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Abstract: Although transition risks from climate change, such as regulatory shifts, market disruption, consumer preferences, and evolving 
technologies, are increasingly acknowledged by financial institutions, most empirical research has focused on equity markets, leaving the impact 
on corporate debt markets underexplored. In particular, few studies have examined how different dimensions of transition risk affect the cost of 
debt (COD), especially across firms operating in high-emission sectors. This paper addresses this gap by investigating whether and how climate-
related transition risks are priced into the COD for international utilities and energy companies. Using a balanced panel dataset of 219 firms 
from 2012 to 2017, we propose a two-step approach. First, we apply principal component analysis to construct a multidimensional transition 
risk index. We identify two distinct components: a contemporaneous risk factor (called present risk) capturing firms’ existing energy portfolio 
composition and emission intensity, and a forward risk factor (called future risk) capturing future-oriented exposures such as fossil fuel reserves 
and investment patterns. Second, we use panel regression analysis, which shows that the current risk dimension significantly increases borrowing 
costs throughout the period whereas the future risk dimension exhibits statistical significance exclusively from 2015 onward, coinciding with rising 
investor awareness following the Paris Agreement. These findings contribute to the growing literature on climate finance by offering a nuanced 
understanding of how transition risks are internalized in corporate debt pricing.

Keywords: climate risk, cost of debt, carbon emissions, transition risk

 1. Introduction
The Paris Agreement marked a turning point in global climate 

policy by uniting nat+ions in a shared objective: to limit the global 
temperature increase to well below 2°C above pre-industrial levels, 
with efforts to cap it at 1.5°C. Achieving this goal requires reaching 
carbon neutrality by 2050, which entails a complete reduction in net 
greenhouse gas (GHG) emissions [1]. This transition demands profound 
and rapid changes in socio-economic systems—particularly in carbon-
intensive sectors such as energy and utilities, as shown in Figure 1 [2].

Considerable attention has been paid recently to climate-induced 
risks in the financial sector, with particular emphasis on transition 
risks linked to decarbonization efforts. These transition risks include 
potential losses arising from regulatory shifts, technological disruption, 
and changes in market or consumer behavior. Central banks and 
financial regulators have begun assessing the exposure of financial 
institutions to these risks [3, 4]. Notably, Mark Carney’s 2015 speech 
brought widespread attention to the systemic implications of climate-
related financial risk, especially in the case of a sudden and disorderly 
transition [5].

Despite growing awareness, the degree to which transition risks 
are integrated into financial decision-making, particularly in debt 
markets, remains unclear. Although equity markets have received 

greater research attention, the pricing of transition risks in corporate 
debt is less well understood. However, this is a crucial issue: if creditors 
do not adequately assess firms’ exposure to transition risks, they may 
misprice loans and bonds, potentially compromising financial stability.

This paper contributes to literature by analyzing how transition 
risk affects the cost of debt (COD). We focus on firms in the energy and 
utilities sectors, which are widely regarded as particularly vulnerable to 
decarbonization policies. Using data from 2012 to 2017, we construct 
a composite index of transition risk based on multiple firm-level 
indicators and analyze its impact on borrowing costs.

This paper is organized as follows. Section 2 surveys existing 
literature and formulates the hypotheses. Section 3 develops the data 
and empirical strategy. Section 4 discusses and interprets the results, 
and Section 5 concludes.

 2. Literature Review and Testable Hypotheses 
This paper contributes to two fields of literature. The first field 

examines how climate transition risks affect the cost of capital debt, 
with mixed empirical findings. The second field is a well-established 
body of research analyzing the links between corporate financial and 
extra financial performances, particularly corporate social performance 
and financial returns.

The impact of transition risk on the stock market is gaining recent 
attention in literature. For instance, Gorgen et al. [6] and In et al. [7] 
reported that integrating carbon risk into investment strategies can 
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yield comparable or even superior risk-adjusted returns, suggesting 
that carbon pricing is not fully reflected in current valuations. In 
contrast, Ilhan et al. [8] argued that transition risk is already partially 
embedded in market prices. However, most of this literature focuses on 
the equity market. The debt market—despite its distinctive risk-return 
characteristics—has received comparatively less attention. Notably, 
Trinh et al. [9] showed that companies with higher climate exposure 
face higher CODs in the European market, highlighting the relevance 
of transition risk for creditors as well.

