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Abstract: Machine learning (ML) is rapidly evolving, leading to numerous theoretical advancements and widespread applications across
multiple fields. The goal of ML is to enable machines to carry out cognitive tasks by acquiring knowledge from past encounters and
resolving intricate issues despite varying circumstances that deviate from previous instances. Supervised learning (SL) being one of the
most popular type of ML has become an area of significant strategic importance due to its practical applications, data collection, and
computing power’s exponential growth. On the other hand, optimization is a crucial component of ML that has garnered significant
attention from researchers. Numerous proposals have been made one after another for solving optimization problems or enhancing
optimization techniques in the field of ML. A comprehensive review and application of optimization methods from the perspective of
ML is crucial to guide the development of both optimization and ML research. This paper presents information specifically on the area
of SL and a wide range of optimization methods, applied in conjunction to address various scientific issues. Additionally, this paper
explores some of the challenges and open problems in optimizing SL models.
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1. Introduction

Machine learning (ML) is a subset of artificial intelligence
which focuses on creating algorithms and statistical models that
allow computers to acquire knowledge from data without
requiring explicit programming. These algorithms and models are
used to make predictions, classify data, and identify patterns in
large datasets. It makes use of statistical methods to allow
computers to gain expertise and become better at a particular job
(Alpaydin, 2020; Simeone, 2018).

As one of the most prevalent types of ML, supervised learning
(SL) has undergone rapid innovation and is used in numerous real-
world applications. Over the years, researchers have been trying to
maximize the solution quality in various real-life applications
including the field of ML where the model performance is being
optimized (Chong & Zak, 2013; Maier et al., 2019).

On the other hand, it is a general practice that the parameters
involved in ML are being optimized with the help of suitable
optimization techniques. These techniques are predominantly
employed to minimize the error rate, which denotes the disparity
between the predicted output and the actual output. Some common
optimization techniques used in ML include gradient descent (GD)
(Khasanov & Primqulov, 2021; Mustapha et al., 2020), stochastic
gradient descent (SGD) (Bottou, 2010, 2012), and conjugate
gradient methods (Hager & Zhang, 2006; Nazareth, 2009). These
optimization techniques are also frequently used to solve various

types of SL algorithms, such as linear and nonlinear regression,
support vector machines (SVMs), and neural networks. GD is a
widely used optimization algorithm in ML. It is used to minimize
the error in a model by adjusting the parameters of the model. SGD
is a variant of GD that uses random samples of the data to
update the parameters of the model. For training models with a
large number of parameters, the optimization approach known
as the conjugate gradient is frequently employed in ML.
It is particularly useful for large-scale optimization problems, as it is
computationally efficient. In addition to these algorithms, there are
also other important optimization techniques such as evolutionary
algorithms (Vikhar, 2016; Yu & Gen, 2010) and Bayesian
optimization (BO) (Snoek et al., 2012; Wu et al., 2019), which are
used in ML for specific tasks such as anomaly detection,
hyperparameter optimization, and antenna designing (Zhou et al.,
2020). The selection of an optimization technique is reliant on both
the problem at hand and the algorithm being used. Eventually,
understanding the advantages of different optimization techniques
and their limitations plays a crucial role in selecting the best
problem-specificmethod that can provide optimal performance inML.

It is observed from the literature that quite a good amount of
research works on optimization algorithms used in ML
perspectives were cited in the last few decades. However, the
works are being presented in a scattered manner over the years.
An attempt has been made in this paper to make a critical review
specifically on SL method that could make a sense for the future
researchers to proceed with the past knowledge. This paper
presents an updated and systematic review of the optimization
algorithms used in SL perspectives.
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This paper is structured into the subsequent sections. Section 2
provides a concise overview of the correlation between SL
techniques and optimization algorithms. Section 3 discusses various
problems related to optimization in SL and explains how frequently
used optimization techniques are utilized to handle those problems.
Finally, Section 4 concludes this paper by addressing the challenges
and unresolved issues in the field of SL and optimization.

Figure 1 describes the categorization of SL into two main
domains, and the detailed explanation is discussed in the subsequent
section.

2. The Interplay of SL Techniques and
Optimization Algorithms

The growing advantages ofML and optimization techniques are
yet successfully applied in the field of medical sciences, social
sciences, environmental sciences, industries, agricultural sciences,
and engineering. The ML mechanism basically depends on
various mathematical and statistical models. These models are
useful in analyzing vast quantities of data, identifying patterns,
and making predictions or decisions, enabling ML models to
improve their performance over time.

Moreover, SL is a ML approach that involves training a model
on data that has already been labeled, with the objective of enabling
the model to predict outcomes for new, unseen data. In SL, we have
inputs x (features) and y (targets), and we find a mapping
h : X ! Y ; x 2 X and y 2 Y (Nasteski, 2017; Ng, 2000). There
are a wide variety of fields where SL is useful, including

(i) Predictive modeling: Predictive models can be constructed
using SL techniques for various problems like stock prices
(Panwar et al., 2021; Vijh et al., 2020), housing prices (Ho
et al., 2021; Soltani et al., 2022), and weather forecasts
(Paras et al., 2009; Zhao et al., 2021).

