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Abstract: Two critical tasks in multi-attribute decision-making (MADM) are to describe criterion values and to aggregate the described
information to generate a ranking of alternatives. A flexible and superior tool for the first task is complex single-valued neutrosophic
(CSVN) setting, and a powerful device for the subsequent assignment is aggregation operator. Up until this point, almost 30 diverse
aggregation operators of CSVN have been introduced. Every operator has its unmistakable qualities and can function admirably for
explicit reasons. Notwithstanding, there is not yet an operator that can give helpful consensus and adaptability in conglomerating rule
esteems, managing the heterogeneous interrelationships among models, and decreasing the impact of outrageous basis esteems. In
genuine decision-making interaction, there are cases that the interrelationships of contentions do not exist in each one of the contentions,
however, in piece of the contentions. Subsequently, there is a need to parcel the contentions into various parts. For this, the technique of
prioritized Muirhead mean (PMM) aggregation operator is massive, dominant, and more flexible to investigate the interrelationships
between any numbers of objects. The goal of this study is to initiate the CSVN setting and to determine their important algebraic laws.
Moreover, to provide such an aggregation operator, the principle of CSVN PMM (CSVNPMM) operator and CSVN prioritized dual
Muirhead mean (CSVNPDMM) operator is elaborated, and their particular cases are discussed. Further, based on these operators, we
presented a new method to deal with the MADM problems under the fuzzy environment. Finally, we used some practical examples to
illustrate the validity and superiority of the proposed method by comparing with other existing methods.
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1. Introduction

Multi-attribute decision-making (MADM) is the fundamental
importance of the decision-making (DM) science whose
expectation is to perceive the best option(s) from the pack of
likely ones. In genuine DM, the person needs to assess the given
choices by various classes such as single, span, and so on, for
assessment purposes. Nonetheless, in different erratic conditions,
it is normally trying for the pioneer to deliver their decisions as a
fresh number. To handle such nature of worries, the phenomena
of the fuzzy set (FS) was elaborated by Zadeh (1965). FS is the
modified technique of crisp set, which covers the truth grade (TG)
belonging to unit interval instead of two opinions “0” or “1.”
Sometimes, the theory of FS has been neglected, for illustration, if
an intellectual gives the data in the shape of “yes” or “no.” To
handle such sort of data, the theory of FS has not been able to
resolve it. For this, Atanassov (1986) initiated the technique of

intuitionistic FS (IFS). An IFS covers two sorts of data such as
TG and falsity grade (FG) with the condition that the sum of the
duplet lies between “0” and “1.” Due to its shape, the principle of
IFS has gotten massive attraction from the different intellectuals.
For illustration, Karaaslan and Karatas (2015) presented the
bipolar soft sets. Liu et al. (2021) explored some operators under
the interval-valued IFSs. Thao (2021) initiated numerous sorts of
measures by using IFSs. Gao et al. (2021) elaborated the MADM
technique under the IFSs. Karmakar et al. (2021) presented the
type-2 intuitionistic fuzzy matrix game and its applications. Türk
et al. (2021) discussed solar site selection problems based on an
IFS. Yang and Yao (2021) developed three-way decisions under
the IFSs. Jana and Pal (2018) explored the bipolar intuitionistic
soft sets and their application in DM troubles.

The theory of an IFS also cannot work in numerous situations.
For illustration, if an individual gives information in the shape of
“yes,” “abstinence,” and “no,” then the principle of an IFS has
been neglected. For this, the principle of the neutrosophic set (NS)
was developed by Smarandache (1998). NS covers the TG
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SVNS andNS have gottenmassive attraction from the different intel-
lectuals. For example, Ye (2014) presented certain measures for
interval-valued NSs. Yang et al. (2017) utilized the principle of
rough set in the environment of SVNS. Ji et al. (2018) explored
the frank prioritized Bonferroni mean operators for SVNS. Sahin
and Kucuk (2015) initiated the subsethood measures for SVNS.
Ye (2014) elaborated the correlationmeasures under the SVNS. Peng
et al. (2014) proposed decision-making method for SVNS. Saqlain
et al. (2020) developed the tangent measures for SVNS. Kandasamy
(2018) developed the double-valued NS and their applications. Chai
et al. (2021) initiated the measures for neutrosophic soft sets. Qin and
Wang (2020) explored the entropy measures for SVNS. Chatterjee
et al. (2016) presented the similarity measures for SVNSs.

To handle awkward and ambiguous data in genuine life
dilemmas, the principle of FS has been neglected in some cases,
for illustration, if an intellectual provides two-dimensional data in
the shape of single sets. For this, Ramot et al. (2002) elaborated
the principle of complex FS (CFS), which covers the TG
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explored certain sorts of measures for CFSs. Further, Alkouri and
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exploited it in the natural environment of separated regions. For
instance, Gulzar et al. (2020) initiated the CIFSs. Yaqoob et al.
(2019) proposed CIF graphs. Garg and Rani (2019) introduced the
complex interval-valued IFSs. Kumar and Bajaj (2014) developed
CIF soft sets. Ngan et al. (2020) explored group based on CIFS.
Yaqoob et al. (2019) initiated the CIF graphs.

