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Abstract: Based on the important role that energy and agricultural commodities play in sustainable development, this article investigates
their price movements to understand their impact on each other. By utilizing an innovative quantile-on-quantile (QQ) approach with causality
tests in conditional quantiles, the results show that (i) energy prices heterogeneously affect agricultural commodities prices, which can be
attributed to the dynamic nature of the agricultural commodity market, different energy price shocks, and distinct market conditions; (ii)
energy has a mixed positive and negative impact on agricultural commodities; and (iii) at higher or lower quantiles, that is, under extreme
bear or bull market conditions, energy markets are more likely to have a significant impact on agricultural markets. The asymmetry of these
impacts on the prices of agricultural commaodities necessitates the implementation of distinct policy measures for effective governance. The
findings can inform such measures by accounting for changes in food quantiles and different price shocks from the three primary energy

sources.
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1. Introduction

This study investigates the marginal effect of energy on agricul-
tural commodities. Both energy and agricultural commodities play
crucial roles in sustainable development by ensuring environmen-
tal, social, and economic sustainability. They are indispensable for
meeting the basic needs of society and driving economic develop-
ment [1]. In order to meet the targets of carbon peak and carbon
neutrality, as well as to advance sustainable development, fossil
energy and food security are becoming increasingly important to
nations worldwide [2].

As a global challenge, climate change poses a significant threat
to agricultural production. The increased frequency and intensity of
extreme weather events, droughts, and floods have had a negative
impact on crop yields and quality. In response to these challenges,
governments and international organizations worldwide are pro-
moting a range of climate change mitigation strategies aimed at
reducing greenhouse gas emissions and fostering sustainable devel-
opment. However, the implementation of these strategies may have
an impact on energy markets, which in turn affects the cost structure
and market dynamics of the agricultural sector [3, 4].

The state of world food and energy security is not optimistic,
particularly given the context of the COVID-19 epidemic. Against
this backdrop, energy demand has been affected, thereby directly
impacting the operation of the agricultural market [5, 6]. The spatial
spillover effects of improper land resource allocation and its nonlin-
ear relationship with environmental pollution cannot be overlooked.
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Poor land resource management can lead to environmental degrada-
tion, which in turn affects the productivity of agricultural land and
the sustainability of energy resources. The misallocation can also
result in the inefficient use of water, land, and energy resources in
agricultural trade, leading to tensions in these resource relationships
[7]. As urban areas expand, the demand for agricultural products
increases, which may lead to changes in agricultural practices and
an increased reliance on energy-intensive production methods. This
urbanization can also lead to the loss of arable land, further stressing
the agricultural market and energy resources [8, 9]. Other fac-
tors, such as fluctuating grain prices, soaring energy, and fertilizer
costs, have impacted the global food industry chain and supply
chain, exacerbating the increasingly severe global food shortage.
Meanwhile, the Russia—Ukraine conflict has further led to inter-
national trade tensions. Elevated energy prices have contributed to
an increase in agricultural production expenditures, encompassing
transportation, fertilizers, pesticides, and irrigation [10]. As a result,
food costs have escalated, exacerbating food security concerns and
presenting challenges to global food security.

The financialization of commodity markets leads to an increas-
ingly interconnected relationship between markets [11, 12], which
has further deepened the interdependency between energy and food.
On the one hand, with the inflow of financial capital, speculative
activities in the commodity futures market increase, which may lead
to bubbles in the prices of energy and agricultural commodities.
Speculators may operate simultaneously in both the energy and agri-
cultural markets, thereby making the price fluctuations of the two
markets more correlated [13]. On the other hand, financialization
has increased the systemic risk between the energy and agricul-
tural markets [14]. As the price fluctuations of the two markets tend
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to synchronize, instability in one market can quickly spread to the
other, increasing the vulnerability of the entire system. Both the
energy and agricultural markets are affected by macroeconomic fac-
tors such as global economic growth, inflation, and monetary policy.
Financialization makes the impact of these macroeconomic factors
on both markets more significant, thereby strengthening the connec-
tion between them. Thus, by exploring the common movement of
energy prices and agricultural commodities prices, we can monitor
the price dynamics of energy and food and anticipate future price
movements. This provides valuable insights for policymakers and
investors in decision-making processes.

Therefore, this study aims to examine how energy resources
affect the agricultural market and to identify any potential causal
relationships between the two in various market circumstances,
including bull, bear, or normal markets. The specific impacts of
energy resources (coal, crude oil, natural gas) on agricultural com-
modities (corn, soybeans, wheat) can be studied by considering
their futures market. In regard to methodology, this article employs
the quantile-on-quantile (QQ) method proposed by Sim and Zhou
[15] in conjunction with the causality-in-quantiles test developed
by Troster [16]. The empirical results create a complete three-
dimensional picture of the influence pattern of energy resources,
providing a more sophisticated comprehension of their interactions.
They help to provide insight into the dynamics of these linkages in
order to inform risk management and decision-making procedures
in the markets for agriculture and energy commodities.

Why do energy prices have impacts on agricultural commodi-
ties? This study is conducted based on the following theoretical
foundations. First, the promotion effect. The proliferation of fos-
sil fuels has led to an increased reliance on mechanized power
in agricultural production, enhancing productivity and advancing
the green productivity of agriculture. Mechanization shifts labor
toward machinery-dependent tasks, such as irrigation, significantly
boosting the efficiency of staple crop production, suggesting that
advancements in technology, spurred by the availability of energy
resources, can augment agricultural output [17].

Second, cost theory. Production costs in agriculture will rise
in response to rising energy prices. The fuel used in agricultural
machinery, transportation costs, fertilizers, etc., are all directly or
indirectly affected by energy prices, especially crude oil. This results
in a change in the price of the final agricultural product [10, 18,
19]. What’s more, bioenergy relieves demand pressure on traditional
energy sources and prevents inflation caused by high oil prices.
It can be seen as an alternative to energy that serves the goal of
sustainable development [20, 21].

