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Abstract: The notion of trigonometric similarity measure (SM) for spherical fuzzy sets (SFSs) has become very important in solving various
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1. Introduction

Zadeh (1965) introduced the notion of fuzzy set (FS) with the
help of a membership function and then it has been widely used to
model incomplete information. Later, different FSs have been
improved to better model vague information (see., Atanassov,
1986; Cuong, 2014; Yager, 2013). One of them is the concept of
spherical fuzzy set (SFS) (Ashraf et al., 2019; Ashraf & Abdullah,
2019; Gilindogdu & Kahraman, 2019). It is a generalization of the
concepts of Pythagorean fuzzy set (Yager, 2013) and picture fuzzy
set (Cuong, 2014). A SFS A4 is characterized via a membership
function w4, a neutral membership function 7,4, and a non-member-
ship function v, such that 42 + n3 + v4 < 1. Clearly, the concept
of SFS is more flexible than the concept of picture fuzzy set when
dealing with the indeterminate and indefinite information in the
practical real-life problems. Further information about SFSs and
applications can be found in Giindogdu and Kahraman (2019),
Gilindogdu and Kahraman (2020) and Yuan et al. (2021).

A similarity measure (SM) is a powerful tool to determine how
similar two items are. Recently, researchers have focused on various
kinds of SMs under various types of fuzzy environment.
Trigonometric SMs are examples of them, and there are many
applications of trigonometric SMs in the literature (Rafiq et al.,
2019; Rajarajeswari & Uma, 2013; Tian, 2013; Wei, 2017; Ye,
2011; Ye, 2016). The weighted arithmetic mean (WAM) is used
in the majority of these SMs. A trigonometric SM aggregates
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trigonometric values of the angles among conjugate components
of the vector representation of two SFSs by using the WAM.
Since the WAM cannot consider the interaction between
criteria, this concept is not always reasonable in some cases. In
this paper, a Choquet integral (CI) similarity model which
considers the interaction between criteria is proposed to overcome
this deficiency. Similar idea was used for various FSs by several
authors as well (Olgun et al., 2021; Olgun et al., 2021; Tiirkarslan
et al., 2021; Yang & Ha, 2008).

Gustave Choquet proposed the concept of the CI (Choquet,
1953) in 1953, and it can be regarded as a non-linear aggregation
function. As opposed to additive integrals like the Lebesgue
integral, the CI has a more complex structure since there is no
requirement to provide the additivity. The CI is substantially more
powerful than the WAM at performing orders, as shown in Meyer
and Pirlot (2012), and the difference grows as the number of
members in the set grows. Furthermore, in comparison to the
WAM, it has been shown in Lust (2015) that as the finite set’s
number of elements grows, the likelihood of finding a higher
optimum ranking in the CI grows. In fact, fuzzy measures (FMs)
and fuzzy integrals allow us to regard preferences that are not
reflected in the weights in the WAM (Torra & Narukawa, 2007).
The CI employs the FM notion (Sugeno, 1974), which can be
used to simulate the interaction of criteria in a variety of
circumstances. In this research, we propose some trigonometric
SMs for SFSs using various types of FMs, 2-additive FMs and X-
FMs to define the interaction among criteria.

The remainder of the paper is illustrated in Table 1.
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Table 1
Outline of the paper

Section Content

2 Some existing trigonometric SMs between
SFSs are recalled

3 Some trigonometric SMs for SFSs based
on CI are proposed

4 Some applications are given

5 Comparison analysis with some existing results is
discussed by using Spearman’s rank correlation

6 The paper is concluded and some future studies are
suggested.

2. Some Existing Trigonometric SMs
Between SFSs

We start with some previous weighted trigonometric SMs for
SFSs in literature. Let X = {,...,(,} be a finite set and let

A= {<u,palt),nalt),valy) > li=1,...,n}

and

B= {< Li7MB(Li)7nB([i)1VB([i) > |1 = 1,...71’1}

be two SFSs of X. Rafiq etal. (2019) and Wei et al. (2019) introduced
the following weighted cosine SMs:

WSFC! (A, B) :

13 () g (1) + 03 () g () + v () va(e)
L, + nA L, + v

- E " \/MA

and

WSFC? (A, B) : = Z w;

They also proposed the following weighted cosine and cotangent
SMs:

WSFCS! (A, B) :

RN L O R I AR I
;w,co[2< 2 (1) — ()| )}

3)

WSFCS*(A, B) :

- ZW e\ 2w - )

B <|ui<a> ()| + 3 (1) — né(t,-)|+)
L

22

WSFCS’(A, B) :

7 (13 (0) — i3] V M) — Bl
‘ZWC [ (vA()—V%(t,-)lvlﬂi(t,-)—ﬂé(t,«)l )}
(5)

WSFCS*(A, B) :

[ () = e+ ) — mhe+
Z ’ [ (u()—w;( LA )

I

(6)

and

WSFCT'(A, B) :

= Zw, cot|—

1 (6) = g ()] Vg (4) — ng W)V
|",24(li) - '
(7)
WSFCT?(A, B) :

w o () — o)+ D) — m ()
‘Zw“’t <|vi<zi>—v2<zi>| )

