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Abstract: Although transition risks from climate change, such as regulatory shifts, market disruption, consumer preferences, and evolving
technologies, are increasingly acknowledged by financial institutions, most empirical research has focused on equity markets, leaving the impact
on corporate debt markets underexplored. In particular, few studies have examined how different dimensions of transition risk affect the cost of
debt (COD), especially across firms operating in high-emission sectors. This paper addresses this gap by investigating whether and how climate-
related transition risks are priced into the COD for international utilities and energy companies. Using a balanced panel dataset of 219 firms
from 2012 to 2017, we propose a two-step approach. First, we apply principal component analysis to construct a multidimensional transition
risk index. We identify two distinct components: a contemporaneous risk factor (called present risk) capturing firms’ existing energy portfolio
composition and emission intensity, and a forward risk factor (called future risk) capturing future-oriented exposures such as fossil fuel reserves
and investment patterns. Second, we use panel regression analysis, which shows that the current risk dimension significantly increases borrowing
costs throughout the period whereas the future risk dimension exhibits statistical significance exclusively from 2015 onward, coinciding with rising
investor awareness following the Paris Agreement. These findings contribute to the growing literature on climate finance by offering a nuanced
understanding of how transition risks are internalized in corporate debt pricing.
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1. Introduction greater research attention, the pricing of transition risks in corporate
debt is less well understood. However, this is a crucial issue: if creditors
do not adequately assess firms’ exposure to transition risks, they may
misprice loans and bonds, potentially compromising financial stability.

This paper contributes to literature by analyzing how transition
risk affects the cost of debt (COD). We focus on firms in the energy and
utilities sectors, which are widely regarded as particularly vulnerable to
decarbonization policies. Using data from 2012 to 2017, we construct
a composite index of transition risk based on multiple firm-level
indicators and analyze its impact on borrowing costs.

This paper is organized as follows. Section 2 surveys existing
literature and formulates the hypotheses. Section 3 develops the data
and empirical strategy. Section 4 discusses and interprets the results,
and Section 5 concludes.

The Paris Agreement marked a turning point in global climate
policy by uniting nat+ions in a shared objective: to limit the global
temperature increase to well below 2°C above pre-industrial levels,
with efforts to cap it at 1.5°C. Achieving this goal requires reaching
carbon neutrality by 2050, which entails a complete reduction in net
greenhouse gas (GHG) emissions [1]. This transition demands profound
and rapid changes in socio-economic systems—particularly in carbon-
intensive sectors such as energy and utilities, as shown in Figure 1 [2].

Considerable attention has been paid recently to climate-induced
risks in the financial sector, with particular emphasis on transition
risks linked to decarbonization efforts. These transition risks include
potential losses arising from regulatory shifts, technological disruption,
and changes in market or consumer behavior. Central banks and
financial regulators have begun assessing the exposure of financial
institutions to these risks [3, 4]. Notably, Mark Carney’s 2015 speech 2. Literature Review and Testable Hypotheses
brought widespread attention to the systemic implications of climate-
related financial risk, especially in the case of a sudden and disorderly
transition [5].

Despite growing awareness, the degree to which transition risks
are integrated into financial decision-making, particularly in debt
markets, remains unclear. Although equity markets have received

This paper contributes to two fields of literature. The first field
examines how climate transition risks affect the cost of capital debt,
with mixed empirical findings. The second field is a well-established
body of research analyzing the links between corporate financial and
extra financial performances, particularly corporate social performance
and financial returns.

The impact of transition risk on the stock market is gaining recent
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Figure 1
Evolution of energy-related variables from three illustrative scenarios that limit global warming to 1.5°C
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yield comparable or even superior risk-adjusted returns, suggesting
that carbon pricing is not fully reflected in current valuations. In
contrast, [lhan et al. [8] argued that transition risk is already partially
embedded in market prices. However, most of this literature focuses on
the equity market. The debt market—despite its distinctive risk-return
characteristics—has received comparatively less attention. Notably,
Trinh et al. [9] showed that companies with higher climate exposure
face higher CODs in the European market, highlighting the relevance
of transition risk for creditors as well.