Certain intellectuals have utilized the theories of IFSs, NSs,
SVNSs, and CIFSs in the environment of distinct regions. But in
some cases, these existing theories are not able to handle
awkward and complicated data in genuine life troubles. For
illustration, if an individual gives two-dimensional information in
the shape of TG, AG, and FG, then the principle of CIFS has
been neglected. For this, the principle of complex NS (CNS) was
developed by Ali and Smarandache (2017). CNS covers the TG
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initiated the complex neutrosophic lattice. Al-Quran and Alkhazaleh
(2018) developed the relationship among CNSs and their applica-
tions. But, if an intellectual gives data in the shape of
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neglected. For this, in this study, we try to present the principle
of complex single-valued neutrosophic sets (CSVNS) and to
determine their algebraic laws. In the SVNS hypothesis, just
the level of the assets is considered during the examination, which
might bring about loss of data under some specific cases, while the
factor of periodicity is totally overlooked. To keep away from
such a deficiency of data, there is a need to add both the variables
into the examination. To additionally delineate the idea of stage
terms, we give a model. Assume that an organization XYZ needs
to buy a vehicle from a carmaker ABC. The carmaker ABC gives
the organization XYZ data with respect to models of vehicles and
their relating creation dates. The assignment of the organization is
to choose the most ideal model of the vehicle with its creation date
all the while. Hence, here the issue is two-dimensional, in particu-
lar (i) model of vehicle and (ii) creation date of the vehicle. It is
clearly seen that such kind of issues cannot be demonstrated pre-
cisely by considering both the measurements at the same time uti-
lizing the customary speculations. Consequently, the most ideal
way of addressing all the data given by the specialists is by uti-
lizing the CSVNS hypothesis. The plentiful terms in CSVNS
might be utilized to give an organization’s choice with respect to
the model of vehicles, and the stage terms might be utilized
to address organization’s choice in regard to the creation date of
vehicles. Keeping the advantages of the CSVNS, we examined the
primary goal of this analysis as illustrated below.

1. To initiate the CSVNS and to determine their important algebraic
laws.

2. To present CSVNPMM operator and CSVNPDMM operator are
elaborated and their particular cases are discussed.

3. To propose an MADM procedure under the presented operators.
4. To initiate numerous examples to determine the advantages,

sensitive analysis, and geometrical expressions of the proposed
works to find the supremacy and flexibility of the initiated works.

The remainderof this paper is formedas follows: inSection II,we review
the basic principle of SVNSs and their algebraic laws. The principle of
SVNPWA operator, SVNPGA operator, Muirhead mean (MM)
operator, and their specific cases are reviewed. In Section III, we
initiated the CSVNS and determine their important algebraic laws. In
Section IV, CSVNPMM operator and CSVNPDMM operator are
elaborated and their particular cases are discussed. In Section V, an
MADM technique is presented based on investigated operators. In
Section VI, we present the conclusion of this study.

2. Preliminaries

In this analysis, we review the basic principle of SVNSs and
their algebraic laws. The principles of SVNPWA operator,
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SVNPGA operator, MM operator, and their specific cases are
reviewed. The term X stated the universal sets.

Definition 1: (Wang et al., 2010) A SVNS T ICN is stated by
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where σ is the permutation of ff ¼ 1; 2; . . . ;µð Þ and h
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1. For P ¼ 1; 0; . . . ; 0ð Þ, Equation (10) is changed to
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Is expressed as the MSM operator (MSMO).

3. Complex Single-Valued Neutrosophic Sets

In this study, we combine two distinct principles such as SVNS
and CFS to initiate the novel principle of CSVNSs and to develop
their algebraic laws.
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1CCCCCA
(18)
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T ICN�1 � T ICN�2

¼

M
T IR�1

M
T IR�2

� �
e
ff2π M

T I I�1
M

TI I�2

� �
;

A
T IR�1

þA
T IR�2

�A
T IR�1

A
T IR�2

� �
e
ff2π A

T II�1
þA

T II�2
�A

T II�1
A

T II�2

� �
;

N
T IR�1

þN
T IR�2

�N
T IR�1

N
T IR�2

� �
e
ff2π N

T I I�1
þN

T II�2
�N

T II�1
N

T I I�2

� �

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
(19)

eδST ICN�1 ¼
1� 1�M

T IR�1

� �eδS eff2π 1� 1�M
T II�1

� �eδS� �
;

AeδS
T IR�1

e
ff2π AeδS

T II�1

� �
;NeδS

T IR�1

e
ff2π NeδS

T I I�1

� �
0BBBBB@

1CCCCCA
(20)

T ICN�1
eδS

¼
MeδS

T IR�1

e
ff2π MeδS

T II�1

� �
; 1� 1�A

T IR�1

� �eδS eff2π 1� 1�A
T II�1

� �eδS� �
;

1� 1�N
T IR�1

� �eδS eff2π 1� 1�N
T II�1

� �eδS� �
0BBBBB@

1CCCCCA
(21)

Definition 12: Suppose

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T I I�ff

� �0B@
1CA,

ff ¼ 1; 2; . . . ;µ, be any group of CSVNNs. The CSVNPWA
operator is stated by

CSVNPWA T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼
1� Qµ

ff¼1
1�M

T IR�ff

� � HffP
µ

ff¼1
Hffe

ff2π 1�
Q

µ

ff¼1
1�M

T II�ff

� � HffP
µ

ff¼1
Hff

 !
;

Qµ
ff¼1

A

HffP
µ

ff¼1
Hff

T IR�ff

e

ff2π
Q

µ

ff¼1
A

HffP
µ

ff¼1
Hff

T I I�ff

0@ 1A
;
Qµ
ff¼1

N

HffP
µ

ff¼1
Hff

T IR�ff

e

ff2π
Q

µ

ff¼1
N

HffP
µ

ff¼1
Hff

T II�ff

0@ 1A

0BBBBBBBBBB@

1CCCCCCCCCCA
(22)

where H1 and Hff ¼
Qff�1

k¼1 S T ICN�k

� �
.

