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Abstract: This study investigates the spillover effects associated with diverse market conditions in energy and carbon markets, encompassing
both new and traditional energy sectors. Using a quantile vector autoregression approach, this research explores the dynamic interactions
among carbon emissions, traditional energy, and new energy from January 1, 2019, to July 28, 2023. Firstly, the research findings
presented in this article reveal a significant spillover effect under extreme conditions, whether the change is highly positive or negative,
with increases observed from 26.67% to 76.15% and 74.19%, respectively. Secondly, during the Russia-Ukraine conflict and COVID-19
pandemic, the interaction among carbon emissions, traditional energy, and new energy intensified, transforming their roles in the context
of spillover effects. The negative spillover effects in the new energy and carbon markets position them as effective hedging tools.
Finally, the pandemic and conflicts have underscored the increasing importance of new energy, particularly in the long run, as evidenced
by the significant expansion of spillover effects in the new energy market. These findings inform policymakers and ecological investors
in developing effective policies and tailored investment strategies across various frequency ranges.
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1. Introduction

Carbon emissions are a pivotal factor in global warming.
Following the release of the 2013 United Nations Intergovernmental
Panel on Climate Change report on the impact of human activities
on climate change, countries have pledged to reduce greenhouse gas
emissions, which have increased since the Industrial Revolution. In
light of the escalating economic risks associated with climate
change, nations have generally recognized the imperative of
achieving energy transformation and reducing carbon emissions [1].
To this end, countries are actively promoting the development of
new energy sources [2], encouraging investment in green finance,
and establishing mechanisms for carbon emission trading to advance
sustainable development goals. However, the COVID-19 pandemic
and the 2022 Russia-Ukraine crisis have posed significant
challenges to energy transformation and upgrading, thereby
threatening the stability of the energy sector [3]. Sustainable
development constitutes an important component of the global
economy [4, 5], prompting researchers to explore the significance of
environmental sustainability for economic growth. Among the
factors related to environmental sustainability, sustainable economic
growth [6–8] and energy security [9] play crucial roles.

At the same time, carbon emissions, as a policy-driven
indicator, are significantly influenced by the carbon market, which
represents a relatively specialized segment within the energy
market [10]. In the era of economic globalization, especially
during financial crises, the increased integration of
macroeconomics, finance, and commodity markets has become
inevitable. Additionally, Jin’s study demonstrated that speculators
tend to focus on short-term transactions rather than long-term
ones, and they often trade at levels that impact carbon emissions
[11]. Finally, energy prices, government policies, and other
unforeseen shocks are important factors contributing to high
volatility in this market [12, 13] (path V in Figure 1).

The significance of spillover effects between traditional and
new energy sources has been increasingly acknowledged within
low-carbon energy transformation. In the era of economic
globalization, particularly amid financial crises, the increased
integration of macroeconomics, finance, and commodity markets
has become inevitable. Furthermore, Jin’s study demonstrated that
speculators tend to focus on short-term transactions rather than
long-term ones, and they often trade at levels that impact carbon
emissions [14].

Existing literature indicates that during pandemics and the
Russia-Ukraine conflict, there is notable volatility connectivity;
Coban found that COVID-19 influenced the renewable energy
industry, providing a unique opportunity to incorporate renewable
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energy into the economic recovery plan [3] (path IV in Figure 1).
However, the degree of this increase varies [14]. The findings
related to risk sender/receiver dynamics and the frequency of
connectivity also demonstrate inconsistencies [15, 16].
Furthermore, the emergence of conflicts has disrupted commodity
trade, leading to a shift in supply-side volatility connectivity [17]
(path VI in Figure 1).

Based on the analysis presented above, and considering the
escalating trends in globalization and the advancement of carbon
financialization, as highlighted by Berta et al., there is a pressing
need for a comprehensive assessment of the flow of information
and influences between the domestic market and its international
counterparts [18]. This analysis is essential for equipping
investors and market stakeholders with the insights necessary for
informed decision-making concerning risk allocation and effective
investment portfolio management. Furthermore, it is crucial for
environmental policy analysts to develop accurate policies based
on this evaluation.

