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High-Tech IndustriesDuring the13thFive-Year
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Abstract: Innovative production in high-tech industries is seen as a promoter of corporate profitability and a driver of China’s economic
growth. However, some scholars point out that high-tech industry is in its infancy and has insufficient innovative production efficiency,
which severely restricts regional economic development. To explore this further, we studied the innovation production efficiency of
China’s high-tech industry during the 13th Five-Year Plan period (2016–2020). The three-stage data envelopment analysis (DEA)
model was utilised to calculate the efficiency of the innovation production in this industry, and we initially employed the
DEA-Banker-Charnes-Cooper (BCC) model to calculate the efficiency for 31 provinces and applied similar-stochastic frontier analysis
regression to eliminate the potential influence of external environmental factors. The empirical results findings reveal significant inter-
regional differences in the efficiency of innovation production, with the Eastern region is the most efficient in innovation production, the
Western region has greater growth potential, and the Central region requires to improve its overall efficiency by increasing technological
inputs. In addition, we attempt to provide recommendations to policymakers based on our conclusions.
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1. Introduction

Innovative production in high-tech industries is seen as a
promoter of corporate profitability and a driver of economic
growth (Hong et al., 2016). In the context of China’s reform and
rapid economic development, high-tech industries have played a
crucial role and are viewed as essential for the country’s
economic development (Feng et al., 2020; Li, 2018). In recent
years, the contribution of high-tech industries to national
economic growth and employment has been increasing in the
context of the authorities’ policy shift from a large manufacturing
country to a strong manufacturing country (Shan et al., 2018).
However, on the whole, China’s high-tech industry is in the initial
stage, the innovation capacity is insufficient (Cao et al., 2020;
Zhang et al., 2019), especially as Del Giudice et al. (2019) noted
that the Chinese core technology lags behind the developed
countries, which seriously restricts the development of high-tech.
Hence, to address this issue, the report of the 19th National
Congress of the Communist Party of China proposed accelerating
the building of an innovative country, while the “13th Five-Year
Plan” placed a strong emphasis on the urgent need to execute an
innovation-driven development strategy.

The efficiency measurement is of utmost importance for the
innovative production in high-tech industries in China. The
measurement of innovation efficiency in academia is primarily
discussed using the data envelopment analysis (DEA) model,
which utilises mathematical planning techniques to monitor
efficiency frontiers; Banker et al. (1984) and Charnes et al. (1978)
argued that generally all units should be able to maximise their
output given specific input and output conditions. In practical
application, Guan and Chen (2010) selected cross-sectional data
from 26 Chinese provinces for 2002 and 2003 and applied the
network-DEA method to measure the efficiency of the innovation
production process. They argued that for some innovation-leading
cities, increasing the level of innovation inputs may hardly
improve their innovation output, while for some lagging cities,
improving efficiency could improve the output and outcome
performance of these provinces. In their follow-up study, Chen
and Guan (2012) expanded the scope of their research to cover
the period from 1995 to 2007 and focused on the Chinese region;
the study revealed that a mere 20% of China’s regional innovation
system adhered to empirical best practices and remained at the
forefront during the process of technology development to
commercialisation. Another study endeavour examining the
efficacy of innovations in technology within China’s high-tech
industries, Lin et al. (2021) utilised the DEA model to examine
three distinct viewpoints, namely province, region, and industry.
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And they concluded that there were large inter-regional differences
in the efficiency of innovation production; the efficiency was
consistently highest in the Chinese Eastern region. This
conclusion is similar with Li et al. (2017); they use the dynamic
DEA model to reach the same conclusion, and they further argued
that the proportion of meta-technology in the West is rapidly
increasing and showing a catch-up with the Eastern region. Other
than that, DEA models have been used to measure innovation
efficiency in some specific provinces or regions (Li et al., 2018;
Yi et al., 2020; Zhang & Fu, 2022; Zhang et al., 2021).

However, the extant literature seems to take little consideration
of the slackness of the variables, whichmay result in efficiency being
overestimated, in addition to external factors and random errors that
may interfere with the results of the calculations and distort the
efficiency. As Fried et al. (1999, 2002) pointed out, the traditional
DEA models have not taken into account the effects of
environmental factors (including random noise and management
efficiency) on the evaluation of the efficiency of decision-making
unit (DMU), which may distort the results. Furthermore, within
the existing literature, few scholars have used the 13th Five-Year
Plan as a research period, during the Chinese government has
implemented various policies aimed at promoting the
establishment of high-tech enterprises, including the “Innovation-
driven Development Strategy”, the “Made in China 2025" plan,
and the “Innovation of Social Justice Science and Technology
System with Chinese Characteristics”, which are theoretically
conducive to improving the efficiency of innovation and
production in high-tech industries.