Complementing this, Shahrour et al. [10] provided sector-
specific evidence that transition risks are priced into credit markets,
underscoring the importance of accounting for climate exposure in
credit assessments. Similarly, Shahrour et al. [11] offered a theoretical
framework linking firm-level characteristics to climate risk exposure,
and Economidou et al. [12] demonstrated that sustainability ratings—
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often used as proxies for transition risk—have material implications for
financial markets.

Alongside this, the literature on corporate social and
environmental performance has long debated its financial implications.
Although early studies questioned whether such practices compromised
returns, meta-analyses like that of Friede et al. [13] and more recent
work by Zerbib [14] generally find a positive—if modest—association.
However, this research has primarily emphasized the equity market,
leaving the effects on debt underexplored. Breitenstein et al. [15],
for example, emphasized the risk-reducing potential of integrating
environmental responsibility into financial strategies and noted the
need for more nuanced understanding of climate-related financial risks.

Theoretically, transition risks may influence a firm’s COD
through several channels: regulatory shifts (e.g., carbon taxes), market
changes (e.g., demand for green technologies), technological innovation
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(e.g., renewable energy solutions), and social pressures (e.g., changing
consumer preferences). These factors can affect revenues, operating
costs, capital expenditures, and asset values—including the devaluation
of stranded assets and production equipment—ultimately affecting a
firm’s creditworthiness [16].

From a creditor’s perspective, lending decisions involve assessing
credit risk—defined as the likelihood of default—based on economic,
solvency, and liquidity factors. This influences not only loan conditions
(e.g., amount and collateral) but also borrowing costs [17]. As firms face
the multifaceted challenges of the low-carbon transition, their exposure
to these risks can raise creditors’ perceived risk and their COD.

However, there is evidence that financial institutions may
still misprice these risks. Chenet et al. [18] argued that flaws in risk
models—particularly their assumptions of rational behavior and
temporal consistency—undermine their ability to capture long-term
climate risk. Moreover, conventional financial models often rely on
limited historical data and assume normal return distributions, making
them ill-suited to address the deep uncertainty and fat-tailed risks
associated with climate transition.

Although transition risk is increasingly acknowledged in equity
markets, debt instruments differ in important ways. Bonds and loans
have fixed maturities and downside-focused risk assessments, with a
greater emphasis on default likelihood. As such, transition risks may
be priced differently in debt markets. However, empirical studies
remain limited. Trinh et al. [9] documented a positive link between
carbon intensity and COD for European firms, suggesting that lenders
are beginning to integrate climate concerns. This aligns with earlier
findings on the relationship between environmental performance and
credit spreads [19, 20]. Our study extends this literature by examining
whether transition risk affects CODs for firms in the energy and utilities
sectors—two industries particularly vulnerable to decarbonization
policies [3, 4].

Although carbon intensity remains the most widely used proxy
for transition risk [7, 8, 21], it captures only part of the picture. Factors
such as corporate governance, technological investment, and energy
mix are also important. Gorgen et al. [22] offered a more comprehensive
approach by constructing a composite climate risk score based on 55
variables across dimensions such as value chain, public perception,
and adaptability. Our methodology builds on this multidimensional
approach by employing principal component analysis (PCA) to
synthesize transition risk indicators.

In summary, the contribution of this paper to the literature is
twofold. First, it decomposes transition risk across two high-exposure
sectors: energy and utilities. Second, it explores the effect of transition
risk on the COD for international firms—extending a research stream
that has largely focused on equity markets and single-country studies.
If lenders are indeed integrating transition risk into credit evaluations,
then firms with greater exposure should exhibit higher borrowing costs.

To advance this line of research, we formulate two testable
hypotheses.

H1: Higher transition risk is associated with a higher COD.

According to asset pricing and corporate finance theory, the COD
reflects the risk premium required by creditors to compensate for credit
risk. In the context of climate change, transition risk—arising from
decarbonization policies, shifting consumer preferences, technological
changes, and litigation—increases firm-specific uncertainty and the
likelihood of cash flow disruptions or stranded assets. As a result, debt
investors adjust credit assessments and pricing to reflect this elevated
risk, potentially increasing borrowing costs for more exposed firms.
Empirical studies confirm that creditors may tighten lending terms or
reduce exposure to high-risk firms, particularly as institutional investors
and lenders increasingly integrate ESG and climate-related risks into

their financial models [8, 23]. Therefore, Hypothesis 1 is grounded in
the theory of risk-adjusted pricing and credit risk assessment.