An increasing body of empirical research has explored the
relationship between carbon emissions and traditional markets.
Several studies on interconnectivity in the energy carbon market
employ the dynamic connectedness framework established by
Diebold and Yilmaz [19, 20]; Feasible Quasi generalized least squares
estimators [21], bidimensional empirical mode decomposition based
on a multiscale approach [22], multivariate generalized autoregressive
conditional heteroskedasticity techniques [23, 24], the wavelet
approach [25, 26], vector autoregression (VAR) models [27], and
Granger causality tests [28]. However, we found that existing models
only provide preliminary analysis of risk spillovers and fail to
accurately describe the spillover effects within the market or quantify
their scale. To address these limitations, this study employs DY, BK,
and QVAR models to depict the trajectory and magnitude of risk
spillovers across segmented markets and evaluates the periodic
characteristics of specific quantile tail risk spillovers at various
frequencies in the energy market. In addition, it also studied the
spillover effects of fluctuations in different conditional quantiles at

specific frequencies, thereby enhancing its robustness and flexibility.
This method helps evaluate the fluctuations in net risk spillover levels
between different segmented markets.

Briefly, this article offers a fresh perspective on the existing
literature in the following areas: (I) The examination of variability
in extreme states to provide more precise recommendations for
market participants and policymakers. (II) A focus on the
overlooked risk transmission associated with energy sources,
highlighting the need for analyses in both the frequency domain
and extreme conditions. (III) The introduction of the QVAR
model to analyze the carbon emission index alongside traditional
and renewable energy sources under extreme conditions. (IV) An
investigation into return spillovers and interconnectivity effects
among carbon markets, new energy, and traditional energy markets.

This paper makes significant contributions to the understanding
of energy market dynamics through three primary avenues. First, it
utilizes the QVARmodel to analyze spillover effects and volatility in
both traditional and renewable energy sectors. The results indicate a
persistent high-risk spillover in the new energy sector, highlighting
its critical role as a risk contributor. Notably, during the initial phases
of COVID-19 and the Russo-Ukrainian conflict, the oil market
transitioned from a negative to a positive net spill index, emerging
as a risk transmitter. Furthermore, the study reveals varying
spillover effects among distinct indicators under different quantile
conditions, providing valuable insights for market participants and
policymakers in identifying global price trends. Second, the
analysis uncovers a pronounced high-risk spillover effect
associated with emerging energy sectors. Post-pandemic and
during the Russia-Ukraine conflict, the influence of specific new
energy markets on risk spillover has significantly evolved. Given
the discrepancies in supply chains, market demand, government
policies, and financialization, not all commodities react uniformly
to geopolitical conflicts [29]. Monitoring these shifts is essential,
enabling investors to leverage diverse investment strategies
tailored to specific events, thus enhancing returns through
increased connectivity. Third, this study identifies market
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connectivity patterns across various frequency domains. Utilizing the
DY model [30], it examines static spillover effects among carbon
emissions, traditional energy, and renewable energy sectors, revealing
a significant increase in overall connectivity following the pandemic
and the Russia-Ukraine conflict. Additionally, the BK method is
employed to evaluate interrelationships across various time horizons,
which are vital for effective risk management during turbulent market
conditions [31].

The structure of this article is summarized as follows: Section 2
is literature review, Section 3 provides a detailed introduction to data
and methods, Section 4 discusses empirical results, Section 5
examines robustness, and Section 6 provides a conclusion with
policy insights.