(ii) Classification: SL algorithms are widely used for classification
tasks, such as spam filtering (Navaney et al., 2018) and
sentiment analysis (Balahur & Turchi, 2014; Pannala et al.,
2016).

(iii) Regression analysis: SL algorithms can also be used for
regression analysis, which predicts continuous values based
on input data, such as stock prices, housing prices, and
energy consumption (Shin & Woo, 2022).

(iv) Automated decision-making: SL algorithms can be used to
automate decision-making processes, such as loan approval
(Faisal et al., 2021; Joshi et al., 2019), fraud detection (Patil
et al., 2021; Shivagangadhar et al., 2015; Tax et al., 2021),
and medical diagnosis (Kumar et al., 2021; Solanki et al.,
2021; Suresh et al., 2022).

In the field ofML, SL is a critical area that is extensively studied
and considered to be of utmost importance due to its significant role
in numerous practical applications. Figure 2 shows the flow of SL.

Supervised ML encompasses various types of learning
algorithms, including the following:

(i) Linear regression: Linear regression (Montgomery et al., 2021;
Wu, 2022) is a statistical technique used in SL that aims to model
the connection between one (or more) independent variables and
a dependent variable and by finding a linear equation that best fits
the data.

To minimize the sum of the squared errors, the model tries to fit
a straight line to the data. It is one of the most widely used and simple
models in ML.

The basic equation for simple linear regression is

y ¼ hw;b xð Þ ¼ wx þ b (1)

where y is the dependent variable, x denotes the independent varia-
ble, w stands for slope of the line, and b represents y intercept.

For multiple linear regression, the equation becomes

y ¼ h~w;b ~xð Þ ¼ ~w:~x þ b (2)

where y denotes the dependent variable, ~x ¼ x1; x2; . . . ; xn½ �
denotes the feature vector of independent variables, and
~w ¼ w1;w2; . . . ; wn½ �; b are the regression coefficients or parame-
ters of the model that show the effect of each predictor on the depen-
dent variable, the operation here is the dot product of linear algebra.

In order to determine the best-fitting line or hyperplane, the model
employs a cost function (Lubis et al., 2014) that measures the difference
between the predicted values and the actual values of the dependent
variable. Linear regression seeks to minimize this cost function.

The application of linear regression in SL is widespread. It is
used in various fields like finance (Dixon et al., 2020); economics
(Athey & Imbens, 2019; Storm et al., 2020); social sciences
(Boelaert & Ollion, 2018; Hindman, 2015); and engineering
(Khurana et al., 2016; Myers et al., 2012). Some examples of
applications of linear regression include: predicting stock market
prices and other marketing policies (Liu, 2022; Panwar et al.,
2021; Vijh et al., 2020); forecasting sales (Kohli et al., 2021);
medical diagnosis (Welsch & Kuh, 1977); and climate modeling
(Hadley et al., 2006; Monteleoni et al., 2011).

Figure 1
Category of SL

Figure 2
Process of SL
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(i) Logistic regression: It is a statistical modeling technique for
predicting binary outcomes (usually 0 or 1). It is potent and exten-
sively used in data science and for a variety of applications, like
fraud detection (Itoo& Singh, 2021; Sahin&Duman, 2011), spam
filtering (Alberto et al., 2015; Dedeturk&Akay, 2020), and disease
diagnosis (Cui et al., 2021; Li et al., 2022; Xiao et al., 2021).

The sigmoid function (also called logistic function) forms the
basis of the logistic regression model, which transforms the linear
equation into a probability estimate.

The logistic regression model is

h~w;b ~xð Þ ¼ 1

1þ e� ~w:~xþbð Þ (3)

where~x; ~w, and b are same as described in the context of equation (2)
above. It takes features~x and outputs a number between 0 and 1 by
setting a suitable threshold value. The interpretation of logistic
regression output is the probability that the class is 1 or positive.

The logistic regression model estimates the values of~w and b by
minimizing a loss function. Cross-entropy loss function (Ruby &
Yendapalli, 2020; Sypherd et al., 2019) is a frequently employed loss
function in logistic regression which is also known as the log loss.
There are several numerical optimization techniques available, rang-
ing from basic GD to more intricate second-order methods, which
could be employed to ascertain the optimal parameter values (Sapu-
tro & Widyaningsih, 2017; Zou et al., 2019).

Moreover, to prevent overfitting and optimize the logistic
regression model, it is possible to conduct variable selection by
retaining only the most relevant subsets of x variables in the model,
as suggested in Hastie et al. (2009). This can be achieved through
heuristic techniques like forward selection or backward elimination,
which involve adding or removing variables depending on the stat-
istical importance of their estimated coefficients. Although interac-
tion terms can be included to make the model more complex, doing
so may increase the risk of training data overfitting.

Once trained, the logistic regression model has the capability to
forecast fresh data by calculating the probability of a positive outcome
given the values of the independent variables. If the probability goes
over a specific threshold, generally 0:5, themodel anticipates a positive
outcome; otherwise, it predicts a negative outcome.