H2: The impact of transition risk on the COD becomes more pronounced
in the post-2015 period.

This hypothesis builds on theories of policy credibility and market
learning. The 2015 Paris Agreement marked a pivotal moment in global
climate governance, establishing binding commitments to limit global
warming and signaling stricter future climate policies. According to
theories of policy uncertainty and investor responsiveness [24], financial
markets adjust gradually to new, complex information—especially for
long-term risks such as climate change. The Paris Agreement enhanced
the credibility of decarbonization pathways, increasing the salience of
transition risk in investor assessments.

This shift is driven by several mechanisms—notably, revised
expectations regarding the cost of carbon-intensive activities, leading
to greater pricing of transition risk post-2015 [25], and regulatory
and institutional changes such as the Task Force on Climate-Related
Financial Disclosures and EU sustainable finance initiatives, which
embedded climate risk into financial practices. Moreover, empirical
evidence documents that investor reactions to climate risk disclosures
intensified after major climate policy events [26, 27].

Thus, the Paris Agreement represents a structural break after
which transition risk became more influential in determining the cost
of corporate debt.

3. The Climate Transition Risk Index and Impact

3.1. Data and variables

Our analysis is based on a balanced panel dataset of 1,314
observations for 117 energy and 102 utilities companies over the 2012—
2017 period using three sources of information (Figure A1): the Trucost
GHG emissions and reserves database, the Orbis (Bureau Van Dijk)
financial data, and the Vigeo Eiris equitics and transition risk data [28].
The variables are defined and fully described in Table A 1.

The primary goal of our analysis is to isolate the core components
underlying transition risk in the energy (oil, gas, and combustible fuels)
and utilities (electric, gas, water, multiutilities, and independent power
and renewable electricity producers) industries.! To achieve this, we
first select all relevant indicators for the energy and utilities sectors
that exhibit sufficient data coverage (exceeding 80%) in the Trucost
database. More precisely, three types of indicators are retained: GHG
emissions, fossil fuel reserves, and power generation.

Regarding GHG emissions, the GHG protocol distinguishes
between Scope 1 emissions (originating from direct fossil fuel
combustion and production processes), Scope 2 emissions (resulting
from purchased energy consumption), and Scope 3 emissions (all other
indirect emissions, including supply chain activities, transportation,
outsourced operations, and waste management). For energy and utilities
firms between 2012 and 2017, emissions are overwhelmingly driven by
Scope 1 (direct combustion), and Scope 3 (product end-use) and Scope 2
emissions are negligible notably because fuel combustion at generation
facilities produces the majority of the sector emissions and electricity
used in operations is minor [23]. For example, CDP [29] documented
that Scope 1 accounts for 85%-95% of emissions in electric utilities
and oil & gas and Scope 2 is often <5%. We thus consider only Scope
1 and Scope 3 emissions.

Figure 2(a) illustrates the right-skewed distribution of Scope 1
emissions across firms in the energy and utility sectors. Although the
distribution remains skewed throughout the sample period, we observe
that the median Scope 1 emissions remain relatively stable in the energy

! https://classification.codes/classifications/industry/gics/
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Figure 2
Time evolution of transition risk variables in the energy and utilities sectors
(a) Distribution of Scope 1 emissions by sector over time (energy and utilities sectors)
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sector and exhibit a slight upward trend in the utility sector. This reflects
the persistence—and in some cases expansion—of direct emissions
from fossil-based operations during the 2012-2017 period. To account
for differences in firm size and to improve comparability across firms
and time, we normalize Scope 1 emissions by total assets and apply the
natural logarithm in our empirical analysis.

Regarding fossil fuel reserves, we analyze proven and probable®
natural gas and oil reserves, excluding coal due to missing data, with
Trucost expressing them as GHG emissions embedded in reserves.
Figure 2(b) shows a right-skewed distribution, a zero median due to
utility companies, and a decreasing trend over time. We also include
capital expenditures on oil and gas exploration. For PCA, reserves
and capital expenditures are normalized by total assets and log-
transformed.