Therefore, we purpose to investigate the efficiency of
innovation production within China’s high-tech industries
throughout the 13th Five-Year Plan period (2016–2020).
Specifically, the study aims to identify regional variations in
innovation production efficiency across the Eastern, Central, and
Western regions of China. In addition, the study seeks to explore
the characteristics of each region and identify the factors that
contribute to differences in innovation production efficiency. To
achieve these objectives, we employ the approach developed by
Fried et al. (1999, 2002) and use the DEA-BCC model to
calculate the industry innovation efficiency in the first stage. We
account for environmental factors by applying a similar-stochastic
frontier analysis (SFA) regression. Finally, we determine the true
efficiency using the DEA-BCC model and propose potential
improvements based on our empirical results.

This study makes several contributions to the literature on
innovation production in Chinese high-tech industries. First, it
considers the potential impact of environmental variables and uses
the similar-SFA model to adjust the efficiency evaluation,
improving the reliability of the results. Second, unlike previous
studies that focus on a limited number of regions, we examine 31
provincial-level administrative regions in China from 2016 to
2020, providing a more comprehensive study of trends and
changes in the industry as a whole. Our in-depth analysis of
innovation productivity in high-tech industries provides useful
information for policymakers to make informed decisions and
adjust resource allocation guidelines across regions in the “14th
Five-Year Plan” or in future investment and development strategies.

To provide a clear structure for the remainder of this study, we
have organised it as follows: Section 2 presents an overview of the
research methodology and data sources used in this study. Section 3
describes the empirical results and provides corresponding
discussions. In Section 4, we summarise our conclusions from the
study, while Section 5 offers policy recommendations based on
our findings.

2. Materials

The present section is bifurcated into two segments. In the first
part, we formulate the empirical model for the study and describe the
methodology for each of the three stages in detail. The second part
expounds on the sources of the data and the configuration of the
variables, including data descriptive statistics and the correlation
coefficients of the input and output variables.

2.1. The first-stage DEA-BCC model

Charnes et al. (1978) proposed the constant returns to scalemodel
as one of the relevant DEAmodels, although the CCRmodel is highly
sensitiveandeffective incalculatingDMUefficiencyvalues (Golany&
Thore, 1997; Roll & Golany, 1993; Toloo & Babaee, 2015), which is
not always applicable in real-world situations. Banker et al. (1984)
proposed the DEA-BCC model with variable returns to scale as a
means of addressing the aforementioned limitation, thereby
presenting an improvement over the CCR model. In this study, the
input-oriented BCC model is preferred to ensure model
sustainability and account for variable returns to scale. As the
objective of this study is to investigate the efficiency of innovation
production in China’s high-tech industries across 31 regions, it is
expected that the return to scale will vary across regions. Therefore,
the variable returns to scale technology is adopted in the first stage
to accurately evaluate the initial efficiency of each province.

The CCR model is a calculation of the relative efficiency
between DMUs based on the premise of constant payoffs to scale.
In this model, there are K same kind of DMUs, which contain m
inputs and n outputs. x, y denote m * k and n * k order matrices.
Matrix (1) represents the input and output data for all K DMUs.

DMU 1 2 3 � � � k

V1 !
V2 !
V3 !
..
.

Vm !

x11 x12 x13 � � � x1k
x21 x22 x23 � � � x2k
x31 x32 x33 � � � x3k

..

. ..
. ..

. ..
.

xm1 xm2 xm3 � � � xmk

�������������

�������������
y11 y12 y13 � � � y1k
y21 y22 y23 � � � y2k
y31 y32 y33 � � � y3k

..

. ..
. ..

. ..
.

yn1 yn2 yn3 � � � ynk

�������������

�������������

 u1
 u2
 u3

..

.

 un

(1)

LetVi and ur be xij (i= 1, 2, 3, : : : , m; j= 1, 2, 3, : : : , k) and yrj (r= 1,
2, 3, : : : , n; j= 1, 2, 3, : : : , k)weights, for these two variables Vi≥ 0,
ur≥ 0. The efficiency of the DMU is calculated using equation (2)

hj ¼
Xn
r¼1

uryrj=
Xm
i¼1

vixij (2)

Consequently, its non-linear programming model is

Max hj ¼
Xn
r¼1

uryrj=
Xm
i¼1

vixij

s:t

Pn
r¼1

uryrj �
Pm
i¼1

vixij � 0; j ¼ 1; 2; . . . ; k

vi; ur � 0; i ¼ 1; 2; . . . ;m:r ¼ 1; 2; . . . ; n

8<
:

(3)

Charnes et al. (1978) considered that it is difficult to calculate DMU
efficiency through a non-linear programming model; thus, they
proposed to transform it into a linear programming model with the
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same role, referred to as Charnes–Cooper transformation as in
equation (4).

Thus, we obtain the following linear programming model.