Complementing this, Shahrour et al. [10] provided sector-
specific evidence that transition risks are priced into credit markets, 
underscoring the importance of accounting for climate exposure in 
credit assessments. Similarly, Shahrour et al. [11] offered a theoretical 
framework linking firm-level characteristics to climate risk exposure, 
and Economidou et al. [12] demonstrated that sustainability ratings—

often used as proxies for transition risk—have material implications for 
financial markets.

Alongside this, the literature on corporate social and 
environmental performance has long debated its financial implications. 
Although early studies questioned whether such practices compromised 
returns, meta-analyses like that of Friede et al. [13] and more recent 
work by Zerbib [14] generally find a positive—if modest—association. 
However, this research has primarily emphasized the equity market, 
leaving the effects on debt underexplored. Breitenstein et al. [15], 
for example, emphasized the risk-reducing potential of integrating 
environmental responsibility into financial strategies and noted the 
need for more nuanced understanding of climate-related financial risks.

Theoretically, transition risks may influence a firm’s COD 
through several channels: regulatory shifts (e.g., carbon taxes), market 
changes (e.g., demand for green technologies), technological innovation 
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 Figure 1
Evolution of energy-related variables from three illustrative scenarios that limit global warming to 1.5°C
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(e.g., renewable energy solutions), and social pressures (e.g., changing 
consumer preferences). These factors can affect revenues, operating 
costs, capital expenditures, and asset values—including the devaluation 
of stranded assets and production equipment—ultimately affecting a 
firm’s creditworthiness [16].

From a creditor’s perspective, lending decisions involve assessing 
credit risk—defined as the likelihood of default—based on economic, 
solvency, and liquidity factors. This influences not only loan conditions 
(e.g., amount and collateral) but also borrowing costs [17]. As firms face 
the multifaceted challenges of the low-carbon transition, their exposure 
to these risks can raise creditors’ perceived risk and their COD.

However, there is evidence that financial institutions may 
still misprice these risks. Chenet et al. [18] argued that flaws in risk 
models—particularly their assumptions of rational behavior and 
temporal consistency—undermine their ability to capture long-term 
climate risk. Moreover, conventional financial models often rely on 
limited historical data and assume normal return distributions, making 
them ill-suited to address the deep uncertainty and fat-tailed risks 
associated with climate transition.

Although transition risk is increasingly acknowledged in equity 
markets, debt instruments differ in important ways. Bonds and loans 
have fixed maturities and downside-focused risk assessments, with a 
greater emphasis on default likelihood. As such, transition risks may 
be priced differently in debt markets. However, empirical studies 
remain limited. Trinh et al. [9] documented a positive link between 
carbon intensity and COD for European firms, suggesting that lenders 
are beginning to integrate climate concerns. This aligns with earlier 
findings on the relationship between environmental performance and 
credit spreads [19, 20]. Our study extends this literature by examining 
whether transition risk affects CODs for firms in the energy and utilities 
sectors—two industries particularly vulnerable to decarbonization 
policies [3, 4].

Although carbon intensity remains the most widely used proxy 
for transition risk [7, 8, 21], it captures only part of the picture. Factors 
such as corporate governance, technological investment, and energy 
mix are also important. Gorgen et al. [22] offered a more comprehensive 
approach by constructing a composite climate risk score based on 55 
variables across dimensions such as value chain, public perception, 
and adaptability. Our methodology builds on this multidimensional 
approach by employing principal component analysis (PCA) to 
synthesize transition risk indicators.

In summary, the contribution of this paper to the literature is 
twofold. First, it decomposes transition risk across two high-exposure 
sectors: energy and utilities. Second, it explores the effect of transition 
risk on the COD for international firms—extending a research stream 
that has largely focused on equity markets and single-country studies. 
If lenders are indeed integrating transition risk into credit evaluations, 
then firms with greater exposure should exhibit higher borrowing costs.

To advance this line of research, we formulate two testable 
hypotheses.

 H1: Higher transition risk is associated with a higher COD.