For power generation, we analyze annual coal- and gas-based
output in GWh, normalized by total assets and log-transformed for
PCA. Figure 2(c) shows the distribution of total electricity generation
across firms. Although median output stays fairly stable, some
firms increase generation, widening the distribution. This helps in

% Proven fossil fuel reserves have greater than 90% certainty of being recovered while still
economically viable to do so, whereas probable reserves have a level of certainty between 50% and
90%. https://www.spe.org/en/industry/petroleum-reserves-definitions/, visited on April 3, 2020.

explaining trends in Scope 1 emissions and operational scale during
the period. Table 1 presents the correlation matrix of all transition
risk variables.

3.2. Methodology

To address the two hypotheses of the study, namely, that H1
increased climate-related transition risk is associated with a higher
COD and H2 that this relationship strengthens following the 2015
Paris Agreement, we adopt a two-step approach. In the first step, we
construct two distinct indices of transition risk—“current risk” and
“future risk”—using PCA. This method offers several advantages:
it derives endogenous weights objectively from the underlying data
structure, captures the correlations among multiple transition-related
variables, and reduces dimensionality while retaining explanatory
power. The PCA is conducted separately for the energy and utilities
sectors to account for structural heterogeneity, yielding sector-specific
risk scores that are robust and interpretable.

In the second step, we estimate fixed-effects panel regression
models that examine the relationship between transition risk and the
COD. Two models are estimated. Model 1 includes firm- and year-fixed
effects alongside financial control variables to mitigate omitted variable
bias and unobserved heterogeneity. Model 2 introduces interaction
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Table 1
Pearson correlation matrix heatmaps of PCA transition risk variables for each sector

Scope 1 Scope 3 GWh gas

GWh coal

Res. gas Res. oil Capex oil & gas

Scope 1
Scope 3
GWh gas
GWh coal
Res. gas
Res. oil

Capex oil & gas

Utilities

GWh coal

Res. oil

Capex oil & gas

Res. gas

Scope 1
Scope 3
GWh gas
GWh coal
Res. gas
Res. oil

Capex oil & gas

Note: Colors represent the strength and direction of the correlations. Dark red = strong negative correlation (—1), white = no correlation (0), and dark blue = strong
positive correlation (+1). Asterisks inside cells denote statistical significance at the 10% level (*), 5% level (**), and 1% level (***). Diagonal cells shaded in dark

blue represent self-correlation (value = 1).

terms between transition risk scores and a post-2015 dummy variable to
capture the differential effect of transition risk after the Paris Agreement.
This specification approximates a difference-in-differences framework,
enabling us to assess changes in investor sensitivity to transition risk
over time. By controlling for firm fundamentals and applying such
econometric techniques, this strategy reduces concerns regarding
endogeneity, including reverse causality and measurement error.

3.2.1. The transition risk index

To construct the transition risk index from the transition risk
variables, we follow the method of Nicoletti et al. [30] and Capelle-
Blancard et al. [31], which is based on PCA. One advantage of the PCA
method is that it enables the creation of a composite score from multiple
variables without relying on expert-assigned weights. Compared to other
methods such as equal weighting or the mixed approach used by Gorgen
et al. [22], it also allows us to take into account correlations between
variables and a larger proportion of the variance in the dataset is explained.

We first present the exploratory analysis results, followed by the
steps for constructing transition risk scores.

By recognizing that valuations are generally conducted on
a sectoral basis, we apply PCA separately to the energy and utilities
sectors. Table 1 summarizes the correlation structure of the transition
risk variables in each sector. The high level of correlation suggests that
the PCA method is appropriate, and the Kaiser—Meyer—Olkin (KMO)
statistics of 0.72* for the energy sector and 0.67 for the utilities sector
confirm this. Table 2 displays the sector-specific factor loadings from
the PCA. We retain two components selected using the Kaiser criterion.’
Both sectors share the same components but with reversed importance.
PC1 (Scope 1, Scope 3, and power generation) represents current risk,
whereas PC2 (reserves and investments) reflects future risk. Variance in

* They develop a climate risk score (CRS) using 55 transition risk variables across three
dimensions: value chain, public perception, and adaptability. Each variable is binarized based on
its median, averaged within its dimension, and the three dimension scores are weighted by expert
judgment.

