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1. Introduction

Our main focus is on multicriteria decision making and the
aggregation of inputs, two areas where a finite set of inputs need to
be combined into the overall representative value. In contrast to many
alternative ways of aggregating inputs, such as weighted means,
aggregations based on fuzzy measures allow to incorporate mutual
dependency of the inputs, their redundancy, and complementarity.
This makes fuzzy measures a valuable tool for modeling systems
where the inputs such as decision criteria are correlated.

Beliakov and others in Grabisch (1997) say: “What makes fuzzy
measures so valuable is their ability to model the various ways inputs
can interact, by assigning importance weights not just to individual
inputs, but to all coalitions C. Thus, an input may be unimportant
individually but gain importance in the presence of other inputs,
and vice versa. The central notion of monotonicity has important
semantics: increasing the value of any criterion (e.g., utility,
preference) cannot decrease the total aggregate value. The flexibility
of fuzzy measures when modeling interaction comes at a significant
cost: the exponential number of coalitions whose contributions need
to be quantified. This gives rise to two problems: their interpretation
and elicitation. If a fuzzy measure-based model is to be understood
by domain experts, the large number of capacity values need to be
combined into some sort of characteristic indices, such as the overall
importance of an input in all coalitions, or the overall interaction of
a pair of inputs. On the other hand, if a fuzzy measure is to be
specified, either by the experts or by machine learning techniques, it
has to be done through a few desirability criteria and in a
computationally efficient way”.

Various simplifications exist that reduce the large number
of parameters that characterize fuzzy measures. There are:
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1. Symmetric fuzzy measures. In this case, the Choquet integral
becomes the popular Ordered Weighted Averaging function.
The Sugeno integral with respect to symmetric fuzzy measures
also coincides with a special class of functions called the ordered
weighted maximum and minimum. 2. Authors sometimes present
a range of other simplification strategies called, collectively,
k-order fuzzy measures. Here, the interaction among the inputs
(in one sense or another) is limited to coalitions of smaller
cardinalities (up to k elements). This technique reduces the
number of parameters to be specified or learned, and sometimes
reduces the number of monotonicity constraints. The latter is
crucial for the development of efficient computational algorithms.
The problem of learning fuzzy measures from observed or desired
data is discussed and translated into optimization problems. In
particular, due to very large numbers of monotonicity and other
constraints, we prefer the formulation of the learning problem as a
linear programming problem. In this setting, we make use of
efficient numerical methods, which handle large and sparse
matrices of constraints. Still, larger numbers of decision criteria
require simplification strategies, and we present learning methods
based on k-order simplifications.

It is clear that often more convenient is to use nonadditive but
monotonous measures for presenting subjective expert assessments
(Denneberg, 1994; Dubois & Prade, 1988; Shafer, 1976; Sirbiladze
& Sikharulidze, 2003; Sirbiladze, 2013; Sugeno, 1974). The
nonadditivity of a fuzzy measure distinguishes it from the classical
measure, namely the probabilistic measure, by lacking many
important properties. The authors are researching the “probabilistic
properties” of a fuzzy measure (Ban & Gal, 2002; Sirbiladze, 2013,
2020; Sirbiladze & Gachechiladze, 2005; Sirbiladze & Zaporozhets,
2002), and probabilistic representations (Campos Ibafiez & Carmona,
1989; Murofushi & Sugeno, 1989; Sirbiladze, 2013, 2020; Sirbiladze
& Gachechiladze, 2005; Sirbiladze & Zaporozhets, 2002), which
give rise to new perspectives on the use of a monotone (fuzzy)
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measure. With this in mind, we consider a new measure, the Murofushi—
Sugeno probabilistic type representation—interpreter (Murofushi &
Sugeno,

1989).

Briefly, we consider a review of papers on fuzzy measure
non-additive  characteristics:  representations, identifications,
non-additivity, and deffectness indexes.