)

(8)
WSFCT?(A, B) :
|H“ ['t) ()l\/'nA(tt (tt)‘v
‘Z ' <|v <L,>—v3<'>\v|nA<> (1) )}
9)

WSFCT*(A, B) :

N oo [T (A ) = kB D () — )+
,; 1C0t|:4+8<\li(t)—l)3( D+ 172 () — 73(0)] )

where the symbol ” VV ” is the maximum operator, w = (wy, ...

n
is the weight vector with w; € [0,1] and }_ w; = 1.
=1

3. Some Trigonometric SMs for SFSs
Based on the CI

In this section, the CI is used to model the similarity between
SFESs. The concept of FM (see., Chateauneuf & Jaffray, 1989;
Sugeno, 1974) and its Mébius inverse are important to model
interaction between criteria. Moreover, the Mobius inverse of a set
function and relationship between a FM and its Mdbius inverse
are given in Chateauneuf and Jaffray (1989). According to
Chateauneuf and Jaffray (1989), if we have a FM, then we obtain
its Mobius inverse and if we have a Mobius inverse, we can
determine the corresponding FM. Furthermore, the MGdbius
inverse of singletons equals the FM itself. There are some
properties that the Mobius inverse of a FM must satisfy (see, item
(ii) of Proposition 2 in Chateauneuf and Jaffray (1989)). One of
these important properties is used to solve medical diagnosis
problems in Section 4. The FM identification process is rather
challenging, since it is defined on the power set. Exponential
increase of the number of subsets of a given universal set
complicates the FM identification in a set with excessive
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elements. Grabisch (1996) suggested the concept of k-additive FM to
help with this complex situation. When a 2-additive FM is evaluated,
it is sufficient to find the FMs of (n(n — 1))/2 subsets rather than
2" subsets in order to determine the entire FM. As a result, we
concentrate on developing new trigonometric SMs that take into
consideration the interaction of the criteria. 2-additive FMs are
employed to lessen the computing cost in this case.

The concept of interaction index I for any T C X is another key
concept connected to FM theory. When FM is 2-additive, we have

v({T}), |T|=2

L {0,({ } ITI -2 o

where W is Mobius inverse of a 2-additive FM (see, e.g.,
Grabisch, 1996).

IfI; > 0, I; <0 and I; =0, then there are positive interaction,
redundancy, and non-interaction between the criteria i and j,
respectively. Let o is a FM and W is a Md&bius inverse of a FM.
We simplify our notations using the following notation:

o;:=o({L}), oy: fa({l,,J}) ox =c({,}UK), ¥, =W
L), v, —\IJ({I,,j}) ik = V({;} UK) for all ll,l eX, i#
j and for all KcCX.

The notion CI is a generalization of the WAM in which each
subset of the universal set is given a weight using a FM (see,
Choquet, 1953; Grabisch, 1996). If the FM is 2 -additive, then the
classical CI definition transforms into form which is given in
Calvo et al. (2002) and Mayag et al. (2011).

From Grabisch (1996), Calvo et al. (2002) and Mayag et al.
(2011), we can see that computing the CI with regard to a FM
that is 2-additive just requires interaction indices. As a result, we
use interaction indices to tackle pattern recognition issues in
Section 4. Now, we introduce new trigonometric SMs.

Definition 1. Let X = {¢y,...,t,} be a finite set, let A and B be
two SFSs in X, and let o be a FM on X. A cosine SM based on CI
is given with

C,o
WS (A.B) = (O) [ )0 do (12)
X
where
00 e PRI £ BB+ B
A,B\"i
Vird () + mi () + i) Vi) + ni) + vi)
(13)
fori=1,...,n. If o is 2-additive, then Wégél“'“ ) s given with

W(Cl—addv 0) (A, B)

SFel (14)

~ (Cooaaa) [ F3(0 do

Proposition 1. LetX = {¢y,..., n} be a finite set, let A and B be two

SFSs in X. Wépcl) and W(C2 aid17) satisfy thefollowing properties:
(Py) 0 < W7 (A,B), Wé;fgm'*”) (A,B) <
(P,) W(A,B) = WS7(B,A) and w;gélm “)(A,B) =
Weei 7 (8, A,

“7)(A,B) = Land W2, (A,B) = 1.
[0,1] and the CI is monotone, we have

(P3)IfA=B then
Proof. (P)) SlncefA B( L) €

0< WS(A,B) < 1and 0 < Wiz (A,B) < 1.

SFC‘

(P,) The proof is trivial since f/g};(t,-) :fé_rlfz(c,-).
(P5) If A = B, then we have ws(y;) = pup(y), na(l) = np(4)
and v (1;) = vg(y;), for i = 1,...., n, which yields that f{'5(1;) = 1.

Hence, we obtain W;FC1> (A B) =1. Moreover, we have
W;gé’,"”"’"a) (A,B) = Z W(B) =1 from item (ii) of Proposition 2
Bcx

in Chateauneuf and Jaffray (1989). Thus, the proof is completed.
Now, we suggest the following cosine SM based on the CL.

