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Abstract: Multiset modules and their properties are introduced in this paper. Some interesting properties are obtained, such as the countable
intersection of multiset modules is multiset module, but the union need not be. Also, the sub-multiset module is defined and illustrated with
suitable examples. Homomorphism and isomorphism in the contest of multisets are defined, and some valuable theorems are proved. Then the
quotient module is proposed, and the relation thatM=ker f is isomorphic to Im f for a multiset homomorphism f. Multiset modules drawn
from aZmodule are of particular interest and proved that ifL 2 ML½ZM�, thenL is an mset group under addition, and conversely, everymset
abelian group drawn from Z is an element of ML½ZM�.
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1. Introduction

George Cantor’s formal definition of a set is as a well-defined
collection of distinct objects. The terms well defined and distinct
in this, and their integrity, or lack of after that, eventually led to the
formation of generalized set theory, mainly consisting of fuzzy
sets, multisets, rough sets, soft sets, etc. Out of these, multiset
is the primary focus here. The distinctness property is violated
in multisets such that duplicate elements can occur in it. Since
multiplicity of elements is the key feature of a multiset, all the
findings are based on the count value. In other words, the
characteristic function plays a significant role in this work.

Multisets, just like sets, are associative containers but differ
because there is a possibility for the same value to be assigned
to multiple elements. A crisp set can distinguish members and
nonmembers of the universal set with the help of characteristic
function, which gives value 1 for members and 0 for
nonmembers of the given collection. The membership function is
further broadened to ensure that the values assigned to the
members of the universal set fall over the range of positive
integers, and such a defined set is known as the multiset. As
mentioned earlier, crisp sets take membership values 0 or 1, but
for the case of fuzzy sets (Zadeh, 1965), membership function
ranges in [0, 1]. If we move on to multisets, the values can be
positive integers. The fuzzy set theory and its results can be
applied in many areas, especially computer science. Multisets are
also emerging in various domains nowadays, although they are
broadly uninvestigated. A significant example would be JAVA’s
other version, called GUAVA, developed by Google, which is
chiefly based on multisets and their properties as opposed to
fuzzy sets. During the process of information retrieval,
duplicates may arrive at various phases. In such a context, the
need for multisets and multiset operations arises. For example, in
a cyber-investigation, hitting on a particular website and phone

number in a tower at some time interval is a situation where
multisets are more suitable than other forms of sets.

Algebra and algebraic structures such as group, ring, etc., are
significant in Mathematics. These structures are based on classical
set theory. Questions such as why classical sets can be replaced
by multisets, the effects of such a change, and what would happen
to the sentences and results if such a change occurred led to
research into it. Fundamental works related to multisets and its
extensions can be seen in Blizard (1989) and Blizard (1991),
Wildberger (2003), Radoaca (2015), and Shravan and Tripathy
(2019). An overview of various applications of multisets is given
in Singh et al. (2007).

Algebraic structures built on fuzzy sets are useful in
disciplines, particularly Chemistry, Physics, Computer Science.
These fuzzy-set-based structures have been discussed and
deliberated in recent years. The basic notions of fuzzy groups, as
well as fuzzy groupoids, have been explained by Rosenfeld
(1971). Rings, prime ideals, maximal ideals, left and right ideals,
for a general ring R in the context of fuzzy sets are explained by
Sebastian et al. (2012). Li et al. (2013) have given a remarkable
type of λ;µð Þ fuzzy subgroup. Even though these reside in multisets,
their applications and possibilities have persistently unexplored.
Some of them, such as multigroups and their results, are studied
in Ibrahim and Ejegwa (2016), Tripathy et al. (2018), Ejegwa
(2017), Nazmul et al. (2013), Tella and Daniel (2013), and Awolola
and Ibrahim (2016). Rajarajeswari and Uma (2013) have investi-
gated various aspects and applications of fuzzy multisets along with
Sebastian and Ramakrishnan (2011).