However, the aggregation process in MCDM is based on the
assumption that the criteria (attributes) or preferences of DMPs
are independent, and the aggregation operators are linear operators
based on additive measures, which are characterized by an
independence axiom (Dubois & Prade, 1988; Wakker, 1999). For
real decision-making problems, there is a phenomenon ensuring
that there exists some degree of interdependent or interactive
characteristics between criteria (Grabisch, 1995; Grabisch et al.,
2000; Wang & Klir, 1992). For a decision problem, DMPs invited
usually come from the same or similar fields. They have almost
similar knowledge, social status, and preferences. DMPs’
subjective preferences always show non-linearity. Independence
phenomena among these criteria and mutual preferential
independence of DMPs are violated. In 1974, Sugeno (1974)
introduced the concept of non-additive measure (monotone or
fuzzy measure), which only requires monotonicity instead of
additivity property. It is the most effective tool to model
interaction phenomena (Grabisch, 1995, 1996; Ishii & Sugeno,
1985; Kojadinovic, 2002) and deal with decision problems
(Grabisch, 1995, 1997; Grabisch et al., 2000) where a fuzzy
measure is used instead of a probability one. A review on
analyzing decision makers’ behavior using fuzzy measure theory
can be seen in (Liginlal & Ow, 2006).

There are several methods for the determination or
identification of a fuzzy measure. For instance, linear methods
(Marichal & Roubens, 1998), quadratic methods (Grabisch, 1996,
1996), methods based on Sugeno’s A-additive measures (Larbani
etal., 2011; Wang et al., 1998), heuristic-based methods (Grabisch,
1995), genetic algorithms (Wang et al., 1998) and so on. In Grabisch
et al. (2008) the discussion is focused on the usage of Choquet inte-
gral in some investigation of fuzzy measure identification method.
The robust optimization problems for the fuzzy measure identifica-
tion are presented in Timonin (2013). The latest papers on some of
the proposed methods to reduce the complexity of identifying some
of the fuzzy measure values are reviewed in Krishnan et al. (2015).

In Campos Ibafiez & Carmona (1989) and Campos Ibafiez et al.
(1990) a method to study a fuzzy measure utilizing certain sets of
associated probabilities has been developed. Distances on fuzzy
measures are defined through distances between associated
probabilities. Some important properties of Choquet finite integral
in terms of associated probabilities are proved.

The non-additivity index is a competent indicator of depicting
the kind and intensity of interaction among decision criteria. In this
paper, we focus on using the non-additivity index to represent the
decision maker’s preference information as well as the process of
transforming them into standard capacity. In Wu and Beliakov
(2018) and Wu and Beliakov (2020) authors discuss the
comparison and range representation forms of decision preference
information in terms of the non-additivity index and update the
inconsistency recognition models and adjustment strategies. Then
authors establish a non-additivity index oriented multiple goal
linear programming algorithm to find out the minimum deviation
capacities with relatively fewer concerns and efforts on
inconsistency adjustment. The illustrative example demonstrates
the feasibility and the flexibility of the proposed scheme and
methods. In Huang et al. (2020) authors adopt a kind of explicit
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interaction index, the non-additivity index, to construct two types
of quasi-random generation methods of capacity under a given
decision interaction preference. Compared to the existing random
generation algorithms, the methods have relatively satisfactory
performance on the statistics characteristic of generated capacities
but need rather less calculation effort on the generation process.
The authors also show the effectiveness of proposed quasi-random
generation methods by an illustrative decision example. Paper
(Beliakov & Divakov, 2020) examines the marginal contribution
representation of fuzzy measures, used to construct fuzzy measures
from empirical data through an optimization process. Authors have
shown that the number of variables can be drastically reduced, and
the constraints are simplified by using an alternative representation.
This technique makes optimizing fitting criteria more efficient
numerically and allows one to tackle learning problems with a
higher number of correlated decision criteria. In Generation of
Capacities and its Application in Comprehensive Decision Aiding
(2020) authors have proposed the concepts of k-order additive
fuzzy measure, including usual additive measures and fuzzy
measures. It was proved that every finite fuzzy measure is a k-order
additive fuzzy measure for a unique k. A related topic of the fuzzy
measure is to introduce an alternative representation of fuzzy
measures, called the interaction representation, which extends the
Shapley value and interaction index, proposed by Murofushi.

