RESEARCH ARTICLE

Journal of Comprehensive Business Administration Research 2024, Vol. 00(00) 1–11 DOI: 10.47852/bonviewJCBAR32021874

Intelligent System of Estimation of Total Factor Productivity (TFP) and Investment Efficiency in the Economy with External Technology Gaps

Alexey K. Lopatin^{1,*}

¹Institute for Applied System Analysis of the National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Ukraine

Abstract: This paper is the first to propose an aggregate S-trend factor production function to estimate total factor productivity (TFP) and investment efficiency in an economy. This function implements Charles R. Hulten's organizing principle: to what extent the growth of the economy is due to an increase in "productivity" (progress in technology and organization of production) and to what extent to "capital formation" (increased investment in human capital, knowledge, and fixed capital). Estimation of future members of the series is usually done by a forecast model. It is a model that approximates a trend. The Verhulst's S-curve $y'(t) = u + A(1 + B * \exp(-a(t - m)))^{-1}$ is used as the approximation function. Here, *A*, *B*, and *a* are the parameters that change the shape of the S-curve, and *u* and *m* are the parameters that change the position of the form Z(t) = P(t)y'(t) = P(t) * S(x(t), A, B, a, m, u). Here, the function S(x(t), A, B, a, m, u) is a S – curve trend with the factor $x(t) \equiv t$. It represents the growth of the economy, which is by raw data and takes into account all influencing factors, and is certainly broader than the concept of "capital formation", P(t) is a TFP. The error of approximation is quantitatively measured by the MAPE criterion.

Keywords: deterministic trends, one factor S-trend PF, aggregate S-trend PF, TFP, Charles R. Hulten principle, investment efficiency, external technology gaps

1. Introduction

In modern economics, growth of capital, labor, and technical progress are the three main sources of economic growth of a country and a region. The rate of labor growth is constrained by the rate of population growth, especially in industrialized countries, where the population rarely grows by more than 2% per year, even taking into account international migration (Lanets, 2011). Consequently, the growth rate of capital (physical and human) and technological progress are the main sources of much of economic growth. This fact emphasizes the relevance of finding the level of total factor productivity (hereinafter – TFP), which is one of the key indicators of production efficiency both at the level of individual firms and at the level of industries, regions, and countries. There is a wide range of methods that allow calculating TFP.

Historically, the calculation of TFP has been based on the notion of a production function. In economics, a production function gives the technological relation between quantities of physical inputs and quantities of output of goods.

2. Literature Review

2.1. Cobb–Douglas Era

The concept of production function was formulated in the 30s of the 19th century by Cobb and Douglas. In its most standard form for production of a single good with two factors, it is given by the formula (without the statistical components):

$$Y(t) = AK^a L^{1-b} \tag{1}$$

Y(t) – total output (the real value of all goods produced in a year); L(t) – labor input (person-hours worked in a year); K(t) – capital input (a measure of all machinery, equipment, and buildings; the value of capital input divided by the price of capital); A – constant – efficiency coefficient; 0 < a < 1 and 0 < 1 - a < 1 are the output elasticities of capital and labor, respectively. These values are constants determined by available technology.

The production function Equation (1) can be written in the intensive form

$$y(t) = Ak(t)^a \tag{2}$$

here

$$y(t) = \frac{Y(t)}{L(t)}$$
 – output per man;

^{*}Corresponding author: Alexey K. Lopatin, Institute for Applied System Analysis of the National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, Ukraine. Email: lopatinalexey142@gmail.com

[©] The Author(s) 2024. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/by/4.0/).

 $k(t) = \frac{K(t)}{L(t)}$ – capital per man.

Advantages and disadvantages of production function Equation (1) may be found in Bhanumurthy (2004).

2.2. Solow Era

A number of works by prominent economists, such as Abramovitz (1956), Jorgenson and Griliches (1967), Jorgenson et al. (1987), and Kuznets (1971), are devoted to the study of the sources of economic growth.

The Solow model (Solow–Swan model) – a model of exogenous economic growth is based on the works of Solow (1956) and Swan (1956). The concept of TFP, called the Solow residual, was introduced by Solow (1957) and proposed on the basis of production function Equation (1) an aggregated production function of the form

$$y(t) = P(t)k(t)^{a}, t = 1, ..., T$$
 (3)

Here, the TFP coefficient P(t) measures the cumulated effect of shifts over time.

The variables $\frac{\Delta y}{y}$, $\frac{\Delta P}{P}$, $a\frac{d\Delta k}{dk}$ are the growth or decay rates of the variables y(t), p(t), k(t) over the interval $[t_i, t_{i+1}]$ in fractions or percentages. We will denote them G(y(t)), G(p(t)), G(k(t)), respectively. Then, Equation (3) will be rewritten in the form

$$G(y(t)) = G(p(t)) + G(k(t))$$

Since the series G(y(t)), G(k(t)) can be determined from the original data series, it is easy to determine the components

$$G(p(t)) = G(y(t)) - G(k(t))$$

By coefficients G(p), the TFP coefficients P(t) are easily determined. To some extent, the disadvantages of production function Equations (1) and (2) are inherent in the aggregate production function Equation (3). Nevertheless, the model Equation (3) is considered the starting point of all modern models of economic growth. Solow's residual is still, after many decades, the workhorse of empirical growth analysis. For an introduction to the problem, we refer you to Hulten et al. (2001), Hulten (2001), which provides an extensive bibliography between 1956 and 2001.

2.3. Era of aggregate production functions

At the current stage of economic development, it is necessary to find new approaches to modeling economic growth. More complex models of economic growth are required, taking into account a large number of factors and based on the newest achievements in the field of econometrics and forecasting.

The concept of production function (PF) is basic in economic theory. Formally, the production function looks like this:

$$\mathbf{y}(t) = f(\mathbf{x}_1(t), \dots, \mathbf{x}_n(t), \mathbf{a}_1, \dots, \mathbf{a}_m)$$

y(t) – volume (quantity) of output; $x_1(t), \ldots, x_n(t)$ – quantities of inputs (used); vector $(x_1(t), \ldots, x_n(t))$ is called the resource configuration, $x_1(t) > 0, \ldots, x_{n1}(t) > 0$; a_1, \ldots, a_m – parameters; the symbol *f*, called the *PF* characteristic, shows how the quantity of a resource is formally transformed into the volume of output.