Definition 2. Ler X = {¢y,...,,} be afinite set, let A and B be two
SFSs in X, and let 0 be a FM on X. A cosine SM based on Cl is given
with

WS (A= (©) [ £ do as)
X
where
£3)
_ #a (L) g (4) + n (tz)né(t )+ VA ()i () + 73 (6) g (4)
\//'Lf‘s([l') + 774A(L1) +v + 71’3‘ \/MB x) 77 L,) + V%(t,) + 77%3("1)7

for i=1,...,n. If o is 2-additive, then this Choquet cosine SM

Coaids0) + .
WéFéz“d“ ) i given with

W9 (4 B) = (Cypas) / fAWdo).  (6)

Proposition 2.

and W(Cz add.0)

(Co)
w SFC?

SFC?
P, — P; from Proposition 1.
Now, we propose more Choquet cosine SMs.

satisfy the conditions

Definition 3. Ler X = {¢y,...,,} be afinite set, let A and B be two
SFSs in X, and let o be a FM on X. Two SMs are given with

Wéch>1 (A,B) = (C)/&%(‘)dd (17)
X
and
w'S) (A, B) = (C) / ¢2(1) do (18)
SFCS® A.B )
X
where
gf(:}?(Li)

and

)

= cos (IMA( i) = mg()] + g (6) — ()] + Vi) — Vﬁ(u)D}
fori=1,...,n. If o is 2-additive, then these Choquet cosine SMs

C C . .
WéFés”{“ 0) and WéFés;“ ) are given with
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(Co-ada. o) (1) (3) () :
Wspcsl (A B CZ add g (19) 8aplli)
X ol (10 - sV ) - e
2\ vatw) = VB( DIV I () — 3 (w)]
and
and
Wél(::ggédd ) (A B CZ add. /g2 (20) (4)
b4 gA,B(‘i)
7 [ a ) — i) + 3 () — ng ()]
Proposition 3. The Choquet cosine SMs W, (gcik and Ws?cs'idd ), 4\ +va () — vi()ll% (6) — 73 (0]
Jor k = 1,2 satisfy Py, P,, P; and the following properties:
Py If Wépcs)k (A,B) = and Wé?ésfd ) (A,B)=1, fori=1,...,n If ois 2-additive, then these SMs Wégzcs”;‘“ ) and
then A = B. W;gésid“' ) are given with
(Py)) If C is an SFS in X and ACBCC, then
(Co) wico) (Co) wico)
Wepest (A, C) < SFCS" (A,B) and W l0(A,C) < Wil (B, C). Wéﬁé’sé"""") (A, B) := (Cpqaa. / 8a.B Cy(0) do. (23)
Coa (Cra
Moreover, WéFéskdd ©) (A,C) < WSFéSkdd ) (A, B) and X
C aa C -ada
Wépésku ” (4,0) < Wécms‘fdi 7 (B, C)- d
Proof. (P,), (P,), and (P;) can be proved similar to Proposition 1. 4"
Cy_pdd. O
(P}) Let Wépcs)k =1 and Ws( vl ) =1 for k= 1,2. Then, o) W
since cos0=1 we have gAﬁB( ;) =1 which yields that Wercst " (4, B) = (Coaaa. / 8B (24)
i (1) — pa(u)| = 0 % (6) — ng(u)| =0 and X
V2 () — ( D = i=1,2,...,n. Therefore, we obtain .. (Co) 14r(C0) 14 H(Conatr0) (Coadi0) . :
M?(tf) mpu),  n ( ) =ng()  and  Vi(y) = vi(), for Proposition 4. Wcq, Wpcn Werest™ ™ and Wgeg™ ™ satisfy the
AN A BH AN BATD conditions Py, P,, P;, P}, and P, in the same way as Proposition 3
i=1,2,...,n. Hence, A = B. does
(P) If ACBCC, then puu(u) < pup(t) < pelv), Moreover, we propose more Choquet SMs as follows.
na(l) = np(c ) Znc(t)  and  wa(y) > vp(y) > vely),  for
2 2 2
i=12,.. Then, X 'uA(l"z) < MB(LZi) < pew), Definition 5. Ler X = {¢y,...,,} be afinite set, let A and B be two
mats) > 7713( ) >ne(u)  and  vi(y) 2 vE(w) = ve(y),  for

i=1,2,...,n. Thus, we have
() — ()] < i () — ne )l
g (4) — Mzc(li)| < i (u) — .Uvzc(Li)‘
Ima () = ng()] < i () — ng ()l
5 (ee) — e ()] < ma () — me(es)l
VA () — i)l < Vi) — ve(u)l
WE() — v ()] < Va(u) — ve()l-

(k) k) (k)

So, we obtain g, c(t )<gAB( i) and gAC( i) < gpclt) since

cosine function is decreasing on [0,7/2]. Therefore
(C0) Co) (Co) Co)
WSFCS" (4,0) < SFCS“ (4,B) and WSFCS“ (4,C) < SFCS" (8.C)
for k = 1,2. If o is 2-additive, then the proof is similar to proof
(Co)
of WSFCS"

We now propose more Choquet cosine SMs.