# Factor analysis (e.g., PCA) is appropriate for a dataset if the KMO statistic is above 0.6.

> Components with an eigenvalue above 1.00 are retained.

the energy sector is mainly driven by future risk, whereas in the utilities
sector, it is dominated by present risk.

Following Capelle-Blancard et al. [31], we construct current
and future risk scores by selecting key variables per component and
setting others to zero. Each variable is assigned a weight according
to its contribution to explained variance, calculated as the normalized
squared loading, with the procedure applied separately for each sector.
The resulting weights are reported in Table 2.

In Table 2, regarding exploratory PCA, PC1 and PC2 capture
the majority of the variance in the energy (.e) and utilities (.u) sector
data using the same underlying variables. Despite differing in order of
importance across sectors, one component consistently reflects future
transition risk (PCl.e, PC2.u), and the other captures current transition
risk (PC2.e, PCl.u). Regarding score construction, each transition
risk score is constructed using only the variables with the highest
loadings on the relevant component, as identified in Table 2; all other
variables are excluded. Weights are based on squared factor loadings,
which indicate the proportion of each variable’s variance explained by
the component. For example, the first component that represents the
future transition risk (Fut.risk) of the energy sector (.e) is computed as
follows: Fut.risk.e = 0.34 * Reserves gas + 0.34 * Reserve soil + 0.32
* Capex oil & gas.

3.2.2. Panel regression models

1) Dependent and control variables

The dependent variable is the COD. To measure corporate
borrowing costs, we calculate the firm’s interest expense in year t
relative to its interest-bearing debt for the same period. To reduce
noise from year-end debt fluctuations, we trim data at the 5th and 95th
percentiles. Figure 3 illustrates the COD trends over time and by sector,
showing an increase for the energy sector after 2015, while remaining
stable for utilities.

To account for firms’ economic and financial characteristics, our
regression model includes control variables based on prior studies [19,
20], with all values reported at fiscal year-end:
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Table 2
Exploratory PCA results and transition risk score development
Energy utilities variable PCl.e PC2.e PCl.u PC2.u
Scope 1 0.32 0.50 -0.54 0.18
Scope 3 0.26 0.48 -0.45 0.21
GWh gas 0.25 0.33 -0.38 0.09
GWh coal 0.31 0.31 -0.52 0.06
Reserves gas -0.47 0.37 0.15 0.61
Reserves oil -0.47 0.34 0.08 0.54
Capex oil & gas -0.48 0.26 0.24 0.50
Eigenvalue 3.18 1.52 2.81 1.84
Variance explained by component (%) 45.36 21.77 40.19 26.25
Cumulative variance 45.36 67.13 40.19 66.45
Score construction Energy Utilities
FutureRisk.e CurrentRisk.e CurrentRisk.u FutureRisk.u
Scope 1 0.00 0.32 0.33 0.00
Scope 3 0.00 0.25 0.24 0.00
GWh gas 0.00 0.19 0.15 0.00
GWh coal 0.00 0.24 0.28 0.00
Reserves gas 0.34 0.00 0.00 0.39
Reserves oil 0.34 0.00 0.00 0.29
Capex oil & gas 0.32 0.00 0.00 0.32
Figure 3
Temporal distribution of the COD
Energy Utilities
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Table 3 * Size: natural logarithm of assets in year t. Larger firms are seen
Average distribution of variables in the fixed-effects model as less risky, reducing CODs.
Variable Meoan St Dev. Min Max » Leverage: long—Ferm debt/t'otal assets. Higher leverage signals
greater default risk, increasing CODs.
1 COD 0.06 0.04 0.01 0.19 * Return on Assets: net income/total assets. Greater profitability
2 CurrentRisk 0.59 0.15 0.21 0.87 lowers CODs.
3 FutureRisk 0.08 0.14 0.00 0.50 * Interest 'CO\'/evrage.: EBIT/ir.lterest expenses. Higher coverage
] reduces liquidity risk, lowering CODs.
4 Size 16.20 1.27 10.92 19.83 * Liquidity Ratio: current assets/current liabilities. Greater liquidity
5 Leverage 0.31 0.18 0.01 2.57 reduces risk and CODs.
6 InterestCoverage 4381 552 6.01 26.80 . Market-t?-Book Ra'tloz market . capitalization/book value ‘ of
assets. Higher valuation suggests investor confidence, decreasing
7 LiquidityRatio 1.15 1.53 0.03 32.35 CODs.
8 ROA 5.21 22.60 -282.68 51.98 Tables 3 and 4 present the descriptive statistics and correlation of
8 MarketBook 0.61 0.55 0.02 8.71 variables in the fixed-effects model.
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Table 4
Pearson correlation matrix heatmap of the fixed-effects model variables