Over other classification algorithms, logistic regression has
many advantages. It is simple to implement, computationally
efficient, and can handle a large number of independent variables.
Logistic regression enables researchers to determine the
significance of each independent variable, thereby identifying the
key factors that influence the outcome.

However, logistic regression has some limitations. It assumes
that the independent variables are linearly related to the log odds
of the positive outcome, and that the relationship is constant
across all levels of the independent variables. Logistic regression
also makes assumptions that the observations are independent of
one another, and that the independent variables do not have
multicollinearity. Finally, logistic regression is not appropriate for
predicting outcomes with more than two categories, and an
alternative for this is multinomial logistic regression (El-Habil,
2012; Hosmer Jr et al., 2013; Kwak & Clayton-Matthews, 2002).

(ii) Decision Trees (DTs):ADT is a popular MLmodel utilized for
classification and regression analysis (Myles et al., 2004). In a
classification problem, the goal is to predict a discrete class
label for a given input. In a regression problem, the goal is to
predict a continuous value for a given input. DTs can also be

used for feature selection, where the most important features
are selected based on their information gain.

The mechanism of building a DT involves the following steps:
feature selection, node creation, recursion, and leaf node. For
building DTs, there are various algorithms, like ID3 (Hssina et al.,
2014; Singh & Gupta, 2014); C4.5 (Chauhan & Chauhan, 2013;
Hssina et al., 2014; Singh & Gupta, 2014); CART (Aziza et al.,
2019; Rutkowski et al., 2014; Singh & Gupta, 2014); and random
forest (RF) (Breiman, 2001).

A technique for finding provably optimal DTs was suggested in
Bertsimas and Dunn (2017), but its intricacy grows exponentially
with the tree’s depth. The paper (Günlük et al., 2021) offers a
substitute formulation for optimal DTs that is specialized for
categorical features, exploiting the combinatorial structure of this
type of data to improve computational performance. Their
approach is limited to binary classification and a fixed structure
for the tree, which lowers the amount of computational work
needed to solve the optimization problem. Both models, however,
only consider one variable at each node in the DT to enhance
computational performance. Data analysts often favor using single
DT models due to their strong interpretability, but the accuracy of
the model can be significantly enhanced by incorporating multiple
DTs. The paper (Mišić, 2020) introduced a tree ensemble mixed
integer optimization model as a recent solution to this issue.

DTs have some limitations such as overfitting and instability,
which can be mitigated by pruning and ensemble methods. Pruning
(Almuallim, 1996; de Marchi et al., 2023) involves removing nodes
that do not add value to the model’s accuracy, while ensemble
methods combine multiple DTs to create a more robust model.

(iii) Random Forest: RF is a highly effective ML algorithm that
finds widespread usage in classification (Cutler et al., 2007;
Paul et al., 2018), regression (Li, 2013; Svetnik et al.,
2003), feature selection (Menze et al., 2009; Nguyen et al.,
2013; Sylvester et al., 2018), and other SL tasks such as
predicting the heart disease risk based on medical data
(Jabbar et al., 2016; Wang et al., 2023), predicting stock
prices based on financial data (Khaidem et al., 2016;
Sadorsky, 2021), and predicting customer churn based on
marketing data (Kiguchi et al., 2022; Ullah et al., 2019).
Recently, it is also used in remote sensing (Belgiu &
Drăguţ, 2016), body motion detection (Kianoush et al.,
2023), and genetics (Murgas et al., 2023). It is an ensemble
learning method where multiple DTs are combined to
develop a more accurate and robust model. RF is
particularly useful when dealing with high-dimensional
data, where the number of features is much larger than the
number of samples.

In RF, optimization is significant, particularly in the
construction of the individual DTs. Each DT is built by selecting
the best split at each node based on some optimization criteria.
The most commonly used optimization criteria in RF are Gini
impurity and entropy, which measure the purity of the split based
on the distribution of class labels in the data (Mohapatra et al., 2020).

Optimization is also used in RF for tuning of hyperparameters.
Hyperparameters are parameters that are specified prior to training
the model and have an impact on its performance. Examples of
hyperparameters in RF include the maximum depth of each tree, the
number of trees, and the number of features used for each split.
Hyperparameter tuning entails determining the hyperparameters’
optimal values to get the model’s optimum performance on a
validation set (Probst et al., 2019; Sun et al., 2020).
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(iv) Linear Discriminant Analysis (LDA): LDA, a popular SL
method in ML and pattern recognition, finds a linear combination
of features that separates two or more data classes. Finding a
decision boundary between classes that maximizes their
separation is the primary objective of LDA. LDA achieves this
by projecting the high-dimensional feature space onto a lower-
dimensional subspace where the class separation is maximized.

Themathematical formulation of LDA involves finding the linear
discriminant function y xð Þ thatmaps aD-dimensional input vectorx to
a scalar value y. Finding the projection that maximizes the ratio of
between-class variance to within-class variance is the aim.

The linear discriminant function for LDA is given by

y xð Þ ¼ wTxþ b (4)

where x is a vector of input features,w is a weight vector that defines
the direction of the decision boundary, and b is a bias term that shifts
the decision boundary. The weight vector and the bias term are
chosen to maximize the separation between the classes. The math-
ematical operations are discussed in the paper (Balakrishnama &
Ganapathiraju, 1998; Tharwat et al., 2017).