Definition 4. Let X = {vy,...,,} be afinite set, let A and B be two
SESs in X, and let o be a FM on X. Two SMs based on the cosine
function are given with

Wéchl(A B) := (C)/gf,z);@ do, (21)
X
Wéchl(A B) := (C)/gf(fé(t) do, (22)

where

24

SFSs in X, and let o be a FM on X. Two SMs based on the cotangent
function are given with

W (4,B) = (C) / B (1) do (25)
X
and
w9 (A,B) = (C) | W¥(0) d
SFCTZ( ) = (C) 4 5(L) do, (26)
X
where
B p(4)

W]V 1 () = ()]

T T
= cot[Z+ (KA () = 1 (w)| V I (w) = n}

and
hp(w)
T T2 2 2 2 2 2
= cot T4 T (U 0) — 6]+ 113 (6) — mhe)| + A ) — 3]
fori=1,....n. If o is 2-additive, then these SMs WSE?ZCT‘T"‘ ) and
Wégg;ﬁ“ ) gre given with

W(cz—udd,-,”) (A B

SFCT! (27)

= (Cy—paa. /hl
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and

W(Cz—udd o) (A, B) (28)

SFCT? CZ add.

[ iod
X

Finally, we propose more Choquet SMs as follows:
Definition 6. Let X = {¢y,...,t,} be a finite set, let A and B be two
SFSs in X, and let o be a FM on X. Two SMs based on the cotangent
function are given with

C,0)

Proposition 5. The cotangent SMs W
P,,P,,P;, Py, and P,.
Proof. It can be proved in the same way as Proposition 3.

It is worth noting that if we use a measure that is additive rather
than a FM, the SMs proposed in Definitions 1 — 6 become (1) — (10),
respectively.

SFCT"’ (k=1,2,3,4) satisfy

4. Pattern Recognition Applications

The suggested SMs for SFSs are implemented to the evaluation
of certain pattern recognition problems in this part to demonstrate
their out-performance and appropriateness.

3
WéFCT3 =(0) / h,(a&@ (1) do (29)
X 4.1. A cleaner production problem
and The following cleaner production problem is adapted from
Rafiq et al. (2019). The introduction of cleaner production is
(Co) AB B effective in resolving the contradiction between economic growth
Wsecrs (4. B) = () / 4.5(t) o, (39) " 4nd the environmental crisis. Cleaner production has been
X developed in many gold mines to achieve sustainable
development goals and to avoid the destruction of the ecological
where environment when mining natural resources. In this problem,
Rafiq et al. (2019) obtained that pattern v belongs to class Y, using
hff_zs(ti) : SMs recalled in (2) — (10) and pattern Y belongs to class Y, using
SMs recalled in (1), [see, Table 3 of Rafiq et al., 2019].
—CO{” n( OB OINIAORE A0 )}
4 4\ VIvA() = vV A () — i) Example 1. In this example, a company wants to invest money in a
gold furnace. We analyze the problem of cleaner production pattern
and recognition. A well-functioning furnace with a cleaner production
unit offers more benefits compared to other furnaces. Consider the
4 set of the criteria:
h,(q,;a(‘i) :
O L |12 (4) — 3 ()] + 173 (6) — 73 (y)] X = { gol(Managem.e.nt)? pz(Producti.on)7 3 (Resource), }
4778\ P2 () — ()| + 72 () — 73 ()] 04 (Waste Utilization), ps(Environment)
Moreover, each furnace v; for i = 1,2,3,4,5 and an unknown fur-
. o i SFS with respect to all of the criteria (see
- I >-additive. then these SMs W C-ai®) 4~ DAce Y are given as an D ,
‘IO’; CI ;> n- {f o is Z-additive, then these SMs W™ an Table 1 and Table 2 of Rafiq et al., 2019), respectively.
—add. » . . .
WspéT4 are given with The goal is to classify v into one of the furnaces Y; for
i=1,2,3,4 with respect to the criteria. For this purpose, we use
WComaa ) (4,B) = (C h 3 31) the proposed Choquet SMs and so we need a FM. We consider
SFCT? 2-add.) the weights [ = (0.124,0.216,0.274,0.154,0.232)T of the criteria
X given in Rafiq etal. (2019) to obtain a A.-FM. We construct this prom-
ised A-FM o by taking A = 0.75 (see; Takahagi, 2000) in Table 2.
and Now, we can calculate the similarities using Definition 1-6.
For example, we obtain the cosine values as fvllfv(pl) = 0.9624,
—add. O 1 _ 1 _ _
Wi A B) = (Cooaa) [Wihdo G2 filhlon) 09350, () = 09089, filh(o) = 09721,
X féll_’)v(gas) = 0.9535, from (13), for Vv, pattern. Therefore, we get
Table 2
A-FM
o(9) = o({e1}) = 0.095809 o({p,}) = 0.171315
J({g)3}) = 0.220954 o({ps}) = 0.120005 o({ps}) = 0.184848
o({1,p2}) = 0.279434 o({p1,03}) = 0.332639 o({p1,p4}) = 0.224437
o({p1. 9s}) = 0.293939 ({02, 93}) = 0.420658 ({02, 94}) = 0.306738
o({92,p5}) = 0.379913 o({93,94}) = 0.360845 o({ps; ps}) = 0.436433
({4 ps}) = 0.321489 o({p1: 92, 03}) = 0.546694 o({©1: 02, pa}) = 0.424589
({91, 92, 05}) = 0.503021 ({91, 3: 4}) = 0.482583 ({91, 3, 05}) = 0.563603
({91, 94, 05}) = 0.440399 ({2, 93: 4 }) = 0.578523 ({92, 93, 5 }) = 0.663824
({2, 94, ps}) = 0.534111 ({3, 94, ps}) = 0.595718 o({©1, 02,03, 04}) = 0.715903
({91, 92, 03, 95}) = 0.807333 o({©1; 92,04, 95}) = 0.668299 ({01, 93,04, 95}) = 0.734334
({92, 3, 04, 5 }) = 0.843575 o({o1, 92, 93, P4, 05}) = 1
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Table 3
Comparison of the results of Example 1