According to asset pricing and corporate finance theory, the COD 
reflects the risk premium required by creditors to compensate for credit 
risk. In the context of climate change, transition risk—arising from 
decarbonization policies, shifting consumer preferences, technological 
changes, and litigation—increases firm-specific uncertainty and the 
likelihood of cash flow disruptions or stranded assets. As a result, debt 
investors adjust credit assessments and pricing to reflect this elevated 
risk, potentially increasing borrowing costs for more exposed firms. 
Empirical studies confirm that creditors may tighten lending terms or 
reduce exposure to high-risk firms, particularly as institutional investors 
and lenders increasingly integrate ESG and climate-related risks into 

their financial models [8, 23]. Therefore, Hypothesis 1 is grounded in 
the theory of risk-adjusted pricing and credit risk assessment.

 H2: The impact of transition risk on the COD becomes more pronounced 
in the post-2015 period.

This hypothesis builds on theories of policy credibility and market 
learning. The 2015 Paris Agreement marked a pivotal moment in global 
climate governance, establishing binding commitments to limit global 
warming and signaling stricter future climate policies. According to 
theories of policy uncertainty and investor responsiveness [24], financial 
markets adjust gradually to new, complex information—especially for 
long-term risks such as climate change. The Paris Agreement enhanced 
the credibility of decarbonization pathways, increasing the salience of 
transition risk in investor assessments.

This shift is driven by several mechanisms—notably, revised 
expectations regarding the cost of carbon-intensive activities, leading 
to greater pricing of transition risk post-2015 [25], and regulatory 
and institutional changes such as the Task Force on Climate-Related 
Financial Disclosures and EU sustainable finance initiatives, which 
embedded climate risk into financial practices. Moreover, empirical 
evidence documents that investor reactions to climate risk disclosures 
intensified after major climate policy events [26, 27].

Thus, the Paris Agreement represents a structural break after 
which transition risk became more influential in determining the cost 
of corporate debt.

 3. The Climate Transition Risk Index and Impact

3.1. Data and variables
Our analysis is based on a balanced panel dataset of 1,314 

observations for 117 energy and 102 utilities companies over the 2012–
2017 period using three sources of information (Figure A1): the Trucost 
GHG emissions and reserves database, the Orbis (Bureau Van Dijk) 
financial data, and the Vigeo Eiris equitics and transition risk data [28]. 
The variables are defined and fully described in Table A1.

The primary goal of our analysis is to isolate the core components 
underlying transition risk in the energy (oil, gas, and combustible fuels) 
and utilities (electric, gas, water, multiutilities, and independent power 
and renewable electricity producers) industries.1 To achieve this, we 
first select all relevant indicators for the energy and utilities sectors 
that exhibit sufficient data coverage (exceeding 80%) in the Trucost 
database. More precisely, three types of indicators are retained: GHG 
emissions, fossil fuel reserves, and power generation.

Regarding GHG emissions, the GHG protocol distinguishes 
between Scope 1 emissions (originating from direct fossil fuel 
combustion and production processes), Scope 2 emissions (resulting 
from purchased energy consumption), and Scope 3 emissions (all other 
indirect emissions, including supply chain activities, transportation, 
outsourced operations, and waste management). For energy and utilities 
firms between 2012 and 2017, emissions are overwhelmingly driven by 
Scope 1 (direct combustion), and Scope 3 (product end-use) and Scope 2 
emissions are negligible notably because fuel combustion at generation 
facilities produces the majority of the sector emissions and electricity 
used in operations is minor [23]. For example, CDP [29] documented 
that Scope 1 accounts for 85%–95% of emissions in electric utilities 
and oil & gas and Scope 2 is often <5%. We thus consider only Scope 
1 and Scope 3 emissions.

Figure 2(a) illustrates the right-skewed distribution of Scope 1 
emissions across firms in the energy and utility sectors. Although the 
distribution remains skewed throughout the sample period, we observe 
that the median Scope 1 emissions remain relatively stable in the energy 

1  https://classification.codes/classifications/industry/gics/
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sector and exhibit a slight upward trend in the utility sector. This reflects 
the persistence—and in some cases expansion—of direct emissions 
from fossil-based operations during the 2012–2017 period. To account 
for differences in firm size and to improve comparability across firms 
and time, we normalize Scope 1 emissions by total assets and apply the 
natural logarithm in our empirical analysis.