Third, substitution effect. High oil prices and environmental
concerns will stimulate the need for bioenergy. As a result, there
will be an increase in demand for biomass, like corn, which drives
up the cost of biomass [18]. Additionally, large-scale cultivation of
biomass will occupy agricultural land, which will eventually cause
the cost of other foods to fluctuate [22-24].

Fourth, in the context of fossil fuels and their impact on the
grain market, the theory of externality is particularly relevant due
to the environmental impacts associated with the extraction, pro-
cessing, and burning of fossil fuels. The combustion of fossil fuels
contributes to climate change, which can lead to increased frequency
and intensity of extreme weather events, such as droughts, floods,
and heat waves. These events can significantly disrupt agricultural
production, affecting grain yields and supply stability.

This study enriches the body of literature on the topic in several
ways. First, it employs the QQ technique to examine the marginal
effects of the price return of energy futures on agricultural com-
modities futures at various points of both energy and agricultural
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commodities price distributions. The extant literature uses a variety
of economic approaches, such as frequency TVP-VAR, NARDL,
and Granger causality tests using the copula model [10, 18, 25-27].
However, these methods are not effective in identifying how agri-
cultural commodity prices react to fluctuations in energy commodity
prices under different circumstances in both the energy and agricul-
ture markets. Therefore, the results of the QQ method used in this
paper can supplement the existing literature. QQ is able to measure
the asymmetry of these impacts of various quantiles of independent
variables on various quantiles of the dependent variables. It can cap-
ture the full price dynamics as well as draw a complete relationship
diagram of the full price distribution [15].

Second, to study the causal relationship between quantiles
of energy prices and agricultural commodities, this article uses a
causality-in-quantiles method as a complement to the QQ regres-
sion. This method makes it possible to obtain causal relationships
between the two on different quantile distributions. The asymmet-
ric and nonlinear causality between the energy and grain markets is
clearly illustrated through the causality-in-quantiles method.

Finally, as for the policy implications, this article can provide
policymakers and market participants with more effective informa-
tion according to the results. This is because the implementation of
differentiated policies is more effective than uniform policies under
different market conditions. However, most of the existing literature
lacks specific recommendations for market participants in different
market situations [20, 28]. They only consider the average market
situation and ignore the targeted recommendations when the market
conditions are bull, bear, or normal, respectively. Recommendations
in this paper are more comprehensive and targeted.

Briefly, this article brings a new look to the existing literature in
the following areas: (I) the application of the QQ method to examine
the asymmetric impact of energy prices on agricultural commod-
ity prices across different quantiles of the price distribution; (II) the
use of quantile Granger causality tests to identify the direction and
strength of causality between energy and agricultural markets at var-
ious quantile levels; (III) the integration of these methods to provide
a more comprehensive understanding of the dynamic relationship
between energy and agricultural prices, accounting for market con-
ditions; and (IV) the provision of tailored policy recommendations
for different market scenarios.

It is organized as follows throughout the remainder of the
article. Section 2 provides some related key literature. Section 3
introduces the methodology and data. Section 4 presents the
research findings and related theoretical explanations. Section 5
makes some of the discussions. Section 6 makes conclusions and
policy proposals in combination with the current economic and
social background.

2. Literature Review

Due to the significant role of energy and agriculture, several
studies focus on the interrelationship between them. Chowdhury
et al. [29] demonstrated that agriculture and energy have an asym-
metrical and nonlinear connection. Specifically, in the short term,
only positive energy shocks impact the prices of food; however,
from the long perspective, the prices of food are affected by both
positive and negative energy shocks. Guo and Tanaka [20] obtained
heterogeneous results. Gasoline price returns are always positively
correlated with corn price returns, both in the short and long run.
Short-term corn price returns and ethanol have a positive correla-
tion, but long-term corn price returns and ethanol have a negative
correlation. Ji et al. [30] found that the energy market has a sig-
nificant spillover effect on agricultural products. Using a multiple
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linear regression model, Liu and Wang [31] discovered that the
price of corn is significantly affected by oil. Li [32] demonstrated
that in China, grain prices have been profoundly and positively
influenced by crude oil, with maize and soybean prices responding
more strongly than rice and wheat prices. In developing countries,
which primarily export oil, long-term analysis reveals a heavily
positive relationship between oil and grains [25]. Similarly, in the
case of Iran, Radmehr and Rastegari Henneberry [33] drew the
same conclusion. Rising energy prices lead to higher food prices.
Additionally, Taghizadeh-Hesary et al. [34] revealed a positive cor-
relation between food and oil prices in Asia. Unlike studying the
relationship and common movement between energy and agricul-
ture prices, El Montasser et al. [35] studied the leading versus
co-explosivity effects between them. Strong evidence of explosivity
in agricultural commodities and oil prices is found.

Diverse perspectives exist about the correlation between
energy and agricultural commodities. For example, Zhang et al. [36]
asserted that the prices of energy and agricultural commodities are
not directly correlated over the long run. Even if a short-term rela-
tionship exists, it is limited. Yoon [37] pointed out that WTI, ethanol,
and corn do not have a long-term equilibrium. Pindyck and Rotem-
berg [38] investigated the interactions of energy, grain, and metal
prices, concluding that their supply and demand have nearly zero
cross-price elasticities. They explain the co-movement of prices by
macroeconomic shocks. For example, all commodities are in a bear
market or bull market in the financial markets.

In summary, although energy prices have a direct impact on the
cost of food production, this impact can vary greatly under different
times and market conditions. Some studies have found that there is
a lack of long-term dependency between crude oil prices and agri-
cultural product prices. This means that while there may be some
fluctuations in the short term, there may be no stable connection
between the two in the long term. Different studies may use different
economic models and statistical methods to analyze the relationship
between energy prices and food prices. For example, some studies
may use linear regression models, while others may adopt nonlinear
models or time-series analysis. These different methods may lead to
different interpretations of the causal relationships. The datasets and
time spans covered by the studies also affect the results. In addition,
market conditions and policy changes in different regions can also
lead to different outcomes.