Definition 13: Suppose

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA,

ff ¼ 1; 2; . . . ;µ, be any group of CSVNNs. The CSVNPGA opera-
tor is stated by

CSVNPGA T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼

Qµ
ff¼1

M

HffP
µ

ff¼1
Hff

T IR�ff

e

ff2π
Q

µ

ff¼1
M

HffP
µ

ff¼1
Hff

T II�ff

0@ 1A
;

1� Qµ
ff¼1

1�A
T IR�ff

� � HffP
µ

ff¼1
Hffe

ff2π 1�
Q

µ

ff¼1
1�A

T I I�ff

� � HffP
µ

ff¼1
Hff

 !
;

1� Qµ
ff¼1

1�N
T IR�ff

� � HffP
µ

ff¼1
Hffe

ff2π 1�
Q

µ

ff¼1
1�N

T II�ff

� � HffP
µ

ff¼1
Hff

 !

0BBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCA
(23)

where H1 and Hff ¼
Qff�1

k¼1 S T ICN�k

� �
.

4. Prioritized Muirhead Mean Operators Based on
CSVNSs

The goal of this study is to initiate the CSVNS and to determine
their important algebraic laws. Moreover, the principle of
CSVNPMM operator and CSVNPDMM operator is elaborated
and their particular cases are discussed. The technique of PMM
aggregation operator is massive, dominant, and more flexible to
investigate the interrelationships between any number of objects.

Definition 14: Suppose

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2 A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA,

ff ¼ 1; 2; . . . ;µ, be any group of CSVNNs. The CSVNPMM
operator is stated by

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
¼ 1

µ!
�σ2 h

Sµ

Yµ
ff¼1

µ
Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ

 !
pff

0@ 1A 1P
µ

ff¼1
pff

(24)

where H1 and Hff ¼
Qff�1

k¼1 S T ICN�k

� �
, and σ is the permutation

(PM) of ff ¼ 1; 2; . . . ;µð Þ and

h

Sµ is the group of PMs of
ff ¼ 1; 2; . . . ;µ. For different values of

P ¼ p1;p2; . . . ;pµ

� � 2 Rµ, certain specific cases are dis-
cussed below.

Theorem 1: Suppose

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA,

ff ¼ 1; 2; . . . ;µ, be any group of CSVNNs. Then by using Equation
(24), we determine
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CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼

1� Q
σ2 h

S

1� Qµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�M

T II�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

1� 1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1� 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�A

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BB@
1CCA
;

1� 1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1� 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BB@
1CCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(25)

Proof: Suppose

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ, be

any group of CSVNNs. Then by using Definition (11), we have

µ
Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ ¼
1� 1�M

T IR�σ ffð Þ

� � Hσ ffð ÞP
µ

ff¼1
Hffe

ff2π 1� 1�M
T II�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1A
;

A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ
e

ff2π A

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A
;N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ
e

ff2π N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
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Then,

µ
Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ

 !
pff

¼

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

e

ff2π 1� 1�M
T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

;

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

e

ff2π 1� 1�A

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

;

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

e

ff2π 1� 1�N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Thus,

�σ2 h

Sµ

Yµ
ff¼1

Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ

 !
pff

¼

1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A0@ 1A

e

ff2π 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�M

T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0B@
1CA

0B@
1CA

0B@
1CA
;

Q
σ2 h

Sµ

1� Qµ
ff¼1

1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CAe

ff2π
Q

σ2 hSµ
1�
Q

µ

ff¼1
1�A

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA
;

Q
σ2 h

Sµ

1� Qµ
ff¼1

1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CAe

ff2π
Q

σ2 hSµ
1�
Q

µ

ff¼1
1�N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
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Then,

1
µ!

�σ2 h

Sµ

Yµ
ff¼1

µ
Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ

 !
pff

0@ 1A 1P
ff¼1

pff

¼

1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�M

T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

1� 1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1� 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�A

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BB@
1CCA
;

1� 1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1� 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�N

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BB@
1CCA

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Hence proof.
Moreover, by using the presented operators, we elaborate on the
principle of monotonicity, boundedness, and idempotency.