Max
Xn

r¼1
uryrj

s:t

Pn
r¼1

uryrj �
Pm
i¼1

vixij � 0; r ¼ 1; 2; . . . ; n

Pm
i ¼ 1

vixij ¼ 1; i ¼ 1; 2; . . . ;m

ur; vi � 0; j ¼ 1; 2; . . . ; k

8>>>>>><
>>>>>>:

(4)

Based on the duality theory of linear programming, equation (4) is
transformed into the dual programming equation (5)

Min θ

s:t

Pk
j¼1

λjxij þ s�i ¼ θxij; i ¼ 1; 2; . . . ;m

Pk
j¼1

λjyrj � sþr ¼ yrj; r ¼ 1; 2; . . . ; n

λj; s�i ; sþr � 0; j ¼ 1; 2; . . . ; n

8>>>>>>><
>>>>>>>:

(5)

where, when θ denotes the technical efficiency of the DMUj, and
0 ≤ θ≤ 1, s-, s+ denote input and output slack variables. λ denotes
the coefficients of the optimal DMU actual inputs and outputs.

When θ= 1, s- = s+ = 0, the DMUj is considered to be strongly
TE. However, s- ≠ 0 or s+ ≠ 0, the DMUj is considered to be weakly
TE. Where s- > 0 indicates input redundancy, s+ > 0 indicates output
deficiency. When θ< 1, DMUj is the technical ineffective.

The BCC model initially assumes constant returns to scale.
However, it can be extended to accommodate variable returns to

scale by introducing the following restrictions
Pk
j¼1

λj ¼ 1; thus, it is

expressed as in equation (6):

Min θ

s:t

Pk
j¼1

λjxij þ s�i ¼ θxij; i ¼ 1; 2; . . . ;m

Pk
j¼1

λjyrj � sþr ¼ yrj; r ¼ 1; 2; . . . ; n

Pk
j¼1

λj ¼ 1; s�i ; sþr � 0; j ¼ 1; 2; . . . ; k

8>>>>>>>>>><
>>>>>>>>>>:

(6)

where θ is expressed as the pure technical efficiency (PTE). We can
calculate the results of the TE according to equation (6); the TE can
be calculated by the formula TE= PTE× SE, where SE denotes scale
efficiency, which measures the deviation between the current size of
the DMUj and the effective scale frontier.

2.2. The two-stage similar-SFA regression model

We utilise the method employed by Fried et al. (2002), by
conducting a similar-SFA. In the first stage, we regress slack
variables on both environmental variables and a mixed error term.

The second stage involves using the SFA regression equation,
with input slack and environmental variables as explanatory
variables, as follows:

Sni ¼ f n Zi;β
nð Þ þ vni þ µni; i ¼ 1; 2; � � � ; I; n ¼ 1; 2; � � � ;N (7)

The n observed environmental variables are denoted by Zi = (Z1, Z2,
Z3, : : : ., Zk). The mode of effect of these variables on the input slack
variables is represented by f n(Zi;βn), while the mixed error is given
by vni + μni. Here, vni ∼N+(0, σ2vn) corresponds to the statistical noise,
and μni ∼N+(0, σ2un) denotes the management inefficiency.

Assume vni and μni are independent of each other. Equations
are regressed using the maximum likelihood estimation method;
each regression yields estimated parameters (βn, μn, σ2vn, σ2un).
When γ ¼ σ2

un= σ2
un þ σ2

vnð Þ tends to 1, the effect of managerial
inefficiencies dominates; when it tends to 0, statistical noise
dominates.

According to the methodological scenario provided by Jondrow
et al. (1982), we refer to Luo (2012) for the separation of managerial
inefficiencies with the following equation:

E µ j εð Þ ¼ σ�
φ λ ε

σ

� �
Φ λε

σ

� � þ λε

σ

" #
(8)

In this equation, σ� ¼ σµσv

σ
, σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σµ

2 þ σv
2

q
, λ ¼ σµ=σv.

Therefore, the composition error term vni + μni is calculated as
follows:

E vni j vni þ µni½ � ¼ Sni � f Zi;βnð Þ � E µni j vni þ µni½ � (9)

2.3. The three-stage-adjusted DEA model

The goal of the similar-SFA regression is to remove the
influence of environmental and random factors on efficiency
measures. Following the methodology proposed by Aslani Khiavi
& Skandari (2021) and García-Sánchez (2007), the original data
are included in the random error term obtained in the second
stage, which can be obtained using the following adjustment
equation:

XA
ni ¼ Xni þ max f Zi; β̂n

� �� �� f Zi; β̂n

� �� �þ max vnið Þ � vni½ �

i ¼ 1; 2; � � � ; I; n ¼ 1; 2; � � � ;N (10)

where XA
ni is the adjusted input; Xni is the pre-adjusted input;

max f Zi; β̂n
� �� �� f Zi; β̂n

� �� �
is the adjustment for environmental

factors; max vnið Þ � vni½ � is the adjustment of all DUMs to the same
level of “luck”.

2.4. Data sources and variable design

The data for this study are referenced from Huo and Wang
(2022) and Liu and Sun (2021); from the EPS Database – China
Science and Technology Database, the data cover the period of
the 13th Five-Year Plan, which is 2016–2020. The scope of the
sample is 31 administrative regions of China; thus, each variable
contains 155 observations. The definitions and descriptive
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statistics of the input, output, and environmental variables for this
study are provided in Table 1.

