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Abstract: The role of central banks to mitigate the negative impact of climate change risks on economic development has become crucial in the
monetary policy agenda. As recently experienced after the COVID-19 pandemic, unexpected shocks in the energy supply sector can destabilize
the productive sector, and thus the solvency of the entire financial system. This paper shows the possibility of the emergence of a shock on the
equilibrium pattern due to the emergence of chaotic dynamics and suggests the tools devoted to correcting such behavior. The occurrence of
chaos in economics is particularly relevant when the policymaker has to choose the appropriate decisions to achieve the desired growth rate of the
economy, without suffering the possible unwanted oscillations on national income. The idea is that if the economy is stabilized at its highest growth
rate, then any possible low-growth poverty trap is avoided. Our idea is to consider a monetary economics model with an externality factor due to
climate impacts on labor force and show the parametric condition for the emergence of chaotic dynamics. We then apply a correction algorithm
that allows us to determine the restrictions on the parameter set necessary to eliminate or control the chaotic dynamics and restore the stability of
equilibrium. Our findings are finally sustained by real data that show a possible link between adverse climatic scenarios and the intervention of the
monetary authority, but also confirm that if the interest rates are raised above a sustainable target, then the economy will start to oscillate around

the desired long-run equilibrium, thus experiencing periods of unwanted fall in real output, that are in fact a poverty trap.
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1. Introduction

Nowadays, the role of central banks in facing the risks coming from
climate change and energy shortage, with the related negative impacts on
job creation and economic development, has become a crucial issue to
deal with and is expected to become even more prominent in the future
monetary policy agenda, within the mandate of preserving price stability,
to promote a sustainable transition of the economic systems [1-4]. The
reason for the need of central banks’ intervention to support governmental
funds to finance new green policies is based on the consideration that
the climate-related events and the related shocks in the sector of energy
supply might be able to destabilize the financial stability of the current
fossil fuel-based productive firms and increase therefore the likelihood
of possible defaults in the banking system [5—7]. This may be due to the
eventuality of unexpected losses in assets portfolios of non-performing
loans in those firms that have not yet completed the process to a green
transition in the production processes, and lead to a domino effect that
can undermine the solvency of the entire financial system [8—11].

More crucially, the task of price stability in the long run can be
compromised when the expected productivity losses that may result
if the producing sector is damaged by negative climate events or by a
resource scarcity associated to long periods of dry seasons may disrupt
the supply-chain and determine an increase in production costs, which
finally contribute to exacerbate inflationary pressures and hamper
economic growth. In this view, moving towards a low-carbon economy
through climate-damaging mitigation efforts may require the promotion
of significant adjustments and structural change in various economic
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sectors [12, 13]. This transition can impact the labor-force employment
and productivity, with industries facing unwanted job losses, and can also
affect inflation dynamics as prices of goods and services based on carbon-
intensive technologies may rise [14, 15]. As a consequence, the pattern
towards an intended sustainable equilibrium may be undermined and
results instead in a low-growth trapping region eventually associated to an
indeterminate long run solution. In the worst scenario, chaotic dynamics
can emerge, thus puzzling the correct policy action (both fiscal and
monetary) to be adopted to achieve the high-growth steady state [16-18].

In this light, a relevant number of articles in the literature is
moving towards a focus on the policy implications due to the emergence
of chaotic dynamics in economic systems. A recent paper by Barnett et al.
[19] has concentrated its attention on the Shilnikov bifurcation theorem
[20] and the possibility of chaos-driven mechanics, that can appear
in the standard monetary framework of the New Keynesian economy
under an active monetary policy. The generated strange attractor shows a
spiraling structure around a homoclinic orbit that results when the three-
dimensional dynamic system undergoes a saddle focus equilibrium [21].
These irregular dynamics thus have the possibility to undermine the
convergence towards a stable equilibrium [22, 23]. Instead, depending
on the initial conditions of the economic variables, it can produce a set
of two different equilibria, one of which becomes a low-growth trapping
equilibrium [24-26].