With the development of emerging energy sources, there are
a lot of literatures focusing on the interplay between traditional
energy, bioenergy, and agricultural commodities. According to
Abbott et al. [39], the energy and food markets were not linked
until 2006, when ethanol was sufficient to influence energy prices.
Thanks to the development of biofuel, energy and food are more
closely linked [40, 41]. Specifically, concerning high oil prices,
future energy security, and environmental threats, bioenergy is
widely used [21]. Jeong et al. [42] concluded that WTI futures can be
used as a safe-haven tool for palm oil futures, so long as information
is shared between markets. Kocak et al. [22] argued that the produc-
tion of ethanol can stimulate the price of corn. Employing quantile
tests, Yoon [37] studied the correlations between agricultural prod-
ucts, fossil fuels, and biofuels and discovered that a strong Granger
causal relationship runs from WTI or ethanol to corn. Kirikkaleli
and Darbaz [19] illustrated that high oil prices stimulate demand for
biofuels and energy crops, which has led to higher prices for energy
crops and other grains. This can cause many problems, including
rising agricultural prices and a food crisis [34]. Additionally, a pos-
itive link exists between the prices of food and bioenergy, whereas
the link between oil and bioenergy is negative [43].

Various approaches have been used to investigate how
energy prices affect agricultural markets, including traditional
and advanced technologies. Gong et al. [44] used the CEEM-
DAN method and TVP-VAR model to find out the connections
between the futures markets for agricultural and crude oil. Ma
et al. [45] constructed a price endogenous partial equilibrium model
to evaluate the effects of energy on production in agriculture.
Kirikkaleli and Darbaz [19] used three recent techniques, including
Toda-Yamamoto causality, Fourier Toda-Yamamoto causality, and
spectral breitung—candelon (BC) causality tests, to examine bidirec-
tional causality between energy and food price indices at various
frequencies. Albulescu et al. [46] employed a local Kendall’s tau
methodology based on copula to explore the dependence between
energy, agricultural, and metals markets. The findings show that co-
movements within and between bullish and bearish markets were
asymmetrical and more pronounced under extreme conditions. Pal
and Mitra [47] used detrended cross-correlation analysis and found
positive interdependence on longer time scales. Additionally, apply-
ing a time-varying copula with switching dependence, Ji et al. [30]
explored the conditional reliance of energy and agriculture markets.

However, most studies neglect the heterogeneous impacts of
the marginal energy price. Traditional methodologies, predomi-
nantly linear in nature, such as vector autoregression (VAR), linear
Granger causality, and autoregressive distributed lag (ARDL), are
not capable of depicting the asymmetric effect of a specific indepen-
dent variable’s quantiles on each quantile of the dependent variables.
It is therefore not possible to track how energy and agricultural com-
modities relate to one another in the context of different market
circumstances (at different quantiles). Meanwhile, when consider-
ing the relationship between energy and agricultural commodities,
most studies have overlooked the impact of climate risks and eco-
nomic factors at the quantile level. Therefore, the conclusions they
draw are very limited. To compensate for these shortcomings, this
paper uses the QQ method and quantile Granger causality to com-
prehensively study the influence pattern of energy futures prices on
the futures prices of agricultural commodities. For instance, while
some studies have shown no significant causal relationship between
energy and food prices, QQ regression can reveal that this relation-
ship may be stronger in certain quantiles, particularly during periods
of high volatility in energy prices.

3. Research Methodology

This section delves into two distinct yet complementary sta-
tistical methodologies employed in the analysis of time-series data:
the QQ method and the Granger causality test. These methods
are pivotal in understanding the heterogeneous effects and causal
relationships between energy and agricultural markets, respectively.

3.1. Quantile-on-quantile

To study the effects of crude oil, natural gas, and coal futures
markets on corn, soybean, and wheat futures markets, an innovative
QQ method developed by Sim and Zhou [15] was used. The QQ
method is a combination of conventional quantile regression and
nonparametric estimation and has been applied in economic stud-
ies to examine how independent variable quantiles affect dependent
variable quantiles at various quantile distributions. The following
are the benefits of the QQ method: First, it can use traditional
quantile regression to analyze the impact of independent variables
on different quantiles of dependent variables while avoiding the
limitations of the method, such as failure to capture the influence
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pattern. Second, the QQ technology is more robust to outliers and
non-normal values, and it can handle possible structural breaks
in the data, making it more precise in capturing the relationship
between economic performance in different environments. Third,
the QQ method can adapt to the nonlinear relationship between vari-
ables, and fourth, it can alleviate the endogeneity problem caused
by simultaneity by accounting for how the explanatory variable’s
temporal-lag term affects the dependent variable. Additionally, the
QQ method was improved by using cross-validation to determine a
suitable bandwidth, and thus, this article employs the QQ to model
the marginal impacts of the quantiles of energy futures prices in this
study.

To illustrate the QQ method in more detail, the model can begin
by considering the nonparametric quantile regression model pre-
sented below. In this model, the quantile of agricultural commodities
futures prices (4P,) is determined by the shock of energy futures
prices (E,_1):

AP, = B8(E,_,) + aPEPU, + ¢? (1)

where E,_; stands for the futures prices of crude oil, natural gas, or
coal at time t-1; the 6-quantile of the residual term s,e is zero; O rep-
resents the O-quantile of the agricultural commodities futures prices;
and a® describes the effects of the 6-quantile of the economic policy
uncertainty (EPU) on its contemporaneous term (4P,). 8 e(~) depicts
how the price of energy futures affects the agricultural commodi-
ties. Without knowing the specific relationship between energy and
agricultural commodities, 8 6)(~) is regarded as being unknown.

