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Abstract: Machine learning (ML) is rapidly evolving, leading to numerous theoretical advancements and widespread applications across
multiple fields. The goal of ML is to enable machines to carry out cognitive tasks by acquiring knowledge from past encounters and
resolving intricate issues despite varying circumstances that deviate from previous instances. Supervised learning (SL) being one of the
most popular type of ML has become an area of significant strategic importance due to its practical applications, data collection, and
computing power’s exponential growth. On the other hand, optimization is a crucial component of ML that has garnered significant
attention from researchers. Numerous proposals have been made one after another for solving optimization problems or enhancing
optimization techniques in the field of ML. A comprehensive review and application of optimization methods from the perspective of
ML is crucial to guide the development of both optimization and ML research. This paper presents information specifically on the area
of SL and a wide range of optimization methods, applied in conjunction to address various scientific issues. Additionally, this paper
explores some of the challenges and open problems in optimizing SL models.
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1. Introduction

Machine learning (ML) is a subset of artificial intelligence which
focuses on creating algorithms and statistical models that allow
computers to acquire knowledge from data without requiring
explicit programming. These algorithms and models are used to
make predictions, classify data, and identify patterns in large
datasets. It makes use of statistical methods to allow computers to
gain expertise and become better at a particular job [1, 2].

As one of the most prevalent types of ML, supervised learning
(SL) has undergone rapid innovation and is used in numerous real-
world applications. Over the years, researchers have been trying to
maximize the solution quality in various real-life applications
including the field of ML where the model performance is being
optimized [3, 4].

On the other hand, it is a general practice that the parameters
involved in ML are being optimized with the help of suitable
optimization techniques. These techniques are predominantly
employed to minimize the error rate, which denotes the disparity
between the predicted output and the actual output. Some common
optimization techniques used in ML include gradient descent (GD)
[5, 6], stochastic gradient descent (SGD) [7, 8], and conjugate
gradient methods [9, 10]. These optimization techniques are also
frequently used to solve various types of SL algorithms, such as
linear and nonlinear regression, support vector machines (SVMs),
and neural networks. GD is a widely used optimization algorithm in

ML. It is used to minimize the error in a model by adjusting the
parameters of the model. SGD is a variant of GD that uses random
samples of the data to update the parameters of the model. For
training models with a large number of parameters, the optimization
approach known as the conjugate gradient is frequently employed
in ML. It is particularly useful for large-scale optimization
problems, as it is computationally efficient. In addition to these
algorithms, there are also other important optimization techniques
such as evolutionary algorithms [11, 12] and Bayesian optimization
(BO) [13, 14], which are used in ML for specific tasks such as
anomaly detection, hyperparameter optimization, and antenna
designing [15]. The selection of an optimization technique is reliant
on both the problem at hand and the algorithm being used.
Eventually, understanding the advantages of different optimization
techniques and their limitations plays a crucial role in selecting the
best problem-specific method that can provide optimal performance
in ML.

It is observed from the literature that quite a good amount of
research works on optimization algorithms used in ML
perspectives were cited in the last few decades. However, the
works are being presented in a scattered manner over the years.
An attempt has been made in this paper to make a critical review
specifically on SL method that could make a sense for the future
researchers to proceed with the past knowledge. This paper
presents an updated and systematic review of the optimization
algorithms used in SL perspectives.
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This paper is structured into the subsequent sections. Section 2
provides a concise overview of the correlation between SL
techniques and optimization algorithms. Section 3 discusses various
problems related to optimization in SL and explains how frequently
used optimization techniques are utilized to handle those problems.
Finally, Section 4 concludes this paper by addressing the challenges
and unresolved issues in the field of SL and optimization.

Figure 1 describes the categorization of SL into two main
domains, and the detailed explanation is discussed in the subsequent
section.

2. The Interplay of SL Techniques and
Optimization Algorithms

The growing advantages ofML and optimization techniques are
yet successfully applied in the field of medical sciences, social
sciences, environmental sciences, industries, agricultural sciences,
and engineering. The ML mechanism basically depends on
various mathematical and statistical models. These models are
useful in analyzing vast quantities of data, identifying patterns,
and making predictions or decisions, enabling ML models to
improve their performance over time.