Regarding the selection of environmental variables, Dyson et al.

(2001) argue that environmental variables are the economic and
theoretical basis for the relevance of the study objects, and
whether they can reflect external environmental factors of
the study objects. Therefore, based on the consideration of
representativeness, relevance, and availability, and taking into
account the studies of Law et al. (2020), Liu and Lyu (2020),
and Lei et al. (2013) we choose GDP per capita index,
consumer price index (CPI), and average wage index (AWI) of
employed persons as environmental variables in this study.
These variables are commonly used economic indicators that
are related to the development of high-tech industries and
innovation production efficiency. Additionally, they can also
reflect the external environmental differences across different
regions.

We conduct correlation tests on the input–output variables to
ensure that there is some correlation between the variables.
Table 2 reports the Pearson’s correlation test matrix for the input–
output variables.

Table 2 shows positive correlation coefficients between
input variables and output variables, passing the two-tailed
test at the 1% level of significance. These results indicate a
robust positive correlation between input and output variables,
aligning with the principle of homogeneity and validating the
variable selection.

3. Empirical Results and Discussion

This section analyses the technical efficacy, pure technical
efficacy, scale efficacy, and returns to scale of innovation

production across 31 regions of China through the use of the
DEA-BCC model. Moreover, this section presents the findings of
the second stage of similar-SFA model regressions on slack
variables relating to input variables and environmental disturbance
terms. Furthermore, this section reveals the adjusted results of the
third stage, and the outcomes of these empirical studies are
thoroughly analysed.

By employing the DEA-BCCmodel and Deap 2.1 software, we
assessed the TE, PTE, scale efficiency (SE), and return to scale of
innovation production in 31 different regions across China.
Table 3 shows the findings from our initial efficiency
measurement stage.

According to Table 3, the average TE, PTE, and SE for
innovation production in the Thirteenth Five-Year Plan are 0.853,
0.896, and 0.945, respectively. Without considering the effects of
environmental factors, the empirical result of the first stage
suggests that the overall SE of China is higher than the PTE,
indicating that the factor of scale is dominated by the innovation
production efficiency of provinces.

Regarding the SE of the provinces, Eastern China has higher
values than Central and Western. The efficiency frontier contains
14 provinces: Anhui, Beijing, Shanghai, Shandong, Guangdong,
Sichuan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
Among them, one of them is in the Central region, four by the
Eastern region, and seven by the Western region, which indicates
that these provinces are more efficient in innovation production,
and the inputs and outputs are more reasonable. In contrast, Inner
Mongolia has the lowest TE among the 31 provinces, with a score
of 0.378.

While the first stage of efficiency measurement included
environmental factors, the efficiency values obtained in this stage
may not fully reflect the actual level of innovation production
efficiency in each province. To address this, we conducted the
second stage of analysis using Frontier 4.1 software following the
approach of Fried et al. (2002). In this stage, we regress the slack
variables of input variables and environmental disturbance terms
using a similar-SFA model and adjusted the input terms to obtain

Table 1
Variable definitions and descriptive statistics

Variable Definition Unit Mean Median Std. dev.

Input variables
RPF R&D project funding 1×106 Yuan 15390.350 5402.570 34199.350
EN Number of high-tech enterprises Enterprises 539.645 159.000 1224.149
EM In-service high-tech enterprise employees 1×103 Persons 1001.517 621.508 1322.283
HPS High-tech project stock Projects 3794.703 1810.000 6490.923
Output variables
PAT Patents obtained by high-tech enterprises Patents 8552.013 2799.000 19272.880
NP Net profit for high-tech enterprises in each province 1×106 Yuan 84709.500 38576.080 121695.600
CONT Contracts obtained by high-tech enterprises Contracts 13764.120 5850.000 18339.150
Environmental variables
GDPPC GDP per capita index – 105.594 106.100 2.176
CPI Consumer price index – 102.118 102.100 0.585
AWI Average wage index for employed persons – 107.698 107.824 5.062

Table 2
Pearson correlation coefficients for input and

output variables

RPF EN EM HPS PAT NP

RPF 1
EN 0.9598*** 1
EM 0.9333*** 0.9209*** 1
HPS 0.9237*** 0.9373*** 0.9297*** 1
PAT 0.9667*** 0.9619*** 0.9317*** 0.9305*** 1
NP 0.8588*** 0.8509*** 0.967*** 0.9058*** 0.8561*** 1

Note: *** indicates a significant correlation at the 0.01 level (two-tailed).
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a more accurate level of efficiency. Table 4 presents the results of the
second-stage regression of each of the four input variables on the
three environmental variables.