In Section 2, necessary introductory definitions and some
fundamental facts are presented. New results by theorems on the
universal representation—interpreter of a fuzzy measure in the
environment of the Choquet integral (CI) and second-order dual
capacities are considered in Section 3. In Section 4, the main results
and future directions of studies of the presented problems are discussed.

2. Preliminaries

Definition 1. (Sugeno, 1974). Let (X, F) be any measurable space.
A monotone (fuzzy) measure is called a set function with real non-
negative values

v:F— R}

having the following properties:
i) v(@) =0, vX) < oo,
(i) IfH, K € F, H C K, then v(H) < v(K),

(iii) For any monotone sequence {H,}, H, € F, lim v(B,) = v(lim Hn).
A, Jim,

Definition 2. (Sugeno, 1974). A fuzzy measure v*: F — R{ is
called dual to the fuzzy measure v if VB € F

v¥(B) = v(X) — v(B°).

Denote by FM(F) a set of fuzzy measures defined on space (X, F)
and denote by CM (F) a set of classical measures defined on the same
space, while M(F) denotes F-measurable functions and M(F)*
denotes nonnegative measurable functions.

Definition 3. (Choquet, 1954). Let g € M(F)" be a function and
v € FM(F) be a fuzzy measure. The CI is defined as

def+o00

(€0 [av = | vytryar, )

0
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where v (r) = v({y € X/g(y) > r}), r>0, dris the Lebesgue ) o ¢8,
measure on [0; +00l. (ii) IfH € E and (H C K € F), then K € E.

Definition 4. (Choquet, 1954). Let g € M(F) be a function and
v € FM(F) be a fuzzy measure. The CI is defined as

(CI) Jgdv = (CI) Jg+dv —(CI) Jg_dv*,

where gt =gV 0, g~ =—(gN0).

Remark 1. Ifthe difference in formula (2) represents co — oo, then
the CI is not defined.

Definition 5. (Denneberg, 1994).

1. The fuzzy measure v:F — R} is called k-monotonous
(k>2, keN), if for any sets By,...,B; € F the following
inequality

k
v(UBZ> > —1)”u<ﬂB,) >0 3)
=1 JC{1,...k} lel

is valid.

2. A measure v is called completely monotonous if
Vk € N, k > 2, it is k-monotonous.

Definition 6. (Choquet, 1954). The k = 2-monotonous fuzzy
measure is called the Choquet second-order lower capacity (SOLC),
and its dual fuzzy measure v'is called the upper capacity (SOUP).

Clearly, the Choquet second-order dual capacities satisfy the
following inequalities VH, K € F

vHUK)+v(HNK) >
v (HUK) +v'(HNK) <

v(H) + v(K),
v (H) + v (K).

Definition 7. (Murofushi & Sugeno, 1989). Let (X, Fx) and
(Y, F,) be measurable spaces.

4

(1) A mapping ® : Fx — Fy is called an interpreter from Fx to
Fy, if the following conditions are true
i) (@) =0,
(ii) IfH, K € Fx, H C K, then ©®(H) C O(K).

(2) A triplet (Y, Fy, ©) is called a frame of the space (X, Fx), if
@ is an interpreter from Fx to Fy.

(3) Let (X, Fx, v) be any fuzzy measure space. A cortege
(Y, Fy, m, ©) is called a representation—interpreter of a
fuzzy measure v from Fy to Fy if m:Fy — [0;4+00) is a
classical measure and

v=mo® (VC € Fy, v(C) = m(0(QC))). (5)

Definition 8. (Murofushi & Sugeno,

nonempty class of sets from (X, Fx). E
the following conditions:

1989). Let E be some
is a semifilter if it satisfies

Let Sy denote a set of all semi-filters in (X, Fy). Let us introduce a
mapping Oy : Fx — 25 as follows: VC € Fy
Ox(C) = {0 € S¢/C € 0} 6)

Definition 9. A cortege (Sy, 2%, Oy) is called a universal frame of
the space (X, Fy).

