
which entails ðF0; EÞ v ðFx;EÞ, a contradiction with
ðx0;EÞ 6v ðFx; EÞ. In conclusion, ðx;EÞ t ðFx;EÞ 2 G, which
concludes the argument. □

Lemma 1 considers a soft convex set and a soft point not
included in it. It is not necessarily true that their soft union
produces a soft convex set. However, there must be another soft
convex set larger than the original soft convex set, for which these
properties are true (i.e., that does not “contain” the soft point but
produces a soft convex set when the soft point is “joined” to it).

We are ready to prove our first main theorem: the anti-exchange
property is valid for all convex soft geometries.

Theorem 1. Any convex soft geometry G on X satisfies
Definition 9.

Proof. Fix a convex soft geometry G on X. Let us
assume ðF;EÞ 2 G, and x; y 2 X with y 6¼ x satisfy
ðy;EÞ 6v ðF;EÞ, ðx;EÞ 6v ðF;EÞ.

Before proving the claim, we need to produce two auxiliary
constructions.

The application of Lemma 1 to (F, E) and x 2 X guarantees the
existence of ðFx;EÞ 2 G, such that ðx;EÞ 6v ðFx;EÞ, ðF;EÞ v ðFx; EÞ,
and ðx;EÞ t ðFx;EÞ 2 G.

We can proceed similarly with ðFy;EÞ and y 2 X, which
produces ðy; EÞ t ðFy; EÞ 2 G for some ðFy;EÞ 2 G such that
ðy; EÞ 6v ðFy; EÞ and ðF;EÞ v ðFy;EÞ.

We are ready to check Equation (11). Therefore, let us
assume ðy; EÞ v convððF ; EÞ t ðx; EÞÞ. Then we deduce
ðy; EÞ v convððFy; EÞ t ðx; EÞÞ from the monotonicity of the conv
operator, since ðF;EÞ v ðFy;EÞ.

We claim that the soft inclusion ðx;EÞ v convðFy; EÞ
must be false: should ðx; EÞ v convðFy;EÞ hold true, we
would have ðy;EÞ v convððFy; EÞ t ðx; EÞÞ ¼ convðFy; EÞ ¼
ðFy;EÞ using ðFy;EÞ 2 G, but ðy;EÞ v ðFy;EÞ is false.

Now the facts x 6¼ y and ðx; EÞ 6v ðFy; EÞ guarantee
ðx; EÞ 6v ðFy; EÞ t ðy;EÞ 2 G. This fact means ðx; EÞ 6v
convððFy; EÞ t ðy;EÞÞ, and from this we conclude ðx; EÞ 6v
convððF;EÞ t ðy;EÞÞ because ðF;EÞ v ðFy;EÞ and conv is a
monotonic operator. □

4.2. Extreme elements for soft sets: An existence
theorem

This section investigates the existence of extreme elements for
soft sets.

Let us go back to the inspirational case of convex geometries for
motivation. Proposition 2 has assured that any Y � X has an
extreme element (for any fixed convex geometry G on X). We
have explained that this result is a consequence of the property
convðexðYÞÞ ¼ convðYÞ. In fact, the gist of the argument boils down
to the simpler fact ∅ 6¼ convðYÞ � convðexðYÞÞ, since this subset-
hood necessarily implies ∅ 6¼ exðYÞ.

Our main result proves that in the case of convex soft
geometries, maximal elements exist for any non-trivial soft set as
well. Their existence is guaranteed by a general relationship (see
Example 11 below for complementary information):

Theorem 2. Let us fix a convex soft geometry G on X.When (F, E) is
a soft set that is not the null soft set,

ðF;EÞ v convðF; EÞ v convðexðFÞ;EÞ: (12)

In particular, exðF;EÞ 6¼ ∅ for any soft set other than the null
soft set.

Proof. We already know ðF; EÞ v convðF ; EÞ. Let us prove
convðF ; EÞ v convðexðFÞ; EÞ. We distinguish two cases.

Case 1: ðF;EÞ v convðexðFÞ; EÞ. Then because conv is a
monotonic operator, and convðconvðexðFÞ; EÞÞ ¼ convðexðFÞ; EÞ
we are done.

Case 2: ðF;EÞ 6v convðexðFÞ; EÞ. This obviously implies the
existence of ðfxga;EÞ, a soft spot such that ðfxga;EÞ v ðF;EÞ
but ðfxga; EÞ u convðexðFÞ; EÞ ¼ Φ. Then ðfxga; EÞ u ðexðFÞ; EÞ
¼ Φ. By the definition of ðexðFÞ; EÞ, this forcefully yields that x
is not extreme element for (F, E). Since ðx; EÞ u ðF; EÞ 6¼ Φ,
we deduce from the definition of extreme element that
ðx; EÞ v convððF ; EÞ n fxgÞ.