Moreover, SL is a ML approach that involves training a model
on data that has already been labeled, with the objective of enabling
the model to predict outcomes for new, unseen data. In SL, we have
inputs x (features) and y (targets), and we find a mapping
h : X ! Y ; x 2 X and y 2 Y [16, 17]. There are a wide variety of
fields where SL is useful, including

1) Predictive modeling: Predictive models can be constructed
using SL techniques for various problems like stock prices [18,
19], housing prices [20, 21], and weather forecasts [22, 23].

2) Classification: SL algorithms are widely used for classification
tasks, such as spam filtering [24] and sentiment analysis
[25, 26].

3) Regression analysis: SL algorithms can also be used for
regression analysis, which predicts continuous values based on
input data, such as stock prices, housing prices, and energy
consumption [27].

4) Automated decision-making: SL algorithms can be used to
automate decision-making processes, such as loan approval
[28, 29], fraud detection [30–32], and medical diagnosis
[33–35].

In the field ofML, SL is a critical area that is extensively studied
and considered to be of utmost importance due to its significant role
in numerous practical applications. Figure 2 shows the flow of SL.

Supervised ML encompasses various types of learning
algorithms, including the following:

1) Linear regression: Linear regression [36, 37] is a statistical
technique used in SL that aims to model the connection
between one (or more) independent variables and a dependent
variable and by finding a linear equation that best fits the data.

To minimize the sum of the squared errors, the model tries to fit
a straight line to the data. It is one of the most widely used and simple
models in ML.

The basic equation for simple linear regression is

y ¼ hw;b xð Þ ¼ wx þ b (1)

where y is the dependent variable, x denotes the independent varia-
ble, w stands for slope of the line, and b represents y intercept.

For multiple linear regression, the equation becomes

y ¼ h~w;b ~xð Þ ¼ ~w:~x þ b (2)

where y denotes the dependent variable, ~x ¼ x1; x2; . . . ; xn½ �
denotes the feature vector of independent variables, and
~w ¼ w1;w2; . . . ; wn½ �; b are the regression coefficients or parame-
ters of the model that show the effect of each predictor on the depen-
dent variable, the operation here is the dot product of linear algebra.

In order to determine the best-fitting line or hyperplane, the model
employs a cost function [38] that measures the difference between the
predicted values and the actual values of the dependent variable. Linear
regression seeks to minimize this cost function.

The application of linear regression in SL is widespread. It is
used in various fields like finance [39], economics [40, 41], social
sciences [42, 43], and engineering [44, 45]. Some examples of
applications of linear regression include: predicting stock market
prices and other marketing policies [18, 19, 46], forecasting sales
[47], medical diagnosis [48], and climate modeling [49, 50].

Figure 1
Category of SL

Figure 2
Process of SL
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2) Logistic regression: It is a statistical modeling technique for
predicting binary outcomes (usually 0 or 1). It is potent and exten-
sively used in data science and for a variety of applications, like
fraud detection [51, 52], spam filtering [53, 54], and disease diag-
nosis [55–57].

The sigmoid function (also called logistic function) forms the
basis of the logistic regression model, which transforms the linear
equation into a probability estimate.

The logistic regression model is

h~w;b ~xð Þ ¼ 1

1þ e� ~w:~xþbð Þ (3)

where~x; ~w, and b are same as described in the context of Equation (2)
above. It takes features~x and outputs a number between 0 and 1 by
setting a suitable threshold value. The interpretation of logistic regres-
sion output is the probability that the class is 1 or positive.

The logistic regression model estimates the values of~w and b by
minimizing a loss function. Cross-entropy loss function [58, 59] is a
frequently employed loss function in logistic regression which is also
known as the log loss. There are several numerical optimization tech-
niques available, ranging from basic GD to more intricate second-
order methods, which could be employed to ascertain the optimal
parameter values [60, 61].

Moreover, to prevent overfitting and optimize the logistic
regression model, it is possible to conduct variable selection by
retaining only the most relevant subsets of x variables in the model,
as suggested in Friedman [62]. This can be achieved through heuris-
tic techniques like forward selection or backward elimination, which
involve adding or removing variables depending on the statistical
importance of their estimated coefficients. Although interaction
terms can be included to make the model more complex, doing so
may increase the risk of training data overfitting.

Once trained, the logistic regression model has the capability to
forecast fresh data by calculating the probability of a positive
outcome given the values of the independent variables. If the
probability goes over a specific threshold, generally 0:5, the model
anticipates a positive outcome; otherwise, it predicts a negative
outcome.

Over other classification algorithms, logistic regression has
many advantages. It is simple to implement, computationally
efficient, and can handle a large number of independent variables.
Logistic regression enables researchers to determine the
significance of each independent variable, thereby identifying the
key factors that influence the outcome.