Some scientists (Glazyev, 2005) define the production function as an economic and mathematical expression of the dependence of the result of production activity on the factors conditioning it. Formally, the aggregate production function (based on PF) looks as follows:

$$y(t) = P(t)f(x_1(t), \ldots, x_n(t), a_1, \ldots, a_m)$$

P(t) – total factor productivity coefficient.

2.4. A selection of the most relevant to building new aggregate production functions over the past 5 years

Generalization and further development of methods measuring TFP:

Tsionas and Polemis (2019), Tsounis and Steedman (2021), Francis et al. (2020), Whelan (2021), Dandan (2020), Harb and Bassil (2023).

A criticism

Last but not least

The US Bureau of Labor Statistics (BLS) (release March 23, 2023). This article defines key terms and concepts that are central to understanding how the BLS produces measures of productivity for different levels of the US economy. Conceptually, our approach is close to the BLS concept. This topic is discussed in detail in the section Discussion of results.

3. Problem Statement

3.1. S-trend production function

Let the time series under study be

$$y(t) = y(t_1), \dots, y(t_T)$$
(4)

For example, it can be the GDP per capita of a country. For time series, it is customary to consider its levels as a mixture of four components - trend, cyclical, seasonal, and random components that cannot be measured Cipra (2020).

$$y(t_i) = T(t_i) + C(t_i) + S(t_i) + \varepsilon(t_i)$$

 $T(t_i)$ is a trend, the main tendency in the development of the process under study over time. This trend is a deterministic component, independent of cyclical, seasonal, and random components. It can be represented as a more or less smooth curve.

The components of the time series $T(t_i)$ are not observable. They are theoretical values. The estimation of future time series components is usually done using a predictive model. A predictive model is a model that approximates a trend. We choose the S-shaped Verhulst curve as a trend forecasting model (TFM)

$$y'(t) = u + \frac{A}{1 + B * \exp(-a(t-m))} = S(t, A, B, a, m, u)$$
 (5)

Corollary 1. The type of forecasting model can be determined by the graph (y(t), t) of the original series. Thus, the original data Equation (4) should be approximated by the TFM Equation (5).

Corollary 2. The accuracy of the approximation of the series Equation (4) by the TFM Equations (2) and (9) is estimated by the MAPE criterion.

MAPE
$$(y(t), y'(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t) - y'(t)}{y(t)}|$$
 (6)

y(t) are the coordinates of the point plot of the original series Equation (4), and y'(t) are the coordinates of the TFM Equation (5) being constructed. These coordinates are determined by the choice of the vector of parameters *A*, *B*, *a,m,u* in Equation (5).

A series of similar approximations is performed until the smallest MAPE value is obtained. The MAPE criterion is easy to interpret. For example, MAPE = 14% means that the average difference between the predicted value and the actual value is 14%. MAPE < 10% is considered an excellent result, and 10% < MAPE < 20% is considered a good result in Equation (6).

Remark 2. The development of the Solow model based on S-curves is given in our papers Lopatin (2020), Lopatin (2021).

3.2. Aggregate S-trend production function

The purpose of this paper is to develop a new two-factor aggregate production function of the form

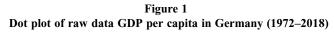
$$z(t) = P(t) S(x(t), A, B, a, m, u), t = 1, \dots, T$$
(7)

where P(t) – TFP coefficient, and S(t, A, B, a, m, u) is the TFM of the series under study: factor x(t) = t. In this case, the main factor that characterizes the economic output is time with a step of 1 year (the usual step of statistical tables).

The production function Equation (7) makes no assumptions about the factors affecting economic output. It allows to realize on its basis Hulten (2001) organizing principle: to what extent the growth of the economy is due to an increase in "productivity" (progress in technology and organization of production) and to what extent to "capital formation" (investment in human capital, knowledge, and fixed capital).

4. Methodology

4.1. Diagram of technological mode of GDP per capita in Germany 1972–2018 Data source


World Development Indicators." World Bank. https://www.google.ru/publicdata/explore?ds=d5bncppjof8f9_

Let a finite-dimensional numerical series (GDP per capita of Germany) be investigated by time series (Table 1)

Step 1

Step 2

The diagram is broken down into rising and falling sections, which we call cycles. There are a total of five cycles available. Each cycle is approximated by an S-curve Verhulst.

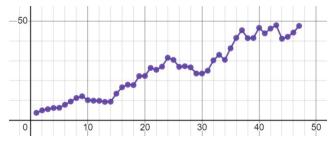


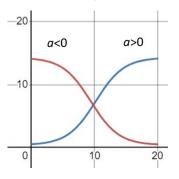
Table 1Here y(t) – GDP per capita in thousands of dollars(in current US\$)

			``		,			
No.	Year	у	No.	Year	у	No.	Year	у
1	1972	3.81	17	1988	17.99	33	2004	33.04
2	1973	5.05	18	1989	17.70	34	2005	30.51
3	1974	5.63	19	1990	22.30	35	2006	36.32
4	1975	6.24	20	1991	22.38	36	2007	41.59
5	1976	6.33	21	1992	26.44	37	2008	45.43
6	1977	7.88	22	1993	25.52	38	2009	41.44
7	1978	9.48	23	1994	27.08	39	2010	41.53
8	1979	11.28	24	1995	31.57	40	2011	46.64
9	1980	12.14	25	1996	30.49	41	2012	43.86
10	1981	10.20	26	1997	26.98	42	2013	46.28
11	1982	9.91	27	1998	27.29	43	2014	47.96
12	1983	9.86	28	1999	26.75	44	2015	41.14
13	1984	9.31	29	2000	23.64	45	2016	42.10
14	1985	9.43	30	2001	23.61	46	2017	44.24
15	1986	13.46	31	2002	25.03	47	2018	47.60
16	1987	16.67	32	2003	30.24			

Step 3

Description of S-trends of cycles Approximation diagram of the technological pattern of GDP per capita in Germany 1972–2018 by S-trends of cycles

There are three increasing trends:


Theta $1 \le S_1(t) \le$ Theta 3 Theta $2 \le S_3(t) \le$ Theta 5 Theta $4 \le S_5(t) \le$ Theta 6

and two decreasing trends:

Theta
$$2 \le S_2(t) \le$$
 Theta 3
Theta $4 \le S_4(t) \le$ Theta 5

Decreasing trends are exogenous, as they are caused by changes in the world economy (wars, economic crises such as financial crises, and the like). Predicting such trends is a challenging task that lies outside the scope of this paper.