Regarding fossil fuel reserves, we analyze proven and probable2 
natural gas and oil reserves, excluding coal due to missing data, with 
Trucost expressing them as GHG emissions embedded in reserves. 
Figure 2(b) shows a right-skewed distribution, a zero median due to 
utility companies, and a decreasing trend over time. We also include 
capital expenditures on oil and gas exploration. For PCA, reserves 
and capital expenditures are normalized by total assets and log-
transformed.

For power generation, we analyze annual coal- and gas-based 
output in GWh, normalized by total assets and log-transformed for 
PCA. Figure 2(c) shows the distribution of total electricity generation 
across firms. Although median output stays fairly stable, some 
firms increase generation, widening the distribution. This helps in 

2  Proven fossil fuel reserves have greater than 90% certainty of being recovered while still 
economically viable to do so, whereas probable reserves have a level of certainty between 50% and 
90%. https://www.spe.org/en/industry/petroleum-reserves-definitions/, visited on April 3, 2020.

explaining trends in Scope 1 emissions and operational scale during 
the period. Table 1 presents the correlation matrix of all transition 
risk variables.

3.2. Methodology
To address the two hypotheses of the study, namely, that H1 

increased climate-related transition risk is associated with a higher 
COD and H2 that this relationship strengthens following the 2015 
Paris Agreement, we adopt a two-step approach. In the first step, we 
construct two distinct indices of transition risk—“current risk” and 
“future risk”—using PCA. This method offers several advantages: 
it derives endogenous weights objectively from the underlying data 
structure, captures the correlations among multiple transition-related 
variables, and reduces dimensionality while retaining explanatory 
power. The PCA is conducted separately for the energy and utilities 
sectors to account for structural heterogeneity, yielding sector-specific 
risk scores that are robust and interpretable.

In the second step, we estimate fixed-effects panel regression 
models that examine the relationship between transition risk and the 
COD. Two models are estimated. Model 1 includes firm- and year-fixed 
effects alongside financial control variables to mitigate omitted variable 
bias and unobserved heterogeneity. Model 2 introduces interaction 
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Figure 2
Time evolution of transition risk variables in the energy and utilities sectors 
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terms between transition risk scores and a post-2015 dummy variable to 
capture the differential effect of transition risk after the Paris Agreement. 
This specification approximates a difference-in-differences framework, 
enabling us to assess changes in investor sensitivity to transition risk 
over time. By controlling for firm fundamentals and applying such 
econometric techniques, this strategy reduces concerns regarding 
endogeneity, including reverse causality and measurement error.

 3.2.1. The transition risk index
To construct the transition risk index from the transition risk 

variables, we follow the method of Nicoletti et al. [30] and Capelle-
Blancard et al. [31], which is based on PCA. One advantage of the PCA 
method is that it enables the creation of a composite score from multiple 
variables without relying on expert-assigned weights. Compared to other 
methods such as equal weighting or the mixed approach used by Gorgen 
et al. [22]3, it also allows us to take into account correlations between 
variables and a larger proportion of the variance in the dataset is explained.

We first present the exploratory analysis results, followed by the 
steps for constructing transition risk scores.

By recognizing that valuations are generally conducted on 
a sectoral basis, we apply PCA separately to the energy and utilities 
sectors. Table 1 summarizes the correlation structure of the transition 
risk variables in each sector. The high level of correlation suggests that 
the PCA method is appropriate, and the Kaiser–Meyer–Olkin (KMO) 
statistics of 0.724 for the energy sector and 0.67 for the utilities sector 
confirm this. Table 2 displays the sector-specific factor loadings from 
the PCA. We retain two components selected using the Kaiser criterion.5 
Both sectors share the same components but with reversed importance. 
PC1 (Scope 1, Scope 3, and power generation) represents current risk, 
whereas PC2 (reserves and investments) reflects future risk. Variance in 

3  They develop a climate risk score (CRS) using 55 transition risk variables across three 
dimensions: value chain, public perception, and adaptability. Each variable is binarized based on 
its median, averaged within its dimension, and the three dimension scores are weighted by expert 
judgment.
4  Factor analysis (e.g., PCA) is appropriate for a dataset if the KMO statistic is above 0.6.
5  Components with an eigenvalue above 1.00 are retained.

the energy sector is mainly driven by future risk, whereas in the utilities 
sector, it is dominated by present risk.

Following Capelle-Blancard et al. [31], we construct current 
and future risk scores by selecting key variables per component and 
setting others to zero. Each variable is assigned a weight according 
to its contribution to explained variance, calculated as the normalized 
squared loading, with the procedure applied separately for each sector. 
The resulting weights are reported in Table 2.