The unknown function’s first-order Taylor expansion (3 9(~)
around E7 is built for the purpose of investigating how the 7-quantile
of the energy futures prices (E7) impacts the 8-quantile of the agri-
cultural commodities futures prices. Here, T denotes the 7-quantile
of the prices of energy futures.

BOE,_1) ~ BOET) + BO(ET)E,_, — EF)

, 2
= by(0,7) + b, (6,7) X (E,_; — EF)

By instituting Equation (2) into Equation (1), the equation becomes
the following form:

G, = BOE") + BOENE-) —E) +a®EPU ¢ (3)
Afterward, Equation (3) can be calculated by taking into account

130(9, ‘L')
131(6, T)
a%(7)

n
=argmin, , .6 > pg[AP, — by —bi(E,-y — E) —a®EPU]
t=1

K<F(Ez—hl)—f)

“4)

where pg(y) = W0 — I,<q)). Set A’s designator function is /. K
represents the Gaussian kernel function on R, with the bandwidth
defined as h > 0. The definition of the empirical distribution function

T
isF(E;_1) = lTZkzl I(E;, < E;_1). The best o can be determined
by the average method as follows:

a=ly a%x) )

n i=1
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In practical analysis, selecting a proper bandwidth is crucial since
it can balance the variance and bias. In accordance with Stone [48]
and Li and Racine [49], this article employs a method known as
cross-validation (CV), which can be applied to asymmetric relation-
ships. The CV approach considers asymmetric data by minimizing
synthetic estimation errors.

3.2. Granger causality in quantiles

To enhance the comprehension of the causal connection
between grain and energy prices, this article employs the causality-
in-quantiles technique created by Troster [16] as a supplement to the
QQ approach.

Quantile Granger causality testing is a statistical method that
extends the traditional Granger causality test to examine the causal
relationships between time series at different points of their condi-
tional distributions. Compared to the traditional quantile causality
test, it has more advantages. First, traditional Granger causality tests
are based on linear models, which may not fully capture the com-
plex, nonlinear relationships that can exist between energy prices
and food prices. The Granger causality-in-quantiles approach allows
for the examination of causality across different quantiles of the dis-
tribution, revealing nonlinear causal relationships that linear models
might miss. Second, the Granger causality-in-quantiles approach
provides a more detailed analysis of the entire conditional distribu-
tion, not just the mean. This is crucial because the impact of energy
prices on food prices may vary across different segments of the dis-
tribution, with potentially different dynamics at the upper and lower
tails compared to the central part of the distribution. Third, tradi-
tional tests can be sensitive to outliers, which can skew the results.
The Granger causality-in-quantiles approach, by focusing on spe-
cific quantiles, can be more robust to extreme values, providing a
clearer picture of the causal relationships within the data [50].

In accordance with Granger [S1], if the past Z; cannot be used
to forecast the future Y; based on the past Y;, then a series Z, cannot
be said to Granger-cause another seriesY,. Consider an explanation
vector I, = (Ity, Iy € R% d = s + ¢, in which ItZ represents the
historical data set of Z,, IZ 1= (Z,_1, ..., Z;_,) € RY. The Granger
non-causal null hypothesis from Z; to ¥; can be described as follows:

HEY L FyOlI), I7) = Fy(ll)), forally € R, (6)

where F’ y('llty , IIZ) represents the conditional distribution function
of Y, in the case of a specified (ItY ,I%). The null hypothesis of
Equation (6) illustrates that there is no Granger causality in the
distribution pattern.

Then, test the Granger non-causality in conditional quantiles
for its determination of the causal pattern, and provide an adequate
precondition to test the null hypothesis in Equation (6), since the
quantiles completely describe a distribution. Let QZ’Z(- |IIY ,I?) be the
T-quantile of F' Y(~|ItY ,1%). Equation (6) can be expressed as follows:

HECP T o (v, 17) = QXY |I), as.forallt € T (7)

where T is a compact set such that 7 C [0, 1], and the conditional
T-quantiles of ¥; meet the following constraints:

Pr{y, < QXY |\INII!} : =7,as. forallt €T,
Pr{Y, <O IV Y, P} =t,as.forallT € T.

27t
Considering an explanatory vector I;, then Pr{Y; < Q. (Y;|I)|I;} =
E{11Y, < Q¢ (YJID] |}, where 1[Y; < y] is a function that indi-
cates whether or not Y; is smaller than or equal to y. The T-quantile
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of Fy(:|I,) is estimated using a parametric model, with the
assumption that Q;(-|I;) is accurately characterized via a para-
metric model m(-,6(7)) that belongs to a group of functions.
M = {m(,0(1))|6() : T~ 06(r) €e® CR?, forteTCl0,1]}
Let B C M be a set of functions with uniform boundaries 7 — 6(7)
such that 6(t) € ® C R”. A parametric model m(/ ty ,00(1)) there-
fore appropriately specifies the 7-conditional quantile Q%/(-|I,y ), and
then the null hypothesis of non-Granger causation in conditional
quantiles can be modified:

HEY D E{1]Y, <m(1),60(D)] |1}, I/} =7, as.forallt € T
©

Versus

Hi‘”y : E{l [Yt <m (IY, 60(1))] |I,Y,I,Z} #1,as.forsomet €T
(10

where m([ty ,00(1)) accurately describes the genuine conditional
quantile QY (-| [Y ), for each 7 € T. Hence, the null hypothesis given
by Equation (9) can be defined using a series of unconditional
moment restrictions:

E{[1(Y,—m(I',80(7)) < 0) — ] exp(iw’])} = 0, forallz € T
(1D

where exp(iw’l;) 1= exp [i(w1(Yi—1,Zi—1) + . + 0, (Y,_, Z,_ )]
is a weighting function, for all w € R"withr < d, and i =

vV —1 is the imaginary root. The test statistic is a sample analog of
E{[1(Y,—m(I,6p(x)) < 0) — 7] exp(icw’],)}:

T
vi(w,7) i= L Z [1(Y, = m(],6(7)) < 0) — 7] exp(iw’],)

=1
12)

5

where 6; is a \/7’ ~consistent estimator of 6y(7), for all T € T.
Following that, the test statistic that Troster [16] developed is used:

5 = f f 1@, O dF o @)dFL(0) (13)
TJw

where F,(-) represents the conditional distribution function of a
random vector with d-variate standard normal distribution, the dis-
tribution of F;(-) is uniformly discrete on a 7-grid with n evenly
spaced points, T,, = {rj}rl; » and the vector of weights w € R4 can
be derived from a standard normal distribution. The sample analog
can be used to estimate the test statistic in Equation (13). Make ¥
a T X n matrix which has elements ; ; = lIffj(Y,- - m([iy, Or(z))),
where lPT].(~) is the function lI’T].(s) =1(e<0)—71;
Afterward, it employs the subsequent test statistic:

1<,
Sr= 7 ; W] (14)

where W denotes the 7' X T matrix, which has elements w,; =
exp [—O.S(It - IS)Z], and 3.; represents the jth column of W. The
null hypothesis in Equation (9) is rejected anytime meeting large
values of S7 in Equation (14).

To obtain critical values for S7 in Equation (14), the subsam-
pling method developed by Troster [16] is employed. Considering
the series {X, = (¥,,Z,)} of sample size 7, the model constructs
B = T — b + 1 subsamples of size b (derived directly from the
original data) of the form {Xj,...,X;,_1}. The test statistic St in
Equation (14) is then computed for every subsample; p-values can

be calculated by taking the mean of the B subsamples test statis-
tics. Then the formula picks a subsample of size b = [k7%3] in line
with Sakov and Bickel [52], where [-] represents a number’s integer
component and k denotes a constant parameter.

Given the null hypothesis of Granger non-causality in Equation
(14), three quantile auto-regression (QAR) models m(-) are shown
below, for all T € T' C [0, 1], for the sake of applying the Sy test in
Equation (14) as follows:

OAR(1) = m' (1},6(1)) = 1 (T) + pa(D)Y,—y + 0, @7 (7)
QAR(?2) : m* (I7,6(1)) = u1 (1) + o ()Y 1y + u3(0)Y,—y

+0,®; (1) (15)
QAR(3) : m* (17,6(7)) = 1 (1) + ()Y 1y + u3(0)Y,—y
+ug(D)Y,_3 + 0,5 (1)
where the estimation of the parameters 6(t) = (u;(7), ur(7),

U3(1), ua(1),0,)" is performed using the maximum likelihood in
a grid with evenly distributed quantiles and ®;'(-) denotes the
inverse of a standard normal distribution function. In order to con-
firm the direction of the causality between the series, this article adds
the lagged variables of the other series in the quantile autoregres-
sive models in Equation (15). For ease of presentation, this article
just uses a QAR(3) model as is shown below:

YN = uy (@) + pa (DY g + u3(1)Y o

(16)
+us(D)Y,_3 + f(D)Z- + O-tq);l(f)

3.3. Data

This study used daily WTI crude oil futures prices, Rotter-
dam coal futures prices, NYMEX natural gas futures prices, and
corn, soybean, and wheat futures prices from the Chicago Board of
Trade between December 19, 2013, and December 18, 2023. The
price trends during the sample period are displayed in Figure 1.
Table 1 summarizes the descriptive statistics of the seven variables.
The time-series price data in Table 1 exhibit fat tails, as shown by
the positive kurtosis. The kernel density plots of the variables dis-
played in Figure 2 indicate that all the price series are non-normal.
Testing the time-series data’s stationarity is crucial. This study used
a traditional Augmented Dickey-Fuller test (ADF) test and found
that the price series are stable since the null hypothesis of unit roots
is rejected at the 1% significance level.

4. Results

Based on the data being stationary and non-normal with fat
tail characteristics, this article needs to use the QQ method for fur-
ther analysis. This method is appropriate because it enables us to
investigate the asymmetric influence of independent variables on
dependent variables at different quantile distributions (i.e., differ-
ent market conditions). Additionally, it is crucial to examine the
causality between variables. Therefore, the results report two find-
ings in this part: estimations from the QQ method, which illustrate
the effect of energy on agriculture markets under different energy
and agricultural commodities market conditions, and the results of
quantile causality testing. The aims are to identify the heterogeneous
connection between the variables and the causality between them.

4.1. Quantile-on-quantile (QQ) estimates

In this section, this study shows and analyzes the findings
of the QQ estimation of the impact of the price returns of three
major energy futures on the three agricultural commodities futures.
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Figure 1
Sequence diagram of the daily prices return
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Note: Figure 1 displays the time series of daily returns for six types of futures prices, beans, wheat, wheat, oil, natural gas, andcoal,

from 2013-12-19 to 2023-12-18.

Figure 3 summarizes the coefficient (6, 7) (which represents the
effect of the T#h quantile of the energy futures price on the 84 quan-
tile of the agricultural commodities prices). To make the image more
explicit, we further present the 2-D image of Figure 3 respectively,
which are shown in Figure 4.