However, logistic regression has some limitations. It assumes
that the independent variables are linearly related to the log odds
of the positive outcome, and that the relationship is constant
across all levels of the independent variables. Logistic regression
also makes assumptions that the observations are independent of
one another, and that the independent variables do not have
multicollinearity. Finally, logistic regression is not appropriate for
predicting outcomes with more than two categories, and an
alternative for this is multinomial logistic regression [63–65].

3) Decision Trees (DTs): A DT is a popular ML model utilized for
classification and regression analysis [66]. In a classification
problem, the goal is to predict a discrete class label for a given
input. In a regression problem, the goal is to predict a
continuous value for a given input. DTs can also be used for

feature selection, where the most important features are
selected based on their information gain.

The mechanism of building a DT involves the following steps:
feature selection, node creation, recursion, and leaf node. For
building DTs, there are various algorithms, like ID3 [67, 68], C4.5
[67–69], CART [68, 70, 71], and random forest (RF) [72].

A technique for finding provably optimal DTs was suggested in
Bertsimas and Dunn [73], but its intricacy grows exponentially with
the tree’s depth. The paper by Günlük et al. [74] offers a substitute
formulation for optimal DTs that is specialized for categorical
features, exploiting the combinatorial structure of this type of data
to improve computational performance. Their approach is limited
to binary classification and a fixed structure for the tree, which
lowers the amount of computational work needed to solve the
optimization problem. Both models, however, only consider one
variable at each node in the DT to enhance computational
performance. Data analysts often favor using single DT models
due to their strong interpretability, but the accuracy of the model
can be significantly enhanced by incorporating multiple DTs. The
paper by Mišić [75] introduced a tree ensemble mixed integer
optimization model as a recent solution to this issue.

DTs have some limitations such as overfitting and instability,
which can be mitigated by pruning and ensemble methods. Pruning
[76, 77] involves removing nodes that do not add value to the
model’s accuracy, while ensemble methods combine multiple DTs
to create a more robust model.

4) Random Forest: RF is a highly effective ML algorithm that
finds widespread usage in classification [78, 79], regression
[80, 81], feature selection [82–84], and other SL tasks such
as predicting the heart disease risk based on medical data
[85, 86], predicting stock prices based on financial data [87,
88], and predicting customer churn based on marketing data
[89, 90]. Recently, it is also used in remote sensing [91],
body motion detection [92], and genetics [93]. It is an
ensemble learning method where multiple DTs are combined
to develop a more accurate and robust model. RF is
particularly useful when dealing with high-dimensional data,
where the number of features is much larger than the number
of samples.

In RF, optimization is significant, particularly in the
construction of the individual DTs. Each DT is built by selecting
the best split at each node based on some optimization criteria.
The most commonly used optimization criteria in RF are Gini
impurity and entropy, which measure the purity of the split based
on the distribution of class labels in the data [94].

Optimization is also used in RF for tuning of hyperparameters.
Hyperparameters are parameters that are specified prior to training
the model and have an impact on its performance. Examples of
hyperparameters in RF include the maximum depth of each tree, the
number of trees, and the number of features used for each split.
Hyperparameter tuning entails determining the hyperparameters’
optimal values to get the model’s optimum performance on a
validation set [95, 96].

5) Linear Discriminant Analysis (LDA): LDA, a popular SL
method in ML and pattern recognition, finds a linear combination
of features that separates two or more data classes. Finding a
decision boundary between classes that maximizes their separation
is the primary objective of LDA. LDA achieves this by projecting
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the high-dimensional feature space onto a lower-dimensional
subspace where the class separation is maximized.

Themathematical formulation of LDA involves finding the linear
discriminant function y xð Þ thatmaps aD-dimensional input vectorx to
a scalar value y. Finding the projection that maximizes the ratio of
between-class variance to within-class variance is the aim.

The linear discriminant function for LDA is given by

y xð Þ ¼ wTxþ b (4)

where x is a vector of input features,w is a weight vector that defines
the direction of the decision boundary, and b is a bias term that
shifts the decision boundary. The weight vector and the bias term
are chosen to maximize the separation between the classes.
The mathematical operations are discussed by Balakrishnama and
Ganapathiraju [97] and Tharwat et al. [98].

