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Abstract: Artificial intelligence (AI) is used to create more sustainable production methods and model climate change, making it a valuable
tool in the fight against environmental degradation. This paper describes the paradox of an energy-consuming technology serving the
ecological challenges of tomorrow. The study provides an overview of the sectors that use AI-based solutions for environmental
protection. It draws on numerous examples from AI for Green players to present use cases and concrete examples. In the second part of
the study, the negative impacts of AI on the environment and the emerging technological solutions to support Green AI are examined. It
is also shown that the research on less energy-consuming AI is motivated more by cost and energy autonomy constraints than by
environmental considerations. This leads to a rebound effect that favors an increase in the complexity of models. Finally, the need to
integrate environmental indicators into algorithms is discussed. The environmental dimension is part of the broader ethical problem of
AI, and addressing it is crucial for ensuring the sustainability of AI in the long term.
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1. Introduction

Artificial intelligence (AI) isbeingused to createmore sustainable
production methods and model climate change, making it a powerful
tool in combating environmental degradation. AI has many
applications in environmental conservation, including in smart cities,
energy, agriculture, natural disaster prediction, and climate change
adaptation. In smart cities, AI plays a crucial role in improving
citizens’ quality of life by effectively managing traffic, waste,
energy, and reducing the impact of climate change and natural
disasters. In energy, AI supports the transition to renewable energy
sources by optimizing performance, reducing energy consumption,
and increasing efficiency. In agriculture, AI enhances sustainability
and efficiency by collecting and analyzing data for informed
decisions on crop production, water usage, pest management, and
soil management practices. However, AI also has a significant
negative impact on the environment due to the large amount of data
and computational power required, which results in high energy
consumption and CO2 emissions. Training a single AI model can
consume as much energy as the average household uses in a year,
and data centers that house AI models are major contributors to
global energy consumption and carbon emissions. The production
and disposal of AI hardware such as computers and servers also
contribute to negative environmental impacts. This study highlights
the paradox of a technology that consumes energy in order to
address environmental challenges. The first part of the study
provides an overview of sectors that are using AI-based solutions for

environmental protection and cites examples from AI for Green
players. In the second part, the study examines the negative impact
of AI on the environment and the emerging technological solutions
that support Green AI. Efforts are being made to reduce the
environmental impact of AI by improving the efficiency of deep
learning models, using renewable energy in data centers, and
utilizing hybrid AI. The research on more energy-efficient AI is
driven more by cost and energy independence constraints than
environmental considerations, which can lead to a rebound effect
that favors an increase in the complexity of models. Finally, the
study also discusses the need to integrate environmental indicators
into AI algorithms, highlighting that the environmental dimension is
a crucial part of the broader ethical problem of AI and must be
addressed to ensure its sustainability in the long term.

2. AI for Green Applications

AI has many applications in environmental conservation,
including in the management of smart cities, energy, agriculture,
natural disaster prediction and adaptation to climate change,
ecosystem preservation, mobility, and the economy.

2.1. Smart cities

The rise of smart cities is a growing trend in urban development
[1, 2]. Smart cities use technology, data, and intelligent systems to
improve the quality of life for their citizens. These cities are
designed to be more efficient, sustainable, and livable, and they
use a range of technologies, such as the Internet of Things, AI,
and big data, to achieve these goals. Smart cities are often seen as
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the future of urban development, and many cities around the world
are implementing smart city initiatives to improve their infrastructure
and services.

AI is being used to manage traffic lights in a more efficient
manner, reducing the amount of time vehicles spend stopped and
therefore reducing emissions by 20%1 [3]. In China, AI is used to
anticipate air pollution and take preventive measures before
dangerous levels are reached [4].

One way to solve the challenges of street cleanliness and waste
management in municipalities is to use AI to optimize resources and
improve efficiency [5, 6]. Amal et al. [7] used AI and geographic
information systems to optimize waste collection routing, resulting
in an 8% reduction in operating distance, a 28% decrease in travel
time, and a 3% reduction in fuel consumption. AI solutions such
as the intelligent waste containers developed by Bin-e [8] and the
AI-powered sorting robot are emerging to help manage waste
more responsibly [9]. Wilts et al. [10] present empirical data on
the use of an AI-based robotic sorting system for mixed municipal
waste, with promising results for the purity of sorted waste
fractions (97%).