Size

COD

CurrentRisk  FutureRisk

Leverage Int.Coverage Liq.Ratio ROA  MarketBook

COD
CurrentRisk
FutureRisk
Size
Leverage
Int.Coverage
Lig.Ratio
ROA
MarketBook

Note: Colors represent the strength and direction of the correlations. Dark red = strong negative correlation (—1), white = no correlation (0), and dark blue = strong
positive correlation (+1). Shades in-between indicate intermediate correlation strengths. Asterisks inside cells denote statistical significance at the 10% level (¥), 5%
level (**), and 1% level (***). Diagonal cells shaded in dark blue represent self-correlation (value = 1).

2) Baseline fixed-effects model

Our analysis begins with a panel linear regression model that
estimates the relationship between firms’ COD and their exposure to
climate transition risks. The baseline model is specified as Equation
(1) follows:

COD;; = By + B1(CurrentRisk),, + B2(FutureRisk),,
+B3(Size),;, + Bs(Leverage),, + Bs(InterestCoverage),,
+B6(LiquidityRatio),, + B7(ROA),,
+B9(Sector); + a; + At + €i

(M

where, for a company i at year t, o denotes firm fixed effects, A denotes
year fixed effects, ¢ is the idiosyncratic error term, and the independent
variables are those defined immediately above. This model provides
a foundational understanding of how contemporaneous and forward-
looking climate risks are priced in by debt markets. In this specification,
firm fixed effects control for time-invariant, unobserved heterogeneity
across firms, and year fixed effects absorb common macroeconomic
shocks and regulatory trends over time.

3) Extended model: post-Paris agreement interaction terms

To explore the possibility that market pricing of future climate
transition risk changed in the aftermath of the Paris Agreement 2015—a
landmark policy event—we extend the model with interaction terms:

COD;; = By + B1(CurrentRisk),, + B2(FutureRisk),,
+B3(Size);, + Ba(Leverage),, + Bs(InterestCoverage),,
+B6(LiquidityRatio),, + B7(ROA),, + Bs(MarketBook),, (2)
+B9(Sector); + B1o(Current Risk* Paris Agreement),,
+B11(FutureRisk* Paris Agreement), + a; + A¢ + €5

where ParisAgreement is a dummy variable equal to 1 for years after
2015 and 0 otherwise. The interaction terms assess whether the pricing
of climate transition risk changed following the Paris Agreement.

3.2.3. Results

Table 5 presents the panel regression results. In the baseline
model (column 1), we find a significant positive coefficient for current
transition risk, suggesting that markets associate higher immediate
climate risk with higher borrowing costs, confirming hypothesis H1. In
contrast, future transition risk does not exhibit a statistically significant
relationship, potentially indicating that markets are less responsive to

Table 5
Linear panel regression models
COD
Model (1) Model (2)
CurrentRisk 0.058%* 0.057%%*
(0.025) (0.025)
FutureRisk 0.001 -0.005
(0.028) (0.027)
Size -0.033%%** -0.030%***
(0.010) (0.009)
Leverage -0.082%* -0.082*
(0.044) (0.044)
InterestCoverage -0.001%%** -0.001**%*
(0.0003) (0.0003)
LiquidityRatio -0.00003 -0.0002
(0.0004) (0.0004)
ROA -0.0002%** -0.0002%**
(0.0001) (0.0001)
MarketBook 0.007** 0.007*
(0.003) (0.004)
CurrentRisk * ParisAgreement -0.007
(0.014)
FutureRisk * ParisAgreement 0.038%*
(0.018)
Number of observations 870 870
R? 0.256 0.270
Adjusted R? 0.039 0.055
F statistics 21.036%** 19.147
(df=11;673) (df=13;671)