We claim convðF ; EÞ ¼ convððF ; EÞ n fxgÞ. Let us prove
convðF ; EÞ v convððF ; EÞ n fxgÞ, since it is obvious that
convððF ; EÞ n fxgÞ v convðF ; EÞ because conv is monotonic with
respect to v.
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It is clear that ðF;EÞ n fxg v convððF ; EÞ n fxgÞ. We have
deduced ðx;EÞ v convððF ; EÞ n fxgÞ. Altogether, both facts
guarantee ðF;EÞ v convððF ; EÞ n fxgÞ. Since conv is monotonic
with respect to v,

convðF ; EÞ v convðconvððF ; EÞ n fxgÞÞ ¼ convððF ; EÞ n fxgÞ;

hence the claim is proven.
Let us now distinguish two subcases.
Case 2.1. We first suppose that x is the only member of X with

the property ðfxga; EÞ v ðF;EÞ but ðfxga; EÞ u convðexðFÞ; EÞ ¼ Φ
for some a 2 E. This assumption yields ðF; EÞ n fxg
v convðexðFÞ; EÞ. We now use the monotonicity of the conv
operator to obtain convððF ; EÞ n fxgÞ v convðexðFÞ; EÞ. Since
convðF ; EÞ ¼ convðconvððF ; EÞ n fxgÞÞ, the desired consequence
convðF; EÞ v convðexðFÞ; EÞ follows immediately.

Case 2.2. Now we suppose that there exists y 6¼ x, y 2 X,
such that ðfyga0 ;EÞ v ðF;EÞ but ðfyga0 ; EÞ u convðexðFÞ; EÞ ¼ Φ

for some a0 2 E. Then ðy; EÞ u ðF; EÞ 6¼ Φ, and the argument
that we used above for x also applies to y. We deduce
ðy;EÞ v convððF ; EÞ n fygÞ.

Set ðF0;EÞ ¼ ððF;EÞ n fxgÞ n fyg ¼ ððF;EÞ n fygÞ n fxg.
Clearly, both ðx;EÞ v ðF0; EÞ and ðy;EÞ v ðF0; EÞ are false.
A contradiction with Theorem 1 follows from the following facts:

ðy;EÞ v convððF ; EÞ n fygÞ v convððF 0; EÞ [ ðx; EÞÞ, and
ðx; EÞ v convððF ; EÞ n fxgÞ v convððF 0; EÞ [ ðy; EÞÞ.
Now the claim exðF;EÞ 6¼ ∅ follows immediately. □

In order to complete the information that Theorem 2
renders, we point out that the soft set equality
convðexðFÞ; EÞ ¼ convðF ; EÞ is not necessarily true. The next
counterexample proves this claim:

Example 11. Consider ðF6; EÞ 2 SSEðXÞ defined in Table 2,
and the convex soft geometries defined in Example 3. Using
Tables 4 and 5 for intermediate calculations, the reader can
check that convGðexðF6Þ; EÞ ¼ eX when G is any of these convex soft
geometries. However, convG4

ðF6 ; EÞ ¼ convG6
ðF6 ; EÞ ¼ ðF6 ; EÞ.

In conclusion, convG4
ðexðF6 Þ; EÞ 6v convG4

ðF6 ; EÞ, and
convG6

ðexðF6 Þ; EÞ 6v convG6
ðF6 ; EÞ.

Hence, Theorem 2 informs us that our definition of extreme
element is quite convenient, as its existence is guaranteed in any
non-trivial case. We remind the reader that Table 5 had provided
many examples where this property can be observed.

5. Conclusion

This paper produces the first rigorous analysis of abstract
convexity in an unrestricted soft set setting. We have shown how
this issue gives rise to some fundamental results that ensure its
attractiveness for further analyses. The methodology that we have
used combines combinatorial arguments with the standard reasoning
in soft set theory. In this seminal paper, we have given many
examples of the main novel concepts, and we have studied their
relationships with comparable notions from convex geometries, our
main source of inspiration. In addition, we have proved some
results that are rightful extensions of fundamental theorems about
convex geometries. Our conclusions ensure that we have produced
a working blend of disciplines inclusive of abstract convexity and
the theory of vagueness represented by soft sets.

Let us summarize themain contributions of this paper. Consider
a set X whose elements are characterized by the attributes E in a
binary manner. Both X and E are nonempty and finite.
1. Convex soft geometries on X have been defined.

2. In the case where E is a singleton, any convex soft geometry on X is a
convex geometry onXwith a simple identification. In the general case,
any convex soft geometry on X defines a convex geometry on X.