From Table 4, it can be observed that almost all regression
terms of environmental variables passed the 1%, 5%, or 10%
significance tests; it demonstrates that input redundancy is
influenced by external environmental factors. The LR one-sided
test is performed with four input variables, yielding results of

19.068, 18.291, 19.296, and 16.899, all of which are greater than
the one-sided critical value of 10.501 with 3 degrees of freedom
at the 1% significance level; in addition, the values of γ in all
four models are equal to 1.000 or close to 1.000, satisfying the
1% significance level. Thus, the null hypothesis of no
inefficiency term is rejected, indicating that the proposed model
in this study is reasonably constructed, and management
efficiency is a significant factor in this cause.

Table 3
The efficiency of innovative production for high-tech industries in stage I

Region Province TE PTE SE Returns to scale Region Province TE PTE SE Returns to scale

Central Shanxi 0.334 0.393 0.850 drs Western Inner Mongolia 0.378 0.519 0.728 drs
Central Jilin 0.829 0.940 0.882 drs Western Guangxi 0.781 1.000 0.781 drs
Central Heilongjiang 0.655 0.657 0.997 irs Western Chongqing 0.772 0.880 0.877 drs
Central Anhui 1.000 1.000 1.000 – Western Sichuan 1.000 1.000 1.000 –

Central Jiangxi 0.770 0.789 0.976 drs Western Guizhou 0.757 0.781 0.968 irs
Central Henan 0.727 0.815 0.893 drs Western Yunnan 0.615 0.701 0.878 drs
Central Hubei 0.951 0.951 1.000 – Western Tibet 1.000 1.000 1.000 –

Central Hunan 0.839 0.939 0.894 drs Western Shaanxi 1.000 1.000 1.000 –

Mean 0.763 0.811 0.937 Western Gansu 1.000 1.000 1.000 –

Eastern Beijing 1.000 1.000 1.000 – Western Qinghai 1.000 1.000 1.000 –

Eastern Tianjin 0.952 0.953 0.999 drs Western Ningxia 1.000 1.000 1.000 –

Eastern Hebei 0.560 0.776 0.722 drs Western Xinjiang 1.000 1.000 1.000 –

Eastern Liaoning 0.927 0.940 0.987 drs Mean 0.859 0.907 0.936
Eastern Shanghai 1.000 1.000 1.000 –

Eastern Jiangsu 0.897 1.000 0.897 drs
Eastern Zhejiang 0.974 1.000 0.974 drs
Eastern Fujian 0.913 0.913 1.000 –

Eastern Shandong 1.000 1.000 1.000 –

Eastern Guangdong 1.000 1.000 1.000 –

Eastern Hainan 0.809 0.821 0.986 irs
Mean 0.912 0.946 0.960 Average value 0.853 0.896 0.945

Note: 1. TE, PTE, and SE indicate technical efficiency, pure technical efficiency, and scale efficiency.
2. irs, drs, and - represent increasing, decreasing, and constant returns to scale.

Table 4
Results of SFA estimation in stage II

RPF EN EM HPS

Coefficient Coefficient Coefficient Coefficient

Constant term 2000.474*** 1052.741*** 9447.154*** 4133.975***
(2000.499) (1052.769) (9447.257) (4128.879)

GDPPC 43.995*** 1.295* 21.435*** −3.2121***
(51.855) (2.593) (24.732) (−16.522)

CPI −54.582*** −11.920*** −122.619*** −38.033***
(−63.124) (−21.349) (−139.153) (−230.859)

AWI −11.608*** 0.147 6.261*** 0.583***
(−13.543) (0.101) (7.245) (12.384)

σ2 210768.980*** 981.139*** 262566.330*** 6982.878***
(210768.980) (986.148) (262566.330) (6982.752)

γ 1.000*** 1.000*** 0.999*** 0.999***
(56414.278) (15334.506) (649.459) (11448430.000)

Log-likelihood −210.071 −127.227 −213.363 −158.342
LR one-sided Test 19.068 18.291 19.296 16.899

Note: ***, **, and * represent significance at the 1%, 5%, and 10% levels, respectively.
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Fried et al. (1999) and Coelli et al. (2005) suggest that the
presence of negative coefficients of environmental variables
implies that the value of these variables reduces input slacks,
whereas positive coefficients are detrimental to efficiency
improvement. Therefore, we interpreted the results of our
regression analysis in this stage accordingly:

1. GDP per capita index (GDPPC) coefficient is positive for all input
slack variables except high-tech project stock (HPS), indicating
that the level of regional economic development leads to an
increase in the input redundancy of the regional high-tech
industries in terms of R&D project funding (RPF), number of
high-tech enterprises (EN), and in-service high-tech enterprise
employees (EM) inputs. This means that an increase in
regional GDP does not necessarily mean that all areas have
become more efficient, whereas in this study the growth of
redundant values of RPF, EN, and EM led to a decrease in the
efficiency of these indicators. It is also consistent with the
research of some scholars, who argue that China’s GDP
growth tends to come from labour-intensive manufacturing
rather than high-tech R&D industries (Frankema, 2015;
Hussin, 2013), and high economic growth makes more
currencies inclined to flow into financial markets (Calderón &
Liu, 2003; Garnaut et al., 2016; Wang et al., 2019); in
addition, Wei et al. (2017) believe that state-owned enterprises
receive the majority of RPF, which squeezes the viability of
small private R&D institutions. This may be another reason
why GDP growth has instead brought about redundant
increases in RPF and EN inputs. For EM, Altbach and Pacheco
(2012), based on the purchasing power parity theory, argue
that in China the compensation of full-time researchers is low.
During periods of high economic growth, individuals engaged
in R&D may be tempted to leave their positions for other high-
paying industries, resulting in an increase in input redundancy.