Note: Asterisks denote statistical significance at the 10% level (*), 5% level
(**), and 1% level (¥*%*).

anticipated climate exposures without a triggering event or regulatory
impetus. In the extended model (column 2), the interaction term for
future transition risk becomes statistically significant, and the main
effect remains insignificant. This suggests that investors began to
price future climate risks only after the Paris Agreement, implying a
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structural shift in expectations and valuation practices triggered by a
global policy commitment to decarbonization. The interaction term
for current risk remains insignificant, likely because current risks are
already internalized regardless of the policy change, partially validating
H2. As a robustness test, we use Vigeo Eiris’s transition risk score (335
observations). Its positive but insignificant effect suggests that the
relationship between transition risk and COD depends on how risk is
measured.

Robustness checks using alternative measures may yield
weaker results—mnot necessarily because the original findings are
invalid, but potentially due to limitations in the alternative metric. For
instance, measures based on expert judgment may lack transparency
and methodological clarity. This outcome does not detract from the
robustness of our primary findings; rather, it underscores the advantages
of our PCA-based measure, which adheres to established standards in
quantitative financial research. Constructed via PCA, our approach is
data-driven and replicable and assigns endogenous weights to correlated
variables, in line with best practices for identifying latent constructs
[32]. PCA offers statistical efficiency and transparency by avoiding
subjective weighting schemes, thereby enhancing the reliability and
credibility of empirical research. By comparison, although widely used
in practice, the Vigeo rating system is built on proprietary and non-
public methodologies, which have been found to exhibit lower inter-
rater reliability and methodological divergence [33, 34].

4. Discussion and Policy Implications

This empirical analysis focuses on two critical sectors that are not
only essential to the energy transition but also particularly vulnerable
to transition risk [3, 4]. From a financial market perspective, the energy
sector has been the subject of numerous studies examining the impact of
oil prices [35], their volatility [36], levels [37], and supply and demand
shocks [38] on stock prices and stock markets in general [39] and on
sovereign bonds [40]. Although oil prices constitute a component of
transition risk (market risk), less attention has been given to transition
risk in its entirety, including carbon risk [22]. Most studies addressing
transition risk focus on the carbon intensity of companies [7, 8, 21].
However, this metric overlooks sector-specific transition risk factors
and focuses solely on current emissions. For the energy and utilities
sectors, our analysis of seven variables related to emissions, their
sources (type of fossil energy), reserves, and investments reveals two
key components: current risk and future risk. This finding underscores
the necessity of developing sector-specific and forward-looking
approaches to assess transition risk.

Next, we investigate whether these two components are reflected
in the COD for these companies. Griffin et al. [41] documented the
stock market’s reaction to a 2009 academic paper that highlighted
the stranded asset risk associated with an energy transition aimed at
limiting global warming. This publication led to an average stock price
decrease of 1.5%—2% for the largest US oil and gas firms. Although this
reaction indicates investor recognition of this emerging risk, the authors
noted that it remains limited. A survey by Krueger et al. [23] shows that
an increasing number of investors believe that climate risks could have
financial implications for their portfolios. Our empirical specification
includes an interaction term between future transition risk and a
post-2015 dummy variable, which captures the differential effect of
forward-looking risk after the Paris Agreement. This interaction term is
statistically significant, whereas the standalone effect of future transition
risk is not. This pattern is not coincidental but meaningful. This approach
approximates a difference-in-differences (DiD) framework, which is
widely used in empirical economics to identify structural breaks around
policy changes by estimating how the sensitivity to future risk changes
in firms over time, around a clearly identified global policy event. Thus,
although our model is a linear regression in form, the time-interacted

term functions as a quasi-experimental identification strategy, allowing
us to infer that investor attention to future transition risk increased after
2015. Our finding is also consistent with existing literature on climate
finance, which identifies 2015 as a pivotal turning point [23, 25].