Figure 2 If a > 0, we have an increasing trend; if a < 0, we have a decreasing trend

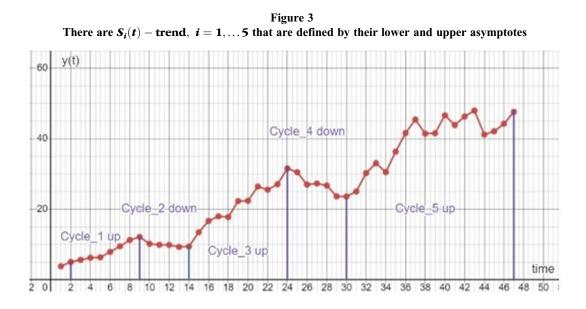


Table 2Cycles are defined by their lower and upper asymptotesTheta123456

Theta	1	2	3	4	5	6
Value	3.81	9.3	12.1	23.6	31.5	45.4

 Table 3

 Decreasing trends are characterized by two parameters (see Table 2)

Technological gap in	1
time	Technological results gap
$S_2(t)$ $b-a=5$ years	Theta 2 – Theta 3 = $-28,000$ GDP
$S_4(t)$ $j-k=5$ years	per capita Theta 4 –Theta 5 = –79,000 GDP
	per capita

• $S_2(t)$ trend: the technological gap = Theta 5 - Theta 3 = -19.1 GDP per capita.

• $S_4(t)$ trend: the technological gap = Theta 6 - Theta 4 = -15.8 GDP per capita.

Step 4

Aggregate S-trend production function

In the following, for simplicity of presentation, the expression S-trend production function we will understand any of the five available trends, $S_i(t)$, i = 1, ... 5.

Step 5

Mathematics. Transition from the aggregate S-trend production function Equation (5) to the production function in rates of growth of variables (continuous version)

Let us compute the differential of the function y(t) in relation Equation (7)

$$dy(t) = \frac{\partial y(t)}{\partial P(t)} dP(t) * S(x(t)) + P(t) * \frac{\partial y(t)}{\partial S(t)} \frac{\partial S(t)}{\partial x(t)} dx(t)$$
(8)

Let us divide both parts of Equation (8) by y(t)

$$\frac{dy(t)}{y(t)} = \mathcal{S}(x(t))dP(t) * \frac{1}{P(t)*\mathcal{S}(t)} + \frac{1}{P(t)*\mathcal{S}(t)} * P(t)\frac{\partial \mathcal{S}(t)}{\partial (x(t))}dx(t)$$

After reducing the multipliers in the numerator and denominator, we obtain the production function Equation (7) in the growth rates of the variables

$$\frac{dy(t)}{v(t)} = \frac{dP(t)}{P(t)} + \frac{\partial S(t)}{\partial x(t)} \frac{x(t)}{S(t)} \frac{dx(t)}{x(t)}$$

or

$$\frac{dy(t)}{y(t)} = \frac{dP(t)}{P(t)} + E_s(x(t))\frac{dx(t)}{x(t)}$$
(9)

Here $E_s(x(t)) = \frac{\partial S(x(t)) x(t)}{\partial (x(t)) S(t)}$ – elasticity of S(x(t)) with respect to factor x(t).

Aggregate S-trend production function in growth rates of variables (discrete variant). Economic analysis

Let us convert to finite differences in relation Equation (9)

$$\frac{\Delta y(t)}{y(t)} = \frac{\Delta P(t)}{P(t)} + E_s(x(t))\frac{\Delta x(t)}{x(t)}$$
(10)

We keep the following notations. The rate of increase or decrease of the variable y(t) on the interval [t, t+1].

 $G_y(t) = \frac{y(t+1)}{y(t)} - 1$ in fractions or percent $G_y(t)$ %.

On the other hand, the new growth theory and another strand of neoclassical economics – the theory of capital and investment – prioritize increased investment in human capital, knowledge, and fixed capital. This component is called "capital formation." The component $G_s(t)$ characterizes the increase in $G_y(t)$ caused by "capital formation," and $G_p(t)$ characterizes the increase in $G_y(t)$ caused by "productivity." Let us rewrite the relation Equation (10) in the form:

$$G_y(t) = G_p(t) + G_s(t)$$

The components $G_y(t)$, $G_s(t)$ are observable as they can be found from the original statistical data. The component $G_p(t)$ is unobservable and is found from the equation:

$$G_p(t) = G_y(t) - G_s(t)$$

Step 6 Component assessment

5. Component assessment of the aggregate S-trend production function in the growth rates of variables from the initial data

5.1. Component assessment by way of example Cycle_1

This table is a summary table. It contains the trend vector y'. The accuracy of approximation of the original data by this vector is MAPE(y, y')% = 7.73%. The upper part of the table shows the coefficients for plotting the trend y'. The upper part of the table shows the coefficients for plotting the trend y' is trending up Z(t) = P(t)y'. The coefficient of "productivity" (TFP) is found by the formula $P(t+1) = (1 + G_p(t))P(t)$. In initial calculations, it was assumed that P(1) = 1. By increasing the coefficient P(1) = 1, we will achieve the minimum value at P(1) = 1.10. MAPE $(y(t), z(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t)-z(t)}{y(t)}| = 3.38\%$

Conclusion

For aggregate S-trend production functions Equation (8), the expected value reliability is (100-3.38) = 92.62%,

For S-trend production functions, the expected reliability is (100-7.73) = 92.27%.