Theorem 2: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ,

be any group of CSVNNs. If T ICN�ff � T ICN�ff
�
, i.e.,

M
T IR�ff

� M�
T IR�ff

;A
T IR�ff

� A�
T IR�ff

;N
T IR�ff

� N �
T IR�ff

and

M
T I I�ff

� M�
T I I�ff

;A
T I I�ff

� A�
T I I�ff

;N
T I I�ff

� N �
T I I�ff

, then

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� CSVNPMM T ICN�1

�
; T ICN�2

�
; . . . ; T ICN�µ

�� � (26)

Proof: Suppose T ICN�ff � T ICN�ff
�
, i.e.,

M
T IR�ff

� M�
T IR�ff

;A
T IR�ff

� A�
T IR�ff

;N
T IR�ff

� N �
T IR�ff

and

M
T I I�ff

� M�
T I I�ff

;A
T I I�ff

� A�
T I I�ff

;N
T I I�ff

� N �
T I I�ff

, then we

prove that Equation (26) is true. First, if M
T IR�ff

� M�
T IR�ff

, then

1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff� 1�M�

T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff , where

H1 = 1 and Hff ¼
Qff�1

k¼1 S T ICN�k

� �
, thus,

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff� 1� 1�M�

T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff ;

Journal of Computational and Cognitive Engineering Vol. 1 Iss. 2 2021

63



then,

1�
Yµ
ff¼1

1� 1�M
T IR�σ fð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

� 1�
Yµ
ff¼1

1� 1�M�
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

;

where σ is the permutation of ff ¼ 1; 2; . . . ;µð Þ. Therefore

1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff
0@ 1A0@ 1A 1

µ!

0B@
1CA

1P
µ

ff¼1
pff

;

where h

Sµ is the group of permutations of ff ¼ 1; 2; . . . ;µ, for different

values of P ¼ p1;p2; . . . ;pµ

� � 2 Rµ. Similarly, we determine for
the unreal part of TG, such that

1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M�
T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

:

In another case, suppose A
T IR�ff

� A�
T IR�ff

, then obviously,

1� 1�
Y
σ2 h

Sµ

1�
Yµ
f¼1

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
f¼1

1� 1�A�
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

and,

1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�A�
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�A�
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

For FG, we have

1� 1�
Y
σ2 h

Sµ

1�
Yµ
f¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�N �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

and,

1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�N �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

:

Then by using Definition 4, we have

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� CSVNPMM T ICN�1

�
; T ICN�2

�
; . . . ; T ICN�µ

�� �
:

Theorem 3: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ, be

any group of CSVNNs. If

ICN�ff
� ¼ minff MT IR�ff

e
ff2π minff M

T II�ff

� �
;maxff AT IR�ff

e
ff2π maxff A

T II�ff

� �0B@ ,

maxff NT IR�ff

e
ff2π maxff N

T II�ff

� �
Þ ¼ M�

T IR

e
ff2π M�

T II

� �
;A�

T IR

e
ff2π A�

T II

� �
;N�

T IR

e
ff2π N �

T II

� �0B@
1CA,

and

minff AT IR�ff

e
ff2π min

ff
A

T II�ff

� �
;minff NT IR�ff

e
ff2π minff N

T II�ff

� �
Þ, then

T ICN�ff
� � CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� T ICN�ff

þ

(27)

Proof: Suppose, minff MT IR�ff

� M
T IR�ff

, thus,

minff MT IR�ff

� M
T IR�σ ffð Þ

, then

1�minff MT IR�ff

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff� 1�M

T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff ;

then,

1� 1�min
ff

M
T IR�ff

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff� 1� 1�M

T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff ;
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thus,

Yµ
ff¼1

1� 1�min
ff

M
T IR�ff

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A

�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A;

then,

Y
σ2 h

Sµ

1�
Yµ
f¼1

1� 1�min
ff

M
T IR�ff

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A
�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A

Therefore,

1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�min
ff

M
T IR�ff

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

implies that

M�
T IR�ff

� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

Similarly,

M�
T I I

� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�M
T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

In the same way, we get

A�
T IR

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

A�
T I I

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�A
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

and

N �
T IR

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

N �
T I I

� 1� 1�
Y
σ2 h

Sµ

1�
Yµ
ff¼1

1� 1�N
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T I I�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

:

Then,

M�
T IR

e
f2π M�

T II

� �
;A�

T IR

e
ff2π A�

T II

� �
;N �

T IR

e
ff2π N �

T I I

� �0B@
1CA

� CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

Similarly, we determine

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

� Mþ
T IR

e
ff2π Mþ

T II

� �
;Aþ

T IR

e
ff2π Aþ

T II

� �
;N þ

T IR

e
ff2π Nþ

T II

� �0B@
1CA

From the above information, we determine

T ICN�ff
� � CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� T ICN�ff

þ

Theorem 4: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ,

be any group of CSVNNs. If T ICN�ff ¼ T ICN , then

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
¼ T ICN (28)
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Proof: Suppose

ICN�ff ¼ T ICN ¼ M
T IR

e
ff2π M

TI I

� �
;A

T IR
e
ff2π A

T II

� �
;N

T IR
e
ff2π N

T II

� � !
,

then by using Equation (24), such that

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼ 1
µ!

�σ2 h

Sµ

Yµ
ff¼1

µ
Hσ ffð ÞPµ

ff¼1 Hff

T ICN�σ ffð Þ

 !
pff

0@ 1A 1P
µ

ff¼1
pff

¼ 1
µ!

�σ2 h

Sµ

Yµ
ff¼1

µ
H
HT ICN

� �
pff

 ! 1P
µ

ff¼1
pff¼ 1

µ
µT ICN

� �
p

� �1

p¼ T ICN

Moreover, based on Equation (24), we elaborate different specific
cases of the initiated works by using the value of parame-

ters P ¼ p1;p2; . . . ;pµ

� � 2 Rµ.

1. For P ¼ γ; 0; . . . ; 0ð Þ, Eq. (24) is

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼ 1
µ!