2. Literature Review

Previous research has documented the association between
energy market spillovers and levels of carbon emissions (path I II
III in Figure 1). In the Central European region of the European
Union [19, 20], fuel prices significantly impact market prices.
However, other studies have highlighted the influence of new
energy sources, particularly photovoltaic power generation, on
carbon emission prices. Past research has also indicated that
establishing a carbon emissions trading market effectively lowers
carbon dioxide emissions [32, 33]. Simultaneously, the newly
established unified carbon market in China holds significant
potential for emissions reduction, while the spillover effects of
regional markets have far-reaching implications [34, 35]. Li and
Wang noted that among the pilot programs, Shenzhen’s dynamic
return spillover effect is the most pronounced, exhibiting the
longest time-lagged correlations, making it China’s leading
market-oriented carbon trading initiative [36]. Moreover, research
has examined how carbon quota prices affect conventional energy
sources such as crude oil and coal. Researchers have examined
the spillover effects of EUA pricing on new energy, indicating
that short-term effects are particularly pronounced between clean
energy and carbon prices. Additionally, long-term spillover effects
are most prominent between the new energy index and carbon
prices [37]. Wu identified spillover effects between the energy
market and carbon emissions, with the most significant impact
occurring between carbon and coal prices [38]. The substantial
policy changes have led to significant shifts in the spillover index,
with the oil market exhibiting a pronounced average effect on
carbon prices [20]. However, much of the existing literature
employs carbon prices as variables for analysis, which are
significantly influenced by market fluctuations and policy
changes. Therefore, this article uses carbon emissions as a factor
variable, which can be regarded as an important output variable of
the carbon market. Carbon emissions reflect the carbon production
of enterprises or countries during a specific period and can more
directly reflect the actual carbon emissions of enterprises or
industries. Monitoring carbon emissions can serve as a long-term
monitoring indicator for assessing the sustainability of carbon
reduction efforts. By monitoring and analyzing carbon emissions,
it can promote technological innovation, enhance resource
allocation, and support the long-term objective of reducing
emissions for enterprises.

Concurrently, a substantial corpus of scholarly research
persists in examining the interplay between energy consumption
and carbon emissions during times of crisis. Kirshner found that
the outbreak of COVID-19 posed a considerable impediment to

the advancement of global new energy [39]. The pandemic
threatens the rapid expansion of the global new energy sector,
drawing significant interest from investors and policymakers.
The emergence of COVID-19 in 2020, along with the Russia-
Ukraine crisis in 2022, poses major challenges to energy
transformation and modernization, thereby jeopardizing the
stability of the energy sector [3]. The profound ramifications of
the pandemic on the global society and economy have resulted
in mounting impediments to the attainment of sustainable
development objectives. Hence, we deem it imperative to
conduct more comprehensive research into the linkage between
energy usage and carbon emissions.

Previous research has predominantly employed SVMODEL,
Granger causality tests, VAR models, BEKK, GARCH models,
and MES to quantify spillover effects across various markets
[40, 41]. While these methodologies are indeed valuable, they fail
to accurately capture the magnitude, timing, and directionality of
safety spillovers across multiple asset markets within intricate
financial networks. In order to mitigate this limitation, Diebold
and Yilmaz introduced a metric for decomposing prediction error
variances and developed a comprehensive total connectivity
index, thereby furnishing a holistic framework for assessing
spillover effects [30]. However, the methodology possesses
deficiencies in capturing the temporal dynamics of risk spillover
effects. As a result, an expanding corpus of research is
concentrating on the frequency-domain attributes of these
spillover effects, employing variance decomposition in spectral
representations to address this limitation [42, 43]. Baruník and
Křehlík developed a framework for a spillover index rooted in
frequency-domain analysis [31]. This method decomposes risk
spillovers into distinct frequency bands, facilitating the assessment
of connectivity among various frequency response variables and
enabling the analysis of risk spillover effects over different time
periods. Utilizing the BK method, Ferrer constructed a frequency-
domain correlation network encompassing crude oil prices,
diverse financial variables, and new energy stock prices.
Subsequently, they conducted a comprehensive analysis of the
correlation levels and examined the underlying factors
contributing to cross-market risk across various time horizons [44].
Jiang and Chen utilized both temporal and frequency dimensions to
quantify dynamic risk transmissions among financial markets
and five energy markets in the context of the COVID-19
pandemic [45]. Additionally, Umar utilized the BK method to
reveal the heterogeneity of volatility correlations between new and
traditional energy across different time periods. The study
confirmed that during the crisis, interdependence among energy
markets intensified, with extreme events exacerbating risk
contagion effects between them [46].