This paper explores the concept of modules in a multiset
context, and different results are presented. In Section 2, different
fundamental definitions and properties related to multisets,
multiset groups, and multiset rings are included. Section 3 is
devoted to the extensive study of multiset modules. Mset module
homomorphism and isomorphism are studied. Mset modules
drawn from a Z module are considered with particular interest.
Section 4 gives conclusions and future directions of research.
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2. Preliminaries and Basic Definitions

This section explains basic definitions of multisets and multiset
operations and multiset groups and rings.
Definition 2.1. (Knuth, 2014) Let S be a nonempty set. A multiset
M taken from S is given by a function CM defined as
CM : S ! N [ f0g. For each s 2 S, CM sð Þ is the characteristic value
of s in M and denotes the number of occurrences of s in M.

LetM be an mset from Swith s1 coming k1 times, s2 coming k2
times, and so on sn coming kn times. Then M is denoted
as M ¼ k1 s1; k2j js2; � � � ; knjsnf g.

A multiset M is empty if CM sð Þ ¼ 0; 8s 2 S:s 2n M denotes
the element s appearing n times in a multiset M. The term multiset
is often shortened to mset.

Definition 2.2. (Girish & John, 2009) Let M be a multiset taken
from a set S. The root set of M is defined as,

M� ¼ s 2 S : CM sð Þ > 0f g:

Definition 2.3. (Girish & John, 2009) The multiset space Sn is the
set of all multisets whose elements are in S so as no element in the
multiset takes place more than n times.

Operations on multisets: Let M1 and M2 be two msets taken from
a set S.

(1) Sub-multiset: (Yager, 1986) M1 is a sub multiset of
M2 M1 � M2ð Þ if, CM1

sð Þ � CM2
sð Þ8s 2 S.

(2) Equal: (Yager, 1986) M1 and M2 are equal, denoted by
M1 �M2, if M1 � M2 and M2 � M1.

(3) Union: (Knuth, 2014) The M1 [M2 is defined by,

CM1[M2
sð Þ �m CM1

sð Þ; CM2
sð Þ� �

;8s 2 S:

(4) Intersection: (Knuth, 2014) M1 \M2 is defined by,

CM1\M2
sð Þ �m CM1

sð Þ; CM2
sð Þ� �

;8s 2 S:

(5) Addition: (Knuth, 2014) M1 þM2 is defined as

CM1þM2
sð Þ � CM1

sð Þ þ CM2
sð Þ;8s 2 S:

(6) Subtraction: (Knuth, 2014) M1 �M2 is defined as

CM1�M2
sð Þ �m CM1

sð Þ � CM2
sð Þ; 0� �

; 8s 2 S:

(7) Addition in Sn : (Girish & John, 2009) Addition of twomultisets
M1 and M2 in Sn can be modified as;

CM1þM2
sð Þ �m n; CM1

sð Þ þ CM2
sð Þ� �

; 8s 2 S:

(8) Complement: (Girish & John, 2009) For any multisetM 2 Sn,
the complement of M, denoted by M0, is given by,

CM0 sð Þ � n� CM sð Þ;8s 2 S:

Example 2.4. The operations of multisets are illustrated in this
example. Let S be N and,
M1 � 2 5; 3j j3; 1 2; 4j j1f g;M2 � 1 6; 1j j5; 2 4; 4j j2; 2 j 1f g and
M3 � 2 5; 1j j3f g are msets drawn from S.
(1) M3 � M1

(2) M1 [M2 � 1 6; 2j j5; 2 4; 3j j3; 4 2; 4j j1f g
(3) M1 \M2 ¼ 1 5; 1j j2; 2 j 1f g

(4) M1 þ 3� 2 5; 4j j3; 1 2; 4j j1f g
(5) M1 � 3� 2 5; 2j j3; 1 2; 4j j1f g
(6) M1 þM2 � 1 6; 3j j5; 2 4; 3j j3; 5 2; 6j j1f g
(7) M1 �M2 � 1 5; 3j j3; 2 j 1f g
(8) If we are considering S10, the complement,

M0
1 ¼ 8 5; 7j j3; 9=2; 6 j 1f g:

Multiset groups are msets with their elements taken from a group and
the characteristic function of the mset satisfying certain conditions.