$$G_{y}(t) = \frac{y(t+1) - y(t)}{y(t)}$$
 may be both positive or negative

$$G_n(t) = \frac{n(t+1) - n(t)}{n(t)} = \frac{1}{t}$$
 always positive

Table 4 (Cycle_1) Accuracy of cycle approximation using S-trend and aggregate S-trend production functions

A1	B1	a1	m1	u1			
10	984	0.57	-6.7	3			
Α	В	С	D	Е	F	G	Н
Ν	Year	y(t)	y'(t)	Er	P(t)	Z(t)	Er
1	1972	3.81	3.76	0.01	1.10	4.13	0.08
2	1973	5.05	4.26	0.15	1.22	5.19	0.03
3	1974	5.63	5.04	0.11	1.10	5.54	0.02
4	1975	6.24	6.12	0.02	0.98	5.99	0.04
5	1976	6.33	7.45	0.18	0.79	5.92	0.07
6	1977	7.88	8.86	0.12	0.85	7.56	0.04
7	1978	9.48	10.15	0.07	0.92	9.30	0.02
8	1979	11.28	11.16	0.01	1.01	11.28	0.00
9	1980	12.14	11.87	0.02	1.03	12.25	0.01
			sum	0.70		sum	0.30
			MAPE	0.08		MAPE	0.03
			MAPE%	7.73		MAPE%	3.38

 Table 5

 (Cycle_1) Calculation of the components of the velocities

 Gv(t), Gn(t), Es(t), Gs(t), Gp(t)

	وي	(i), d ii(, 20(1)	uu(i), u	P (·)	
А	В	Ι	J	Κ	L	М
ND	Year	Gn(t)	Es(t)	Gy(t)	Gs(t)	Gp(t)
1	1972					
2	1973	1.00	0.22	0.32	0.22	0.11
3	1974	0.50	0.43	0.12	0.21	-0.10
4	1975	0.33	0.65	0.11	0.22	-0.11
5	1976	0.25	0.82	0.02	0.20	-0.19
6	1977	0.20	0.85	0.24	0.17	0.07
7	1978	0.17	0.77	0.20	0.13	0.08
8	1979	0.14	0.61	0.19	0.09	0.10
9	1980	0.13	0.44	0.08	0.06	0.02

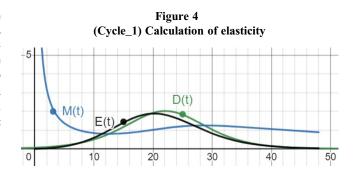
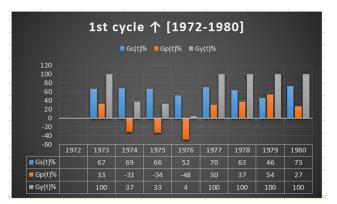



Figure 5 (Cycle_1) The proportions of the contribution "productivity" and contribution "capital formation" in $G_v(t)$ %

 $E_{s}(t)$ is an elasticity of the S-curve with respect to t may be both positive or negative.

For the calculation, we will use the DESMOS graphing calculator. We plot the derivative $D(t) = \frac{dS(t)}{dt}$ of the function S(t), the mean of the function $M(t) = \frac{S(t)}{t}$, then $E_s(t) = \frac{D(t)}{M(t)}$

1. $G_s(t) = G_n(t)E_s(t)$ may be both positive or negative

2. $G_{y}(t) = G_{p}(t) + G_{s}(t)$

3. $G_p(t) = G_y(t) - G_s(t)$ may be both positive or negative

- 4. factor = $ABS(G_s(t)) + ABS(G_p(t))$
- 5. $G_s(t)\% = 100 * G_s(t)/\text{factor}^{P}$
- 6. $G_p(t)\% = 100 * G_p(t)/\text{factor}$

7. $G_{y}(t) \% = 100 * G_{y}(t)/\text{factor}$

Figure 6 (Cycle_1) Output $G_y(t)$ %, as sum of "productivity" and "capital formation"

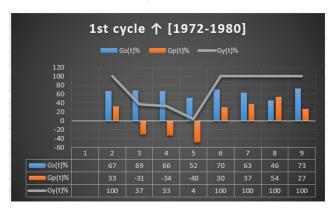


Table 6 (Cycle_1) Growth rate contribution diagram $G_{v}(t)\%$. $G_{s}(t)\%$. $G_{b}(t)$

$\mathbf{v}_{\mathbf{y}}(\mathbf{r})$, or $\mathbf{v}_{\mathbf{y}}(\mathbf{r})$, or $\mathbf{v}_{\mathbf{p}}(\mathbf{r})$										
А	В	Ν	0	Р	Q	R	S			
Ν	Year	Gs(t)	Gp(t)	Gy(t)	ABS	ABS	Factor			
		%	%	%	Gs(t)	Gp(t)				
1	1972									
2	1973	67	33	100	0.22	0.11	0.32			
3	1974	69	-31	37	0.21	0.10	0.31			
4	1975	66	-34	33	0.22	0.11	0.33			
5	1976	52	-48	4	0.20	0.19	0.39			
6	1977	70	30	100	0.17	0.07	0.24			
7	1978	63	37	100	0.13	0.08	0.20			
8	1979	46	54	100	0.09	0.10	0.19			
9	1980	73	27	100	0.06	0.02	0.08			

Remark 3. For all cycles 1–5 in the diagram $G_s(t)$ % is labeled in blue, $G_p(t)$ % is labeled in orange, and $G_y(t)$ % is labeled in gray. By definition: $G_y(t) = G_p(t) + G_s(t)$.

6. Results

Cycle 2

This table is a summary table. It contains the trend vector y'. The accuracy of approximation of the original data by this vector is MAPE(y, y')% = 5.38.