Both the DY and BK methodologies estimate the conditional
expectation. However, shocks may not propagate similarly under
different market conditions. Bouris’ research has somewhat
underestimated the influence of unforeseen events in extreme
circumstances [47]. To mitigate the deficiencies of prior research,
studies have refined the conditional mean VAR model by
incorporating conditional quantile analysis. Khalfaoui utilized
quantile regression to investigate spillover effects within the
energy market during extreme scenarios. By employing the fitted
quantile vector autoregressive (QVAR) model to quantify
spillover at the 0.05 and 0.95 conditional quantiles, this research
introduces an innovative methodology for examining spillover
dynamics across varying shock intensities [48]. Therefore, Ando’s
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implementation of the QVAR model, based on the DY method, to
explore the topological structure of networks and the diversity of
risk spillovers across various quantiles, holds greater significance
than merely focusing on mean-based risk spillovers [49].
Furthermore, Chatziantoniou introduced a novel quantile-based
time-frequency spillover framework that incorporates the repeated
integration of the QVAR model with the BK method’s frequency-
domain analysis. This methodology examines the cyclical
attributes of risk spillovers, focusing on those occurring at specific
quantiles and across multiple frequencies, within the realm of
energy markets. Additionally, it examines the volatility spillover
effects at specific frequencies across various conditional quantiles,
thereby enhancing its robustness and flexibility [50]. Moreover,
Ando underscored that, in comparison to conventional conditional
mean estimation techniques, such as ordinary least squares, this
methodology demonstrates reduced susceptibility to outliers,
resulting in enhanced accuracy and reliability of the estimates [49].
Saeed somewhat underestimates the influence of unforeseen events
in extreme circumstances [47]. To address the limitations of prior
research, existing studies have extended the VAR model by
incorporating conditional quantile calculations. Khalfaoui utilized
quantile regression to examine the spillover effects within the
energy market during extreme conditions. Thus, Ando’s utilization
of the QVAR model, grounded in the DY method, to investigate
the topological characteristics of networks and the variety of risk
spillovers across different quantiles carries greater importance than
focusing solely on mean-based risk spillovers [49]. Furthermore,
Ando underscored that, in comparison to conventional conditional
mean estimation techniques, including ordinary least squares, this
methodology exhibits reduced susceptibility to the impact of
outliers, thereby producing more precise and trustworthy
estimation outcomes [49].

Hence, the scientific objective of this work is to capture the tail
risk spillover effects of traditional energy, new energy, and carbon
emissions across various market conditions and frequencies,
employing the time-frequency spillover framework and the QVAR
model. The focus of this research was to gain insights into the
dynamic and time-varying attributes of these spillover effects, as
well as the notable impact of investor sentiment on near-term
outcomes, particularly during extreme events. This study
contributes to the existing research by highlighting the substantial
escalation of spillover effects during the initial phases of both the
pandemic and the Russia-Ukraine conflict, underscoring the
necessity for further exploration into the underlying factors that

govern market dynamics and identifying effective hedging assets
within the carbon and traditional energy markets.

3. Statistical Analysis and Methodology

3.1. Data

This study examines the spillover effects between energy and
carbon emissions from January 1, 2019, to July 31, 2023. It
selects the hydroelectric power generation index (water), the wind
power generation index (wind), and the photovoltaic power
generation index (photovoltaic) as representatives of new energy.
In contrast, the NYMEX natural gas index (gas) and the ICE oil
futures index (oil) represent the traditional energy market. The
traditional energy data presented in this article refer to the closing
prices of international energy markets, while the new energy data
pertain to the closing prices of China’s new energy index. All
tables in this article were quantitatively analyzed using R and
RStudio.

The carbon emission index referenced in this article is derived
from Carbon Monitor “https://www.carbonmonitor.org.cn/”.
Futures prices for both traditional and renewable energy indices
are employed to represent their market values, with data sourced
from the Wind database. The future market, characterized by its
ease of trading and higher volume compared to physical
commodities, effectively reflects demand, pricing expectations,
and global supply [51]. The prices of energy futures exert a direct
influence on a multitude of economic activities [52]. Furthermore,
the energy market is frequently regarded as a haven for mitigating
risks in financial markets through diversification strategies [53, 54].