Shreyas Madhav et al. [11] propose an AI system to reduce the
need for unskilled labor and the associated hazards involved in
collecting and segregating E-waste, as well as decreasing costs by
20% over a period of 5 years.

By using AI, it is possible to anticipate a city’s need for energy
resources and limit unnecessary expenditure. AI can also be used to
reduce the effects of climate change or natural disasters by making
urban planning more intelligent. For example, the City of Los
Angeles has launched the Tree Canopy Lab program, which uses
AI to map the city and recommend where trees should be planted
to prevent heat2. The development of “urban dashboards” with
real-time data on all environmental parameters, such as water and
energy consumption, traffic pollution, and weather conditions,
could help cities become more environmentally responsible and
improve the quality of life of their inhabitants.

2.2. Energy

AI has the potential to play a significant role in the transition to
renewable energy sources. By analyzing large amounts of data, AI
can help optimize the performance of wind farms and other
renewable energy systems, improving their efficiency and
reducing their environmental impact. Additionally, AI can be used
to anticipate energy demand and identify ways to reduce energy
consumption, further contributing to the transition to a more
sustainable energy system.

One way to save energy is to promote renewable energy as a
substitute for fossil fuels. But it is still necessary for renewable
energies to become efficient enough to be used on a massive
scale. In this case, AI is proving to be very useful. Thanks to
the intervention of AI, it is possible to significantly improve the
performance of wind farms by considering meteorological data.
AI is used to correlate the speed of each propeller with the
direction and power of the wind, which allows for optimization of
electricity production from all the wind turbines. AI enhances the
efficiency of wind power generation and forecast energy output,
resulting in a 20% increase in the value of their wind energy [12].
The European Centre for Medium-Range Weather Forecasts
(ECMWF) led the Energy-efficient Scalable Algorithms for

Weather Prediction at Exascale (ESCAPE) project, which aimed
to develop a sustainable strategy for evolving weather and climate
prediction models for next-generation computing technologies.
The project involved leading European regional forecasting
consortia, university research, experienced high-performance
computing centers, and hardware vendors [13].

Some companies, like Google and Huawei, have already
implemented AI solutions to control energy consumption in their
data centers. Google has reduced its energy consumption by 40%
using AI to analyze the times of day when people do energy-
consuming searches and optimize the cooling of its data centers
[14]. Huawei has improved the energy efficiency of its data
centers by using AI to identify and address factors that contribute
to increased energy consumption, as well as to predict the future
energy efficiency of its data centers [15]. In addition, Microsoft
has partnered with Vattenfall to develop a smart grid management
solution that optimizes the production of renewable energy based
on demand [16].

The application of AI technologies in smart buildings through
building management systems and demand response programs has
the potential to improve urban energy efficiency [17, 18].
According to Ahn and Cho [19], AI is effective in improving
thermal comfort levels by approximately 2.5% in office buildings
and 10.2% in residential buildings, and in reducing annual energy
consumption by about 17.4% in office buildings and 25.7% in
residential buildings. Governments are using AI to prioritize the
energy renovation of its public buildings [20].

Energy efficiency can also be applied to digital technologies,
particularly in the visualization and display of photos and videos
online. Google has also been using AI to compress its images and
reduce bandwidth consumption3. JPEG has also launched a program
to find ways to reduce the size of its photo formats without losing
quality using AI [21]. Other companies, like Netflix, have used AI
to optimize the consumption of their videos, allowing them to halve
their bandwidth consumption without losing broadcast quality [22].