Definition 2.5. (Nazmul et al., 2013) Let G; �ð Þ be a group andM
be an msel taken from G. ThenM is a multiset group (mset group) if,
(1) CM s � tð Þ � min CM sð Þ; CM tð Þ : s; t 2 Gf g
(2) CM sð Þ � CM s�1ð Þ8s 2 G where s�1 is the inverse of s in G.

From a ring structure, an mset ring is generated. The two operations
used in mset ring are the same as those in the ring from which it
is drawn.

Definition 2.6. (Suma & John, 2020) Let R;þ;	ð Þ be a ring and
M be anmset taken fromR. ThenM is a multiset ring (mset ring) if,
(1) CM sþ tð Þ � min CM sð Þ; CM tð Þ : s; t 2 Rf g
(2) CM s	 tð Þ � min CM sð Þ; CM tð Þ : s; l 2 Rf g
(3) CM �sð Þ � CM sð Þ; 8s 2 R.

Theorem 2.7. IfM is msel ring drawn from a ring R;þ; xð Þ, then
M� is a sub ring of R.

Proof. If s; t 2 M�, then CM sð Þ > 0 and CM tð Þ > 0.

CMðs� tÞ ¼ CMðsþ ð�tÞÞ � m CMðsÞ; CMðtÞf g > 0:

Which means s� t 2 M�.
Similarly, CM sð Þ > 0 and CM tð Þ > 0 will imply

CM s	 tð Þ > 0. i.e., s	 t 2 M�. So M� is a subring of R.

Example 2.8. Let R ¼ Z6;þ6;	6ð Þ and M ¼ 3 0; 2j j2; 2 j 4f g.
ThenM is an mset ring andM� ¼ 0; 2; 4f g is a subring ofR.

3. Multiset Modules

Definition 3.1. Let R be a commutative ring with unity and
M;þ;	ð Þ be anR-module. A multiset L drawn fromM is defined
as R-multiset module (R-mset module), if
(1) CL sþ tð Þ � min CL sð Þ; CL tð Þf gs; t 2 M.
(2) CL sð Þ ¼ CL �sð Þ for all s 2 M where �s is the additive inverse

of s in M.
(3) CL r 	 sð Þ � CL sð Þ8r 2 R; s 2 M.

Example 3.2. Let M ¼ Z6, which is a Z6-module under the
operations þ6 and 	6. Then the mset L ¼ 3 0; 2j j2; 2 j 4f g drawn
from M is an Z6 mset module.

Notation: MS RM½ � denotes the set of all msets drawn from an
R module M.ML RM½ � denotes the set of all mset modules drawn
from an R-module M.

Proposition 3.3. LetL 2 ML RM½ �: Then, the root setL� ofL is a
submodule of M.

Proof. For any two elements s; t 2 L� and r 2 R, CL sð Þ > 0
and CL tð Þ > 0.
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CL ðs� tÞ ¼ CLðsþ ð�tÞ � m CLðsÞ; CLð�tÞf g
¼ m CLðsÞ; CLðtÞf g > 0:

This gives that s� t 2 L� and so L� is a subgroup of M.
Now, CL r 	 sð Þ � CL sð Þ, by condition (3) of definition 3.1.
So, CL r 	 sð Þ > 0, implies that r 	 s 2 L�.
Therefore L� is a submodule of M.

Proposition 3.4. Suppose L 2 ML RM½ �. Then the level
set Lr ¼ s 2 M : CL sð Þ � rf g, where r is a positive integer, is a
submodule of M.