The role of optimization in LDA is critical as it helps to estimate
the model parameters that maximize the separability of the classes.
With optimization we find the optimal linear discriminant function
that can separate the classes in the data with maximum margin. It
involves finding the values of the parameters that minimize the
within-class scatter and maximize the between-class scatter. This
is done by finding the eigenvectors of the scatter matrices that
correspond to the largest eigenvalues. The eigenvectors represent
the directions along which the data are most separable.

While LDAand principal component analysis (PCA) bothmethods
involve transforming the input features into a lower-dimensional space,
they have different objectives and work in different ways.

PCA seeks to capture the most important patterns in the data by
finding a set of orthogonal axes (principal components) that
maximize the variance of the data when projected onto those axes.
The principal components are computed by finding the
eigenvectors of the covariance matrix of the data. On the other
hand, LDA seeks to find a linear combination of the input features
that can best separate the classes in the data.

The primary distinction between PCA and LDA is that PCA is
an unsupervised method that does not take into account the class
labels of the data, whereas LDA being a supervised method is
more robust as it uses the class labels to find the best discriminant
functions (Belhumeur et al., 1997).

However, LDA has some limitations; it assumes that the
covariance matrix is the same for all classes, which may not be
true in practice. It also assumes that the decision boundary is
linear, so it may not work well for data that are not linearly
separable. In such cases, nonlinear discriminant analysis
algorithms like quadratic discriminant analysis or support vector
machines may be more appropriate. The assumption of normal
distribution of the data is also a limitation of LDA.

(v) Support Vector Machines: SVM (Cristianini & Shawe-Taylor,
2000) is a potent SL algorithm that has extensive usage in ML for
classification (Awad & Khanna, 2015; Pal & Mather, 2005;
Vijayarani & Dhayanand, 2015) and regression tasks (Brereton
& Lloyd, 2010). It is particularly useful for tasks that involve
data that cannot be easily separated by a simple linear boundary.
SVMs can handle complex decision boundaries and can work
with high-dimensional data with a relatively small sample size.

To find a hyperplane in the feature space that maximally
separates the different classes of data is the fundamental tenet of
SVM. The hyperplane is chosen such that it maximizes the
margin between the different classes of data. Finding the
hyperplane that maximizes this margin is the purpose of SVM.

However, inmany cases, the data are not linearly separable, andSVM
needs to find a nonlinear decision boundary that separates the classes of
data. This is achieved by transforming the feature space into a higher-
dimensional space using a kernel function. The kernel function maps the
input space into a feature space where it is simpler to get a linear
decision boundary. The most popular kernel functions include the linear,
polynomial, radial basis function (RBF), and sigmoid functions (Hearst
et al., 1998; Noble, 2006; Steinwart & Christmann, 2008).

SVM is closely linked to optimization, as it involves finding the
hyperplane that maximizes the margin between the classes of data.
This optimization problem is a quadratic programming problem,
which involves minimizing a convex quadratic function subject to
linear constraints. The problem of quadratic programming can be
handled with a variety of optimization algorithms, such as the
sequential minimal optimization algorithm or the GD algorithm
(Scholkopf & Smola, 2018; Shawe-Taylor & Sun, 2011).

(vi) k-Nearest Neighbors (k-NN): k-NN is a simple yet powerful
algorithm with strong applications in classification (Adeniyi
et al., 2016; Guo et al., 2003), regression (Goyal et al., 2014;
Kohli et al., 2021), and recommendation problems (Adeniyi
et al., 2016; Singh et al., 2020a). It is an instance-based
learning approach, where the algorithm learns by storing the
entire training dataset and using it to make predictions for
new instances (Guo et al., 2003, Zhang & Zhou, 2007).

The k-NN algorithm has a few important parameters, including the
distancemetric used tomeasure the distance between the data points, the
value of “k,” and how the algorithm handles ties (e.g., when there is an
equal number of neighborswith different class labels). These parameters
can be tuned to achieve better performance on different datasets.

k-NN has a number of advantages as a ML algorithm, including
its simplicity, interpretability, and ability to handle nonlinear decision
boundaries. It also does not require any training time, since it simply
stores the entire training dataset, making it a good choice for small- to
medium-sized datasets. However, k-NN can be computationally
expensive for larger datasets, and its performance can degrade if the
dataset contains irrelevant or noisy features.

In addition to ML, k-NN can also be used in optimization
problems. For example, k-NN can be used in the field of logistics
to optimize delivery routes (Mohammed et al., 2017). Given a set
of delivery locations, k-NN can be used to find the “k” nearest
neighbors for each location and then use that information to group
the delivery locations into clusters that can be efficiently serviced
by a single delivery vehicle.

(vii) Naïve Bayes: It is a prevalent probabilistic ML algorithm for
classification tasks (Farid et al., 2014), such as text
classification (Kim et al., 2006), and is popularly used as a
classifier for making predictions in healthcare industries
(Pattekari & Parveen, 2012; Vijayarani & Dhayanand, 2015).
It is based on Bayes’ theorem, which is a fundamental
principle of probability theory. The algorithm is considered
“Naïve” because it makes the assumption that the features
used in the classification are independent of each other, which
may not always be true in practice (Webb et al., 2010).