�σ2 h

Sµ µ
Hσ 1ð ÞPµ

ff¼1 Hff

T ICN�σ 1ð Þ

 ! ! 1P
µ

ff¼1
pff

¼ �µ

ff¼1

HffPµ

ff¼1 Hff

T ICN�ff

 !
(29)

which is called CSVN prioritized weighted averaging (CSVNPWA)
operator.

2. For P ¼ 1; 0; . . . ; 0ð Þ, Equation (24) is

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼ 1
µ!

�σ2 h

Sµ µ
Hσ 1ð ÞPµ

ff¼1 Hff

T ICN�σ 1ð Þ

 !
γ

 !1
γ

¼ 1
µ
�µ

ff¼1 µ
HffPµ

ff¼1 Hff

T ICN�ff

 !
γ

 !1
γ

(30)

which is called CSVN generalized hybrid prioritized weighted
averaging (CSVNGHPWA) operator.

3. For P ¼ 1; 1; 0; . . . ; 0ð Þ, Equation (24) is

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼ 1
µ!

�σ2Sµ µ
Hσ 1ð ÞPµ

ff¼1 Hff

T ICN�σ 1ð Þ

 !
µ

Hσ 2ð ÞPµ

ff¼1 Hff

T ICN�σ 2ð Þ

 ! !1
2

¼ µ2

µ!
�µ

ff; j ¼ 1;

ff 6¼ j

µ
HffPµ

ff¼1 Hff

T ICN�ff

 !
µ

HjPµ
j¼1 Hj

T ICN�j

 !
0BBBBBBBB@

1CCCCCCCCA

1
2

(31)

which is called CSVN prioritized BM (CSVNPBM) operator.

4. For P ¼ t terms

1; 1; . . . ; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{ ; µ� tterms

0; 0; . . . ; 0
zfflfflfflfflfflffl}|fflfflfflfflfflffl{� �

, Equation (24) is

CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼ 2µt t
µ!

�1<�ff1�ff2�...�fft<µ �t
j¼1

HffjPµ
s¼1 Hs

T ICN�ffj

� �� �1
t

(32)

which is called CSVN prioritized MSM (CSVNPMSM) operator.

Definition 15: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ, be

any group of CSVNNs. The CSVNPDMM operator is stated by

CSVNPDMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
¼ 1Pµ

ff¼1 pff

Y
σ2 h

Sµ

�µ

ff¼1 pffT ICN�σ ffð Þ
� � Hσ ffð ÞP

µ

ff¼1
Hff

0@ 1A 1
µ!

(33)

Theorem 5: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ,

be any group of CSVNNs. Then by using Equation (33), we determine
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CSVNPMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �

¼

1� 1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�M
µ

Hσ ffð ÞP
µ

ff¼1
Hff

T IR�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1� 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�M

µ
Hσ ffð ÞP
µ

ff¼1
Hff

T II�σ ffð Þ

0@ 1A0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BB@
1CCA
;

1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�A
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�A

T II�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

;

1� Q
σ2 h

Sµ

1� Qµ
ff¼1

1� 1�N
T IR�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0@ 1A0@ 1A 1
µ!

0B@
1CA

1P
µ

ff¼1
pff

e

ff2π 1�
Q

σ2 hSµ
1�
Q

µ

ff¼1
1� 1�N

T I I�σ ffð Þ

� �
µ

Hσ ffð ÞP
µ

ff¼1
Hff

0@ 1Apff

0B@
1CA

0B@
1CA

1
µ!

0B@
1CA

1P
µ

ff¼1
pff

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(34)

Proof: Omitted.

Moreover, by using the presented operators, we elaborate on the
principle of monotonicity, boundedness, and idempotency.

Theorem 6: Let

T ICN�ff ¼ M
IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ; , be

any group of CSVNNs. If T ICN�ff � T ICN�ff
�
, i.e.,

M
T IR�ff

� M�
T IR�ff

;A
T IR�ff

� A�
T IR�ff

;N
T IR�ff

� N �
T IR�ff

and

M
T I I�ff

� M�
T I I�ff

;A
T I I�ff

� A�
T I I�ff

;N
T I I�ff

� N �
T I I�ff

, then

CSVNPDMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� CSVNPDMM T ICN�1

�
; T ICN�2

�
; . . . ; T ICN�µ

�� �
(35)

Proof: Omitted.

Theorem 7: Let

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ, be

any group of CSVNNs. If

T ICN�ff
� ¼ minff MT IR�ff

e
ff2π minff M

T II�ff

� �
;

0B@
maxff AT IR�ff

e
ff2π maxff A

T II�ff

� �
;maxff NT IR�ff

e
ff2π maxff N

T II�ff

� �!
¼

M�
T IR

e
ff2π M�

T II

� �
;A�

T IR

e
ff2π A�

T II

� �
;N �

T IR

e
ff2π N �

T II

� �0B@
1CA, and

T ICN�ff
þ ¼ Mþ

T IR

e
ff2π Mþ

T I I

� �
;Aþ

T IR

e
ff2π Aþ

T II

� �
;N þ

T IR

e
ff2π N þ

T II

� �0B@
1CA ¼

maxff MT IR�ff

e
ff2π maxff M

T II�ff

� �
;minff AT IR�ff

e
ff2π minff A

T II�ff

� �
;minff NT IR�ff

e
ff2π minff N

T II�ff

� �0B@
1CA ,
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then

T ICN�ff
� � CSVNPDMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
� T ICN�ff

þ

(36)

Proof: Omitted.