The upper part of the table shows the coefficients for plotting the trend y'. The upper part of the table shows the coefficients for plotting the trend y' is trending Z(t) = P(t)y'. The coefficient of "productivity" (TFP) is found by the formula $P(t+1) = (1 + G_p(t))P(t)$. In initial calculations, it was assumed that P(1) = 1. By increasing the coefficient P(1)=1, we will achieve the minimum value at $P(1) = 0.8650 \text{ MAPE}(y(t), z(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t)-z(t)}{y(t)}| = 6.25\%$

Conclusion

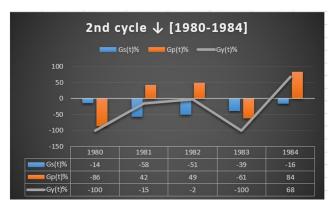
For aggregate S-trend production functions, the expected value reliability is (100-4.05) = 95.95%.

For S-trend production functions, the expected reliability is (100-5.38) = 94.62%.

Figure 7 (Cycle_2) The proportions of the contribution "productivity" and contribution "capital formation" in $G_v(t)$ %

Table 7
(Cycle_2) Accuracy of cycle approximation using S-trend and
aggregate S-trend production functions

A2	B2	a2	m2	u2			
2.80	70	-2.1	12	9.30			
А	В	С	D	Е	F	G	Н
Ν	Year	y(t)	y'(t)	Er	P(t)	Z(t)	Er
9	1980	12.14	11.78	0.03	0.89	10.49	0.14
10	1981	10.20	10.67	0.05	0.96	10.24	0.00
11	1982	9.91	9.59	0.03	1.06	10.13	0.02
12	1983	9.86	9.34	0.05	1.02	9.53	0.03
13	1984	9.32	9.30	0.00	1.02	9.50	0.02
			sum	0.16		sum	0.22
			MAPE	0.04		MAPE	0.05
			MAPE%	4.05		MAPE%	5.38


Table 8(Cycle_2) Calculation of the components of the velocitiesGy(t), Gn(t), Es(t), Gs(t), Gp(t)

		• (),	() (- ()	
А	В	Ι	J	Κ	L	М
Ν	Year	Gn(t)	Es(t)	Gy(t)	Gs(t)	Gp(t)
9	1980					
10	1981	0.11	0.20	-0.16	-0.02	-0.14
11	1982	0.10	1.07	-0.03	-0.11	0.08
12	1983	0.09	1.16	0.00	-0.11	0.10
13	1984	0.08	0.26	-0.06	-0.02	0.03

Table 9(Cycle_2) Growth rate contribution diagram $G_y(t)\%, \ G_s(t)\%, \ G_p(t)\%$

					<u>^</u>		
А	В	Ν	0	Р	Q	R	S
Ν	Year	Gs(t)	Gp(t)	Gy(t)	ABS	ABS	Factor
		%	%	%	Gs(t)	Gp(t)	
9	1980						
10	1981	-14	-86	-100	0.02	0.14	0.16
11	1982	-58	42	-15	0.11	0.08	0.19
12	1983	-51	49	-2	0.11	0.10	0.21
13	1984	-39	-61	-100	0.02	0.03	0.06

Figure 8 (Cycle_2) Output $G_y(t)$ %, as sum of "productivity" and "capital formation"

Cycle 3

This table is a summary table. It contains the trend vector y'. The accuracy of approximation of the original data by this vector is MAPE(y, y')% = 13

Figure 9 (Cycle_3) The proportions of the contribution "productivity" and contribution "capital formation" in $G_v(t)$ %

 Table 10

 (Cycle_3) Accuracy of cycle approximation using S-trend and aggregate S-trend production functions

A	3	B3	a3	m3	u3			
22.	50	1600.00	0.70	8.20	9.10			
A	A	В	С	D	Е	F	G	Н
N	1	Year	y(t)	y'(t)	Er	P(t)	Z(t)	Er
1	4	1985	9.43	9.89	0.05	1.00	9.89	0.05
1	5	1986	13.46	10.63	0.21	1.33	14.10	0.05
1	6	1987	16.67	11.98	0.28	1.43	17.19	0.03
1	7	1988	17.99	14.24	0.21	1.25	17.80	0.01
1	8	1989	17.76	17.50	0.01	0.95	16.71	0.06
1	9	1990	22.03	21.37	0.03	1.00	21.37	0.03
2	0	1991	22.38	25.01	0.12	0.89	22.37	0.00
2	1	1992	26.44	27.76	0.05	0.94	26.09	0.01
2	2	1993	25.52	29.52	0.16	0.86	25.48	0.00
2	3	1994	27.08	30.51	0.13	0.89	27.29	0.01
2	4	1995	31.57	31.05	0.02	1.05	32.72	0.04
				sum	1.26		sum	0.29
				MAPE	0.13		MAPE	0.03
				% MAPE	13%		% MAPE	2.87

Table 11(Cycle_3) Calculation of the components of the velocitiesGy(t), Gn(t), Es(t), Gs(t), Gp(t)

		• ()/			1 ()	
А	В	J	J	K	L	М
Ν	Year	Gn(t)	Es(t)	Gy(t)	Gs(t)	Gp(t)
14	1985					
15	1986	0.071	1.41	0.43	0.10	0.33
16	1987	0.067	2.36	0.24	0.16	0.08
17	1988	0.063	3.32	0.08	0.21	-0.13
18	1989	0.059	3.80	-0.01	0.22	-0.24
19	1990	0.056	3.48	0.24	0.19	0.05
20	1991	0.053	2.30	0.02	0.12	-0.11
21	1992	0.050	2.61	0.18	0.13	0.05
22	1993	0.048	0.99	-0.03	0.05	-0.08
23	1994	0.045	0.55	0.06	0.02	0.04
24	1995	0.043	0.29	0.17	-0.01	0.18

Figure 10 (Cycle_3) Output $G_y(t)$ %, as sum of "productivity" and "capital formation"