In terms of optimization, Naïve Bayes does not require an
explicit optimization step during training (Zhang, 2004).
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However, some optimization techniques can be used to improve its
performance. For example, Smoothing techniques, to avoid zero
probabilities (Cherian & Bindu, 2017; Kaur & Oberai, 2014).
Feature selection, to enhance the accuracy of the algorithm (Chen
et al., 2009, Dey Sarkar et al., 2014). Hyperparameter tuning,
hyperparameters can have a significant impact on how well Naïve
Bayes performs, so achieving the optimal values needs careful
tuning (Sasongko et al., 2019). Optimization techniques such as
grid search or randomized search can be used to systematically
search for the optimal values of these hyperparameters.

(viii) Neural networks: These are MLmodels that draw inspiration
from the structure and function of the human brain. They are
composed of interconnected nodes, or neurons, which process
and transmit information through a series of weighted
connections (Goodfellow et al., 2016).

The capability of neural networks to learn and advance via
training is one of its main features. During training, the network is
presented with a set of labeled examples, called a training set, and
adjusts the weights of the connections between neurons to
minimize the difference between the predicted output and the true
output. The importance of optimization in neural networks is
fundamental, as it is the process by which the network learns to
make accurate predictions from input data. Optimization’s
objective is to adjust the network’s weights and biases in order to
minimize a chosen loss function. There are various optimization
algorithms that can be used to train neural networks, but one of
the most commonly used is SGD. In SGD, the weights and biases
of the network are updated iteratively based on the gradients of
the loss function with respect to these parameters. The gradients
are estimated using a small subset, or batch, of the training data,
which makes the computation more efficient (Kalimeris et al., 2019).

The key challenge in optimization for neural networks is to avoid
overfitting (Liu et al., 2008; Piotrowski&Napiorkowski, 2013), where
the network becomes too complex and starts to memorize the training
data rather than learning general patterns. This can be mitigated using
regularization techniques such as L1 or L2 regularization, dropout, or
early stopping. Another important aspect of optimization is the choice
of hyperparameters, like the number of epochs, batch size, and learning
rate. The hyperparameter configuration or optimization can be
achieved by using genetic algorithm (Aszemi & Dominic, 2019;
Johnson et al., 2020) or Gaussian process (Dernoncourt & Lee,
2016). These hyperparameters can have a substantial effect on network
performance and must be meticulously tuned for optimal results.

One common type of neural network is the feedforward neural
network (Bebis & Georgiopoulos, 1994), where the data flow in
one direction from input to output. Another type is the recurrent
neural network (Grossberg, 2013; Salehinejad et al., 2017), which
can process sequential data by allowing information to loop back
through the network. Convolutional neural networks (CNNs)
(Gu et al., 2018) are another type that are commonly used for image
and signal processing tasks (Chaudhary et al., 2019; Ratnasingam, 2019).

A variety of tasks have been successfully completed using
neural networks, including image recognition and natural
language processing (Wang et al., 2020; Wang & Gang, 2018),
speech recognition (Abdel-Hamid et al., 2012; Abdel-Hamid
et al., 2013), and predictive modeling (Singh et al., 2020b). They
have achieved state-of-the-art performance in many of these areas
and have become a key tool in the field of ML.

These are some of the most popularly employed algorithms
in supervised ML. The kind of problem at hand and the
characteristics of the data will determine which algorithm should
be performed. The approximate publication frequency of major
categories ML approaches over the last 5 decades is briefly
picturized in Figure 3.

Figure 3
Frequency analysis of published papers in ML and its variants at Google Scholar database
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3. Optimization Challenges in SL

Optimization challenges are present throughout the field of ML.
Nearly all ML algorithms can be represented as a problem of
optimization, where finding the extremum of a given objective function
is the primary aim. The creation of models and the development of
appropriate objective functions are crucial initial steps in the application
of ML methods. Once the objective function is established, appropriate
numerical or analytical or evolutionary optimization techniques are
typically employed to address the problem of optimization.

The objective in SL is to determine the optimal mapping
function h~w;b ~xð Þ that minimizes the loss function for the training
samples

min
~w;b

J ~w; bð Þ (5)

J w;!b
� � ¼ 1

m

Xm

i¼1

L h~w;b ~x ið Þ� �
; y ið Þ� �þ λ

2m

Xn

j¼1

wj
2 (6)

where~x ið Þ is the feature vector of ith training examples and y ið Þ is the
corresponding target, L is the loss function, J is the regularized cost
function, λ > 0 is the regularization parameter, m denotes the num-
ber of training examples, n is the number of features, and~w; b are the
model parameters.