Let us consider some theorems that are proved in Murofushi and
Sugeno (1989).

Theorem 1. (Murofushi & Sugeno, 1989). Let v € FM(Fx) be a
fuzzy measure. There exists a classical measure m € M(2%), for
which (Sy, 2%, m, ®y) is a representation—interpreter of a fuzzy
measure v.

Definition 10. Let (Y, F,, m, ®) be a representation—interpreter
of a fuzzy measure v € FM(Fy); g € M(Fx)t be a nonnegative
function. An interpreter of a function g induced by mapping WV is
called a measurable function Fx:

i:Y = Ri,Vy €Y, ig(y)

—sup{r>0/ycO(fxeX/gx) >N} O

Theorem 2. (Murofushi & Sugeno, 1989). Let (Y, F,, m, ®)bea

representation—interpreter of a fuzzy measure v € FM(Fy);
§ € M(Fx)" be any function and i, be its interpreter induced by a

mapping O, then

(CI)Jg dv= Jig dm. (8)

Remark 2. (8) represents an interpretation of the CI by the Lebesgue
integral.

Corollary 1. Let v € FM(Fx) be a fuzzy measure. For v, there

exists a classical measure m = my my : 2% — R{, such that for
any function g € M(Fx)™"

v=myxo®y, (CI) Jg dv = Jigdmx. 9)

3. Universal Representation—Interpreter of a Fuzzy
Measure

Definition 11. For any classical measure my € M(Fx), a repre-
sentation

(Sy, 2%, my, Oy) (10)

is called universal representation—interpreter of a fizzy measure v.

Remark 3. In the universal representation from the quadruplet,
only my depends on v by the equality: VB € Fy, v(B) = m,(Ox(B)).
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In this article, we aim at consideration of some properties of
universal representation—interpreter. Let us consider some theorems,
particular cases of which are shown in Sirbiladze and Zaporozhets
(2002) and Sirbiladze (2013).

Let (X, F, v) be a space of fuzzy measures. Let CM(F, v) be a
set of all classical measures m, : 255 — R from the interpreter (10)
and CM(F, v*) be a set of classical measures m} corresponding to a
dual measure v*.

Theorem 3. Fuzzy measures v,v* € FM(F) are dual if and
only if for any classical measures VYmy € CM(Fy, v) and
Vmy € CM(Fx, v*) and VB € F:

my (Wx(B)) = mi (O (BY)). (11)

Theorem 4. A pair of dual fuzzy measures v,v* € FM(F) are
accordingly Choquet SOLC and SOUC if and only if
Vmy € CM(F, v) and Vmy € CM(F, v*) classical measures and
VH, K € F:

my(Ox(H UK)) > mx(0x(H) U Ox(K)),
(12)
my(@x(H) U Ox(K)).

Theorem 5. Let v, v* € FM(F) be a pair of dual fuzzy measures
and g, g € M(F) be any functions for which there exists the CI
with respect to fizzy measures v and v*. Then,

(1) There exists the CI for function g, + &;

(2) The dual fuzzy measures v and v* are the Choquet SOLC and
SOUC then, and only then, if:

(€0 [t + v = (1) [ v+ (D) [ g
(13)

o) J(g1 + g)dv* < (CI) J qdv' + (CI) J gdv.

Remark 4. If for a fuzzy measure v € FM(Fy) the normalization
condition is v(X) = 1, then the classical measure in its representa-
tion—interpreter is a probability measure (m(X) = 1).

4. Conclusions

For any fuzzy measure, its universal interpreter-representations
(Sx, 2%, my, Ox) turned out to be a class that fully describes the
important properties of a fuzzy measure as well as the fairly common
measures — the Choquet second-order capacities. In order to develop
future research, we will discuss a new representation-interpreter
entropy and its main features in the study of expert knowledge streams.
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