Similarity scores

Similarity Measures (V1,Y) (Y2,Y) (¥3,Y) (Y4, Y) Best Selections
The results of Rafiq et al. (2019) WSEC! 0.9413 0.9331 0.8984 0.9162 v,
WSEC? 0.8294 0.8566 0.8432 0.9293 Yy
WSECS! 0.9418 0.9077 0.9222 0.9682 Yy
WSFCS? 0.9603 0.9528 0.9641 0.9758 Yy
WSFCS? 0.8950 0.9007 0.9121 0.9559 Yy
WSFCS* 0.8861 0.8912 0.8975 0.9495 Yy
WSFCT! 0.7158 0.6722 0.6920 0.7760 \7
WSFCT? 0.7595 0.7530 0.7816 0.8060 Yy
WSFCT? 0.6555 0.6513 0.6725 0.7451 Yy
WSFCT* 0.6366 0.6294 0.6533 0.7337 Yy
The results of proposed Choquet Wégg) 0.9376 0.9265 0.8818 0.9082 Y,
trigonometric Slmllarlty measures Wég’c(? 0.8121 0.8488 0.8248 0.9244 V4
(Co) 0.9376 0.8961 0.9141 0.9672 %
Wercst 4
(Co) 0.9574 0.9471 0.9609 0.9742 %
Wercs 4
wico) 0.8849 0.8923 0.9002 0.9515 Yy
SFCS?
(Co) 0.8750 0.8828 0.8868 0.9439 Yy
Werest
(Co) 0.7056 0.6530 0.6745 0.7732 Yy
Weper
(Co) 0.7510 0.7398 0.7694 0.7999 Yy
Werer
(Co) 0.6380 0.6412 0.6456 0.7343 Yy
Werers
wCa) 0.6181 0.6191 0.6271 0.7211 Yy
SFCT*

*Bold values indicate the maximum of the corresponding line.

F(03) <A (02) < il (os) < fih (1) < fo,v(ps) and so we
have

Wél:cl (v, Y /f Z(v,v

5
_fv(ll.)v(@(k—l))>o'<E(k))
psi

= (vl.vw £ (o) )a( W)+ (fv},vm — Fi () ) o (Er)
+ (Flos) = k(9o () + (KN (01) = £ els) ) o(Eiw)

+ (fr, v (4) — frv(91))o(E(s)) = 0.9089 x 1+ (0.9350 — 0.9089)
% 0.668299 + (0.9535 — 0.9350) x 0.440399 + (0.9624 — 0.9535)
x 0.224437 + (0.9721 — 0.9624) x 0.120005 = 0.9376.

The numerical results are given in Table 3. The proposed
trigonometric SMs appoint the unknown furnace Y to the known fur-
nace Y, except for the W SFcl) (i, ¥)(i = 1,2,3,4). This result is in
agreement with the one obtained in Rafiq et al. (2019).

4.2. A medical diagnosis problem

A medical diagnosis problem adopted from Rafiq et al. (2019) is
used to explain the feasibility of the proposed SM and provide a
comparative analysis. The process of determining which ailment is
responsible for a patient’s symptoms is known as medical diagnosis.
In this process, many illnesses are compared to the symptoms of the
target patient. Rafiq et al. (2019) obtained that target patient P belongs
to class A; by using SMs recalled in (2) — (10) and pattern P belongs
to class A4 using SMs recalled in (1) [see, Table 5 of Rafiq et al. (2019)].

Example 2. Let us consider the set of diagnosis

- A (Viral fever), A,(Malaria),
| As(Typhoid), A4(Stomach problem)
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and symptoms

s—{s1

Each diagnosis A;, i = 1,2, 3,4 and the patient P that have all the
symptoms are given as SFSs in Rafiq et al. (2019) (see, subsection
4.3 in Rafiq et al. (2019)).