The role of optimization in LDA is critical as it helps to estimate
the model parameters that maximize the separability of the classes.
With optimization we find the optimal linear discriminant function
that can separate the classes in the data with maximum margin. It
involves finding the values of the parameters that minimize the
within-class scatter and maximize the between-class scatter. This
is done by finding the eigenvectors of the scatter matrices that
correspond to the largest eigenvalues. The eigenvectors represent
the directions along which the data are most separable.

While LDAand principal component analysis (PCA) bothmethods
involve transforming the input features into a lower-dimensional space,
they have different objectives and work in different ways.

PCA seeks to capture the most important patterns in the data by
finding a set of orthogonal axes (principal components) that
maximize the variance of the data when projected onto those axes.
The principal components are computed by finding the
eigenvectors of the covariance matrix of the data. On the other
hand, LDA seeks to find a linear combination of the input features
that can best separate the classes in the data.

The primary distinction between PCA and LDA is that PCA is
an unsupervised method that does not take into account the class
labels of the data, whereas LDA being a supervised method is
more robust as it uses the class labels to find the best discriminant
functions [99].

However, LDA has some limitations; it assumes that the
covariance matrix is the same for all classes, which may not be
true in practice. It also assumes that the decision boundary is
linear, so it may not work well for data that are not linearly
separable. In such cases, nonlinear discriminant analysis
algorithms like quadratic discriminant analysis or support vector
machines may be more appropriate. The assumption of normal
distribution of the data is also a limitation of LDA.

6) Support Vector Machines: SVM [100] is a potent SL algorithm
that has extensive usage in ML for classification [101–103] and
regression tasks [104]. It is particularly useful for tasks that involve
data that cannot be easily separated by a simple linear boundary.
SVMs can handle complex decision boundaries and can work with
high-dimensional data with a relatively small sample size.

To find a hyperplane in the feature space that maximally
separates the different classes of data is the fundamental tenet of

SVM. The hyperplane is chosen such that it maximizes the
margin between the different classes of data. Finding the
hyperplane that maximizes this margin is the purpose of SVM.

However, in many cases, the data are not linearly separable, and
SVM needs to find a nonlinear decision boundary that separates the
classes of data. This is achieved by transforming the feature space
into a higher-dimensional space using a kernel function. The
kernel function maps the input space into a feature space where it
is simpler to get a linear decision boundary. The most popular
kernel functions include the linear, polynomial, radial basis
function (RBF), and sigmoid functions [105–107].

SVM is closely linked to optimization, as it involves finding the
hyperplane that maximizes the margin between the classes of data.
This optimization problem is a quadratic programming problem,
which involves minimizing a convex quadratic function subject to
linear constraints. The problem of quadratic programming can be
handled with a variety of optimization algorithms, such as the
sequential minimal optimization algorithm or the GD algorithm
[108, 109].

7) k-Nearest Neighbors (k-NN): k-NN is a simple yet powerful
algorithm with strong applications in classification [110, 111],
regression [47, 112], and recommendation problems [110, 113]. It
is an instance-based learning approach, where the algorithm learns
by storing the entire training dataset and using it to make
predictions for new instances [111, 114].

The k-NN algorithm has a few important parameters, including the
distancemetric used tomeasure the distance between the data points, the
value of “k”, and how the algorithm handles ties (e.g., when there is an
equal number of neighborswith different class labels). These parameters
can be tuned to achieve better performance on different datasets.

k-NN has a number of advantages as a ML algorithm, including
its simplicity, interpretability, and ability to handle nonlinear decision
boundaries. It also does not require any training time, since it simply
stores the entire training dataset, making it a good choice for small- to
medium-sized datasets. However, k-NN can be computationally
expensive for larger datasets, and its performance can degrade if the
dataset contains irrelevant or noisy features.

In addition to ML, k-NN can also be used in optimization
problems. For example, k-NN can be used in the field of logistics
to optimize delivery routes [115]. Given a set of delivery locations,
k-NN can be used to find the “k” nearest neighbors for each
location and then use that information to group the delivery
locations into clusters that can be efficiently serviced by a single
delivery vehicle.

8) Naïve Bayes: It is a prevalent probabilistic ML algorithm for
classification tasks [116], such as text classification [117], and is
popularly used as a classifier for making predictions in
healthcare industries [103, 118]. It is based on Bayes’ theorem,
which is a fundamental principle of probability theory. The
algorithm is considered “Naïve” because it makes the
assumption that the features used in the classification are
independent of each other, which may not always be true in
practice [119].