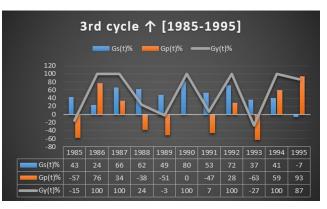


Table 12(Cycle_3) Growth rate contribution diagram $G_{\nu}(t)\%, \ G_{s}(t)\%, \ G_{p}(t\%)$

	y(r), $y(r)$, $y(r)$								
А	В	Ν	0	Р	Q	R	S		
Ν	Year	Gs(t)	Gp(t)	Gy(t)	ABS	ABS	Factor		
		%	%	%	Gs(t)	Gp(t)			
14	1985								
15	1986	24	76	100	0,10	0.33	0.43		
16	1987	66	34	100	0.16	0.08	0.24		
17	1988	62	-38	24	0.21	0.13	0.34		
18	1989	49	-51	-3	0.22	0.24	0.46		
19	1990	80	0	100	0.19	0.05	0.24		
20	1991	53	-47	7	0.12	0.11	0.23		
21	1992	72	28	100	0.13	0.05	0.18		
22	1993	37	-63	-27	0.05	0.08	0.13		
23	1994	41	59	100	0.02	0.04	0.06		
24	1995	-7	93	87	0.01	0.18	0.19		

The upper part of the table shows the coefficients for plotting the trend y'. The upper part of the table shows the coefficients for plotting the trend y' is trending Z(t) = P(t)y'. The coefficient of "productivity" (TFP) is found by the formula $P(t + 1) = (1 + G_p(t))P(t)$. In initial calculations, it was assumed that P(1) = 1. By increasing the coefficient P(1)=1, we will achieve the minimum value at P(1)=1 MAPE $(y(t), z(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t)-z(t)}{y(t)}| = 2.9\%$.

Conclusion

For aggregate S-trend production functions, the expected value reliability is (100-2.9) = 97.1%.

For S-trend production functions, the expected reliability is (100-13) = 98.6%.

Cycle 4

This table is a summary table. It contains the trend vector y'. The accuracy of approximation of the original data by this vector is MAPE(y, y')% = 5.12

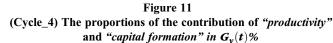



Figure 12 (Cycle_4) Output $G_y(t)$ %, as sum of "productivity" and "capital formation"

The upper part of the table shows the coefficients for plotting the trend y'. The upper part of the table shows the coefficients for plotting the trend y' is trending z(t) = P(t)y'. The coefficient of "productiv-

ity" (TFP) is found by the formula $P(t+1) = (1 + G_p(t))P(t)$. In initial calculations, it was assumed that P(1) = 1. By increasing the coefficient P(1) = 1, we will achieve the minimum value at P(1) = 1 MAPE $(y(t), z(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t) - z(t)}{y(t)}| = 2.75\%$.

Conclusion

For aggregate S-trend production functions, the expected value reliability is (100-2.75) = 97.25%.

For S-trend production functions, the expected reliability is (100-5.12) = 94.88%.

 Table 13

 (Cycle_4) Accuracy of cycle approximation using S-trend and aggregate S-trend production functions

		00 0	-				
A4	B4	a1	m1	u1			
8	570	-2.1	30	23.40			
А	В	С	D	Е	F	G	Н
Ν	Year	y(t)	y'(t)	Er	P(t)	Z(t)	Er
24	1995	31.57	31.38	0.01	1.00	31.38	0.01
25	1996	30.49	31.28	0.03	0.97	30.47	0.00
26	1997	26.98	30.49	0.13	0.92	28.01	0.04
27	1998	27.29	27.31	0.00	1.08	29.37	0.08
28	1999	26.75	24.24	0.09	1.13	27.31	0.02
29	2000	23.64	23.51	0.01	1.01	23.68	0.00
			sum	0.26		sum	0.14
			MAPE	0.05		MAPE	0.03
			MAPE%	5.12		MAPE%	2.75

Table 14(Cycle_4) Calculation of the components of the velocitiesGy(t), Gn(t), Es(t), Gs(t), Gp(t)

	В	Ι	J	Κ	L	М
Ν	Year	Gn(t)	Es(t)	Gy(t)	Gs(t)	Gp(t)
24	1995			А		
25	1996	0.0417	0.2043	-0.03	-0.01	-0.03
26	1997	0.0400	1.4426	-0.11	-0.06	-0.06
27	1998	0.0385	4.1504	0.01	-0.16	0.17
28	1999	0.0370	1.8198	-0.02	-0.07	0.05
29	2000	0.0357	0.2885	-0.12	-0.01	-0.11

Cycle 5

This table is a summary table. It contains the trend vector y'. The accuracy of approximation of the original data by this vector is MAPE(y, y')% = 6.47. The upper part of the table shows the coefficients for plotting the trend y'. The upper part of the table shows the coefficients for plotting the trend y' is trending Z(t) = P(t)y'. The coefficient of "productivity" (TFP) is found by the formula $P(t + 1) = (1 + G_p(t))P(t)$. In initial calculations, it was assumed that P(1) = 1. By increasing the coefficient P(1) = 1, we will achieve the minimum value at P(1) = 0.97MAPE $(y(t), z(t)) = \frac{100\%}{N} \sum_{t=1}^{N} |\frac{y(t)-z(t)}{y(t)}| = 2\%$.

Conclusion

For aggregate S-trend production functions, the expected value reliability is (100-2) = 98%.

Table 15(Cycle_4) Growth rate contribution diagram $G_y(t)\%, \ G_s(t)\%, \ G_p(t)\%$								
А	В	0	Р	Q	R	S		
Ν	Year	Gs(t)	Gp(t)	Gy(t)	ABS	ABS	Factor	
		%	%	%	Gs(t)	Gp(t)		
24	1995							
25	1996	-25	-3	-27	0.01	0.03	0.03	
26	1997	-50	-50	-100	0.06	0.06	0.11	
27	1998	-48	52	3	0.16	0.17	0.33	
28	1999	-59	41	-17	0.07	0.05	0.12	
29	2000	-9	-91	-100	0.01	0.11	0.12	

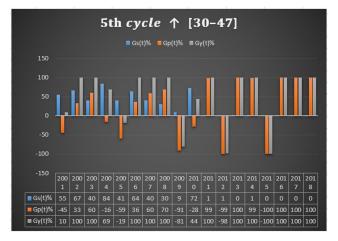
Table 16 (Cycle_5) Accuracy of cycle approximation using S-trend and aggregate S-trend production functions