In Table 2, regarding exploratory PCA, PC1 and PC2 capture 
the majority of the variance in the energy (.e) and utilities (.u) sector 
data using the same underlying variables. Despite differing in order of 
importance across sectors, one component consistently reflects future 
transition risk (PC1.e, PC2.u), and the other captures current transition 
risk (PC2.e, PC1.u). Regarding score construction, each transition 
risk score is constructed using only the variables with the highest 
loadings on the relevant component, as identified in Table 2; all other 
variables are excluded. Weights are based on squared factor loadings, 
which indicate the proportion of each variable’s variance explained by 
the component. For example, the first component that represents the 
future transition risk (Fut.risk) of the energy sector (.e) is computed as 
follows: Fut.risk.e = 0.34 ∗ Reserves gas + 0.34 ∗ Reserve soil + 0.32 
∗ Capex oil & gas.

3.2.2. Panel regression models

1) Dependent and control variables
The dependent variable is the COD. To measure corporate 

borrowing costs, we calculate the firm’s interest expense in year t 
relative to its interest-bearing debt for the same period. To reduce 
noise from year-end debt fluctuations, we trim data at the 5th and 95th 
percentiles. Figure 3 illustrates the COD trends over time and by sector, 
showing an increase for the energy sector after 2015, while remaining 
stable for utilities.

To account for firms’ economic and financial characteristics, our 
regression model includes control variables based on prior studies [19, 
20], with all values reported at fiscal year-end:

5

Energy Scope 1 Scope 3 GWh gas GWh coal Res. gas Res. oil Capex oil & gas
Scope 1
Scope 3 ***
GWh gas *** ***
GWh coal *** *** ***
Res. gas *** *** *** ***
Res. oil *** *** *** *** ***
Capex oil & gas *** *** *** *** *** ***

Utilities Scope 1 Scope 3 GWh gas GWh coal Res. gas Res. oil Capex oil & gas
Scope 1
Scope 3 ***
GWh gas *** ***
GWh coal *** *** ***
Res. gas *** *** *** ***
Res. oil *** *** *** *** ***
Capex oil & gas *** *** *** *** *** ***

Note: Colors represent the strength and direction of the correlations. Dark red = strong negative correlation (−1), white = no correlation (0), and dark blue = strong 
positive correlation (+1). Asterisks inside cells denote statistical significance at the 10% level (*), 5% level (**), and 1% level (***). Diagonal cells shaded in dark 
blue represent self-correlation (value = 1).

Table 1
Pearson correlation matrix heatmaps of PCA transition risk variables for each sector
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• Size: natural logarithm of assets in year t. Larger firms are seen 
as less risky, reducing CODs.

• Leverage: long-term debt/total assets. Higher leverage signals 
greater default risk, increasing CODs.

• Return on Assets: net income/total assets. Greater profitability 
lowers CODs.

• Interest Coverage: EBIT/interest expenses. Higher coverage 
reduces liquidity risk, lowering CODs.

• Liquidity Ratio: current assets/current liabilities. Greater liquidity 
reduces risk and CODs.

• Market-to-Book Ratio: market capitalization/book value of 
assets. Higher valuation suggests investor confidence, decreasing 
CODs.

Tables 3 and 4 present the descriptive statistics and correlation of 
variables in the fixed-effects model.

6

Variable Mean St. Dev. Min Max
1 COD 0.06 0.04 0.01 0.19
2 CurrentRisk 0.59 0.15 0.21 0.87
3 FutureRisk 0.08 0.14 0.00 0.50
4 Size 16.20 1.27 10.92 19.83
5 Leverage 0.31 0.18 0.01 2.57
6 InterestCoverage 4.81 5.52 -6.01 26.80
7 LiquidityRatio 1.15 1.53 0.03 32.35
8 ROA 5.21 22.60 -282.68 51.98
8 MarketBook 0.61 0.55 0.02 8.71