From a policy perspective, this distinction between current and
future risks emphasizes the need for greater incentives for investors to
adopt long-term, forward-looking approaches. This analysis reaffirms
the need for financial regulators to urge investors to systematically
incorporate climate risks into their decision-making processes. To
achieve this, investors must have access to reliable and consistent
climate-related data [42]. It is therefore crucial that non-financial
disclosures by companies are standardized and harmonized at the
international level, beyond the current voluntary initiatives. Although
certain indicators should be cross-sectoral, our results highlight the
importance of sector-specific communication, particularly for energy
and utilities companies, where metrics such as fossil fuel production,
reserves, and energy mix are often reported inconsistently across firms.
Additionally, the fact that only current risk was considered before 2015
underscores the “tragedy of the horizon” [5]. Beyond the development
of climate stress tests and the availability of data, regulators play
a crucial role in extending the traditional financial risk management
horizon [42].

Conversely, this gradual incorporation of transition risk by
investors may impose a double burden on energy and utilities companies.
As the COD increases for the most exposed firms, their ability to
finance the investments necessary to transform their assets or change
their business models may be hindered. To mitigate this double penalty,
it is essential that the consideration of climate risks is accompanied by
enhanced dialogue between investors and counterparties [43].

This analysis adds to the growing literature on financial risks
associated with climate change, which encompasses both physical
and transition risks, explored through historical and forward-looking
methods across various sectors.

5. Conclusion

Since the 2015 Paris Agreement, transition-related financial risks
have gained prominence. This study examines how key components of
transition risk affect the COD in two high-emission sectors: energy and
utilities. Our findings identify two main drivers of transition risk in these
sectors: current risk, linked to direct and indirect emissions and energy
mix, and future risk, associated with investments and fossil-fuel reserves
that could lead to future emissions. The latter is closely related to stranded
assets, which risk devaluation as they become misaligned with the Paris
Agreement’s climate goals. Furthermore, our analysis shows that present
risk consistently affects the COD across all periods and future risk only
becomes significant after 2015, suggesting a delayed acknowledgment
of long-term transition risk by debt holders. However, our results depend
on the chosen method for measuring transition risk. Using an alternative
indicator, we find no significant correlation with the COD.

This study has two main limitations. First, data availability
and coverage are restricted, particularly before 2015, leading to their
exclusion from the PCA. Second, other dimensions of transition risk,
such as reputational and governance risks, are not considered. In the
energy sector, governance is crucial in shaping oil and gas production
decisions [44] and affects the management of emissions and fossil
resources. Future research could incorporate climate risk management
data from initiatives such as the Carbon Disclosure Project to address
these gaps.
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Appendix
Figure A1
Number of companies by GICS sector and industry
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Table A1
Variable references
Variable Dataset Reference Definition Unit
Transition risk variables
Scope 1 Trucost Carbon-Scope 1 GHG emissions from operations that are owned or ~ Tons CO,e
controlled by the company
Scope 3 Trucost Carbon-Scope 3 Other indirect GHG emissions not covered in Tons CO,e
Scope 2
GWh gas Trucost ~ Natural gas power generation Total annual natural gas-based power generation GWh
GWh coal Trucost ~ Coal power generation Total annual coal-based power generation GWh
Reserves gas Trucost ~ Reserves CO, emissions from GHG emissions embedded in oil reserves Million tons CO,
Gas
Reserves oil Trucost Reserves CO, emissions from GHG emissions embedded in gas reserves Million tons CO,
Oil
Capex oil & gas Trucost Capex Oil & Gas Capital expenditure on oil & gas exploration (not ~ Million USD
disaggregated)
Financial variables
Dependent variable
COD Orbis
INTE/LTDB Interest paid/long-term financial debts (e.g., to %
credit institutions (loans and credits), bonds)
Control variables
Size Orbis TOAS Total assets (fixed assets + current assets) MUSD
Leverage Orbis LTDB/TOAS Long-term financial debts (e.g., to credit institu- %
tions, loans and credits, bonds)/total assets (fixed
assets + current assets)
Return on assets Orbis ROA (Net income/total assets) %
Interest coverage Orbis IC All operating revenues - all operating expenses %
(gross profit-Other operating expenses)/all finan-
cial expenses such as interest charges, write-off
financial assets, or total amount of interest charges
paid for shares or loans
Liquidity ratio Orbis CURR Current assets/current liabilities %
Market/book ratio Orbis MCAP/TOAS Market capitalization/total assets %
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