Theorem 8: Let

T IC�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ,

be any group of CSVNNs. If T ICN�ff ¼ T ICN , then

CSVNPDMM T ICN�1; T ICN�2; . . . ; T ICN�µ

� �
¼ T ICN (37)

Proof: Omitted.

5. MADM Method Based on CSVNSs

In this analysis, we elaborate an MADM technique by using the
investigated works under the CSVNSs to resolve a realistic DM
dilemma. The genuine life example is illustrated below based on
the initiated operators under the CSVNSs.

5.1. Decision-making techniques

To handle inconsistent and ambiguous data in genuine life
dilemmas, we take a group of alternatives and their attributes in
the shape of T IAT ¼ T IAT�1; T IAT�2; . . . ; T IAT�m

n o
and

T IAL ¼ T IAL�1; T IAL�2; . . . ; T IAL�µ

n o
. The experts provide

data in the shape of

T ICN�ff ¼ M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T I I�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA; ff ¼ 1; 2; . . . ;µ, that

stated the CSVNSs, where

M
T IC

Ξ
� �

¼ M
T IR

Ξ
� �

e
ff2π M

T I I
Ξ
� �� �

;A
T IC

Ξ
� �

¼ A
T IR

Ξ
� �

e
ff2π A

T II
Ξ
� �� �

; and

N
T IC

Ξ
� �

¼ N
T IR

Ξ
� �

e
ff2π N

T II
Ξ
� �� �

with 0 � M
T IR

þA
T IR

þN
T IR

� 3

and 0 � M
T I I

þA
T I I

þN
T I I

� 3. Based on the study, we elabo-

rate a DM procedure, whose stages are illustrated below.

Stage 1: Initiated the matrix in the shape of CSVNSs. If the data are in
the shape of benefits, then it is ok, but if the data are in the shape of cost
types, then the matrix is normalized by using Equation (38), we have

T ICN

¼

M
T IR�ff

e
ff2π M

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;N

T IR�ff

e
ff2π N

T II�ff

� �0B@
1CA for benefit types

N
T IR�ff

e
ff2π N

T II�ff

� �
;A

T IR�ff

e
ff2π A

T II�ff

� �
;M

T IR�ff

e
ff2π M

T II�ff

� �0B@
1CA for cost types

8>>>>>>>>>>><>>>>>>>>>>>:
(38)

Stage 2: Find the Hffj; ff ¼ 1; 2; . . . ;m;, by using Equation (39), such
that

Hffj ¼
1 j ¼ 1Qj�1

k¼1 S T ICN�k

� �
j ¼ 1; 2; . . . ;µ

8<: (39)

Stage 3: Under the principle of CSVNPMM operator and
CSVNPDMM operator, we determine the aggregated values of the
original matrix.
Stage 4: Investigated the SV of the accumulated values.
Stage 5: Determining the ranking values of the SV is to examine the
best optimal.

5.2. Illustrated example

The information of this numerical is taken from Garg and Rani
(2019). Let we choose the five alternatives such that Zensar Tech
(T IAT�1), NIIT Tech (T IAT�2), HCL Tech (T IAT�3), Hexaware

Tech (T IAT�4), and Tech Mahindra (T IAT�5), and the determina-
tion is held based on the various models, in particular, innovation

skills (T IAL�1), administration quality (T IAL�2) project executives

(T IAL�3) and industry experience (T IAL�4). Under the above con-
sideration, we elaborated a DM procedure, whose stages are illus-
trated below.
Stage 1: Initiated the matrix in the shape of CSVNSs as in Table 1.
We know that Table 1 covers all the benefit types of data, so no need
to be normalized.

Table 1
Original decision matrix

CAL�1 CAL�2

CAT�1
0:9eff2π 0:8ð Þ; 0:8eff2π 0:7ð Þ; 0:7eff2π 0:6ð Þ� �

0:91eff2π 0:81ð Þ; 0:81eff2π 0:71ð Þ; 0:71eff2π 0:61ð Þ� �
CAT�2

0:8eff2π 0:6ð Þ; 0:5eff2π 0:2ð Þ; 0:7eff2π 0:4ð Þ� �
0:81eff2π 0:61ð Þ; 0:51eff2π 0:21ð Þ; 0:71eff2π 0:41ð Þ� �

CAT�3
0:9eff2π 0:8ð Þ; 0:1eff2π 0:2ð Þ; 0:4eff2π 0:3ð Þ� �

0:91eff2π 0:81ð Þ; 0:11eff2π 0:21ð Þ; 0:41eff2π 0:31ð Þ� �
CAT�4

0:7eff2π 0:6ð Þ; 0:5eff2π 0:3ð Þ; 0:4eff2π 0:4ð Þ� �
0:71eff2π 0:61ð Þ; 0:51eff2π 0:31ð Þ; 0:41eff2π 0:41ð Þ� �

CAT�5
0:7eff2π 0:5ð Þ; 0:5eff2π 0:4ð Þ; 0:6eff2π 0:4ð Þ� �

0:71eff2π 0:51ð Þ; 0:51eff2π 0:41ð Þ; 0:61eff2π 0:41ð Þ� �
T IAL�3 T IAL�4

CAT�1
0:92eff2π 0:82ð Þ; 0:82eff2π 0:72ð Þ; 0:72eff2π 0:62ð Þ� �

0:93eff2π 0:83ð Þ; 0:83eff2π 0:73ð Þ; 0:73eff2π 0:63ð Þ� �
CAT�2

0:82eff2π 0:62ð Þ; 0:52eff2π 0:22ð Þ; 0:72eff2π 0:42ð Þ� �
0:83eff2π 0:63ð Þ; 0:53eff2π 0:23ð Þ; 0:73eff2π 0:43ð Þ� �

CAT�3
0:92eff2π 0:82ð Þ; 0:12eff2π 0:22ð Þ; 0:42eff2π 0:32ð Þ� �

0:93eff2π 0:83ð Þ; 0:13eff2π 0:23ð Þ; 0:43eff2π 0:33ð Þ� �
CAT�4

0:72eff2π 0:62ð Þ; 0:52eff2π 0:32ð Þ; 0:42eff2π 0:42ð Þ� �
0:73eff2π 0:63ð Þ; 0:53eff2π 0:33ð Þ; 0:43eff2π 0:43ð Þ� �

CAT�5
0:72eff2π 0:52ð Þ; 0:52eff2π 0:42ð Þ; 0:62eff2π 0:42ð Þ� �

0:73eff2π 0:53ð Þ; 0:53eff2π 0:43ð Þ; 0:63ff2π 0:43ð Þ� �
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Stage 2: Find the Hffj; ff ¼ 1; 2; . . . ;m;, by using Equation (39),
such that

Hffj ¼

1
1
1
1
1

0:3666678
0:133333
0:233333

0:1
0:233333

0:136889
0:018667
0:052889
0:010667
0:056

0:052018
0:002738
0:011636
0:001209
0:013813

26664
37775

Stage 3: Under the principle of CSVNPMM operator and
CSVNPDMM operator, we determine the aggregated values of the
original matrix that are discussed in Table 2

for p ¼ 0:1; 0:1; 0:1; 0:1ð Þ.

Stage 4: Investigated the SV of the accumulated values that are
illustrated in Table 3.
Stage 5: Determining the ranking values of the score values is to
examine the best optimal, which are discussed below.

For CSVNPMM operator:

T IAT�4 � T IAT�3 � T IAT�2 � T IAT�5 � T IAT�1

For CSVNPMM operator:

T IAT�4 � T IAT�2 � T IAT�5 � T IA�3 � T IAT�1

The best optimal is T IAT�4. Under the presented works, both oper-
ators are given the same results. Moreover, to determine the
consistency and flexibility of the initiated works based on CSVNSs,

we compare the presented operators with certain existing operators in
the next section.

5.3. Sensitive analysis

To handle ambiguity and inconsistent data, the elaborated
operators are massive, dominant, and more flexible compared with
other theories. To prove that the initiated operators are massively
superior to the existing operators, we choose some prevailing
ideas based on IFSs, CIFSs, SVNSs, and CNSs to prove that the
initiated principles are massive and dominant. For this, we choose
the following prevailing operators: Garg (2018) initiated the PMM
operators for NSs, Xu et al. (2019) developed the power MM
operators for interval-valued IFSs, and Liu et al. (2019) elaborated
the power MM operators for SVNSs. The accumulated result is
discussed in Table 4.

The prevailing operators under the IFSs, SVNSs, and interval-
valued IFSs are not able to determine the information in Table 1. The
geometrical form of the data in Table 4 is provided in Figure 1.

Table 2
Expression of the aggregated values

CSVNPMM operator CSVNPDMM operator

CAT�1 0:3480eff2π 0:3236ð Þ; 0:6043eff2π 0:6334ð Þ;
0:6334eff2π 0:6577ð Þ

� �
0:5628eff2π 0:6043ð Þ; 0:3236eff2π 0:3061ð Þ;

0:3061eff2π 0:2906ð Þ

� �
CAT�2 0:2402eff2π 0:2203ð Þ; 0:6808eff2π 0:7517ð Þ;

0:6343eff2π 0:7027ð Þ

� �
0:6054eff2π 0:6585ð Þ; 0:2111eff2π 0:1766ð Þ;

0:2297eff2π 0:2013ð Þ

� �
CAT�3 0:2965eff2π 0:2785ð Þ; 0:7858eff2π 0:7513ð Þ;

0:7024eff2π 0:7253ð Þ

� �
0:5640eff2π 0:6050ð Þ; 0:1770eff2π 0:1999ð Þ;

0:2299eff2π 0:2163ð Þ

� �
CAT�4 0:2125eff2π 0:2041ð Þ; 0:6809eff2π 0:7257ð Þ;

0:7028eff2π 0:7028ð Þ

� �
0:6344eff2π 0:6586ð Þ; 0:1958eff2π 0:1771ð Þ;

0:1870eff2π 0:1870ð Þ

� �
CAT�5 0:2689eff2π 0:2450ð Þ; 0:6805eff2π 0:7024ð Þ;

0:6582eff2π 0:7024ð Þ

� �
0:6339eff2π 0:6805ð Þ; 0:2450eff2π 0:2326ð Þ;