Our research question is grounded on this debate and is developed
as follows. First, we decide to take advantage of the New Keynesian
monetary model framework and introduce a variant in terms of a
negative climate externality on the productivity of labor force to prove
that a chaotic scenario can eventually emerge. Additionally, we want to
show how the chaotic dynamics generated can be controlled to restore
local stability of the transitional dynamics, when the Ott et al. algorithm
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[27], henceforth OGY, is applied. In summary, we briefly present
in Section 2 the variant of the Barnett et al. model [19], with climate
externality on labor force, and derive the three-dimensional system of
first-order differential equations. We also characterize the restrictions to
the original parametric set at which the model satisfies the requirements
of the Shilnikov theorem [20] that guarantee the emergence of chaotic
dynamics. In Section 3, we apply the OGY algorithm for controlling the
chaotic dynamics and provide a conclusive example. A final concluding
section reassesses the main findings of the paper and provides a hint of
the policy implications of the study, outlines the possible limitations and
suggests the lines for future research.

2. The Model

Consider the baseline New Keynesian monetary model which
represents a seminal framework in describing the rule followed by
a Monetary Authority in conducting its policy to avoid the possible
emergence of liquidity traps in connection with standard fiscal policies
and the interest rate rule suggested by the Taylor principle. The basic
conclusion of this literature suggests that, as far as the economy is
approaching a liquidity trap, a large fiscal stimulus will be needed to
drive the economy off the low-inflation trapping equilibrium, thus
making the trap unsustainable for a representative agent guided by
rational expectation [28, 29]. More in detail, the model characterizes
the dynamic evolution of the key macroeconomic variables and permits
to explain the observed fluctuations in output growth, inflation, and the
nominal interest rate produced by any monetary shock that happens in
the economic systems. However, it might be interesting to introduce
the effect of central bank’s wrong or misleading perceptions regarding
unobservables, such as the effects of negative externalities on the job
market, that can lead to persistent monetary policy errors in sustaining
the growth pattern of economic aggregates. This is what we are aimed to
exploit in the following discussion.

We consider here the model version described in Barnett et al. [19]
and restrict the analysis to a so-called cashless economy (i.e., an economy
with no money either in the utility or in the production function). Using
the standard Pontryagin maximization principle, the objective of the
optimizing strategy is then to maximize the level of utility, U:!

Max fooo Ule;, l;, mi)e Ptdt

Ciyli,ﬂ'i

subject to the constraints on the variation of assets, a,, and the variation
of prices in the market, p..

S (R — ) as + Pio(l) — e —
d; = (R 7rl)al+py(ll) ci—T
Di = TiP;
ai(0)
pi(0) = pio

aio

In particular, the aggregate utility is the sum of the stream derived
from consumption, c, net of the impact of disutility of labor, and the
inflation gap:

2

Ulci, i, ms) = ules) — f(ls) — 2 (m — ") (1)

In more detail, / represents the labor force units, 7, —7z" is the
current inflationary gap from its target, 7", being 7 the degree to which
agents dislike to deviate in the current price-setting from the intended

! The reference model contains all mathematical derivation.
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rate of inflation. Moreover, as standard in the literature, the disutility
of labor is described by the following form f(I) = %, where >0 is
a measure of the preference of leisure in utility. Without any loss of
generality, we can assume a standard CES (i.e., with constant elasticity
of substitution) utility function of the form u(c) = 611‘1;1 , where @>0 is
the inverse of the intertemporal elasticity of substitution.

Additionally, in defining the budget constraint, variation of real
financial wealth, @, equals real interest earnings on wealth, (R—7) a,, plus
disposable income, %y(li), net of the consumption expenditure, ¢, and
tax earnings, z. Here, R is the nominal interest rate, y(/,) and the amount
of goods produced according to a production function using, % is the
share of the price faced by agent i with respect to the average level of
price, P, and 7 the amount of real lump-sum taxes.

As a novelty of the standard analysis, that considers the
production function linear in labor as the only input, we assume instead
y(l:) =118, to characterize the presence of a negative externality
factor in the production function, la, being 0<0 the externality rate. In
detail, we are assuming that there exists a negative factor, that which
we call climate change externality, that may negatively affect labor
force productivity (in terms of health or work effects) and thus reduce
production of goods and therefore expected national income.