Typically, the loss function for linear regression is

L h~w;b ~x ið Þ� �
; y ið Þ� � ¼ 1

2
h~w;b ~x ið Þ� �� y ið Þ� �

2 (7)

and the loss function for logistic regression is

L h~w;b ~x ið Þ� �
; y ið Þ� � ¼

� y ið Þlog h~w;b ~x ið Þ� �� �� 1� y ið Þ� �
log 1� h~w;b ~x ið Þ� �� � (8)

The objective is to determine the optimal ~w; b by minimizing
J ~w; bð Þ. To accomplish this, we will use a search algorithm that begins
with an initial estimate for ~w; b and repeatedly adjusts it to decrease
J ~w; bð Þ until we reach a ~w; b value that minimizes J ~w; bð Þ. There
are several algorithms that can be used in SL to find the value of
~w; b that minimizes the cost function; some of the most commonly
used algorithms include GD, SGD, mini-batch gradient descent, ordi-
nary least squares (OLS), conjugate gradient, Broyden–Fletcher–
Goldfarb–Shanno (BFGS), limited-memory BFGS (L-BFGS), and
Newton’s method. The choice of algorithm depends on the specific
problem being solved and the characteristics of the dataset.

Numerous distinct loss functions are used in SL in various types
of models and tasks; some of the most common ones include least
squares estimate (LSE), mean squared error, mean absolute error,
binary cross entropy, categorical cross entropy, hinge loss,
Kullback–Leibler divergence, cosine similarity loss, Wasserstein
loss, Poisson loss, focal loss, contrast loss, and information gain.

The LSE is the most frequently employed loss function for linear
regression. In this method, the goal of fitting a regression model is to
minimize the residual sum of squares between the predicted outputs
and the labels (Gambella et al., 2021). There are several algorithms
that can be used to compute the LSE for a linear regression model,
such as OLS (Craven & Islam, 2011), GD, SGD, ridge regression
(Hoerl & Kennard, 1970), Lasso regression (Ranstam & Cook,
2018; Roth, 2004), and elastic net (Zou & Hastie, 2005). The
choice of algorithm for computing the LSE relies on the particular
needs of the problem at hand, like the dataset’s size, the complexity
of the model, and the computational resources available. The LSE

is recognized for having the smallest variance out of all linear
unbiased estimates, and it can be solved through a closed-form
solution. Nonetheless, this option may not always be the best for
fitting because it can result in a model with poor predictive
accuracy due to high variance and may involve numerous non-zero
regression coefficients, which makes it less interpretable. Shrinkage
methods and linear dimension reduction (Gambella et al., 2021)
offer other possibilities instead of the LSE. Forward or backward
elimination are additional often employed techniques for variable
selection to prevent overfitting (Hastie et al., 2009).

Noise can interfere with how accurately statistical learning
techniques work during the process of collecting input data. To
account for noise in the features of linear regression problems, the
paper (Bertsimas & Copenhaver, 2018) introduced a model that
considers this factor. The study also explores the connection
between regularization and resilience to noise.

Creating linear regression models of superior quality necessitates
several desirable characteristics that are often conflicting and cannot be
executed simultaneously. The fitting process for linear regression
models proposed in paper (Bertsimas & King, 2016) takes into
account sparsity, selective sparsity, robustness to noisy data,
stability against outliers, modeler expertise, statistical significance,
and low global multicollinearity using mixed integer quadratic
programming. In addition, the paper (Bertsimas & Shioda, 2007)
explored mixed integer programming models for both regression
and classification, and the regression problem involves assigning
data points to clusters with identical regression coefficients.

Linear regression models have been extensively utilized in SL
to predict a numerical outcome since the early days of statistics.
Linear regression models are still relevant due to their simplicity,
wide range of applications, and ease of interpretability.
Specifically, in its most basic form, interpretability in ML refers
to the ability to explain the contribution of the inputs to the output
in a way that is understandable to humans, as discussed in Doshi-
Velez and Kim (2017). The distribution’s mode is a crucial data
summary and is often estimated using a non-parametric kernel
density estimator. The paper (Yao & Li, 2014) introduces a novel
tool for analysis of data, known as modal linear regression, to
investigate datasets with a large number of variables. To estimate
the regression coefficients, an expectation-maximization algorithm
was proposed. Asymptotic properties were offered for the
proposed estimator without assuming the error density is
symmetric. Experiments with both simulated and real data reveal
that the proposed modal regression produces narrower predictive
intervals compared to mean linear regression, median linear
regression, and method of moments estimators.

Linear regression models can be expanded by incorporating
nonlinear terms to capture more intricate relationships between
regressors and predictors. This leads to the development of nonlinear
regression models such as polynomial regression, local regression,
regression splines, exponential regression, step functions, and
smoothing splines. Some literature sources that discuss this topic
include Hastie et al. (2009); Gambella et al. (2021); and James et al.
(2013). When there is a nonlinear relationship between the
independent and dependent variables, nonlinear regression models
are employed. There are several algorithms that can be used to
estimate the parameters of a nonlinear regression model, such as
gradient-based optimization, Levenberg–Marquardt algorithm (Moré,
2006), nonlinear least squares (Dennis et al., 1981; Teunissen, 1990),
Bayesian methods, neural networks, and support vector regression
(Kavitha et al., 2016; Smola & Schölkopf, 2004).