At distinct quantiles of the dependent and explanatory vari-
ables, the effect of energy on agricultural commodities is character-
ized differently. Specifically, the results of the QQ estimation are
reported as follows. Regarding the impacts of coal on agricultural
commodities presented in Figure 3(a—c), the findings show that coal
has both positive and negative effects on soybean, corn, and wheat at
different quantiles, indicating that changes in coal prices asymmetri-
cally impact agricultural commodities prices across the agricultural
commodities futures price distribution. The positive impact of coal
is dominant. However, there are also negative effects in certain
regions. When in the area combining the higher quantile of coal
(0.65-0.75) and the quantile of agricultural commodities from low
to high (0.05-0.95), it can be observed that the strongest positive
effects are from coal. However, owing to the dynamic nature of the
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agricultural commodities markets, the impact of coal on these three
agricultural commodities is heterogeneous. When both coal (around
0.3) and soybean (0.1-0.3) are in the lower quantiles, coal has a
noticeable negative influence on soybean. This means that when
both the coal market and the soybean market are in a bear market,
the price trend of coal futures and soybean futures is opposite. Con-
sidering the effect of coal on wheat, the findings illustrate that the
largest negative effect of coal on wheat occurs in the region com-
bining the 0.7 quantile of coal and the middle and upper quantiles
of wheat (0.5-0.95).

Then, this study explores the influence of WTI crude oil on
agricultural commodities. These three types of agricultural com-
modity futures show different response patterns to the shock of
oil prices. Crude oil’s effects on agricultural commodities present
mixed results, both positive and negative. In Figure 3(d), it can
be observed that crude oil has the greatest negative effect on soy-
beans in the region, where the 0.85 quantile of crude oil is combined
with the lower to higher quantile of soybean (0.1-0.9). When
crude oil is in normal market conditions (at middle quantiles), the
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Table 1
Descriptive statistics

EPU Soybean Wheat Corn WTI Coal Natural gas
Min -1.9103 —-0.1555 —0.1045 —-0.1408 —0.4808 -0.3102 —-0.1945
Max 3.2156 0.0614 0.0840 0.0740 0.2375 0.3695 0.4253
Mean -0.0002 0.0000 0.0000 0.0000 -0.0001 0.0001 -0.0002
25th quartile -0.3242 -0.0068 -0.0112 -0.0077 -0.0119 -0.0073 -0.0177
75th quartile 0.3091 0.0067 0.0102 0.0080 0.0125 0.0078 0.0166
Stdev 0.5273 0.0131 0.0184 0.0147 0.0278 0.0293 0.0339
Skewness 0.2257 -1.6656 0.2814 -0.4292 -2.1956 0.4536 0.7466
Kurtosis 4.3151 23.1074 4.8903 8.9052 49.0467 30.5329 15.1998
JB test 209.6719%** 45140.9900°%** 422.1485%** 3883.7090%*** 232382.5000%** 82395.4100%** 16413.5200%**
ADF test —28.8427%#** —51.8918%** —50.8399%** —50.0893%** —28.5414%%%* —32.5411%** —51.2991 %%

Notes: The descriptive statistics cover price returns of crude oil futures, natural gas futures, coal futures, soybean futures, wheat futures and
corn futures from Dec 19, 2013 to Dec 18, 2023; The null hypothesis of the JB test is that the sequence is normal, and the null hypothesis of
the ADF test is the non-stationarity of the serious, where *, **, and *** denote 10%, 5%, and 1% significance level.

positive impact of crude oil will become greater as the soybean
market improves. According to Figure 3(e), in the middle to higher
quantile of crude oil (0.5-0.95), the influence of crude oil on corn is
mainly positive. However, negative values are observed in the area
combining lower quantiles of oil (0.33—-0.47) and lower to higher
quantile of corn (0.05-0.7). In Figure 3(f), crude oil’s impact on
wheat is presented. It is remarkable that crude oil positively affects
wheat in the middle quantile of crude oil and the middle to higher
quantile of wheat.

Lastly, this study looks into how natural gas affects agricul-
tural commodities, which are shown in Figure 3(g)—(i). The positive
effects of natural gas on agricultural commodities are relatively
weak. This positive effect is concentrated when the natural gas mar-
ket is in a bull market or the agricultural commodity market is in a
bull market. Natural gas has obvious negative impact on agricultural
commodities when the natural gas market is in a recession and agri-
cultural commodities are in bearish or normal market conditions.
Figure 3(g) further reveals that in the region where the higher quan-
tile of the natural gas futures market (0.6—0.75) is combined with the
middle to high quantile of the soybean futures market (0.5-0.9), nat-
ural gas negatively affects soybean. This negative impact increases
as the soybean market situation improves. In this region, the effects
of natural gas on corn have taken on a similar pattern, as shown in
Figure 3(h).

Overall, the empirical results show that the effects of coal, nat-
ural gas, and crude oil on agricultural commodities (i.e., soybean,
corn, wheat) prices vary asymmetrically across different energy
and agricultural commodities quantiles. Each energy source exhibits
unique impact patterns on each type of agricultural commodities,
owing to the dynamic nature of the agricultural commodity mar-
kets as well as energy price shocks. Energy futures can have both
positive and negative effects on agricultural commodity futures at
different quantiles. Specifically, coal positively impacts agricultural
commodity futures at most quantiles. At higher or lower quantiles,
that is, under extreme bear or bull market conditions, energy mar-
kets are more likely to have a significant positive or negative impact
on agricultural commodity markets. The degree of the effect of
energy futures on wheat futures is greater, thus showing that wheat
is more vulnerable to the effect of energy than two other agricultural
commodities.

Specifically, considering the cost effect, the rise in fossil energy
prices usually increases the production cost of grain, thereby driv-
ing up agricultural commodities prices. During the energy crisis,
such as the situation in Europe in 2023, the rise in coal prices
had a significant positive impact on agricultural commodity prices.
In the United States, due to the increase in natural gas produc-
tion and the leveling off of consumption, natural gas prices fell by
62% in 2023 compared to the previous year. This price drop may
alleviate the cost of agricultural inputs, thereby potentially reducing
the market prices of agricultural commodities. In 2021, the supply
and demand gap in international natural gas production led to a price
surge, which in turn stimulated the rise in international fertilizer and
agricultural product prices. The prices of urea, potassium chloride,
and glyphosate almost doubled, and global grain prices rose by 40%
over the past 15 months.