Finally, recall that interest rate, R, is set according to a standard
Taylor principle as in Benhabib et al. [30, 31], to ensure that:

R(r) = Re(@P)r) )

being C = R'(r") and R = R(r") two positive constants.
A Ricardian monetary-fiscal regime is also assumed, implying
that tax revenues correspond to a fraction of total assets:

7(a) = aa 3)

where the marginal tax rate a = 7'(a) € (0,1).2

Recalling that in a symmetric equilibrium consumption equals
the level of income, ¢ =y(/), it is easy to derive the following three-
dimensional system (S) of differential equations (see reference by
Barnett et al. [19] for the full details of the derivation):

f1=(p— R+m)wm
i = p(m = Y0 = () [(1 = By + 1e(u)? 77| (S)

a=(R—ma-—r,

Itis ir*lteresting to observe that when inflation is at the targeted rate,
7", then M1 exists and is unique, it follows that at the steady state
P" = (pj, 7", a") the triplet (11,7, a) is such that fi; = 7 =a = 0.

Therefore, we can compute the steady-state level of consumption,
that is:

[

¢ = [Havo]TE “)

which is clearly an increasing function of the externality, 6, as shown
in Figure 1.

But since 0 is constrained to be negative, this confirms that the
higher the negative impact (moving on the left of the x-axis in Figure 1)
on labor productivity due to climate change external effects, the lower
the consumption rate, and therefore the lower the growth rate of the

2The fiscal regime is assumed to be Ricardian when it ensures that total government liabilities
converge to zero in the present discounted value of the required variables.
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Figure 1 the eigenvalues of the associated Jacobian matrix, J=Dg, are in the
The profile of consumption under externality variations form B and y+wi, with By<0, and the associated saddle quantity is
1.0 1 o=|p|—|y|#0. Let:
©=B(J)+Tr(J )*=0 (€))
be the standard bifurcating condition. If we can determine that % #0
then a sequence of chaotic cycles (called Smale horseshoes) emerges
0.9 around the homoclinic orbit that connects the saddle-focus equilibrium.’
When we apply Equation (9) to system (5), we set all parameters
as in the standard New Keynesian models, whereas we keep free the
8 pair (C, 6), so that Equation (9) reduces to the form ® = O(C, #) = 0,
which is represented in Figure 2.
05 Figure 2
The Shilnikov bifurcation area
|
]
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economy, which captures our starting idea of determining a negative
link between an external factor negatively affecting labor productivity —
and therefore consumption opportunities. 2 g 0 . ] )
The dynamics around the equilibrium can therefore be studied. ‘o
Let J denote the (3%3) Jacobian matrix of system (S), evaluated at the /
steady state, P’. Hence, 05 {
|
0 (1-R (")) 0 ﬂ
9=|51 P 0 (5) |
— -1 <
0 0 R-n"—7'(a")
H * % * P[1+1(140)] * %
Wherehl—(lfqﬁ)(cmulfc)fwcw 7, 73]

The eigenvalues of J are the solutions of the characteristic
equation:

det (M —J) =1 — Tr(IN2+ B\ — Det(J)

where I is the identity matrix and:

T"(J)=p+R—n"—7(a) (6)
Det(J) = [R — ©'—t(@")] [R'(x") — 1]#1n @)
B@) = [R («") = s + [R 7" = 7'(a") ] ®)

are Trace, Determinant, and Sum of principal minors of J, respectively.
We proceed now to highlight the conditions to obtain a Shilnikov
attractor around the steady state, P".