Table 3
Average distribution of variables in the fixed-effects model

Energy utilities variable PC1.e PC2.e PC1.u PC2.u
Scope 1 0.32 0.50 -0.54 0.18
Scope 3 0.26 0.48 -0.45 0.21
GWh gas 0.25 0.33 -0.38 0.09
GWh coal 0.31 0.31 -0.52 0.06
Reserves gas -0.47 0.37 0.15 0.61
Reserves oil -0.47 0.34 0.08 0.54
Capex oil & gas -0.48 0.26 0.24 0.50
Eigenvalue 3.18 1.52 2.81 1.84
Variance explained by component (%) 45.36 21.77 40.19 26.25
Cumulative variance 45.36 67.13 40.19 66.45

Score construction Energy Utilities
FutureRisk.e CurrentRisk.e CurrentRisk.u FutureRisk.u

Scope 1 0.00 0.32 0.33 0.00
Scope 3 0.00 0.25 0.24 0.00
GWh gas 0.00 0.19 0.15 0.00
GWh coal 0.00 0.24 0.28 0.00
Reserves gas 0.34 0.00 0.00 0.39
Reserves oil 0.34 0.00 0.00 0.29
Capex oil & gas 0.32 0.00 0.00 0.32

Table 2
Exploratory PCA results and transition risk score development

 Figure 3
Temporal distribution of the COD
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2) Baseline fixed-effects model
Our analysis begins with a panel linear regression model that 

estimates the relationship between firms’ COD and their exposure to 
climate transition risks. The baseline model is specified as Equation 
(1) follows:

where, for a company i at year t, α denotes firm fixed effects, λ denotes 
year fixed effects, ε is the idiosyncratic error term, and the independent 
variables are those defined immediately above. This model provides 
a foundational understanding of how contemporaneous and forward-
looking climate risks are priced in by debt markets. In this specification, 
firm fixed effects control for time-invariant, unobserved heterogeneity 
across firms, and year fixed effects absorb common macroeconomic 
shocks and regulatory trends over time.

3) Extended model: post-Paris agreement interaction terms
To explore the possibility that market pricing of future climate 

transition risk changed in the aftermath of the Paris Agreement 2015—a 
landmark policy event—we extend the model with interaction terms:

where ParisAgreement is a dummy variable equal to 1 for years after 
2015 and 0 otherwise. The interaction terms assess whether the pricing 
of climate transition risk changed following the Paris Agreement.

 3.2.3. Results
Table 5 presents the panel regression results. In the baseline 

model (column 1), we find a significant positive coefficient for current 
transition risk, suggesting that markets associate higher immediate 
climate risk with higher borrowing costs, confirming hypothesis H1. In 
contrast, future transition risk does not exhibit a statistically significant 
relationship, potentially indicating that markets are less responsive to 

anticipated climate exposures without a triggering event or regulatory 
impetus. In the extended model (column 2), the interaction term for 
future transition risk becomes statistically significant, and the main 
effect remains insignificant. This suggests that investors began to 
price future climate risks only after the Paris Agreement, implying a 

(1)

(2)
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COD CurrentRisk FutureRisk Size Leverage Int.Coverage Liq.Ratio ROA MarketBook
COD
CurrentRisk
FutureRisk ***
Size *** *** ***
Leverage *** * **
Int.Coverage *** * ** ***
Liq.Ratio *** *** *
ROA *** *** *** *** *
MarketBook ** *** ** *** *** *** ***

Note: Colors represent the strength and direction of the correlations. Dark red = strong negative correlation (−1), white = no correlation (0), and dark blue = strong 
positive correlation (+1). Shades in-between indicate intermediate correlation strengths. Asterisks inside cells denote statistical significance at the 10% level (*), 5% 
level (**), and 1% level (***). Diagonal cells shaded in dark blue represent self-correlation (value = 1).

Table 4
Pearson correlation matrix heatmap of the fixed-effects model variables

COD
Model (1) Model (2)

CurrentRisk 0.058**
(0.025)

0.057**
(0.025)

FutureRisk 0.001
(0.028)

-0.005
(0.027)

Size -0.033***
(0.010)

-0.030***
(0.009)

Leverage -0.082*
(0.044)

-0.082*
(0.044)

InterestCoverage -0.001***
(0.0003)

-0.001***
(0.0003)

LiquidityRatio -0.00003
(0.0004)

-0.0002
(0.0004)

ROA -0.0002***
(0.0001)

-0.0002***
(0.0001)

MarketBook 0.007**
(0.003)

0.007*
(0.004)

CurrentRisk * ParisAgreement -0.007
(0.014)

FutureRisk * ParisAgreement 0.038**
(0.018)

Number of observations 870 870
R² 0.256 0.270
Adjusted R² 0.039 0.055
F statistics 21.036*** 

(df = 11; 673)
19.147 

(df = 13; 671)

Note: Asterisks denote statistical significance at the 10% level (*), 5% level 
(**), and 1% level (***).