2.3. A connected and sustainable agriculture

AI has the potential to greatly improve the sustainability and
efficiency of agriculture [23, 24]. AI technology is reducing
farming emissions by 20% and helping to manage the
environment more effectively in food production [25]. By
collecting and analyzing data from various sources, AI algorithms
can help farmers make informed decisions about crop production,
water usage, and pest management. This can help reduce the use
of pesticides and other harmful chemicals, as well as increase crop
yields and decrease water waste [26, 27]. Using AI to simulate
changes in soil moisture, combined with real-time weather data to
train the model, led to accurate predictions of soil moisture
content and a 20% reduction in water use while maintaining
sufficient soil moisture levels [28]. AI can reduce pesticide
repetition by at least 20% compared to traditional methods and
help protect non-targeted species from harm [29]. Improper
irrigation and soil management can lead to crop loss and reduced
crop quality. Examples of such systems include those that
evaluate the design and performance of micro irrigation systems,
recommend crops based on land suitability maps, and estimate
soil moisture content [24]. AI-based systems have been found to
be effective in improving irrigation and soil management
practices. In arid climatic conditions, Al-Ghobari and Mohammad

1Odevia, la plateforme smart city innovante. Odeven. https://odeven.fr/odevia/
2Lombardo, N., &Alcantara, R. (2020). Creating new tree shade with the power of AI

and aerial imagery. Google. https://blog.google/products/earth/helping-cities-seed-new-
trees-with-tree-canopy-lab/

3Machine learning applications for data center optimization [White Paper] Google.
https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/
42542.pdf
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[30] assessed the efficacy of an irrigation controller based on
evapotranspiration and concluded that applying AI resulted in
water savings of up to 25% compared to the control method,
while preserving crop yield. The agricultural industry has the
potential to greatly benefit the environment and improve the
sustainability of food production.

AI has been used to predict crop diseases and recommend
control measures. Hybrid systems that integrate image processing
with AI have also been developed. For example, “Dr. Wheat” is a
web-based expert system that uses AI to diagnose wheat diseases
[31]. AI used to forecast and prevent plant diseases with 90.79%
accuracy by detecting and categorizing pathogens based on
weather [32].

2.4. Anticipate natural disasters and adapt to
climate change

The use of AI in anticipating natural disasters and adapting to
climate change has the potential to greatly improve the way we
respond to and prepare for such events [12, 33]. By analyzing large
amounts of data and making predictions based on that data, AI can
help us to better understand the likelihood of natural disasters
occurring and what areas may be at risk. This information can then
be used to develop plans and strategies for mitigating the impact of
these disasters and reducing the potential for harm to people and
property. Additionally, AI can help us to better understand and adapt
to climate change by analyzing data on weather patterns, climate
trends, and other factors that may be contributing to changes in our
environment. This information can be used to develop strategies for
adapting to these changes and minimizing their impact.

AI can help farmers improve weather forecasts and anticipate
extreme weather events, which can be invaluable in protecting
crops. By using its calculation power and the ability to process
large amounts of meteorological data, AI can provide farmers
with valuable information to help them prepare for and adapt to
unpredictable weather. This can help farmers avoid losing entire
harvests due to unexpected weather events.

Natural disasters can have significant impacts on global trade and
agriculture.Tropical storms,knownastyphoons,hurricanes,orcyclones,
seem to be occurring more frequently and with greater strength, causing
significant economic damage to agricultural products, shipping
efficiency, property, and airline rerouting. Predicting the direction and
likelihood of land impacts of tropical storms would greatly increase
the chances of insuring against potential damage. According to
Summers et al. [34], AI was able to identify the most severe storms
with a success rate of 79% 24 h before impact and achieved an
accuracy of 81% in categorizing storms on a six-point scale. Forecast-
based financing is a financial mechanism that enables humanitarian
actions in anticipation of floods by releasing pre-allocated funds based
on the exceedance of flood forecast thresholds [35, 36].

2.5. Preserve Earth’s ecosystem

AIhas the potential to play a crucial role inpreservingwildlife and
flora. Through the analysis of large amounts of data, AI can help
researchers better understand the effects of climate change on
biodiversity and make predictions about which species are most at
risk. AI can also be used to identify and monitor individual animals
and plants, providing valuable information for conservation efforts.
Additionally, AI can help detect and prevent illegal activities such as
poaching and deforestation. By using AI to better understand and
protect ecosystems, we can work toward preserving the rich
diversity of life on our planet.