0:2568eff2π 0:2326ð Þ

� �

Table 3
Expression of the SV of the accumulated values

CSVNPMM operator CSVNPDMM operator

CAT�1
0.6190 0.0197

CAT�2
0.7697 0.1483

CAT�3
0.7966 0.1152

CAT�4
0.7985 0.1819

CAT�5
0.7432 0.1158

Table 4
Expression of the sensitive analysis for the data in Table 1

Methods Score values Ranking values

Garg (2018) Cannot be Calculated Cannot be Calculated
Xu et al. (2019) Cannot be Calculated Cannot be Calculated
Liu et al. (2019) Cannot be Calculated Cannot be Calculated
CSVNPMM operator 0.6190, 0.7697, 0.7966, 0.7985, 0.7432 T IAT�4 � T IAT�3 � T IAT�2 � T IAT�5 � T IAT�1

CSVNPDMM operator 0.0197, 0.1483, 0.1152, 0.1819, 0.1158 T IAT�4 � T IAT�2 � T IAT�5 � T IAT�3 � T IAT�1
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If we consider the value of unreal parts is equal to zero in Table 1,
then the accumulated result is discussed in Table 5.

The best optimal is T IAT�3 by using Liu et al. (2019) and
CSVNPMM operator. The CSVNPDMM operator gives a different

result, which is T IAT�4. Moreover, we explained the advantage of
the developed operators with the help of their structures. The geomet-
rical form of the data in Table 5 is provided in Figure 2.

5.4. Advantages

The principle of CSVNS is massively extended than the
prevailing theories. In this analysis, we illustrated the specific
cases of the initiated CSVNSs, which are discussed below.

1. For

A
T IC

Ξ
� �

¼ A
T IR

Ξ
� �

e
ff2π A

T II
Ξ
� �� �

¼ 0:eff2π 0ð Þ ¼ 0:1 ¼ 0,

the CSVNS is changed to CIFSs.

2. For

A
T IC

Ξ
� �

¼ A
T IR

Ξ
� �

e
ff2π A

T II
Ξ
� �� �

¼ 0:eff2π 0ð Þ ¼ 0:1 ¼ 0;

and

N
T IC

Ξ
� �

¼ N
T IR

Ξ
� �

e
ff2π N

T I I
Ξ
� �� �

¼ 0:eff2π 0ð Þ ¼ 0:1 ¼ 0,

the CSVNS is changed to CFSs.

3. If we choose ]0−, 1þ[, [0−,3þ] instead of [0,1], [0,1], then the
CSVNS is changed to CNSs.

4. For M
T I I

¼ A
T I I

¼ N
T I I

¼ 0, the CSVNS is changed to
SVNSs.

5. For M
T I I

¼ A
T I I

¼ N
T I I

¼ 0, and A
T IR

Ξ
� �

¼ 0, the
CSVNS is changed to IFSs.

6. For M
T I I

¼ A
T I I

¼ N
T I I

¼ 0, and

A
T IR

Ξ
� �

¼ N
T IR

Ξ
� �

¼ 0, the CSVNS is changed to FSs.

Under the above points, the principles of IFSs, NSs, SVNSs,
CIFSs, and CNSs are the specific cases of the initiated CSVNSs.
Therefore, the elaborated works based on CSVNS are massive,
attractive, and more dominant to determine the supremacy of the
initiated works.

6. Conclusion

The certain individual has employed the principle of PMM
aggregation operator in the environment of distinct regions. The
main goal of this study is discussed below.
1. We initiated the CSVNS and determined their important algebraic

laws.

Table 5
Expression of the comparative analysis for the information in Table 1 (without imaginary parts)

Methods Score values Ranking values

Garg (2018) Cannot be calculated Cannot be calculated
Xu et al. (2019) Cannot be calculated Cannot be calculated
Liu et al. (2019) 0.4288, 0.4598, 0.5239, 0.4992, 0.4813 T IAT�3 � T IAT�4 � T IAT�5 � T IAT�2 � T IAT�1

CSVNPMM operator 0.3177, 0.3587, 0.4129, 0.3981, 0.3702 T IAT�3 � T IAT�4 � T IAT�5 � T IAT�2 � T IAT�1

CSVNPDMM operator 0.0130, 0.0555, 0.0703, 0.0971, 0.0683 T IAT�4 � T IAT�3 � T IAT�5 � T IAT�2 � T IAT�1

Figure 1
Graphical shown for the data given in Table 4

Figure 2
Graphical shown for the data given in Table 5
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2. The principle of CSVNPMM operator and CSVNPDMM
operator is elaborated and their particular cases are discussed.

3. AMADMprocedure is explored under the presented operators by
using the CSVNSs.

4. Numerous examples are illustrated to determine the advantages,
sensitive analysis, and geometrical expressions of the proposed
works to find the supremacy and flexibility of the
initiated works.

In the future, we will adjust the hypothesis of complex q-rung
orthopair fuzzy sets (Ali et al., 2020), complex spherical fuzzy
sets (Ali et al., 2020), complex T-spherical fuzzy sets (Ali et al.,
2020), linear Diophantine fuzzy sets (Riaz & Hashmi, 2019),
Pythagorean m-polar fuzzy sets (Riaz & Hashmi, 2020), and
T-spherical fuzzy sets (Balin, 2020; Guleria & Bajaj, 2020; Liu
et al., 2019; Mahmood et al., 2019; Riaz et al., 2021; Wu et al.,
2020) to advance the excellence of the created works.
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