Definition 1. Consider a generic dynamic system:

dy

Y =glyp), ye R, peR!

where g is sufficiently smooth. Assume g has a hyperbolic saddle-focus
equilibrium, § =0, at the chosen bifurcation parameter @i, such that

The graph shows that a very narrow combination of the pair of
parameters (C, 0) exists that allows to be simultaneously in presence
of an active monetary policy (C > 1) and with a negative climate
externality (6 <0), for the onset of the saddle-focus equilibrium implied
by the Shilnikov chaos. Therefore, the region at which a damping
oscillation of the equilibrium trajectories occurs when C € (1,1.65)
and 6 € (-1,0).*

Additionally, since Equation (9) monotonically increases in ¢
(with % >0 and % > 0), the requirements of Definition 1 for the
equilibrium P~ to exhibit a saddle-focus dynamics along the Shilnikov
chaotic attractor are guaranteed in the expected parametric area where
C € (1,1.65). This result suggests some interesting economic insights
regarding the restrictions obtained on the chosen parameters. Given
the presence of negative climate externality on the labor force input,
if the central bank pushes forward its monetary stance with an active

* The full derivation of the mathematical conditions for the presence of stable or saddle-focus
eigenvalues is outlined in Appendix 1.

+An active monetary policy is, by definition, an action that >1% increase in the nominal interest
rate, R, to a 1% increase in inflation, z, that can be mathematically represented as a derivative
greater than unity, ‘g—f = R'(r) = C > 1. Additionally, assuming a negative climate externality
requires a parameter that describes a negative ratio to represent the fractional impact, between 0
and 1 (—1 <6 <0), of the damage produced to the variable being considered, that is in our case the
productivity of labor forces.
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monetary policy to lower the expected inflation, thereby increasing the
interest rates, the economy will react by reducing production activities,
leaving the market with less created jobs. Workers may therefore
face a trade-off between achieving a higher wealth today, if a mild
intervention on interest rates is conducted, or leaving space to more
productions, which also means more severe climate impact on workers’
health. A chaotic dynamic wave then appears and might become an
issue for policymakers™ agenda devoted to avoiding irregular cycles
and implement actions aimed to guarantee economic stability.

The numerical computations of the chaotic attractor via a standard
machine software can be lengthy and time consuming. We need then to
find a mathematical tool that simplifies the equations to work with. In
detail, following Freire et al. [32] and Wiggins [33], we can transform
S in the following hypernormal (truncated) form detailed in system NV:

T 0 1 0 T 0
yl=10 0 1 y |+ 0 (N)
3 g1 €9 €3] \z dz? + ka®

being (x, y, z) the new set of coordinates, whereas d and k are coefficients
of the original non-linear terms, and ¢, = Det(J), &,= —~B(J), &, = Tr(J)
are the standard so-called unfolding parameters.

‘We present now an example to corroborate our results.

Example 1. Concentrate on the case where monetary policy is active
(i.e., C > 1). Consider the set of the parameters M = {(f, n , &, ¢, ¥,
p, D)} =(1.975,350,0.90899,21,1,0.018,2), (R, 7*) = (0.06,0.042) and
(', C)=(0.15,1.5) as in Barnett et al. [19], which are all standard in the
related monetary policy literature, and assume 0 = —0.5, joint with the
initial conditions (x, y, z) = (0.01,0.01,0.01). The structure of eigenvalues
is 2, = —0.4819999999 and 4,,= 0.008999999926 + 1.773157988i,
which satisfies the requirements of an equilibrium characterized by
a saddle-focus dynamics with a positive saddle quantity described in
Definition 1. The attractor generated by this example is represented in
the following Figure 3.

Figure 3
The chaotic attractor

It is interesting to observe the impact of the externality 6 on
parameter C, which is the measure of the degree of monetary policy.
By substituting Equations (6) and (8) into Equation (9), we can easily
derive from the Shilnikov condition that:

[p-%—R

e ( 1) L4 v -5
1+9

C=1+

where clearly % < 0, meaning that the more negative the externality
becomes, the externality the more active monetary policy has to be.
Hence, central banks need to respond to unwanted negative effects
on labor productivity due to climate change by continuously rising
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the interest rate, though this might lead to a chaotic scenario. It
becomes therefore crucial to determine the condition for avoiding the
indeterminacy problem driven by the chaotic outcome. This is done
in the following section. To give a hint to a rationale for the model
assumption, the diagrams reported in Figure 4 clearly depicts the direct
connection that our research question theoretically wants to show
throughout the paper. Indeed, all the moments where the monetary
policy has been active, with a raising setting of nominal interest rates,
can be associated with periods in which the climate indexes for the U.S.
economy show an increase in the damaging conditions, as described
by the U.S. Climate Extreme index, which describes (in red) the events
of climate anomalies, such as rainfalls or drought seasons, that where
expected in normal weather forecasts.