3. Conversely, any convex geometry on X produces a convex soft
geometry on X. We reveal to what extent the two processes
defined above are reciprocal.

4. We explore a different mechanism for passing from convex
soft geometries to a family of convex geometries (one for
each parameter). The converse mechanism, however, does not
necessarily produce convex soft geometries from convex geometries.

5. For any fixed convex soft geometry on X, we define associated
concepts and properties:
(5.1) Soft convex hull of a soft set. Its interaction with the two

processes defined in items 2. and 3. is disclosed.
(5.2) The anti-exchange property of the convex soft geometry.
(5.3) Extreme element for a soft set.

6. We prove that all convex soft geometries on X satisfy the
anti-exchange property. The case of a unique attribute
returns the classical result that convex geometries satisfy the
anti-exchange property.

7. We prove that in all convex soft geometries on X, any soft set has
an extreme element. The case of a unique attribute returns the
classical result that for each convex geometry, any subset has
an extreme element.

Needless to say, we have not intended to exhaust all possible research
directions in this innovative study, as explained at some parts of this
paper. So to finalize, we present some more lines for future
investigation in relation to the model described in this paper.

• We have refrained from studying the standard algebraic
manipulations (e.g., unions of convex soft geometries, or their
restrictions to smaller subsets). Edelman and Jamison [1985,
Section 5] can be used for inspiration. Here we can also find
motivation for additional constructions of convex soft geometries.

• What is the right concept of isomorphism for convex soft geometries?
Cantone et al. (2021) state the appropriate concept in the standard
analysis of convex geometries (a verbal explanation is given in
Example 3). This is important for the next item.

• Howmany non-isomorphic convex soft geometries exist for any fixed
X and E? In the inspirational case (which corresponds with jEj ¼ 1),
the number is 2 when jXj ¼ 2, 6 when jXj ¼ 3, 34 when jXj ¼ 4,
672 when jXj ¼ 5, 199572 when jXj ¼ 6, and 12884849614 when
jXj ¼ 7 (v. [8, Section 2.1] for a reference to this issue).

This research pertains to combinatorial soft set theory, a
possible new branch within soft set theory.

• Wecan think of the structure that combines the traits of soft topology
and convex soft geometry. Basically, one needs to add the property
that the union of soft sets in G is in G to Definition 5.

Notice that in case jEj ¼ 1, this structure has been identified
and it is called an ordinal convex geometry (Edelman and Jami-
son [1985, Theorem 2], Cantone et al. [2021, 8, Theorem 5].

• Soft topologies are point-set topologies on a product space
(Matejdes (2021)). Is there a comparable result for
convex soft geometries? More precisely, can we find a
correspondence between convex soft geometries and convex
geometries on a suitable set that allows us to transfer
properties from one setting to the other?

• The abstract structure defined on soft sets can be extended to fuzzy
soft sets (i.e., the elements are characterized by attributes that can
be partially fulfilled [Maji et al. 2001]), N-soft sets (a multinary,
ordinal evaluation by the attributes can be applied [Fatimah
et al., 2018]), or other more general contexts.
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• Conversely, we can think of a weaker abstract structure defined on
soft sets (and the models mentioned above) that corresponds
with the extension of alignments Edelman and Jamison [1985,
Section 2] to a setting with a multiplicity of attributes.

• One of the most striking results in the analysis of convex
geometries is Koshevoy’s theorem (Koshevoy, 1999, also
[8, Theorem 2.16]). It gives an excellent connection with
abstract choice theory: convex geometries and path-independent
choice spaces can be put in one-to-one correspondence. The
notion of extreme element is crucial in this correspondence;
hence, Koshevoy’s theorem has stimulated the analysis of
extremes. Its extension to our context would yield a beautiful
motivation for soft-set-supported abstract choice theory.

Notation and conventions

u, t, v denote the soft intersection, union, and inclusion.
(F, E), (F’, E), ðF1;EÞ, : : : denote soft sets.
(x, E) denotes the soft point with xðeÞ ¼ fxg for all e 2 E.
ðfxga; EÞ denotes the soft spot with fxgaða0Þ ¼ ∅ when
a0 6¼ a, fxgaðaÞ ¼ fxg.
Φ and eX denote the null and absolute soft sets, respectively.
G, G1, G2, : : : denote convex geometries.
G, G1, Gx, Gy, : : : . denote convex soft geometries.
η is the selection mapping.
ψ is the soft-making mapping.
convGðYÞ stands for the convex hull ofY inG, a convex geometry.
convGðF; EÞ stands for the soft convex hull of (F, E) in G,
a convex soft geometry.
exGðF;EÞ denotes the set of extreme elements for (F, E) in the
convex soft geometry G.
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