The applicationofAI inenvironmental conservationhas immense
potential, and an example of this is the monitoring of the Chesapeake
Bay in theUS. The use of ultra-fine image analysis throughAI not only
provides an accurate mapping of the area but also enables easier
monitoring of the bay and its biodiversity, thereby enhancing efforts
to protect and conserve it [37]. Another example is the partnership
between Microsoft and the Nature Conservancy to map all ocean
species using AI. This will help determine which areas can be used
by humans without endangering the ecosystem [38]. Other
initiatives using AI include the Ocean Cleanup project, which uses
robots to clean up water on a large scale [39].

AI is being used to monitor terrestrial biodiversity and to help
identify endangered species. The University of Southern California
has set up a project called “Protection Assistant for Wildlife
Security” (PAWS) that uses AI to predict where and when
poachers are likely to strike [40]. This information can be used to
arrest poachers and prevent the extinction of protected species. AI
is also being used to help restore nature in areas damaged by
human activity. In Massachusetts, an area destroyed by cranberry
production has been rehabilitated and MIT Media Lab researchers
are using microphones and AI to listen to interactions between
species and determine the effectiveness of the restoration efforts [41].

2.6. Autonomous transport and sustainable
mobility

AI can limit transport-related pollution by promoting fuel-efficient
driving and optimizing engines to be more efficient. Companies in the
automotive industry are heading toward innovation in autonomous and
sustainable transport. The challenges related to autonomous transport
include technical, safety, legal, ethical, and job displacement issues,
while the policies necessary for their implementation include safety
regulations, legal frameworks, infrastructure investment, data
privacy, and public awareness. If 30% of vehicles become self-
driving vehicles by 2030, the cost of congestion in cities could be
reduced from $38 billion to approximately $26 billion [42].
Manufacturers are working on the development of shared, smart, and
ecological transport. This is the ambition of the French company
Transdev, a mobility specialist, which has partnered with ZF (a
German automotive supplier) and e.Go (an electric car manufacturer)
to develop its ecological and autonomous shuttle: the e.Go Mover
[43]. With a capacity of 15 people, these electric shuttles aim to
complement existing urban transport networks. Other manufacturers
have also entered the innovation race to come up with their own
shared transport solution, following the example of Transdev, which
shows that the trend is heading toward autonomous mobility but
within communities. It is also conceivable that an attractive public
transport network, both ecological and personalized, could trigger
the abandonment of individual cars, at least for daily commutes.

AI was used to detect real-time truck performance and driver
behavior. This led to a 15% reduction in fuel costs and a decrease
in delivery time [44].

2.7. Local and sustainable economy

Open data and AI can facilitate the shift to more sustainable and
environmentally friendly production models. Recent health and
geopolitical crises have highlighted the fragility of Western
industrial policies. The current awareness opens the way to a
reindustrialization model that combines ecology, resilience, social
commitment, and economic performance. New dimensions are
being embraced, such as environmental and social impact,
securing essential goods, supply chain robustness, and distributed

Green and Low-Carbon Economy Vol. 3 Iss. 2 2025

107



manufacturing, promoting local production. The recent release of
economic and industrial data, combined with the emergence of
AI, offers new perspectives for building a digital twin of
countries’ productive systems that combine both macroeconomic
data and real observations of each company’s activity [45]. This
modeling allows the identification of industrial know-how, value
chains, and potential synergies between companies to build a
sustainable industrial symbiosis [46, 47]. AI could be used to
identify synergistic pairings of one company’s waste output with
another company’s input, facilitated by collaboration between
companies through resource and information sharing [48].

3. Emergence of Green AI and Rebound Effects

3.1. An energy-consuming technology

In recent years, concerns about global warming and the depletion
of resources have led to increased awareness of the environmental
impact of the digital world. This has become a topic of public
debate in many countries. After years of denial, the environmental
impact of digital technology is now being recognized as a
significant issue in research, including the environmental impact of
terminal manufacturing, the energy required to use digital services,
and the end-of-life analysis of equipment. Deep Learning is no
exception to these concerns [49, 50]. In fact, due to the large
amount of data and computational power required for Deep
Learning, it has a significant impact on the environment. These
increasing demands for computational power also contribute to the
obsolescence of hardware and software.