2. CPI has a negative effect on all input variables. This indicates that
an increase in CPI leads to a decrease in input redundancy.
Referring to Wang (2022), we consider that a rise in CPI

would result in higher production costs for firms, which may
seek ways to reduce costs and improve efficiency to maintain
normal production and business activities. Additionally, the
increase in CPI may lead to tighter financial policies, reduced
currency liquidity, and higher financing costs for firms, which
could prompt them to pay more attention to the allocation and
utilisation of resources, thereby enhancing their productivity
and technological innovation capabilities.

3. AWI for employed persons: the coefficient of RPF is significantly
negative, while the coefficients of the remaining two input
variables EM and HPS are significantly positive, although the
coefficient of EN is also positive, but it is not significant. It
indicates that the input efficiency slack of RPF, EM, and HPS
is affected by AWI. This result can likewise be explained by
the study of Wei et al. (2017) and Altbach and Pacheco
(2012), where research funding flows to some state-owned
research institutions during the 13th Five-Year Plan period,
while regions that tend to be more economically developed
have more dense research institutions; the slack in the RPF
input variable decreases. However, the Matthew effect reveals
that regions that do not receive research funding are less
efficient in terms of AWI inputs, leading to an increase in the
slack in the EM input variable. In addition, research
institutions may reduce their investment in R&D projects by
increasing employee wages in order to retain employees, which
results in lower technological innovation capacity and thus
lower input efficiency.

For the third stage of efficiency estimation, we adjusted the original
input variables according to equation (10) to eliminate the influence
of environmental variables and random errors. Subsequently, we
applied the DEA-BCC model once more to determine the actual
innovative production efficiency value, which is presented in
Table 5. The table includes not only the efficiency values of the
third stage but also a comparison with the results of the first stage.
The analysis indicates that environmental factors and random
errors in the first stage underestimate the TE value in 31 cities,
which increases from an average of 0.853 in the first stage to

Table 5
The innovative production efficiency for high-tech industries in Stages I and III

Province

Stage I Stage III

TE PTE SE Returns to scale TE PTE SE Returns to scale

Central Shanxi 0.334 0.393 0.850 drs 0.477 0.490 0.974 irs
Central Jilin 0.829 0.940 0.882 drs 0.925 0.943 0.981 drs
Central Heilongjiang 0.655 0.657 0.997 irs 0.645 0.723 0.892 irs
Central Anhui 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Central Jiangxi 0.770 0.789 0.976 drs 0.793 0.793 1.000 –

Central Henan 0.727 0.815 0.893 drs 0.794 0.821 0.967 drs
Central Hubei 0.951 0.951 1.000 – 0.940 0.947 0.993 irs
Central Hunan 0.839 0.939 0.894 drs 0.937 0.938 1.000 –

Mean 0.763 0.811 0.937 0.814 0.832 0.976
Eastern Beijing 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Eastern Tianjin 0.952 0.953 0.999 drs 0.934 0.937 0.996 irs
Eastern Hebei 0.560 0.776 0.722 drs 0.720 0.783 0.920 drs
Eastern Liaoning 0.927 0.940 0.987 drs 0.877 0.878 0.998 drs
Eastern Shanghai 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Eastern Jiangsu 0.897 1.000 0.897 drs 0.911 1.000 0.911 drs
Eastern Zhejiang 0.974 1.000 0.974 drs 1.000 1.000 1.000 –

Eastern Fujian 0.913 0.913 1.000 – 0.904 0.929 0.973 irs
Eastern Shandong 1.000 1.000 1.000 – 1.000 1.000 1.000 –

(Continued)
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0.864 after eliminating these variables. This result suggests that the
first stage may not accurately reflect the true level of innovative
production efficiency.

The returns to scale for Jiangxi, Hunan, Zhejiang, and Yunnan
are increasing in the first stage, while the returns to scale for these
cities become constant after removing external factors. In contrast,
Hubei, Fujian, Tibet, Qinghai, and Ningxia change from constant
to increasing SE in the third stage. After adjustment, the number
of cities reaching the efficiency frontier falls from 12 to 10,
indicating that some cities’ innovative production efficiency was

overestimated in the first stage. Whereas comparing the average
PTE and SE values of the three regions, it can be observed that
the PTE and SE of the Eastern and Western regions decreases in
the third stage, demonstrating that they are overestimated in the
first stage, while the PTE and SE of the Central region have
increased, for which we try to visualise in Figures 1–3.