In terms of optimization, Naïve Bayes does not require an explicit
optimization step during training [120]. However, some optimization
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techniques can be used to improve its performance. For example,
Smoothing techniques, to avoid zero probabilities [121, 122].
Feature selection, to enhance the accuracy of the algorithm
[123, 124]. Hyperparameter tuning, hyperparameters can have a
significant impact on how well Naïve Bayes performs, so achieving
the optimal values needs careful tuning [125]. Optimization
techniques such as grid search or randomized search can be used to
systematically search for the optimal values of these hyperparameters.

9) Neural networks: These are ML models that draw inspiration
from the structure and function of the human brain. They are
composed of interconnected nodes, or neurons, which process
and transmit information through a series of weighted
connections [126].

The capability of neural networks to learn and advance via
training is one of its main features. During training, the network is
presented with a set of labeled examples, called a training set, and
adjusts the weights of the connections between neurons to
minimize the difference between the predicted output and the true
output. The importance of optimization in neural networks is
fundamental, as it is the process by which the network learns to
make accurate predictions from input data. Optimization’s
objective is to adjust the network’s weights and biases in order to
minimize a chosen loss function. There are various optimization
algorithms that can be used to train neural networks, but one of
the most commonly used is SGD. In SGD, the weights and biases
of the network are updated iteratively based on the gradients of
the loss function with respect to these parameters. The gradients
are estimated using a small subset, or batch, of the training data,
which makes the computation more efficient [127].

The key challenge in optimization for neural networks is to avoid
overfitting [128, 129], where the network becomes too complex and
starts to memorize the training data rather than learning general
patterns. This can be mitigated using regularization techniques such
as L1 or L2 regularization, dropout, or early stopping. Another impor-
tant aspect of optimization is the choice of hyperparameters, like the
number of epochs, batch size, and learning rate. The hyperparameter
configuration or optimization can be achieved by using genetic algo-
rithm [130, 131] or Gaussian process [132]. These hyperparameters
can have a substantial effect on network performance and must be
meticulously tuned for optimal results.

One common type of neural network is the feedforward neural
network [133], where the data flow in one direction from input to
output. Another type is the recurrent neural network [134, 135],
which can process sequential data by allowing information to loop
back through the network. Convolutional neural networks (CNNs)
[136] are another type that are commonly used for image and signal
processing tasks [137, 138].

A variety of tasks have been successfully completed using
neural networks, including image recognition and natural
language processing [139, 140], speech recognition [141, 142],
and predictive modeling [143]. They have achieved state-of-the-
art performance in many of these areas and have become a key
tool in the field of ML.

These are some of the most popularly employed algorithms
in supervised ML. The kind of problem at hand and the
characteristics of the data will determine which algorithm should
be performed. The approximate publication frequency of major
categories ML approaches over the last 5 decades is briefly
picturized in Figure 3.

Figure 3
Frequency analysis of published papers in ML and its variants at Google Scholar database
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3. Optimization Challenges in SL

Optimization challenges are present throughout the field ofML.
Nearly all ML algorithms can be represented as a problem of
optimization, where finding the extremum of a given objective
function is the primary aim. The creation of models and the
development of appropriate objective functions are crucial initial
steps in the application of ML methods. Once the objective
function is established, appropriate numerical or analytical or
evolutionary optimization techniques are typically employed to
address the problem of optimization.

The objective in SL is to determine the optimal mapping
function h~w;b ~xð Þ that minimizes the loss function for the training
samples

min
~w;b

J ~w; bð Þ (5)

J w;!b
� � ¼ 1

m

Xm

i¼1

L h~w;b ~x ið Þ� �
; y ið Þ� �þ λ

2m

Xn

j¼1

wj
2 (6)

where~x ið Þ is the feature vector of ith training examples and y ið Þ is the
corresponding target, L is the loss function, J is the regularized cost
function, λ > 0 is the regularization parameter, m denotes the num-
ber of training examples, n is the number of features, and~w; b are the
model parameters.