Strubell et al. [51]measured theCO2 emissions associatedwith the
development of a natural language processing model, which generated
the same amount of CO2 as 5 cars over their lifetime, and the equivalent
of 315 round trips by plane between NewYork and San Francisco. This
study is significant because it considered the 3200 learning iterations
that were necessary to develop the final model. This work has
contributed to a growing awareness of the environmental impact of
AI, although it should be noted that the evaluation of AI methods
still often focuses on precision and accuracy, without considering
environmental factors such as the energy efficiency of the models.

Rohde et al. [52] have detailed the different measures of energy
consumption associated with tasks such as image classification,
speech recognition, and strategy games. These energy
consumption levels are correlated with the complexity of the
computations required, expressed in Peta-FLOPS/s-days, or 1015
floating point operations per second in 1 day [53]. The more
complex the AI models, the higher the associated energy
consumption, CO2 emissions, and resource requirements.

3.2. The importance of ecodesign in AI
development

Deep Learning is a powerful approach to AI that has achieved
impressive results in a variety of tasks, such as image recognition,
natural language processing, and medical diagnosis. However, one
of the challenges of Deep Learning is that it requires large amounts
of training data to achieve good performance. In contrast, the human
brain can learn from relatively few examples and can generalize to
new situations. This suggests that there is still room for improvement
in the mechanisms of learning used in Deep Learning, and that new
approaches may be able to learn more efficiently from less data [54].

One potential direction for improving the efficiency of learning
in Deep Learning models is to draw inspiration from the mechanisms
of learning in the brain. For example, the brain can learn from a small

number of examples by making use of prior knowledge and by using
mechanisms such as attention andmemory. Thesemechanisms could
be incorporated into Deep Learning models to make them more
efficient and more effective at learning from small amounts of data.

Another approach to improving the efficiency of learning in Deep
Learning models is to develop more sophisticated optimization
algorithms. Many Deep Learning models are trained using gradient-
based optimization, which can be slow and require a large amount
of data to converge to a good solution. New optimization algorithms,
such as evolutionary algorithms or Bayesian optimization, may be
able to find good solutions more quickly and with less data [55–57].
A 2× improvement in energy consumption, model size, and
inference time is observed with hyperparameter optimization [58].

Overall, there is still much work to be done to improve the
efficiency of learning in Deep Learning models. By drawing
inspiration from the mechanisms of learning in the brain and by
developing new optimization algorithms, researchers may be able
to develop Deep Learning models that are more efficient and
more effective at learning from small amounts of data.

3.3. Optimized electronic components for AI

Deep artificial neural networks use principles of the brain’s
information processing to make breakthroughs in machine
learning in many problem domains. Neuromorphic computing
aims to create chips inspired by the form and function of
biological neural circuits, so they can process new knowledge,
adapt, behave, and learn in real time at low power levels [59].
Intel claims that the Loihi neuromorphic chip is 10,000 times
more energy efficient than a CPU [60]. These chips are designed
to handle the large amounts of data and complex calculations
required by AI algorithms, making them more energy efficient
and faster than traditional transistors.

3.4. Greening of data centers

Efforts to improve the efficiency of AI architectures must go
hand in hand with a greening of the data center value chain [61].
Abts et al. [62] suggested an energy-saving mechanism for links
in a flattened butterfly topology network, where the network links
were downscaled based on traffic intensity at the expense of
increased average latency, resulting in approximately 42% energy
savings. Wang et al. [63] suggested a rate-adaptation solution for
achieving network-wide energy proportionality through routing
optimization, which could save up to 40% of energy with only a
slight increase in network delay based on simulation results.

The environmentally responsible hosting market is becoming
more structured with the emergence of an energy performance
indicator (called PUE) by the consortium The Green Grid [64]. This
indicator has been supplemented by the European DCEM (Data
Center Energy Management) indicator, which also considers reused
and renewable energy. By using renewable energy, cooling servers
with natural resources, or reusing the heat emitted, environmentally
responsible data centers represent the most important lever in
reducing the CO2 emissions necessary for the operation of AI.
According to Jahangir et al. [65], the use of free cooling systems
could result in a reduction of up to 47% in cooling energy
consumption and a 38% reduction in cost. For instance, we can cite
the example of the Green Mountain data center in Norway, which,
by cooling its servers with fjords and rivers, has been able to cut its
energy costs by more than half 4.