Moreover, the quintessence of the recent papers on the interplay
of SL and optimization techniques is also presented in Table 1.
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Table 1
Gist of the recent papers on the association of optimization techniques and SL algorithms

Authors Year ML technique(s)
Optimization method(s) and
statistical/probabilistic tool(s) Key contribution/application

“V. Hoste, I. Hendrickx, W.
Daeleman, A. van den
Bosch” (Hoste et al., 2002)

2002 Feature weighting metrics (gain
ratio weighting, information
gain weighting, chi-squared
weighting, shared variance
weighting and log-likelihood
weighting), memory-based
learning (MBL) algorithms,
DT

Algorithm parameter
optimization

Word sense disambiguation
(WSD) for Dutch and English
language

“Jasper Snoek, Hugo
Larochelle, Ryan P.
Adams” (Snoek et al., 2012)

2012 Structured SVMs, CNN BO, Gaussian process, Markov
Chain Monte Carlo (MCMC),
gradient-based search,
covariance

Identified effective methods for
Bayesian optimization of ML
algorithms for hyperparameter
selection, development of new
algorithm such as GP EI
MCMC, GP EI per second,
N GP EI MCMC for
managing varying time
schedules and conducting
simultaneous experiments

“Jakub Konecny, H. Brendan
McMahan, Daniel Ramage”
(Konečný et al., 2016)

2016 L2-regularized logistic
regression, SVM

Federated optimization, GD,
SGD, stochastic variance
reduced gradient (SVRG),
distributed approximate
newton (DANE), expected
improvement (EI)

Developed a new distributed
optimization algorithm
Federated SVRG (FSVRG) for
the non-IID, unbalanced, and
massively distributed data

“Aaron Klein, Stefan Falkner,
Simon Bartels, Philipp
Hennig, Frank Hutter”
(Klein et al., 2017)

2017 SVMs, deep neural networks,
information gain, CNN,
residual neural network
(RNN)

MCMC, Gaussian process, EI,
entropy search (ES), multi-
task opportunistic Bayesian
optimization (MTOB),
hyperband, random search,
multi-task Bayesian
optimization (MTOB)

Introduced FAst Bayesian
Optimization on LArge data
Sets (FABOLAS) to accelerate
hyperparameter optimization

“Mohammad Noor Injadat,
Fadi Salo, Ali Bou Nassif,
Aleksander Essex, Abdallah
Shami” (Injadat et al., 2018)

2018 SVM with Gaussian kernel
(SVM-RBF), RF, and k-NN
algorithms

Bayesian optimization technique Presented how the Bayesian
optimization approach is used
to improve the effectiveness
of a technique for detecting
anomalies

“Pavas Navaney, Gaurav
Dubey, Ajay Rana”
(Navaney et al., 2018)

2018 Naïve Bayes algorithm, SVM
algorithm, maximum entropy
algorithm

Conditional probability,
probability rule for
independent events

The research analyzed the
recognition of spam and non-
spam (ham) messages through
the use of various supervised
ML algorithms. According to
the findings, the SVM
approach was the most
precise in differentiating
between ham and spam
messages, trailed by the Naïve
Bayes technique and lastly the
maximum entropy method

“Weimin Zhou, Hua Li, Mark
A. Anastasio” (Zhou et al.,
2019)

2019 CNN, single-layer neural
networks (SLNNs), ANN

MCMC, covariance matrices,
Gaussian, Laplacian, mixed
Poisson-Gaussian, receiver
operating characteristic
(ROC), MSE

Research was conducted to
examine SL approaches for
estimating the test statistics of
the ideal observer and
hotelling observer

“Jia Wu, Xiu-Yun Chen, Hao
Zhang, Li-Dong Xiong,
Hang Lei, Si-Hao Deng”
(Wu et al., 2019)

2019 RF, CNN, recurrent neural
network (RNN), multi-
grained cascade forest

BO, Gaussian process, grid
search, random search

An algorithm for tuning
hyperparameters of ML
models using Bayesian
optimization was introduced

(Continued)
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Table 1
(Continued )

Authors Year ML technique(s)
Optimization method(s) and
statistical/probabilistic tool(s) Key contribution/application

“Gyanendra Singh, Mahesh
Pal, Yogendra Yadav,
Tushar Singla” (Singh et al.,
2020a)

2020 DNN, back-propagation neural
network

Root mean squared error
(RMSE), correlation
coefficient, mean absolute
error (MAE), Gaussian
distribution, Adam

Used DNN model for prediction
of road accidents

“Deliang Sun, Haijia Wen,
Danzhou Wang, Jiahui Xu”
(Sun et al., 2020)

2020 RF, recursive feature
elimination

Bayes algorithm, random
sampling, Gaussian process

A RF model was created for
mapping the likelihood of
landslides occurring, and the
hyperparameters of the model
were optimized using the
Bayes algorithm

“Marco C. Campi, Simone
Garatti” (Campi & Garatti,
2020)

2020 SVM, support vector
regression (SVR), support
vector data description
(SVDD)

Convex optimization, joint
probability distribution, data-
driven optimization, stochastic
optimization, distributionally
robust optimization (DRO),
Gaussian distribution,
empirical distribution