Figure 4
(a) The evolution of federal fund rate in U.S. and (b) the climate
extreme index
(a)
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This basically confirms that if productions are expanded at the
expenses of the climate, this may produce a negative impact both on the
health conditions of workers but and also on inflation in the market for
goods, which consequently implies a move of the central banks to raise
the interest rates to cool down the price increase.

3. The Chaos Control Algorithm

As shown by Bella and Mattana [34] for chaos in presence
of financial bubbles, one powerful tool for controlling the chaotic
dynamics and pushing the economy to the unique (stable) equilibrium
is the method proposed by Ott et al. [27], commonly named OGY. This
algorithm needs the modification of a chosen control parameter, in our
case the externality (0), to force all eigenvalues of system (S) to present
a negative real part (see reference by Bella and Mattana [34] for the full
details of the mathematical procedure).’

At this scope, the two different scenarios related to the profile of
inflation are shown in Figure 5, where the time path of =z, is reported

* A sketch of the mathematical derivation of the OGY algorithm in presented in Appendix 2.
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Figure 5
The pattern of uncontrolled and controlled inflation
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both when chaos emerges (the blue curve), when, given all other
parameters as in Example 1, 8 = —0.5, and when the stabilization is
achieved through the OGY algorithm (red curve), when 6 = —0.0005
which permits to derive the following desired sequence of real (and
negative) eigenvalues: 1, = —7.096442388, 1, = —0.4820000001, 4,
—7.078442388.

It is noteworthy that once the stabilization of the economy is
achieved, the intertemporal profile of inflation exhibits no bursts, and
therefore inflation will converge steadily to the long run steady-state
solution. In terms of monetary policy action, this might suggest that
once control over the negative climate effects is done, the necessity
for active monetary policy is mitigated. Thus, interest rates can start
to lower because inflation returns under control without negative
impacting on the level of investments and production, which also
allows to expand the aggregate demand and consumption and restores
a balanced growth rate of the economy. The interpretation of this
result is straightforward, suggesting that a policy intervention to lower
the negative impact of climate change on labor productivity might
restore stability by pushing the economic activity even though the
monetary policy is aggressive in fighting inflation. This implies that
a positive government intervention to subsidize the green sectors to
preserve labor force’s health may crowd-out the negative impact on
the productive sector due to an increase in interest rates to turn down
inflation.

4. Conclusions

We have shown that the Shilnikov theorem in a New Keynesian
economy with negative externality on labor force due to adverse
climate change can produce a chaotic attractor in a possible region of
the model parameters. This has different policy implications in terms
of policy actions to be chosen to restore stability, because they might
be misleading and produce instead some non-controllable long-run
fluctuations in the transitional dynamics of the model. This sounds as a
possible confirmation of the possibility for different countries, similar
in their economic fundamentals, to evolve at different growth rates in
the long run. In this regard, Figure 2 has identified a critical surface,
showing that if parameters are chosen in the narrow region of active
monetary policy, C € (1,1.65), and negative externality, d € (—1,0), then
the transitional dynamics towards the equilibrium resembles a saddle-
focus with an oscillating pattern that produces a structure of cycling
waves around the equilibrium. The global analysis of this phenomenon
implies that, for any given set of initial conditions, the economy moves
off the targeted equilibrium along the unstable manifold of the saddle-
focus and will begin to oscillate around the equilibrium. This possible
outcome is grounded on the real-life data showing a possible link of
an active intervention by central banks in raising the nominal interest

rates and the possibility for adverse climate conditions, as shown in
Figure 4.