Following the completion of the third stage of adjustment, the
mean values of TE, PTE, and SE are calculated for all provinces,
resulting in values of 0.864, 0.906, and 0.952, correspondingly.
These outcomes propose a possibility for technical improvement
throughout all provinces. In addition, since TE is calculated as the
product of PTE and SE, we employed TE to symbolise innovative
production efficiency and generated Figures 4 and 5 to illustrate

Table 5
(Continued )

Province

Stage I Stage III

TE PTE SE Returns to scale TE PTE SE Returns to scale

Eastern Guangdong 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Eastern Hainan 0.809 0.821 0.986 irs 0.512 0.688 0.743 irs
Mean 0.912 0.946 0.960 0.896 0.929 0.958

Western Inner Mongolia 0.378 0.519 0.728 drs 0.588 0.685 0.859 irs
Western Guangxi 0.781 1.000 0.781 drs 0.997 1.000 0.997 drs
Western Chongqing 0.772 0.880 0.877 drs 0.885 0.888 0.997 drs
Western Sichuan 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Western Guizhou 0.757 0.781 0.968 irs 0.755 0.841 0.898 irs
Western Yunnan 0.615 0.701 0.878 drs 0.799 0.799 1.000 –

Western Tibet 1.000 1.000 1.000 – 0.713 1.000 0.713 irs
Western Shaanxi 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Western Gansu 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Western Qinghai 1.000 1.000 1.000 – 0.956 1.000 0.956 irs
Western Ningxia 1.000 1.000 1.000 – 0.736 1.000 0.736 irs
Western Xinjiang 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Mean 0.859 0.907 0.936 0.869 0.934 0.930
Average value 0.853 0.896 0.945 0.864 0.906 0.952

Note: 1. TE, PTE, and SE indicate technical efficiency, pure technical efficiency, and scale efficiency.
2. irs, drs, and - represent increasing, decreasing, and constant returns to scale.

Figure 1
Efficiency values comparison between Stages I and III

Figure 2
Pure technical efficiency comparison between

Stages I and III
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the comparison between Stage I and Stage III in various provinces
of China.

The Central region displays lower PTE than the other two
regions, with mean TE, PTE, and SE values of 0.814, 0.832, and
0.976, respectively. Nonetheless, the Central region is operating at
a more optimal scale of production than the other two regions,
implying that it has room for improvement in its PTE. It is
noteworthy that Jilin and Henan exhibit decreasing returns to
scale (drs), indicating that they are operating at a suboptimal level
and might benefit from downsizing their operations. Conversely,
Shanxi, Heilongjiang, and Hubei exhibit increasing returns to
scale (irs), indicating that they are producing below their optimal
size and could benefit from expanding their operations.

The mean TE= 0.896 in the Eastern region of China is higher
than that in the Central (0.814) andWestern (0.869) regions. As TE=

PTE × SE, we utilise this metric to denote innovation production
efficiency; these findings suggest that the high-tech industries in
the Eastern region were relatively more efficient in generating
innovative output. However, it is important to note that there were
substantial variations in innovative production efficiency among
the provinces within the Eastern region. Specifically, Beijing,
Shanghai, Zhejiang, Shandong, and Guangdong demonstrated the
highest levels of both PTE and SE in their innovative production,
indicating that these provinces had effectively utilised their
resources to achieve optimal innovative production efficiency.
Conversely, Jiangsu had the lowest SE value, indicating a
potential for further production scale to increase efficiency.
Moreover, the province of Hainan had the lowest level of TE,
indicating that the high-tech industries in this region were
comparatively less efficient in generating innovative output. Given
the Eastern region’s status as one of the most developed regions
in China, the high innovative production efficiency in the region
suggests that the high-tech industries in the region have been
playing a significant role in promoting China’s economic growth.
However, further improvements in TE and SE are still needed in
Hebei and Hainan to fully utilise the potential of high-tech
industries in the region.

The mean TE level in Western region of China is lower than in
Eastern region, but higher than in Central region, suggesting that
there is potential for improvement in terms of resource utilisation
and adoption of advanced technologies. Nonetheless, the region
displays a relatively high level of PTE, indicating that its high-
tech industries need to increase their scale to increase innovation
production efficiency. Given that the Western region is less
developed than the other two regions, it has historically received
significant investment in infrastructure and industry as part of
China’s development strategy. However, a closer examination of
the data reveals that there is significant variation among the
provinces within the Western region. For example, Inner
Mongolia and Yunnan low PTE values indicate that their high-
tech industries could benefit from improvements in both technical
efficiencies. Conversely, Tibet demonstrates a high PTE value but
low SE value, suggesting that its high-tech industries are

Figure 3
Scale efficiency comparison between Stages I and III

Figure 4
Regional differences in innovative production efficiency between Stages I and III

Green and Low-Carbon Economy Vol. 2 Iss. 1 2024

44



operating efficiently at a small scale but may benefit from increasing
the scale of production inputs.