4Green Mountain: Setting the green standard in the data center industry. https://
greenmountain.no/
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3.5. The rise of hybrid AI

Hybrid AI combines multiple AI approaches or technologies,
such as machine learning, rule-based systems, and expert systems,
in order to achieve more accurate, efficient, or flexible performance
[66, 67]. This approach allows AI systems to leverage the strengths
of each individual method and overcome their limitations. One of
the primary advantages of hybrid AI is that it enables the
development of more sophisticated and capable AI systems that can
handle more complex and nuanced tasks.

The DesCartes program is an ambitious initiative that seeks to
develop a disruptive hybrid AI system to serve the smart city and
enable optimized decision-making in complex situations involving
critical urban systems5. The program brings together experts from a
wide range of fields, including AI, engineering, data science, signal
processing, formal methods, trusted AI, human–computer
interaction, language processing, images, and the human sciences.
The goal of the program is to develop an AI system that can handle
complex and dynamic urban systems, such as transportation, energy,
and environmental monitoring, in real time and provide decision-
makers with accurate and timely information.

By combining different AI approaches, hybrid AI systems can
achieve greater accuracy, speed, and efficiency.

3.6. Continuous improvement of the energy
efficiency of deep learning and rebound effect

Although Deep Learning models have made remarkable progress
in recent years, doubling their performanceevery16months [53,68,69],
the significant increase in computational power required to train and
operate these models has raised concerns about their energy
consumption and environmental impact, as well as their economic
cost when deployed at scale. However, there have been efforts to
enhance the energy efficiency of Deep Learning, such as developing
more efficient hardware and software, optimizing model architectures,
and leveraging techniques like model compression and quantization.

However, it is crucial to recognize the potential occurrence of a
“rebound effect” when enhancing the energy efficiency of AI. This
means that as AI becomes more energy efficient, it becomes cheaper
and easier to train and run more complex models. As a result, the
growth of AI models has not followed Moore’s law, with models
doubling every 3.4 months since 2012 [53]. The largest AI models
published in 2020 used 600,000 times more computing power than
the 2012 model that popularized Deep Learning, with some models
requiring thousands of GPUs to train. The increased computing
power of computers has made it possible to increase the number of
parameters and layers (e.g., 530 billion parameters in the case of
GPT3 “Megatron-Turing NLG” which required 4480 GPUs)
[70, 71]. Training a model with one trillion parameters would
require 42,000 petaFLOPS-days, costing $19.2 million on Google’s
TPUs. Therefore, while improving energy efficiency in AI is
important, it is crucial to also consider the potential rebound effect
and its implications for energy consumption and environmental impact.

4. Perspectives

The need to address ecological issues of AI has been emphasized
by the scientific community, just as ethical and transparency issues have
been addressed [72]. Given the challenges posed by climate change,
regulating AI will be necessary to determine the effectiveness of
models in achieving the Sustainable Development Goals [73, 74].

Efforts such as the Carbontracker project, which focuses on
optimizing energy use and increasing transparency on the
environmental impact of AI solutions, are critical to achieving
sustainability in AI [75]. While the European Commission’s proposed
regulation of AI, the Artificial Intelligence Act (AI Act), aims to
establish a uniform legal and regulatory framework for all AI in all
sectors (except the military) and for all types of AI, it only regulates
the providers of AI systems and entities that use them for professional
purposes and does not address the environmental impact of AI [76].

To develop a set of sustainability criteria for AI-based systems
and establish guidelines for sustainable AI development, the
“Sustainability Index for Artificial Intelligence” project has been
launched [52, 77].

5. Conclusion

The growing use of AI technologies has raised concerns about
their sustainability, as they rely on non-renewable resources and
must be managed responsibly. To address this issue, there is a need
to move away from energy-intensive AI technologies such as Deep
Learning and toward more sustainable alternatives. This transition
toward sustainable AI requires a concerted effort from the AI
community, and by prioritizing sustainability, AI can continue to be
a valuable tool in an ethical and responsible way.
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