Considering the substitution effect, the rise in fossil energy
prices increases the demand for bioenergy, and many grain crops
are the main raw materials for bioenergy, thereby driving up grain
prices. In 2020, the fluctuation in crude oil prices affected the
demand for biofuels and downstream chemical products, which was
transmitted to agricultural product prices. For example, the United
States uses more than 40% of its corn for fuel ethanol, and oil
prices can affect the demand for fuel ethanol, thereby affecting
international corn demand and prices.

However, in certain market conditions, energy can have a nega-
tive impact on grain prices, which is usually related to market supply
and demand, policy regulation, market expectations, and other fac-
tors. In 2023, global grain prices fell by 9%, mainly due to the
abundant supply of several important crops, especially wheat and
corn. Amid the Russia—Ukraine conflict that triggered a rise in inter-
national energy prices, the surge in agricultural commodities prices
prompted farmers to increase the production of wheat and corn,
leading to a bumper harvest for these two major crops in recent
months, thus keeping world grain prices at a lower level. In addi-
tion, the cost of agricultural production is an important factor in
determining the price of agricultural products, and energy costs are
an important part of the cost of agricultural production. In some
cases, the rise in energy prices may lead to an increase in agricul-
tural production efficiency or the use of alternative energy sources,
thereby reducing the driving effect on grain prices to a certain extent.
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Figure 2
Kernel density plots of returns
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Note: Figure 2 illustrates the degree of deviation from the normal distribution for the daily returns of energy and agricultural

commodities futures prices.

By examining the diverse effects of energy on agricultural com-
modities at different quantiles, people can better comprehend their
relationships under distinct market conditions. Thus, targeted ref-
erences for policymakers, practitioners, and speculators in different
market situations can be provided in this article. What’s more, by
identifying the vulnerabilities of the agricultural sector to energy
price shocks, this study can inform adaptation strategies to cli-
mate change, including adjusting agricultural practices to become
more resilient to the indirect effects of climate change on energy
markets.
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4.2. Causality-in-quantiles test

Tables 2, 3, and 4 show the p-values of Sy test for Granger
causality in each conditional quantile from three main energy
resources to soybean, corn, and wheat, respectively. Variations in
the price returns of the three main energy sources can Granger-cause
variations in price returns of agricultural commodities at 1% level,
taking into account all quantiles. This means that, in general, there
is a very high probability of causality between the prices of energy
and agricultural commodities. Yet, the causal relations running
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Figure 3
The impact of the futures price returns of energy on the agricultural commodities
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Figure 4
The heat map of the coefficient b1
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Table 2
Granger-causality from energy to soybean: p-values

ACold, to ABean;

AGas; to ABean,

AGas, to ABean,

0 1 2 3 1 2 3 1 2 3

[0.05: 0.95] 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.05 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.10 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.15 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.20 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.25 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.30 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.35 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.40 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.45 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.50 0.3788 0.2191 0.2063 0.3788 0.2191 0.2063 0.3788 0.2191 0.2063
0.55 0.2652 0.2616 0.1625 0.2644 0.2600 0.1625 0.2652 0.2616 0.1625
0.60 0.0004 0.0068 0.0016 0.0004 0.0068 0.0016 0.0004 0.0068 0.0016
0.65 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.70 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.75 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.80 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.85 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.90 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.95 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

Table 3
Granger-causality from energy to corn: p-values
ACoal, to ACorn, AOil, to ACorn, AGas, to ACorn,

6 1 2 3 1 2 3 1 2 3

[0.05: 0.95] 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.05 0.0004  0.0012  0.0004 0.0004  0.0012  0.0004 0.0004  0.0012  0.0004
0.10 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.15 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.20 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.25 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.30 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.35 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.40 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.45 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.50 0.8977 0.4543 0.6645 0.8977 0.4587 0.6645 0.8977 0.4543 0.6645
0.55 0.1216  0.0851  0.1340 0.1216  0.0851  0.1340 0.1216  0.0851  0.1340
0.60 0.0012 0.0024  0.0004 0.0012 0.0024 0.0004 0.0012 0.0024 0.0004
0.65 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.70 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.75 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.80 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.85 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004 0.0004  0.0004  0.0004
0.90 0.0004 0.0004  0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.95 0.0161  0.0004  0.0004 0.0161  0.0004  0.0004 0.0161  0.0004  0.0004

from energy to agricultural commodities are not always significant
for each quantile distribution. For example, as shown in Tables 2
and 3, around the conditional median (6 = 0.50, 0.55), none of the
three energies have a robust Granger causal relationship between
soybean and corn at 10% statistical level. Concerning the Granger
causality from energy to wheat illustrated in Table 4, the causality

is insignificant when 6 = {0.35, 0.40, 0.95}. Moreover, the findings
show that the pattern of the causality from different energy sources
to the same food is consistent. Overall, energy prices can Granger-
cause variations in agricultural commodities (i.e., soybean, wheat,
corn) prices at a 1% significance level, except for some middle and
extremely high quantiles.
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Table 4
Granger-causality from energy to wheat: p-values

ACoal, to AWheat,

AOQil, to AWheat,

AGas, to AWheat,

5} 1 2 3 1 2 3 1 2 3

[0.05: 0.95] 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.05 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.10 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.15 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.20 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.25 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.30 0.0008 0.0008 0.0012 0.0008 0.0008 0.0012 0.0008 0.0008 0.0012
0.35 0.4077 0.3660 0.2528 0.4033 0.3660 0.2528 0.4077 0.3660 0.2528
0.40 0.1653 0.1601 0.1469 0.1653 0.1601 0.1469 0.1653 0.1601 0.1469
0.45 0.0016 0.0016 0.0020 0.0016 0.0016 0.0020 0.0016 0.0016 0.0020
0.50 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.55 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.60 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.65 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.70 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.75 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.80 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.85 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.90 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004
0.95 0.2604 0.2677 0.2612 0.2604 0.2677 0.2604 0.2604 0.2677 0.2604

Note: Tables 2, 3, and 4 report the subsampling p-values of the Sy test in Equation (13). ACoal,, AOil, AGas,, ABean;,
AWheat, ACorn, represent the lag-difference of coal, oil, gas, soybean, wheat, corn respectively. 1, 2, 3 are the lag lengths of the

dependent variable. 0 is the quantile of dependent variable

Theintroduction ofthismethodology providesanew perspective
and analytical tool for existing literature, offering a quantile-based
perspective on the causal relationship between energy and agricul-
tural commodity futures, revealing the nonlinear characteristics of
this relationship and its variations under different market conditions.
The identification of this nonlinear relationship enhances the under-
standing of market dynamics. The relationship between energy and
grain futures is not uniform under all market conditions but varies
with changes in market situations. Policymakers can use this infor-
mation to formulate more effective market intervention measures to
stabilize grain prices and ensure food security.