The purpose is to classify v as one of the diagnostic A; for
i=1,2,3,4 in terms of symptoms. To do this, we need a FM. We
build a 2-additive FM to determine the interaction between symptoms.
We know that the Mobius inverse of subsets of two elements equals the
interaction index whenever measure is 2-additive (see (11)). To deter-
mine the FMs of the remaining two-element subsets, we use the
Mobius form of the FM. We use the FM of singletons as the weight
vector of symptoms (0.124, 0.216,0.274,0.154,0.232)T described in
Rafig etal. (2019) since the M6bius inverse of singletons is identical to
the FM. Furthermore, because the sum of Mdbius inverses of single-
tons is one, we can deduce from (ii) of Proposition 2 in Chateauneuf
and Jaffray (1989) that the sum of Mobius inverses of subsets contain-
ing two elements should be zero. Now, taking into account the inter-
action of symptoms, we have the Mdbius inverse shown in Table 4:

(Temperature), s, (Headache), s;(Stomach pain),
s4(Cough), ss(Chest pain) ’

Table 4
Mbobius inverse of the FM
W, =0.124 W, =0.216 W, = 0.274 W, = 0.154
Wy = 0.232 W, =0 5=0 ¥, =02
U5 =0 U, =—0.1 W, =0.1 W, =0
Y, =0 V5 =—-0.2 W5 =0
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Table 5
Comparison of classification result of Example 2

Similarity scores

Similarity measures (A1, Y) (A2, Y) (A3,Y) (AgyY) Best selections
1

The results of Rafiq et al. (2019) WSFC 0.9137 0.8962 0.9337 0.9511 Ay
WSFC? 0.9231 0.7600 0.8141 0.8180 A

WSFCS! 0.9682 0.8729 0.9544 0.9497 Ay

WSFCS? 0.9727 0.9344 0.9578 0.9613 A

WSFCS? 0.9551 0.8462 0.8905 0.8817 Au

WSFCS* 0.9430 0.8238 0.8690 0.8682 A

WSFCT! 0.7760 0.6198 0.7570 0.7339 A

WSFCT? 0.7940 0.7219 0.7783 0.7811 Au

WSFCT? 0.7430 0.5895 0.6748 0.6312 A

WSFCT* 0.7220 0.5675 0.6388 0.6203 A

The results of proposed 2-additive W;}fzc—lw ) 0.9276 0.9350 0.9319 0.9525 Ay
Choquet trigonometric similarity measures Wéffé’;u 0 ) 0.9055 0.8504 0.8124 0.9087 ™
Ws(géfsalm) 0.9621 0.8987 0.9469 0.9635 Ay

WE}%&M £) 0.9689 0.9505 0.9446 0.9857 Ay

Wégé—sx;dd £) 0.9402 0.8897 0.8986 0.9441 Ay

Wéﬁéz““’ £) 0.9181 0.8789 0.8498 0.9456 Ay

Ws(gzc}ufd.f) 0.7587 0.6732 0.7434 0.7614 Ay

Ws(gé}agd.f) 0.7827 0.7736 0.7461 0.8412 Ay

Ws(gé}agu £) 0.7109 0.6624 0.6799 0.7105 Ay

Wéﬁé}“ﬁ“’ £) 0.6728 0.6500 0.6127 0.7117 Ay

*Best selections in bold indicate disagreement results between proposed SMs and Rafiq et al. (2019).

For example, since ¥, < ¥V, < ¥, < W < W;, we consider
that the severe stomach pain may cause chest pain and so interaction
between these two symptoms should be negative. That is, there is a
redundancy between the symptoms s;, s; and we assign a negative
value for I35 = W; 5. Moreover, we know that temperature may
cause headache. However, we consider that such a small weight
assigned temperature could not cause headache and so there is no
relationship between these two symptoms. That is, s; and s, are inde-
pendent from each other and so we assign zero for I, , = ¥ ,. Sim-
ilarly, we know that when temperature and cough come together, it
may be a sign of many viral diseases. Therefore, we assign a positive
value for I, , = ¥, 4. Now, we calculate the proposed SMs between
patients and diseases with respect to given symptoms.

For example, we obtain the cosine values as f,fll)v(sl) = 0.9330,
A =08911, (s = 08562, i) (s,) = 0.908s,

f,Ell)V(s5) = 0.9958 for A, disease. Therefore, we have

Wi (A, ¥) = (Co—aaa) / () des) =Y w({sH AN ()
S

s;€S

+ 37 W({s, 1) min(fR (), L0 () = w({si ) % £ (51)
{sin5}SS

FW({5,}) x S() + W({ss}) x AN (53) + ({sa)) x fk(s)

+W({ss}) % fulk(ss) + W({sy,s4}) x min(hy (1), o (s0))

+W({s;,5}) x min(f(s:) SN ()) + ({52, 54})

¢ min(f(5:), £y (50) + W({s3,551) x min(f(s3), fA v (55))

=0.124 x 0.9330 + 0.216 x 0.8911 + 0.274 x 0.8562 + 0.154

x 0.9086 + 0.232 x 0.9958 + 0.2 x min(0.9330, 0.9086) —0.1

X min(0.8911, 0.8562) + 0.1 x min(0.8911, 0.9086) —0.2

X min(0.8562, 0,9958) = 0.9276.

It is shown that nine SMs allocate the unknown patient P to the
known class A4 in Table 5.