Typically, the loss function for linear regression is

L h~w;b ~x ið Þ� �
; y ið Þ� � ¼ 1

2
h~w;b ~x ið Þ� �� y ið Þ� �

2 (7)

and the loss function for logistic regression is

L h~w;b ~x ið Þ� �
; y ið Þ� � ¼

� y ið Þlog h~w;b ~x ið Þ� �� �� 1� y ið Þ� �
log 1� h~w;b ~x ið Þ� �� � (8)

The objective is to determine the optimal ~w; b by minimizing J ~w; bð Þ.
To accomplish this, we will use a search algorithm that begins with an
initial estimate for ~w; b and repeatedly adjusts it to decrease J ~w; bð Þ
until we reach a ~w; b value that minimizes J ~w; bð Þ. There are several
algorithms that can be used in SL to find the value of ~w; b that mini-
mizes the cost function; some of the most commonly used algorithms
include GD, SGD, mini-batch gradient descent, ordinary least squares
(OLS), conjugate gradient, Broyden–Fletcher–Goldfarb–Shanno
(BFGS), limited-memory BFGS (L-BFGS), and Newton’s method.
The choice of algorithm depends on the specific problem being solved
and the characteristics of the dataset.

Numerous distinct loss functions are used in SL in various types
of models and tasks; some of the most common ones include least
squares estimate (LSE), mean squared error, mean absolute error,
binary cross entropy, categorical cross entropy, hinge loss,
Kullback–Leibler divergence, cosine similarity loss, Wasserstein
loss, Poisson loss, focal loss, contrast loss, and information gain.

The LSE is the most frequently employed loss function for linear
regression. In this method, the goal of fitting a regression model is to
minimize the residual sum of squares between the predicted outputs
and the labels [144]. There are several algorithms that can be used
to compute the LSE for a linear regression model, such as OLS
[145], GD, SGD, ridge regression [146], Lasso regression [147,
148], and elastic net [149]. The choice of algorithm for computing
the LSE relies on the particular needs of the problem at hand, like
the dataset’s size, the complexity of the model, and the

computational resources available. The LSE is recognized for
having the smallest variance out of all linear unbiased estimates,
and it can be solved through a closed-form solution. Nonetheless,
this option may not always be the best for fitting because it can
result in a model with poor predictive accuracy due to high variance
and may involve numerous non-zero regression coefficients, which
makes it less interpretable. Shrinkage methods and linear dimension
reduction [144] offer other possibilities instead of the LSE. Forward
or backward elimination are additional often employed techniques
for variable selection to prevent overfitting [150].

Noise can interfere with how accurately statistical learning
techniques work during the process of collecting input data. To
account for noise in the features of linear regression problems, the
paper by Bertsimas and Copenhaver [151] introduced a model that
considers this factor. The study also explores the connection
between regularization and resilience to noise.

Creating linear regression models of superior quality necessitates
several desirable characteristics that are often conflicting and cannot be
executed simultaneously. The fitting process for linear regression
models proposed in paper by Bertsimas and King [152] takes into
account sparsity, selective sparsity, robustness to noisy data,
stability against outliers, modeler expertise, statistical significance,
and low global multicollinearity using mixed integer quadratic
programming. In addition, the paper by Bertsimas and Shioda [153]
explored mixed integer programming models for both regression
and classification, and the regression problem involves assigning
data points to clusters with identical regression coefficients.

Linear regression models have been extensively utilized in SL
to predict a numerical outcome since the early days of statistics.
Linear regression models are still relevant due to their simplicity,
wide range of applications, and ease of interpretability.
Specifically, in its most basic form, interpretability in ML refers
to the ability to explain the contribution of the inputs to the output
in a way that is understandable to humans, as discussed in Doshi-
Velez and Kim [154]. The distribution’s mode is a crucial data
summary and is often estimated using a non-parametric kernel
density estimator. The paper by Yao and Li [155] introduces a
novel tool for analysis of data, known as modal linear regression,
to investigate datasets with a large number of variables. To
estimate the regression coefficients, an expectation-maximization
algorithm was proposed. Asymptotic properties were offered for
the proposed estimator without assuming the error density is
symmetric. Experiments with both simulated and real data reveal
that the proposed modal regression produces narrower predictive
intervals compared to mean linear regression, median linear
regression, and method of moments estimators.

Linear regression models can be expanded by incorporating
nonlinear terms to capture more intricate relationships between
regressors and predictors. This leads to the development of nonlinear
regression models such as polynomial regression, local regression,
regression splines, exponential regression, step functions, and
smoothing splines. Some literature sources that discuss this topic
include Hastie et al. [150], Gambella et al. [144], and James et al.
[156]. When there is a nonlinear relationship between the
independent and dependent variables, nonlinear regression models
are employed. There are several algorithms that can be used to
estimate the parameters of a nonlinear regression model, such as
gradient-based optimization, Levenberg–Marquardt algorithm [157],
nonlinear least squares [158, 159], Bayesian methods, neural
networks, and support vector regression [160, 161].