Our result aligns with several scholars who have examined the
efficiency of high-tech innovation in China and have observed
ongoing improvements, though significant regional disparities
persist (Lin et al., 2021; Liu et al., 2020; Xu et al., 2021; Zhuang
& Ye, 2020; Zou et al., 2021). Specifically, our analysis supports
the findings of Liang et al. (2020), Lin et al. (2021), and Zou
et al. (2021) that the Eastern region exhibiting the highest levels
of innovation and efficiency. Meanwhile, Dong et al. (2016) and
Liu et al. (2020) believed that the Western region has great
potential for development. Furthermore, studies suggest that the
Central region would benefit from increased technology
investment (Jin et al., 2019; Pan et al., 2022). Nevertheless, our
study diverges from theirs; Zhong et al. (2011) analysed the first
Chinese economic census data in 2004 with DEA model and
concluded that the Western region has the lowest innovation
efficiency. In addition, there have been evaluations highlighting
the overall inefficiency of technological innovation in high-tech
industries (Cao et al., 2020; Li et al., 2017; Zhang et al., 2019).
Whereas we argue that there are three potential explanations for
this outcome. First, their analysis may have underestimated
innovation efficiency due to an oversight in accounting for
external environmental factors. Second, the scale of investment in
the Western region has increased in recent years. Third, we posit
that the high-tech industry’s efficiency as a whole has witnessed
improvement during the 13th Five-Year Plan.

4. Conclusion

To examine the efficacy of innovation production in various
Chinese provinces during the 13th Five-Year Plan (2016–2020),
we collected data on four input variables, namely RPF, number of
high-tech enterprises, in-service high-tech enterprise employees,
and HPS. In addition, we gathered data on three output variables,
including patents obtained by high-tech enterprises, net profits for
high-tech enterprise employees, and contracts obtained by high-
tech enterprises. To eliminate any potential impact of external

environmental factors on efficiency, we employed a three-stage
DEA model based on Fried et al. (1999, 2002). In the first stage,
we calculated the initial efficiency of each province with the
DEA-BCC model. In the second stage, we estimated a similar-
SFA model with GDP per capita index, CPI, and AWI for
employed persons as environmental variables to adjust the initial
efficiency. Finally, in the third stage, we reapplied the DEA-BCC
model to obtain the true efficiency values after removing
environmental effects.

Based on our analysis, we have concluded the following:

1. China’s high-tech industry is relatively efficient in innovation
production. However, there are significant regional differences,
with the average innovation production efficiency in the
Eastern region being higher than that in the Western and
Central regions.

2. There may be opportunities for growth and development in the
Western region. Since it has a higher percentage of provinces
with increasing returns to scale, indicating that the Western
region will have great potential if more investment is made on
R&D scale in the future.

3. High-tech companies in the Central region do not reach their
maximum potential in converting inputs into outputs due to
their relatively low level of pure technical inputs and thus
increase efficiency by optimising their production technologies.

This study aims to investigate the efficiency of innovation
production in China’s high-tech industries during the 13th Five-
Year Plan period (2016–2020). We argue that the study has
important practical implications for policymakers in China’s high-
tech industries, as it illustrates the innovative production
efficiency of high-tech industries and possible solutions for
improvement. Simultaneously, this study reflects from the side
that the focus on examining innovation production efficacy in
various Chinese provinces during the 13th Five-Year Plan
(2016–2020) provides a timely and relevant topic for research, as
China is experiencing rapid economic development and

Figure 5
The innovation production efficiency of each province between Stages I and III.
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technological advancement. The study employs a relatively robust
methodology that attempts to eliminate the influence of external
environmental factors on the final efficiency evaluation by
considering the slackness of variables and environmental factors.
Consequently, this methodology serves as a valuable reference for
future research by scholars.

Nonetheless, the study has some potential limitations. First, the
study focuses on only four input variables and three output variables,
which may not be comprehensive enough to capture all dimensions
of innovation and production in high-tech industries. Second, the
study only used the DEA-BCC model, which may not be able to
explain all the complexities of innovation and production in high-
tech industries. Future research directions for scholars could focus
on expanding the range of variables, using other models such as
the Malmquist productivity index, and exploring other factors that
may affect the efficiency of innovation and production in high-
tech industries.

5. Policy Recommendations

Based on the conclusions of this study, we propose three policy
recommendations for the improvement of innovation production
efficiency.

1. Promote regional integration: The average efficiency is higher in
the Eastern region than in the Central and Western regions.
Governments could promote regional integration by creating
infrastructure that facilitates transportation of goods and
services between regions, which could help boost efficiency.

2. Encourage foreign investment: High-tech industries are often
capital intensive, and foreign investment could help improve
efficiency by providing capital, especially in the Western
region, which can be made more efficient by increasing the
scale of foreign capital inputs.

3. Rational allocation of state-owned resources: Policymakers could
optimise the allocation of state-owned resources by providing
more technical input to high-tech companies in the Central
region. This could increase their efficiency in converting inputs
into outputs and help them reach their maximum potential.
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