Proof. If Lr ¼ φ, then it is trivially a submodule of M.
If Lr has only one element, then it is the identity element of

M and is again a submodule.
Otherwise, let s; t 2 Lr and s 2 R. Then CL sð Þ � r

and CL tð Þ � r.
Now, CL s� tð Þ � min CL sð Þ; CL �tð Þf g

¼ min CL sð Þ; CL tð Þf g � r

Thus s� t 2 Lr .
Similarly CLðs	 sÞ � CLðsÞ � r ) s	 s 2 Lr.
So Lr is a submodule of R.

Definition 3.5. Let K and L be two mset modules drawn from
the same R - module M. If K � L, then K is said to be sub-mset
module of L.

Proposition 3.6. The finite or countable intersection of mset
modules is an mset module.

Proof. Let L1;L2; � � � are mset modules drawn from an R-module
M and let

L ¼ \jLj

Take any two elements s and t from L.
Then,
(1) CLj

sþ tð Þ � min CLj
sð Þ; CLj

tð Þ
n o

for j ¼ 1; 2; � � �
So,

CLðsþ tÞ ¼ min
j

CLj
ðsþ tÞ

� min
j

m CLj
ðsÞ; CLj

ðtÞ
n on o

; by 1

¼ m min
j

CLj
ðsÞ

� �
;min

j
CLj

ðtÞ
� �� �

¼ m CLðsÞ; CLðtÞf g
i:e:; CLðsþ tÞ� m CLðsÞ; CLðtÞf g:

Thus we have the first condition of the definition 3.1
Now,

CLð�sÞ ¼ min
j

CLj
ð�sÞ

n o
¼ CLðsÞ

which is the second condition of the definition 3.1.

(2) CLj
ðr 	 sÞ � CLj

ðsÞ

CLðr 	 sÞ ¼ min
j

CLj
ðr 	 sÞ

� min
j

CLj
ðsÞ

n o
; by ð5:2Þ

¼ CLðsÞ

This gives the third condition of the definition 3.1 and this completes
the proof.

Note: Union of mset modules does not necessarily be an mset
module.

Example 3.7. Let M ¼ Z6. Then M is a Z6-module
under þ6 and 	6.
Let L1 ¼ 3 0; 2j j2; 2 j 4f g and L2 ¼ 2 0; 1j j3f g.
Then L1 and L2 belongs to ML½ZM�.
But L1 [ L2 ¼ f3j0; 2j2; 1j3; 2j4g=2ML½ZM�.

Definition 3.8. Let K;L 2 ML RM½ �. An operation 
 between
K and L is defined as
CK
L sð Þ ¼ max min CK tð Þ; CL uð Þð Þ : s ¼ t þ uf g; s; t; u are ele-
ments of M.

Proposition 3.9. Suppose K;L 2 ML RM½ �: Then
K
 L 2 ML RM½ �:

Proof. The proof is directly obtained from definition 3.1 and
definition 3.8.

Example 3.10. Let M ¼ Z6. Then M is a Z6-module under þ6

and x6.
Let L1 ¼ 3 0; 2j j2; 24f g and L2 ¼ 2 0; 1j j3f g. Then L1 and L2

belongs to ML Z6M½ �.
L1 
 L2 ¼ f2j0; 1j1; 2j2; 1j3; 2j4; 1j5g 2 ML½Z6M�.

Proposition 3.11. ML RM½ �is a semigroup under 
.

Proof. From proposition, 
 is a binary operations on ML RM½ �.
The associative property of 
 follows from the definition of 

and the fact thatM is a module. So,
 is an associative binary oper-
ation on ML RM½ � and hence, ML RM½ � is a semigroup under 
.

Definition 3.12. Let K and L be two R-mset modules drawn
from theR-modulesM1 andM2 respectively. AnR-module homo-
morphism f : M1 ! M2 is said to be anR-mset module homomor-
phism, if CK sð Þ ¼ CL f sð Þð Þ;8s 2 M1.