Moreover, the quintessence of the recent papers on the interplay
of SL and optimization techniques is also presented in Table 1.

Journal of Computational and Cognitive Engineering Vol. 3 Iss. 4 2024

452



Table 1
Gist of the recent papers on the association of optimization techniques and SL algorithms

Authors Year ML technique(s)
Optimization method(s) and statisti-
cal/probabilistic tool(s) Key contribution/application

Hoste et al.
[162]

2002 Feature weighting metrics (gain ratio
weighting, information gain
weighting, chi-squared weighting,
shared variance weighting and log-
likelihood weighting), memory-
based learning (MBL) algorithms,
DT

Algorithm parameter optimization Word sense disambiguation (WSD)
for Dutch and English language

Snoek et al.
[13]

2012 Structured SVMs, CNN BO, Gaussian process, Markov Chain
Monte Carlo (MCMC), gradient-
based search, covariance

Identified effective methods for
Bayesian optimization of ML
algorithms for hyperparameter
selection, development of new
algorithm such as GP EI MCMC,
GP EI per second,
N GP EI MCMC for managing
varying time schedules and
conducting simultaneous
experiments

Konečný
et al. [163]

2016 L2-regularized logistic regression,
SVM

Federated optimization, GD, SGD,
stochastic variance reduced gradient
(SVRG), distributed approximate
newton (DANE), expected
improvement (EI)

Developed a new distributed
optimization algorithm Federated
SVRG (FSVRG) for the non-IID,
unbalanced, and massively
distributed data

Klein et al.
[164]

2017 SVMs, deep neural networks,
information gain, CNN, residual
neural network (RNN)

MCMC, Gaussian process, EI,
entropy search (ES), multi-task
opportunistic Bayesian optimization
(MTOB), hyperband, random
search, multi-task Bayesian
optimization (MTOB)

Introduced FAst Bayesian
Optimization on LArge data Sets
(FABOLAS) to accelerate
hyperparameter optimization

Injadat et al.
[165]

2018 SVM with Gaussian kernel (SVM-
RBF), RF, and k-NN algorithms

Bayesian optimization technique Presented how the Bayesian
optimization approach is used to
improve the effectiveness of a
technique for detecting anomalies

Navaney
et al. [24]

2018 Naïve Bayes algorithm, SVM
algorithm, maximum entropy
algorithm

Conditional probability, probability
rule for independent events

The research analyzed the recognition
of spam and non-spam (ham)
messages through the use of
various supervised ML algorithms.
According to the findings, the SVM
approach was the most precise in
differentiating between ham and
spam messages, trailed by the
Naïve Bayes technique and lastly
the maximum entropy method

Zhou et al.
[166]

2019 CNN, single-layer neural networks
(SLNNs), ANN

MCMC, covariance matrices,
Gaussian, Laplacian, mixed
Poisson-Gaussian, receiver
operating characteristic (ROC),
MSE

Research was conducted to examine
SL approaches for estimating the
test statistics of the ideal observer
and hotelling observer

Wu et al.
[14]

2019 RF, CNN, recurrent neural network
(RNN), multi-grained cascade
forest

BO, Gaussian process, grid search,
random search

An algorithm for tuning
hyperparameters of ML models
using Bayesian optimization was
introduced

Singh et al.
[113]

2020 DNN, back-propagation neural
network

Root mean squared error (RMSE),
correlation coefficient, mean
absolute error (MAE), Gaussian
distribution, Adam

Used DNN model for prediction of
road accidents

(Continued)
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Table 1
(Continued )

Authors Year ML technique(s)
Optimization method(s) and statisti-
cal/probabilistic tool(s) Key contribution/application

Sun et al.
[96]

2020 RF, recursive feature elimination Bayes algorithm, random sampling,
Gaussian process

A RF model was created for mapping
the likelihood of landslides
occurring, and the hyperparameters
of the model were optimized using
the Bayes algorithm

Campi and
Garatti
[167]

2020 SVM, support vector
regression (SVR), support vector
data description (SVDD)

Convex optimization, joint probability
distribution, data-driven
optimization, stochastic
optimization, distributionally robust
optimization (DRO), Gaussian
distribution, empirical distribution

Created a novel concept regarding
scenario optimization with
relaxation, which can be utilized as
a tool for designing and
implementing solutions to ML
problems

Hertel et al.
[168]