Table 1 presents the descriptive statistics for each variable.
According to the Jarque-Bera statistic, the volatilities of all data
deviate from a normal distribution. Moreover, the unit root test
confirms that all variables are stationary, fulfilling the
prerequisites for the application of QVAR models.

3.2. Methodology

This article employs a generalized prediction error variance
decomposition technique from the QVAR model introduced by
Chatziantoniou et al. [50], to assess the tail risk spillover effects
stemming from carbon emissions and the transition between
traditional and new energy sources across varying scales of impact,
timeframes, and cycles. Specifically, the conditional median is

Table 1
Descriptive statistics on carbon emissions, traditional energy, and new energy

Carbon Water Photovoltaic Wind Gas Oil

Mean −0.0003 0.0006 0.0010 0.0008 0.0000 0.0004
Maximum 0.1871 0.0647 0.0828 0.0933 0.4253 0.1544
Minimum −0.2202 −0.092 −0.1025 −0.1035 −0.1771 −0.3085
Std. dev. 0.03 0.02 0.02 0.02 0.04 0.03
Skewness −0.5 −0.27 −0.11 0.05 0.87 −1.48
Kurtosis 9.94 2.66 1.66 2.14 9.95 17.52
J-B 4456.37 330.71 126.8 207.07 4559.05 14074.33
ADF −10.26*** −9.54*** −8.40*** −9.23*** −8.28*** −8.53***

Note: J-B represents the Jarque-Bratest statistic; *, **, *** Significantly at levels of 10%, 5%, and 1%, respectively
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indicativeof anormal state,while the0.95 and0.05 conditional quantiles
reflect extreme downturns and upswings, respectively.

To derive the various connectedness measures, this paper
begins with estimating a QVAR(p), characterized as follows:

xt ¼ µ τð Þ þ φ1 τð Þxt�1 þ φ2 τð Þxt�2 þ � � � þ φp τð Þxt�p þ µ τð Þ (1)

where xt and xt�i, i ¼ 1; . . . p represents vectors of endogenous var-
iables with N � 1 dimensions. τ is between 0; 1½ � and denotes the
quantile of interest, p signifies the number of lags incorporated
within the QVAR model, µ τð Þ is a conditional mean vector with
N � 1 dimensions, φj τð Þ is a QVAR coefficient matrix with
N � N dimensions, and µi τð Þ demonstrates the error vector
N � 1 has an error variance-covariance matrix of dimension
N � N,

P
τð Þ. To transform the QVAR(p) model into its quantile

vector MA representation, denoted as QVAR(∞), this paper
employs the Wold theorem:

xt ¼ µ τð Þ þ
X

p
j¼ 1

φj τð Þxt�j þ µ τð Þ ¼ µ τð Þ þ
X1

i¼ 0
Ψi τð Þut�i

Following this, the generalized forecast error variance decomposition
(GFEVD) is computed as a means of implementing the central
element of the connectedness methodology [55, 56]. The GFEVD
proportion of forecast error variance indicates the impact of a
disturbance in series j on series i. This measure quantifies the influence
exerted by the specified disturbance and can be expressed mathemati-
cally in a defined formula:

θij Hð Þ ¼

�P
τð Þ
��1

jj

P
H
h¼ 0 Ψh τð ÞP τð Þð Þij

� �
P

H
h¼ 0 Ψh τð ÞP τð ÞΨ0

τð Þ� �
ii

(2)

θeij Hð Þ ¼ θij Hð ÞP
N
k¼ 1 θij Hð Þ (3)

To ensure that the row sums of θeij Hð Þ add up to one, it is necessary to
normalize each row by its sum, resulting in θeij. By normalizing, this

paper obtains the following identities:
P

N
i¼ 1 θ

e
ij Hð Þ ¼ 1 andP

N
j¼ 1

P
N
i¼ 1 θ

e
ij Hð Þ ¼ N. Therefore, the sum of each row in the

matrix equals one, illustrating how a shock in one series impacts
not only that specific series but also all others j.