Definition 3.13. An mset module homomorphism f : K ! L is
said to be an R-mset module isomorphism, if f : M1 ! M2 is an
isomorphism. In this case, we say K is isomorphic to L and write
it as K ffi L.

Definition 3.14. Let K;L 2 ML RM½ � and f : K ! L is an
R-mset homomorphism. Kernel f (denoted as Ker f ) is an mset con-
sisting of those elements s of M with f sð Þ ¼ e, the identity element
of the underlying group of M, with Cker f sð Þ ¼ CK sð Þ.

Definition 3.15. Let K and L be two mset modules drawn from
an R - module and f : K ! L is an R-mset homomorphism.
Image f (denoted as Im f ) is the mset consisting of those t with
f sð Þ ¼ t; s 2 root set of K, and CIm f tð Þ ¼ CL tð Þ.
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Theorem 3.16. Let K and L be two mset modules drawn from an
R - modulesM1 andM2 respectively and f : K ! L is anR-mset
homomorphism. Then Ker f is an sub-mset module of K and Im f is
an sub-mset module of L.

Proof. Let s; t 2 M1 and r 2 R. Then by definitions 3.1 and 3.14,

CKerf ðsþ tÞ ¼ CKðsþ tÞ
� m CKðsÞ; CKðtÞf g
¼ m CKerf ðsÞ; CKerf ðtÞ

� �
;

CKerf ð�sÞ ¼ CKð�sÞ ¼ CKðsÞ ¼ CKerf ðsÞ
CKerf ðr 	 sÞ ¼ CKðr 	 sÞ

� CKðsÞ
¼ CKerf ðsÞ:

So, we have all the three conditions of definition 3.1 and hence,
Ker f is a submodule of M1.

Now, by putting Im f in place of Ker f and mset moduleL in the
place of K in the proof, we obtain that Imf is a submodule of M2.

Theorem 3.17. Let K and L be two mset modules drawn from the
R - modulesM1 andM2 respectively and f : K ! L be anR - mset
module homomorphism. Then
(1) f Að Þ is a sub-mset module of L for all sub-mset module A of K
(2) f �1 Bð Þ is a sub-mset module ofK for all sub-mset moduleB ofL.

Proof. Let A be sub-mset module ofK. To show f Að Þ is an sub-mset
module of L, let a; b 2 f Að Þ. So there is c; d 2 A such that f cð Þ ¼ a
and f dð Þ ¼ b.

Cf ðAÞðaþ bÞ ¼ Cf ðAÞðf ðcÞ þ f ðdÞÞ ¼ Cf ðAÞðf ðcþ dÞÞ
¼ CðAÞðcþ dÞ ðBy definition 3:12Þ
� m CAðcÞ; CAðdÞf g ðSince A is mset moduleÞ
¼ m Cf ðAÞf ðcÞ; Cf ðAÞf ðdÞ

� � ¼ m Cf ðAÞðaÞ; Cf ðAÞðbÞ
� �

Now,

Cf Að Þ að Þ ¼ Cf Að Þ f cð Þð Þ ¼ CA cð Þ By definition 3:12ð Þ
¼ CA �cð ÞðSince A is mset moduleÞ

¼ Cf Að Þ f �cð Þð Þ ¼ Cf Að Þ �að Þ:

For r 2 R and a 2 f Að Þ,

Cf ðAÞðr 	 aÞ ¼ Cf ðAÞðr 	 f ðcÞÞ ¼ Cf ðAÞf ðr 	 cÞ ¼ CAðr 	 cÞ
� CAðcÞ ðSince A is mset moduleÞ
¼ Cf ðAÞðf ðcÞÞ ¼ Cf ðAÞðaÞ:

All the three conditions of definition 3.1 are satisfied for f Að Þ; and
thus, it is a sub-mset module ofL. Hence, (1) is proved. Similar to the
proof of (1), we can prove (2).