Created a novel concept
regarding scenario
optimization with relaxation,
which can be utilized as a
tool for designing and
implementing solutions to ML
problems

“Lars Hertel, Julian Collado,
Peter Sadowski, Jordan Ott,
Pierre Baldi” (Hertel et al.,
2020)

2020 DNN GPyOpt algorithm, random
search, grid search, successive
halving, population-based
training, local search

Developed a robust
hyperparameter optimization
library for ML models:
Sherpa (code)

“Bilge Kagan Dedeturk,
Bahriye Akay” (Dedeturk &
Akay, 2020)

2020 Logistic regression Artificial bee colony (ABC) Proposed a novel spam filtering
approach

“Yogendra Singh Solanki,
Prasun Chakrabarti, Michal
Jasinski, Zbigniew
Leonowicz, Vadim Bolshev,
Alexander Vinogradov,
Elzbieta Jasinska, Radomir
Gono, Mohammad Nami”
(Solanki et al., 2021)

2021 Wrapper-based feature
selection, SVM, J48 (C4.5
DT algorithm), multilayer-
perceptron (MLP)
(a feed-forward ANN),
Naive Bayes, KNN, RF

PSO, genetic search, Greedy
stepwise, RMSE, Matthew’s
correlation coefficient (MCC),
Kappa statistics, MAE,
relative absolute error (RAE),
root relative squared error

A system that combines
supervised ML methods for
breast cancer prognosis has
been created. This system
uses feature selection
techniques and methods for
dealing with imbalanced data

“Xinchun Cui, Ruyi Xiao,
Xiaoli Liu, Hong Qiao,
Xiangwei Zheng, Yiquan
Zhang, Jianzong Du” (Cui
et al., 2021)

2021 Adaptive LASSO logistic
regression

PSO Suggested a new approach for
detecting Alzheimer’s disease
(AD)

“Mohsen Yoosefzadeh-
Najafabadi, Dan Tulpan,
Milad Eskandari”
(Yoosefzadeh-Najafabadi
et al., 2021)

2021 MLP, radial basis function
(RBF), RF, bagging strategy
(ensemble method), PCA

Coefficient of determination
R2ð Þ, MAE, RMSE, genetic
algorithm (GA), nearest
neighbor analysis (NNA), best
linear unbiased prediction
(BLUP), Pearson coefficient
of correlations

An application that uses ML
and genetic optimization
algorithms has been suggested
to model and improve the
yield of soybeans by focusing
on its component traits (data)

“Qingzhi Zhao, Yang Liu,
Wanqiang Yao, Yibin Yao”
(Zhao et al., 2021)

2021 SVM, SVR, radial basis
function (RBF) kernel, neural
network

Average RMSE, relative RMSE,
Lagrange multiplier, R2

The SVM algorithm was used to
develop a model called HRF
(hourly rainfall forecast)

“Majid Emami Javanmard,
S.F. Ghaderi” (Javanmard
& Ghaderi, 2022)

2022 ANN, autoregressive model
(AR), autoregressive
integrated moving average
model (ARIMA), seasonal
autoregressive integrated
moving average model
(SARIMA), seasonal
autoregressive integrated
moving average model with

PSO, grey wolf optimization
(GWO), stepwise regression
algorithm, mean absolute
percentage error (MAPE),
MAE, RMSE, normalized
root mean squared error
(NRMSE), RAE

Research has been done to use a
combination of ML
algorithms and an
optimization model to predict
greenhouse gas emissions
using energy market data,
creating a hybrid model

(Continued)

Journal of Computational and Cognitive Engineering Vol. 00 Iss. 00 2023

08



4. Conclusion

The use of mathematical programming is a crucial component
of manyMLmodels, as the process of training these models involves
solving large-scale optimization problems. Both the traditional and
evolutionary optimization techniques are being widely employed
to establish many milestones in the area of ML. However, there
are still challenges to handle the problems involving nonlinearity
of the models, uncertainty in the data, and the existence of larger
scale in the problem at hand. This paper mainly reviews
the optimization techniques and challenges in the field of SL.
A concise overview of the notable contributions in the aligned
field of research is being reported in a tabular form, at the end. It
can be concluded that among the research applications based on
the SL mechanism, the neural networks and SVM have gained
much attention of researchers and can be considered as the widely
used algorithms. Over the last few decades, researchers apply both
traditional (BO, Markov Chain Monte Carlo optimization, GD,
etc.) and nature-inspired (random search, ABC, PSO, GA, DE,
GWO, etc.) approaches to solve the SL problems. The study on
the application of such approaches ensures that there was a vast
implementation of nature-inspired approaches as compared to the
traditional techniques. Thus, possibly evolutionary techniques
might have a better capability in handling complex problems.

As a future scope, some efficient and robust optimization
technique along with unsupervised and reinforcement learning can
be synergized in SL to be applied in various real-time scenarios
like enhancing the quality of spam filtering, fraud detection, and
developing an improved version of K-Means clustering optimizer
to fine-tune the parameters in various fields like using thermal
imaging, IoT-based sensors to predict breast cancer, etc.
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