4.3. A pattern recognition problem

In this subsection, we examine a pattern recognition which is
adopted from Wei et al. (2019).

Example 3. Let X = {¢;, (5,3} be a finite set and let X, X, and X3
be three patterns which are given in Wei et al. (2019). Moreover, X be
a pattern that should be classified into one of the IX;,,, and IX;
classes which is given in Wei et al. (2019). We use a hypothetical
FM. We use the virtual weights of Wei et al. (2019) as a singleton
FM and use the monotonous characteristics of the FM to generate
the remaining measures (see Table 6).

Table 6 reflects the positive interaction between ¢; and ¢,, neg-
ative interaction between (, and (5 criteria, and no interaction
between ¢; and 3 which are used to construct the FM (Grabisch,
1997). Now, we calculate the SMs using Definition (1-6).

Note that incompatible results with the past results may cause
because of the sensitivity of the FM theory (see Table 7).

4.4. A medical diagnosis problem

In this subsection, we examine a medical diagnosis problem
which is adopted from Wei et al. (2019).

Example 4. Let us consider the set D of the diagnoses used in Example
2 with one additional diagnosis chest problem A5 and let the set S of
symptoms remains same as Example 2. Moreover, each diagnosis A;,
i=1,2,3,4,5 and the patient Y that have all the symptoms are given
as SFSs in Wei et al. (2019) (see, Example 2 in Wei et al. (2019)).
We again use the concept of Mobius inverse to determine the
FM. Since the Mdbius inverse of singletons is equal to the FM,
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Table 6
FM
8(@) =0 8({u}) =02 8({n}) =03 8({t:}) =05
8({t1,12}) =09 3({u,13}) =07 3({tz,13}) = 0.5 8({t1sta,t33) =1
Table 7

Comparison of classification result of Example 3

Similarity scores

Similarity measures (X1,X) (X, X) (X3,X) Best selection
1
The results of Wei et al. (2019) WSFC 0.9367 0.9406 0.9434 s
WSFC? 0.8504 0.8144 0.9195 X3
WSECS! 0.8656 0.8919 0.9135 X3
WSFCS? 0.9257 0.9440 0.9419 Xy
WSFCS? 0.8620 0.8919 0.9135 X3
WSFCS* 0.8357 0.8631 0.8953 X3
WSFCT! 0.6221 0.6152 0.6606 X3
WSFCT? 0.6767 0.7202 0.7141 X5
WSFCT? 0.6109 0.6152 0.6606 X3
WSFCT* 0.5549 0.5763 0.6337 X3
The results of proposed Choquet trigonometric Wé}f-cf) 0.9423 0.8700 0.9311 X,
similarity measures W€ 0.8566 0.8014 0.9207 Xs
SFC?
WS(}?C‘ZZ 0.9488 0.9032 0.9348 Xy
Wég(iz 0.9434 0.9274 0.9498 X3
Wégci)z 0.9418 0.9032 0.9348 X
wi&d 0.8879 0.8761 0.9134 X3
SFCS!
WG9 0.7479 0.6324 0.6957 Xy
SFCT!
wicd 0.7108 0.6896 0.7302 X3
SFCT?
WGS9 0.7267 0.6324 0.6957 Xy
SFCT®
WG9 0.6156 0.5928 0.6590 X3
SFCT*

*Best selections in bold indicate disagreement results between proposed SMs and Wei et al. (2019).

Table 8
Mobius inverse of the FM

W, =025 W,=015 U, =015 W, =025 ¥ =0.20
W, =001 W ;=0 W, ;=002 ¥3;=0 W,;=0
W, =0 Ws=0 Wy, =0 W5=0 W,;=-001

we take the FM of singletons as the weight vector of symptoms given
in Wei et al. (2019): (0.25,0.15,0.15,0.25,0.20) "

Now, considering interaction of the symptoms similar to
Example 2 we have the Mdbius inverse given in Table 8.

For example, since ¥, < ¥; < W < W, < W,, we consider
that the severe temperature may cause headache and so interaction
between these two symptoms should be negative. That is, there is
a redundancy between the symptoms s;, s, and we assign a negative
value for I, , = W, ,. Moreover, we know that when temperature and
cough come together, it may be a sign of many viral diseases. There-
fore, similar to Example 2 we assign a positive value for I 4 = Wy 4.
In addition, we consider that if the symptoms are independent from
each other, then we assign zero interaction.

Now, we compute the proposed SMs between patients and
diseases in terms of the given symptoms (see, Table 9).

28

It is shown that the proposed 2-additive Choquet SMs appoint
the target patient Y to the disease A; in Table 9. This result is in agree-
ment with the one obtained in Wei et al. (2019).

5. Comparison Analysis

In this part, we examine how the paper’s findings compare to
those found in the literature.

5.1. Consistency analysis with Spearman’s
Rank Correlation Coefficient (SRCC)

Using SRCC (Spearman, 1987), we assess the ranking
consistency of Examples 1 and 4. The SRCC p is shown below,
and the test results are shown in Tables 3 and 9:

6 n
=1-——> d 33
p n(n271) i=1 v

where 7 is the number of results examined, and d; denotes the differ-
ence in the results’ ranks. Figure 1 demonstrates the SRCC which
shows the consistency between result of Rafiq et al. (2019) and us
for Example 1.