As it is a common result in the related literature, chaotic
dynamics may eventually appear in highly nonlinear models. In this
situation, the sensitivity of transitional dynamics to the initial economic
fundamentals makes it impossible to the representative agent that
forms its decisions under rational expectations to forecast the future
outcomes of economic variables. The simulation presented in Figure 3
has shown that equilibrium trajectories may follow different oscillating
patterns forming an attracting region around the intended equilibrium,
as implied by the critical surface associated to the Shilnikov theorem.
This also means also that any governmental intervention that is planned
to restore the economic stability may produce completely different
scenarios, even if applied to economies with similar initial endowments,
and result instead in an undesired trapping region. As suggested in the
final section, the achievement of a (stable) unique steady state can be
obtained if the economy is be driven back along the stable path of the
equilibrium trajectories. To do so, the application of the OGY algorithm
has permitted to characterize the level of the chosen policy parameter (in
our case, the externality parameter) as the appropriate policy instrument
to be implemented for controlling the emergence of aperiodic dynamics,
restore saddle-path stability, and avoid the cycles implied by Shilnikov
chaos.

Suggestions coming from this study to policymakers facing the
event of an economic crisis coming from climate change and energy
shortage, with the associated negative impacts on job creation and
economic development, joint with the preservation of price stability, if
decide to increase the nominal interest rate to favor the national bonds
to sustain the economy, which may produce unwanted and unstable
fluctuations, would instead first intervene to create the monetary stance
to favor the reduction of the negative environmental externality, at the
scope of reducing the possibility of a chaotic dynamics around the
intended long run equilibrium, which is no more secured by the only
active monetary intervention.

A possible evolution of the present version of the model should
be aimed to reformulate the analysis by studying the possibility
of heterogeneity between the economic agents, and thus avoid the
limitations present in the representative agent framework. This may
also serve to endogenize the stochastic process of randomly distributed
productivities of workers and so investigate the conditions that
guarantee the economy to avoid possible unwanted fluctuations. We
leave these possible considerations to future research.
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APPENDIXES

Appendix 1: saddle focus eigenvalues

Let J be the Jacobian matrix of system (S), evaluated at the
equilibrium. The eigenvalues of J are the solutions of the following
characteristic equation:

det(A1-J)=2—Tr(J ) 1*+B(J )A—Det(J ) (A.1)

which can be solved with the application of Cardano’s formula for a
cubic equation, producing the following roots:

A= —-%'-% u—+v

Ay = —% — ML 43852
where i = /=1 is the imaginary unit, while u = /—% + VA and
v =4 —2% ++VA |, given the discriminant A = (%)3 + (%)2, with
p="%" and=c+ %a’ — % assuming that a =—Tn(J ), b= B(J ),
and ¢ = —Det(J ).

The equation in Equation (A.1) exhibits: (i) one real root (4,)
and a pair of complex conjugate eigenvalues when A>0, and (i7) three
real distinct solutions if A<0. Case (i) is necessary in our paper for the
emergence of the saddle-focus equilibrium implied by the Shilnikov
theorem. Case (i) can be used for the correction mechanism implied by
the OGY algorithm to end the chaotic motion and stabilize to regular
frequency the equilibrium dynamics.

Appendix 2: the OGY algorithm

The algorithm for proving the controllability of a given system
requires that the nonlinear system be written in state-space notation. We
first put the linear part of system (S) in the following form:

W =Jw+MKw (A2)

where w = (w,, w,, w))", while J is as in Equation (5). Moreover,
) ) AT

M = %, %, % , while K= (k,, k,, k,) is a (1 x 3) vector. System

(A.2) 1s then put into the following first-companion form:

w=(A-BK)® (A3)

where the vector ® = (0, ®,, ®,)" results from the transformation
w=Two,and A=T"'J T is given by:

0 1 0
A=(0 0 1 (A4)
€1 €2 €3

as in system (N), and where B = T"'M. In detail, the transformation
matrix T must be chosen to satisfy the product T = NW, with:

N=[B,J B, J ’B] (A.5)
and
€9 €3 1
W=le; 1 0 (A.6)
1 00
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Controllability requires matrix N to have full rank. Since, in our
case, matrix A is non-degenerate, the controllability of system (V) by
means of changes in 6 is feasible and produces three eigenvalues of the
characteristic equation, one of which is negative and two have positive
real parts.