Table 5
Linear panel regression models
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structural shift in expectations and valuation practices triggered by a 
global policy commitment to decarbonization. The interaction term 
for current risk remains insignificant, likely because current risks are 
already internalized regardless of the policy change, partially validating 
H2. As a robustness test, we use Vigeo Eiris’s transition risk score (335 
observations). Its positive but insignificant effect suggests that the 
relationship between transition risk and COD depends on how risk is 
measured.

Robustness checks using alternative measures may yield 
weaker results—not necessarily because the original findings are 
invalid, but potentially due to limitations in the alternative metric. For 
instance, measures based on expert judgment may lack transparency 
and methodological clarity. This outcome does not detract from the 
robustness of our primary findings; rather, it underscores the advantages 
of our PCA-based measure, which adheres to established standards in 
quantitative financial research. Constructed via PCA, our approach is 
data-driven and replicable and assigns endogenous weights to correlated 
variables, in line with best practices for identifying latent constructs 
[32]. PCA offers statistical efficiency and transparency by avoiding 
subjective weighting schemes, thereby enhancing the reliability and 
credibility of empirical research. By comparison, although widely used 
in practice, the Vigeo rating system is built on proprietary and non-
public methodologies, which have been found to exhibit lower inter-
rater reliability and methodological divergence [33, 34].

 4. Discussion and Policy Implications
This empirical analysis focuses on two critical sectors that are not 

only essential to the energy transition but also particularly vulnerable 
to transition risk [3, 4]. From a financial market perspective, the energy 
sector has been the subject of numerous studies examining the impact of 
oil prices [35], their volatility [36], levels [37], and supply and demand 
shocks [38] on stock prices and stock markets in general [39] and on 
sovereign bonds [40]. Although oil prices constitute a component of 
transition risk (market risk), less attention has been given to transition 
risk in its entirety, including carbon risk [22]. Most studies addressing 
transition risk focus on the carbon intensity of companies [7, 8, 21]. 
However, this metric overlooks sector-specific transition risk factors 
and focuses solely on current emissions. For the energy and utilities 
sectors, our analysis of seven variables related to emissions, their 
sources (type of fossil energy), reserves, and investments reveals two 
key components: current risk and future risk. This finding underscores 
the necessity of developing sector-specific and forward-looking 
approaches to assess transition risk.

Next, we investigate whether these two components are reflected 
in the COD for these companies. Griffin et al. [41] documented the 
stock market’s reaction to a 2009 academic paper that highlighted 
the stranded asset risk associated with an energy transition aimed at 
limiting global warming. This publication led to an average stock price 
decrease of 1.5%–2% for the largest US oil and gas firms. Although this 
reaction indicates investor recognition of this emerging risk, the authors 
noted that it remains limited. A survey by Krueger et al. [23] shows that 
an increasing number of investors believe that climate risks could have 
financial implications for their portfolios. Our empirical specification 
includes an interaction term between future transition risk and a 
post-2015 dummy variable, which captures the differential effect of 
forward-looking risk after the Paris Agreement. This interaction term is 
statistically significant, whereas the standalone effect of future transition 
risk is not. This pattern is not coincidental but meaningful. This approach 
approximates a difference-in-differences (DiD) framework, which is 
widely used in empirical economics to identify structural breaks around 
policy changes by estimating how the sensitivity to future risk changes 
in firms over time, around a clearly identified global policy event. Thus, 
although our model is a linear regression in form, the time-interacted 

term functions as a quasi-experimental identification strategy, allowing 
us to infer that investor attention to future transition risk increased after 
2015. Our finding is also consistent with existing literature on climate 
finance, which identifies 2015 as a pivotal turning point [23, 25].