2020 DNN GPyOpt algorithm, random search,
grid search, successive halving,
population-based training, local
search

Developed a robust hyperparameter
optimization library for ML models:
Sherpa (code)

Dedeturk and
Akay [54]

2020 Logistic regression Artificial bee colony (ABC) Proposed a novel spam filtering
approach

Solanki et al.
[34]

2021 Wrapper-based feature selection,
SVM, J48 (C4.5 DT algorithm),
multilayer-perceptron (MLP)
(a feed-forward ANN),
Naive Bayes, KNN, RF

PSO, genetic search, Greedy stepwise,
RMSE, Matthew’s correlation
coefficient (MCC), Kappa statistics,
MAE, relative absolute error
(RAE), root relative squared error

A system that combines supervised
ML methods for breast cancer
prognosis has been created. This
system uses feature selection
techniques and methods for dealing
with imbalanced data

Cui et al.
[55]

2021 Adaptive LASSO logistic regression PSO Suggested a new approach for
detecting Alzheimer’s disease (AD)

Yoosefzadeh-
Najafabadi
et al. [169]

2021 MLP, radial basis function (RBF),
RF, bagging strategy (ensemble
method), PCA

Coefficient of determination R2ð Þ,
MAE, RMSE, genetic algorithm
(GA), nearest neighbor analysis
(NNA), best linear unbiased predic-
tion (BLUP), Pearson coefficient of
correlations

An application that uses ML and
genetic optimization algorithms has
been suggested to model and
improve the yield of soybeans by
focusing on its component traits
(data)

Zhao et al.
[23]

2021 SVM, SVR, radial basis function
(RBF) kernel, neural network

Average RMSE, relative RMSE,
Lagrange multiplier, R2

The SVM algorithm was used to
develop a model called HRF
(hourly rainfall forecast)

Javanmard
and
Ghaderi
[170]

2022 ANN, autoregressive model (AR),
autoregressive integrated moving
average model (ARIMA), seasonal
autoregressive integrated moving
average model (SARIMA),
seasonal autoregressive integrated
moving average model with
exogenous factors (SARIMAX),
RF, SVR, KNN, long short-term
memory model (LSTM)

PSO, grey wolf optimization (GWO),
stepwise regression algorithm, mean
absolute percentage error (MAPE),
MAE, RMSE, normalized root
mean squared error (NRMSE),
RAE

Research has been done to use a
combination of ML algorithms and
an optimization model to predict
greenhouse gas emissions using
energy market data, creating a
hybrid model

Kattamuri
et al. [171]

2023 Wrapper-based feature selection,
KNN, nearest centroid (NC), RF,
Gaussian Naive Bayes (GNB),
SVM, DT

Ant colony optimization (ACO),
cuckoo search optimization (CSO),
GWO

Created a novel SOMLAP dataset
(swarm optimization and ML
applied to portable executable
malware detection) with the aim of
investigating how cyber threat
intelligence could potentially be
enhanced by improving the
accuracy of malware detection
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4. Conclusion

The use of mathematical programming is a crucial component
of many ML models, as the process of training these models
involves solving large-scale optimization problems. Both the
traditional and evolutionary optimization techniques are being
widely employed to establish many milestones in the area of
ML. However, there are still challenges to handle the problems
involving nonlinearity of the models, uncertainty in the data,
and the existence of larger scale in the problem at hand. This
paper mainly reviews the optimization techniques and challenges
in the field of SL. A concise overview of the notable
contributions in the aligned field of research is being reported in
a tabular form, at the end. It can be concluded that among the
research applications based on the SL mechanism, the neural
networks and SVM have gained much attention of researchers
and can be considered as the widely used algorithms. Over the
last few decades, researchers apply both traditional (BO, Markov
Chain Monte Carlo optimization, GD, etc.) and nature-inspired
(random search, ABC, PSO, GA, DE, GWO, etc.) approaches to
solve the SL problems. The study on the application of such
approaches ensures that there was a vast implementation of
nature-inspired approaches as compared to the traditional
techniques. Thus, possibly evolutionary techniques might have a
better capability in handling complex problems.

As a future scope, some efficient and robust optimization
technique along with unsupervised and reinforcement learning can
be synergized in SL to be applied in various real-time scenarios
like enhancing the quality of spam filtering, fraud detection, and
developing an improved version of K-Means clustering optimizer
to fine-tune the parameters in various fields like using thermal
imaging, IoT-based sensors to predict breast cancer, etc.
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