-								
	A5	B5	a5	m5	u5			
	22	84	1	29.7	23.60			
	А	В	С	D	Е	F	G	Н
	Ν	Year	y(t)	y'(t)	Er	P(t)	Z(t)	Er
	30	2001	23.70	23.95	0.01	0.97	23.23	0.02
	31	2002	25.03	24.52	0.02	0.99	24.23	0.03
	32	2003	30.24	25.94	0.14	1.11	28.82	0.05
	33	2004	33.04	28.97	0.12	1.09	31.52	0.05
	34	2005	30.51	33.88	0.11	0.82	27.86	0.09
	35	2006	36.32	39.10	0.08	0.88	34.38	0.05
	36	2007	41.86	42.66	0.02	0.96	40.91	0.02
	37	2008	45.43	44.42	0.02	1.02	45.13	0.01
	38	2009	41.44	45.15	0.09	0.92	41.38	0.00
	39	2010	41.53	45.43	0.09	0.92	41.58	0.00
	40	2011	46.64	45.54	0.02	1.03	46.74	0.00
	41	2012	43.86	45.58	0.04	0.96	43.97	0.00
	42	2013	46.28	45.59	0.01	1.02	46.40	0.00
	43	2014	47.96	45.60	0.05	1.05	48.07	0.00
	44	2015	41.14	45.60	0.11	0.90	41.23	0.00
	45	2016	42.10	45.60	0.08	0.93	42.19	0.00
	46	2017	44.24	45.60	0.03	0.97	44.34	0.00
	47	2018	47.60	45.60	0.04	1.05	47.71	0.00
				Sum	1.10		Sum	0.34
				MAPE	0.06		MAPE	0.02
				MAPE%	6.47		MAPE%	1.97
-								

For S-trend production functions, the expected reliability is (100-6.47) = 95.53%.

Discussion of results

- 1. We are not aware of any work on constructing a production function similar to aggregate S-trend production function Equation (6).
- 2. Conceptually, our approach is close to the US BLS (release March 23, 2023) concept.


In general, structural Figure 14 describes well the German economy in terms of GDP per capita adjusted for inflation for the period 1972–2018.

Let us note some important advantages of the aggregate S-trend production function:

Table 17(Cycle_5) Calculation of the components of the velocitiesGv(t), Gn(t), Es(t), Gs(t), Gp(t)

Gy(t), Gn(t), Es(t), Gs(t), Gp(t)									
А	В	Ι	J	K	L	М			
Ν	Year	Gn(t)	Es(t)	Gy(t)	Gs(t)	Gp(t)			
30	2001								
31	2002	0.0333	1.1245	0.04	0.04	0.01			
32	2003	0.0323	2.5953	0.17	0.08	0.08			
33	2004	0.0313	3.6324	0.09	0.11	-0.03			
34	2005	0.0303	5.5283	-0.08	0.17	-0.24			
35	2006	0.0294	4.1201	0.17	0.12	0.05			
36	2007	0.0286	2.1596	0.16	0.06	0.10			
37	2008	0.0278	0.9354	0.10	0.03	0.07			
38	2009	0.0270	0.3725	-0.11	0.01	-0.12			
39	2010	0.0263	0.1435	0.00	0.00	0.00			
40	2011	0.0256	0.0545	0.13	0.00	0.13			
41	2012	0.0250	0.0206	-0.07	0.00	-0.07			
42	2013	0.0244	0.0078	0.06	0.00	0.06			
43	2014	0.0238	0.0193	0.04	0.00	0.04			
44	2015	0.0233	0.0011	-0.16	0.00	-0.16			
45	2016	0.0227	0.0004	0.02	0.00	0.02			
46	2017	0.0222	0.0002	0.05	0.00	0.05			
47	2018	0.0217	0.0001	0.07	0.00	0.07			

Figure 13 (Cycle_5) The proportions of the contribution of *productivity*" and "*capital formation*" in $G_{y'}$; (t)%

- A wider range of application (e.g., GDP problems for different countries); it is not necessary to introduce a priori factors that affect economic output and which, as a rule, are not known; time elasticity is not constant; aggregate S-trend production does not have a set of disadvantages inherent in the Solow model.
 This is the first time evogeneous trands have been studied
- 4. This is the first time exogenous trends have been studied.

They are the cause of large economic gaps causing great damage to the economy of the country. They are caused by changes in the world economy (wars, economic crises such as financial crises, and the like). Predicting such trends is a challenging task that lies outside the scope of this paper.

А	В	Ν	0	Р	Q	R	S
Num	Year	Gs(t)%	Gp(t)%	Gy(t)%	ABS(Gs(t)	ABS(Gp(t))	Factor
30	2001						
31	2002	67	12	100	0.04	0.02	0.06
32	2003	40	41	100	0.08	0.12	0.21
33	2004	84	-19	69	0.11	0.02	0.13
34	2005	41	-59	-19	0.17	0.24	0.41
35	2006	64	26	100	0.12	0.07	0.19
36	2007	40	63	100	0.06	0.09	0.15
37	2008	30	86	100	0.03	0.06	0.09
38	2009	9	-109	-81	0.01	0.10	0.11
39	2010	72	-24	44	0.00	0.00	0.01
40	2011	1	105	100	0.00	0.12	0.12
41	2012	1	-115	-98	0.00	0.06	0.06
42	2013	0	107	100	0.00	0.06	0.06
43	2014	1	109	100	0.00	0.04	0.04
44	2015	0	-112	-100	0.00	0.14	0.14
45	2016	0	93	100	0.00	0.02	0.02
46	2017	0	94	100	0.00	0.05	0.05
47	2018	0	96	100	0.00	0.08	0.08

Table 18Cycle_5) Growth rate contribution diagram $G_y(t)\%$, $G_s(t)\%$, $G_p(t)\%$

Figure 14 (Cycle_5) Output $G_y(t)$ %, as sum of "productivity" and "capital formation"

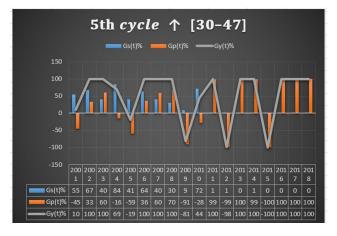


Figure 15 Structure of the German economy (1972–2018)

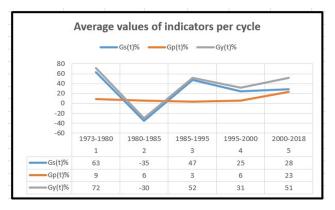


 Table 19

 Structure of the German economy (1972–2018) through average values of indicators per cycle

ND	Year	Gs(t)%	Gp(t)%	Gy(t)%
1	1973-1980	63	9	72
2	1980-1985	-35	6	-30
3	1985-1995	47	3	52
4	1995-2000	25	6	31
5	2000-2018	28	23	51

5. Prerequisites for the use of empirical data: the original time series y(t) is objective, i.e., it does not contain errors.