5. Discussion

Energy’s influence on agricultural commodities is a complex
and multifaceted issue. This paper, aligning with the existing litera-
ture [25, 29], discovers that the effects of coal, natural gas, and crude
oil on agricultural commodities prices vary asymmetrically across
different energy and agricultural commodities quantiles, owing to
the volatile nature of the agricultural commodity market and distinct
energy price shocks.

Under specific market conditions of energy and grain futures,
energy positively impacts agricultural commodities futures prices,
which is well-documented in the existing literature. The find-
ings resonate with those of Guo and Tanaka [20], who found
that gasoline price returns are always positively correlated with
corn price returns, both in the short and long run. This is pri-
marily attributed to the increased cost of agricultural production
due to higher energy costs, including the operation of agricultural
machinery and the production of fertilizers [10, 18, 19]. As Baffes
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[53] noted, the transmission of oil price fluctuations is particularly
pronounced in the index of fertilizer costs, with agriculture being
the subsequent most affected sector, which supports the obser-
vation of a direct correlation between energy prices and grain
prices. Moreover, the substitution effect comes into play when
energy prices rise; people may turn to biofuels as an alternative
energy source when energy prices increase, leading to the demand
for biomass such as corn rising, as well as related agricultural
commodities [1, 12, 24].

The results demonstrate that at higher or lower quantiles, that
is, under extreme bear or bull market conditions, energy markets
are more likely to have a significant impact on agricultural com-
modity markets, which is similar to existing research [1, 54]. As
Tiwari et al. [1] noted, the connectivity at the left and right tails of
the conditional distribution is stronger than at the mean and median,
emphasizing the importance of systemic risk spillover during periods
of extreme market movements. Furthermore, under certain specific
combinations of market conditions, energy has a negative impact on
agriculture. As noted by Esmaeili and Shokoohi [43], rising energy
prices are often seen as a harbinger of a recession. This perception
can lead to a decline in societal expectations for the economy, leading
to a decline in the prices of agricultural commodity futures. Zhang
and Qu [55] share the same view. Second, the negative impacts
of energy markets may be attributed to capital flows globally, as
suggested by Farid et al. [11]. When economic liquidity tightens
and capital shifts to bulk commodities such as coal and natural
gas, the capital flowing to grain decreases, resulting in an opposite
movement trend between the two. Third, when energy prices rise and
prices fluctuate dramatically, governments may impose restrictions
on changes in agricultural commodity prices.
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The research improves the body of literature by employing a
novel QQ approach and presenting a comprehensive asymmetric
pattern of energy’s marginal effects, which provide targeted refer-
ences for policymakers, practitioners, and speculators in different
market situations.

6. Conclusion

The scientific aim of the work is to enhance the understanding
of the dynamic interactions between energy and agricultural com-
modity prices in the context of sustainable development. The subject
of the research was to obtain a detailed analysis of how energy
futures price returns influence the price distribution of agricultural
commodities and to identify the causal relationships between these
markets at various quantile levels. This study extends the existing
research in several innovative ways: the novel method at the quan-
tile level and the targeted suggestions proposed for different market
scenarios. Specifically, this paper examines how the price of agri-
cultural commodities futures is affected by energy futures prices,
specifically studying the asymmetric influence pattern of energy
prices on agricultural commodities prices at full energy-agricultural
commodity quantiles utilizing the QQ method and the Granger
causality-in-quantiles test. The findings suggest that 1) the influ-
ence of energy on agricultural commodities is heterogeneous across
the energy-agricultural commodity price distribution, indicating that
different types of price shocks or market conditions can contribute
to this asymmetry; 2) energy has a mixed positive and negative
impact on agricultural commodities; 3) at higher or lower quan-
tiles, that is, under extreme bear or bull market conditions, energy
markets are more likely to significantly affect agricultural commod-
ity markets; and (4) the causality-in-quantiles method reveals that
there is significant causal relationships from energy prices to agri-
cultural commodities prices at the 1% significant level except at
some medium and extreme quantiles.

The conclusions have important implications for policymak-
ers. Thanks to the QQ approach, the results can fully reveal the
impact of energy prices at different quantiles, that is, under differ-
ent market conditions. A precise description of how energy affects
agricultural commodities contributes to the formulation of effective
policies toward healthy and sustained market development, which
plays a role in alleviating inflation and the food crisis worldwide.
The implementation of policies for different situations is more effec-
tive than a single policy. Since energy can have both positive and
negative impacts on agricultural commodities under different mar-
ket conditions, policymakers need to focus on market dynamics and
formulate targeted policies. This research supports the development
of sustainable economic models that consider environmental costs.
The balance is vital for achieving long-term sustainability in both
energy and agriculture systems.

The study may be limited by the choice of models, as different
models may lead to different conclusions, and the selection of an
appropriate model may be influenced by subjective factors. In terms
of the selection of research subjects, we only focused on energy
and agricultural commodity futures. The commodities market, how-
ever, could be impacted by other markets, such as the stock markets.
These issues require further research in the future.
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