Journal of Computational and Cognitive Engineering Vol. 1

Iss. 1 2022

Table 9
Comparison of classification result of Example 4

Similarity scores

Similarity measures (A, Y) (A, Y)  (A3,Y) (A, Y)  (As,Y)  Best selection
1
The results of Wei et al. (2019) WSEC 0.8220  0.7872  0.9575  0.6836  0.7537 As
WSFC? 0.8506  0.8432 0.9310 0.7312 0.8215 A3
WSFCS! 0.9378 0.9453 0.9833 0.8824 09168 A3
WSFCS? 0.9509 0.9474 0.9813 0.9171 0.9448 A3
WSFCS? 0.9105 0.9062 0.9619 0.8329 0.8887 A3
WSFCS* 0.8968 0.8806 0.9491 0.7971 0.8741 A3
WSFCT! 0.7239 0.7240 0.8358 0.6070 0.6595 A3
WSFCT? 0.7441 0.7279 0.8257 0.6608 0.7271 A3
WSFCT? 0.6712 0.6411 0.7784 0.5567 0.6132 A3
WSFCT* 0.6381 0.6007 0.7337 0.5174  0.5952 A3
The results of proposed 2-additive Wéﬁé}““"” 0.8192 0.7825 0.9578 0.6840  0.7485 A3
Choquet trigonometric similarity measures WG 0.8504  0.8430 09395 07326  0.8215 As
Wégé;dd ) 0.9366 0.9450 0.9830 0.8826 0.9303 A3
Wélgé;;ddn;) 0.9502 0.9469 0.9812 0.9169 0.9438 A3
Wégésgdd ) 0.9106  0.9062 0.9622 0.8534  0.9024 A3
Wéggszdd.,{) 0.8969 0.8802 0.9491 0.7986  0.8737 As
Wégé}“fd ) 0.7217 0.7235 0.8351 0.6073 0.6818 A3
Wégé—;zdd.vf) 0.7427 0.7269 0.8257 0.6606 0.7254 A3
Wégéffd £) 0.6713 0.6411 0.7790 0.5776 0.6356 A3
Wégé;j" %) 0.6382 0.6002 0.7339 0.5188 0.5947 A3
*Bold values indicate the maximum of the corresponding line.
Figure 1
The SRCC for Example 1
WSFCY | WSFC? | WSFCSY|WSFCS? |WSFCS3 |[WSFCS* | WSFCT|WSFCT? |WSFCT® |WSFCT*
(C.0)
sfct = g
(Ca)
wSFCZ 0.2 04 0.8 0.8 0.2 0.4 04 0.4
(C.a)
ol 0 0.2 08 0.4 0.4 0.8 08 0.8
(C.o)
WSFCSZ 0.4 0.8 0.8 0.8 0.8
w'co, 0.8 0.4 08 0.4 0.8 08 0.8
st,‘;;. 0.8 0.4 08 0.4 0.8 08 0.8
C.a)
" 0 0.2 08 0.4 0.4 0.8 08 0.8
(C.a)
el 0.4 0.8 0.8 0.8 0.8
sigr:; 0.8 0.4 0.8 0.4 0.8 028 0.8
Ca)
WSFCT‘ 0.8 0.4 08 0.4 0.8 08 0.8

Similarly, we obtain consistent results between (Wei, 2017) and
Example 4. Figure 2 demonstrates the SRCC which shows the
consistency between result of Wei et al. (2019) and our results in
Example 4.

5.2. Contributions of the proposed CI model

The important contributions of the proposed CI model are
summarized below:

Since the proposed SMs for SFSs are based on the CI, they are
generalizations of the SMs that were given with the arithmetic and
weighted average in the literature.

Unlike the WAM, the CI models the interaction between
criteria. Therefore, proposed SMs are more sensitive.

2-additive FMs model the interaction between the criteria
with the help of the Mobius inverse. Therefore, the direction
and the magnitude of the interaction can be determined. In other
words, the Mobius inverse of a 2-additive FM in the fuzzy
environment corresponds to the correlation coefficient in the
real environment.

While calculating the proposed 2-additive Choquet SMs,
the decision-making process becomes shorter and easier, since
2-additive FMs facilitate the process of determining the measure.
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Figure 2
The SRCC for Example 4
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u}‘ci—ﬂriﬂ';‘:'
secr!

p € 21-add <)
sFcr?

W C2-add.S)
srcrt

6. Conclusion

This paper proposes new SMs based on the CI. Here, we use
FMs to characterize the interactions between the elements of a
particular universe of SFS and use the CI model instead of the
weighted average model to calculate the dimensions. To
demonstrate the efficiency of the proposed Choquet SMs, we also
apply them to pattern recognition problems from the literature and
then compare the result with the existing result. Most results are
consistent with past results. Consistency between these results is
supported by Spearman’s correlation coefficient. In the future,
similar SMs can be considered for other types of FSs and more
SMs such as Dice Similarity can be given in the same environment.
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