The data for building the TFM are selected from statistical data. The data themselves represent economic output. Therefore, using objective data, the TFP index is calculated with high reliability.

6. The posed economic task is solved in this paper by constructing a proper intelligent system. Intelligent system is a technical or software system capable of solving tasks traditionally considered creative, belonging to a specific subject area, the knowledge of which is stored in the memory of such a systemmaker (DM) as opposed to an intelligentised system in which an operator is present.

Ethical Statement

This study does not contain any studies with human or animal subjects performed by any of the authors.

Conflicts of Interest

The author declares that he has no conflicts of interest.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

- Abramovitz, M. (1956). Resource and output trends in the United States since 1870. American Economic Review, 46, 5–23.
- Bhanumurthy, K. V. (2004). Arguing a case, for the Cobb-Douglas production function. Retrieved from: https://www.researchgate.net/publication/23742938_Arguing_a_Case_for_Cobb-Douglas_Production_Function
- Cipra, T. (2020). *Time series in economics and finance*, p. 353. Springer.
- Cooper, R., & John, A. (2012). Macroeconomics: Theory through applications, Saylor Foundation. ISBN 13: 9781453328422. Retrieved from: https://saylordotorg.github.io/text_macroeco nomics-theory-through-applications/s20-15-the-aggregateproduction-funct.html
- Dandan, D. (2020). Comparison and analysis of measurement methods of total factor productivity. *International Journal of Frontiers in Engineering Technology*, 2(1), 18–30. https:// doi.org/10.25236/IJFET.2020.020102
- Felipe, J., & McCombi, J. (2019). The illusions of calculating total factor productivity and testing growth models from Cobb– Douglas to Solow and Romer, ADB economics working series, no. 596 October 2019, pp. 1–41.
- Francis, D. C., Karalashvili, N., Maemir, H., & Rodriguez Mez, J. (2020). *Measuring total factor productivity using the enterprise surveys a methodological note.*

Glazyev, S. Y. (2005). Choice of the future, algorithm, p. 352. Russia.

- Harb, G., & Bassil, C. (2023). TFP in the manufacturing sector: Long-term dynamics, country and regional comparative analysis. *Economies*, 11(2), 34, https://doi.org/10.3390/econo mies11020034
- Hulten, C. R. (2001). *Total factor productivity. A short biography*. University of Chicago Press. Chapter in book Hulten C. R. & Dean, E. R., & Harper, M. J., 1–54.
- Hulten, C. R., Dean, E. R. & Harper, M. J. (2001). New developments in productivity analysis. University of Chicago Press. Retrieved from: http://www.nber.org/books/hult01-1
- Jorgenson, D. W., Gollop, F. M., & Fraumeni, B. M. (1987). Productivity and U. S. Economic Growth. USA: Harvard University Press.
- Jorgenson, D. W., & Griliches, Z. (1967). The explanation of productivity change. *Review Economic Studies*, 34, 249–283.
- Kuznets, S. S. (1971). Economic growth of countries, total output and the structure of production. UK: Harvard University Press. https://doi.org/10.4159/harvard.9780674493490

- Lanets, S. A. (2011). Aggregate factor productivity and investment efficiency in the economy of Khabarovsk Krai. *Vestnik VGU, Series: Economics and Management*, 2(2), 83–90.
- Lopatin, A. (2020). A modified version of Solow's economic growth model with successive using composite S-curves for technological progress implementation. In *IEEE 2nd International Conference on System Analysis Intelligent Computing*, 60–63. https://doi.org/10.1109/SAIC51296. 2020.9239116
- Lopatin, A. (2021). Technology progress implementation based on a modified version of R.M. Solow economic growth model: With production s-curve consisting of n-steps. *System Research and Information Technology*, (3), 1–12. https:// doi.org/10.20535/SRIT.2308-8893.2021.2.01
- Solow, R. M. (1956). A contribution to the theory of economic growth. *The Quarterly Journal of Economics*, 70(1), 65–94.
- Solow, R. M. (1957). Technical change and the aggregate production function. *The Review of Economics and Statistics*, *39*(3), 312–320.
- Swan, T. W. (1956). Economic growth and capital accumulation. *The Economic Record*, 32(2), 334–361.
- The Bureau of Labor Statistics (BLS) produces measures of productivity for different levels of the U.S. Economy.
- Total factor productivity (TFP) in the private nonfarm business sector (release March 23, 2023).
- Tsionas, M. G., & Polemis, M. L., (2019). On the estimation of total factor productivity: A novel Bayesian non-parametric approach. *European Journal of Operational Research*, 277(3), 886–902.
- Tsounis, ., & Steedman, I. (2021). A new method for measuring total factor productivity growth based on the full industry equilibrium approach: The case of the Greek economy. *Economies*, 9(3), 114.
- Whelan, K. (2021). Determinants of total factor productivity, chapter 10 in book University College Dublin, Advanced Macroeconomics Notes, UCD Spring, pp. 1–31.
- World Development Indicators. *World Bank*. Retrieved from: https:// www.google.ru/publicdata/explore?ds=d5bncppjof89

How to Cite: Lopatin, A. K. (2024). Intelligent System of Estimation of Total Factor Productivity (TFP) and Investment Efficiency in the Economy with External Technology Gaps. *Journal of Comprehensive Business Administration Research* https://doi.org/10.47852/bonviewJCBAR32021874