From a policy perspective, this distinction between current and 
future risks emphasizes the need for greater incentives for investors to 
adopt long-term, forward-looking approaches. This analysis reaffirms 
the need for financial regulators to urge investors to systematically 
incorporate climate risks into their decision-making processes. To 
achieve this, investors must have access to reliable and consistent 
climate-related data [42]. It is therefore crucial that non-financial 
disclosures by companies are standardized and harmonized at the 
international level, beyond the current voluntary initiatives. Although 
certain indicators should be cross-sectoral, our results highlight the 
importance of sector-specific communication, particularly for energy 
and utilities companies, where metrics such as fossil fuel production, 
reserves, and energy mix are often reported inconsistently across firms. 
Additionally, the fact that only current risk was considered before 2015 
underscores the “tragedy of the horizon” [5]. Beyond the development 
of climate stress tests and the availability of data, regulators play 
a crucial role in extending the traditional financial risk management 
horizon [42].

Conversely, this gradual incorporation of transition risk by 
investors may impose a double burden on energy and utilities companies. 
As the COD increases for the most exposed firms, their ability to 
finance the investments necessary to transform their assets or change 
their business models may be hindered. To mitigate this double penalty, 
it is essential that the consideration of climate risks is accompanied by 
enhanced dialogue between investors and counterparties [43].

This analysis adds to the growing literature on financial risks 
associated with climate change, which encompasses both physical 
and transition risks, explored through historical and forward-looking 
methods across various sectors. 

 5. Conclusion
Since the 2015 Paris Agreement, transition-related financial risks 

have gained prominence. This study examines how key components of 
transition risk affect the COD in two high-emission sectors: energy and 
utilities. Our findings identify two main drivers of transition risk in these 
sectors: current risk, linked to direct and indirect emissions and energy 
mix, and future risk, associated with investments and fossil-fuel reserves 
that could lead to future emissions. The latter is closely related to stranded 
assets, which risk devaluation as they become misaligned with the Paris 
Agreement’s climate goals. Furthermore, our analysis shows that present 
risk consistently affects the COD across all periods and future risk only 
becomes significant after 2015, suggesting a delayed acknowledgment 
of long-term transition risk by debt holders. However, our results depend 
on the chosen method for measuring transition risk. Using an alternative 
indicator, we find no significant correlation with the COD. 

This study has two main limitations. First, data availability 
and coverage are restricted, particularly before 2015, leading to their 
exclusion from the PCA. Second, other dimensions of transition risk, 
such as reputational and governance risks, are not considered. In the 
energy sector, governance is crucial in shaping oil and gas production 
decisions [44] and affects the management of emissions and fossil 
resources. Future research could incorporate climate risk management 
data from initiatives such as the Carbon Disclosure Project to address 
these gaps.
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Variable Dataset Reference Definition Unit
Transition risk variables
Scope 1 Trucost Carbon-Scope 1 GHG emissions from operations that are owned or 

controlled by the company
Tons CO2e

Scope 3 Trucost Carbon-Scope 3 Other indirect GHG emissions not covered in 
Scope 2

Tons CO2e

GWh gas Trucost Natural gas power generation Total annual natural gas-based power generation GWh
GWh coal Trucost Coal power generation Total annual coal-based power generation GWh
Reserves gas Trucost Reserves CO2 emissions from 

Gas
GHG emissions embedded in oil reserves Million tons CO2

Reserves oil Trucost Reserves CO2 emissions from 
Oil

GHG emissions embedded in gas reserves Million tons CO2

Capex oil & gas Trucost Capex Oil & Gas Capital expenditure on oil & gas exploration (not 
disaggregated)

Million USD

Financial variables
Dependent variable
COD Orbis

INTE/LTDB Interest paid/long-term financial debts (e.g., to 
credit institutions (loans and credits), bonds)

%

Control variables
Size Orbis TOAS Total assets (fixed assets + current assets) MUSD
Leverage Orbis LTDB/TOAS Long-term financial debts (e.g., to credit institu-

tions, loans and credits, bonds)/total assets (fixed 
assets + current assets)

%

Return on assets Orbis ROA (Net income/total assets) %
Interest coverage Orbis IC All operating revenues - all operating expenses 

(gross profit-Other operating expenses)/all finan-
cial expenses such as interest charges, write-off 
financial assets, or total amount of interest charges 
paid for shares or loans

%

Liquidity ratio Orbis CURR Current assets/current liabilities %
Market/book ratio Orbis MCAP/TOAS Market capitalization/total assets %

Table A1
Variable references