Definition 3.18. Let L 2 MS RM½ � and m 2 M. The left coset
mL of the mset module L are the msets characterized by
CmL sð Þ ¼ CL m� sð Þ8s 2 M. The right coset Lm is given by the
characteristic value CLm sð Þ ¼ CL s�mð Þ8s 2 M.

Note: If L 2 ML RM½ �, then the left coset is equal to the right coset
for a particular a 2 M. i.e., aL ¼ La8a 2 M.

Notation: M=L denotes the set of all cosets of an R-mset module
L drawn from an R-module M.

Proposition 3.19. Let M be an R-module and L 2 ML RM½ �:
Then M=L is a group under the operation

CaL]bL sð Þ ¼ C aþbð ÞL sð Þ; 8a; b; s 2 M:

Proof. If aL and bL are two cosets, aL ] bL is also a coset and thus
operation is closed. Since M is a module, it is associative and so
M=L. eL is identity element of M=L where e is identity element
of underlying group M. For aL 2 M=L; �að ÞL 2 M=L is the
inverse. Thus M=L is a group.

Proposition 3.20. Let M be an R-module and L 2 ML RM½ �.
The group M=L is an R - module by admitting the scalar multipli-
cation Cr	aL sð Þ ¼ C r	að ÞL sð Þ:

Proof. From Proposition, M=L is a group and it is abelian. For
r 2 R, a 2 M, r 	 a 2 M and also distributive. SinceM is a mod-
ule. If 1 is the unit element of R; C1	aL sð Þ ¼ C 1	að ÞL sð Þ ¼ CaL sð Þ.
Hence M=L is an R - module.

Definition 3.21. Let M be an R-module and L 2 ML RM½ �.
The R module M=L is known as quotient module.

Theorem 3.22. Let K and L be two mset modules drawn from
an R module M and f : K ! L is an mset onto homomorphism.
Then, M=Ker f is isomorphic to Im f .

Proof. Consider a function φ from the root set of M=Ker f to the
root set of Imf by φ aKerfð Þ ¼ f að Þ, for a 2 M.

By letting, CM=Ker f aKerfð Þ ¼ CImfφ aKerfð Þ, we have φ is an
mset homomorphism from M=Kerf to Im f . The proof of this is
as follows.

φ a Ker f þ b Ker fð Þ ¼ φððaþ bÞ Ker f
¼ f aþ bð Þ ¼ f að Þ þ f bð Þ
¼ φ a ker fð Þ þ φ b ker fð Þ

φ r 	 a Ker fð Þ ¼ φ r 	 að Þ Ker fð Þ
¼ f r 	 að Þ ¼ r 	 f að Þ
¼ r 	 φ a Ker fð Þ

CKer f a Ker fð Þ ¼ CKer f að Þ
¼ CKðaÞ ¼ CLðf ðaÞ
¼ CKðaÞ ¼ CLðf ðaÞ
¼ CImf ðf ðaÞ
¼ CImf ðφða Ker f Þ:

Now, to show that φ is one to one, let φða Ker f Þ ¼ φðb Ker f Þ,
for some a; b 2 M. Then, f ðaÞ ¼ f ðbÞ ) ab�1 2 Kerf . Hence,
a Ker f ¼ b Ker f . So, M=Ker f is isomorphic to Im f .

Proposition 3.23. L 2 ML½M� if and only if L is an mset abelian
group drawn from Z.

Proof. The proof follows straightaway from the definitions of
ML½ZM� and mset abelian group.
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4. Conclusion

Multiset modules are introduced and studied in this paper. One
can further consider modules over a semi-ring structure. It is well
known that modules over rings are abelian groups, but modules
over semi-rings are just commutative monoids. Exploring these in
a multiset context needs to be carried out, which may eventually
advance further generalization of the concept of vector space
incorporating the semi-rings structures, which are multisets with
many applications in theoretical computer science. Modules over
near-rings, a non-abelian generalization in a multiset context, are
another area that needs attention. Over near-rings, one can consider
near-ring modules, a non-abelian generalization of modules.
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