In the subsequent stage, this paper computes several measures
of connectedness. The first measure this paper calculates is the net
pairwise connectedness which can be obtained through the
following procedure:

NPDC Hð Þ ¼ θeij Hð Þ � θeji Hð Þ (4)

If NPDCij Hð Þ > 0 NPDCij Hð Þ < 0
� �

this signifies that series j exerts
a stronger (weaker) influence on series i than the influence of series i
on series j. Hence, if NPDCij Hð Þ > 0 series j exerts dominance over
series i and vice versa.

The measure of total directional connectedness to others
(TO) quantifies how a shock in series i is transmitted to all other
series j:

TOi Hð Þ ¼
XN

i¼ 1;i 6¼ j

θeji Hð Þ (5)

The measure of total directional connectedness to others (FROM)
quantifies how a shock in series j is transmitted to all other series i:

FROMi Hð Þ ¼
XN

i¼ 1;i 6¼ j

θeij Hð Þ (6)

The net total directional connectedness highlights the imbalance
between the connectedness series i, extends to others, and receives
from them, signifying its net influence within the network.

NETi Hð Þ ¼ TOi Hð Þ � FROMi Hð Þ (7)

If NETi > 0 NETi < 0ð Þ series i exerts more influence on all other
series j than it receives from them, it is regarded as a net transmitter
of shocks. Conversely, if it is influenced more than it influences
others, it is regarded as a recipient of net shocks.

The degree of interconnectedness within the network, as
signaled by the total connectedness index (TCI), is specified by
the subsequent equation:

TCI Hð Þ ¼ N�1
XN
i¼ 1

TOi Hð Þ ¼N�1
XN
i¼ 1

FROMi Hð Þ (8)

This metric essentially summarizes the average impact that a
disturbance in one series exerts on all the other series within the
system. A higher value of the TCI implies heightened market risk,
whereas a lower value suggests decreased risk.

Till date, the emphasis has been on assessing connectedness in
the time domain; however, this studywill now redirect its focus to the
frequency domain. Firstly, the Fourier transform of the QVMA (∞)
can define the spectral density at frequency ω for xt .

Sx ωð Þ ¼
X1

h¼�1 E xtx
0
t�h

� �
e�iωh ¼ Ψ e�iωh

� �X
tΨ

0
eþiωh
� �

(9)

By combining spectral density and generalized prediction error
variance decomposition, we obtain the frequency of generalized
prediction error variance decomposition. Here, θij ωð Þ indicates the
conditional quantile τ, indicating the portion of the spectrum
of variable i influenced by variable j. Additionally, the standard
Equation (9) is derived from chemical treatment.

θij ωð Þ ¼

�P
τð Þ
��1

jj

P1
h¼ 0 Ψ τð Þ e�iωh

� �P
τð Þ� �

ij

��� ���2
P1

h¼ 0

�
Ψ e�iωh
� �P

τð Þ eiωh
� ��

ij

(10)

θeij ωð Þ ¼ θij ωð ÞP
N
k¼ 1 θij ωð Þ (11)

To investigate the spillover effects of tail risks among energy markets
within distinct frequency bands, this paper establishes a specific
frequency band segmentation: d ¼ a; bð Þ : a; b 2 �π;πð Þ; a < b.
Themagnitudeof spillover fromvariable j tovariable iwithinaparticular
frequency band is quantified by the measurement of θeij dð Þ ¼R
b
a θ
e
ij ωð Þdω. From this, directional spillovers and total spillover indices

can be obtained for different quantiles and specific frequency domains.

TOi dð Þ ¼
X

N
i¼ 1;i 6¼ j

θeji dð Þ; FROMi dð Þ ¼
X

N
i¼ 1;i 6¼ j

θeij dð Þ (12)
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TCI dð Þ ¼ N�1
X

N
i¼ 1;i 6¼ j

TOi dð Þ ¼ N�1
X

N
i¼ 1;i 6¼ j

FROMi dð Þ
(13)

As per Equation (13), the net overflow index (NET) can be defined in
the quantile frequency domain, NETi dð Þ ¼ TOi dð Þ � FROMi dð Þ.
Moreover, utilizing the net spillover index within the frequency
domain facilitates the evaluation of each market’s role in the trans-
mission of tail risks across various time horizons.

4. Empirical Results and Discussion

4.1. Time-domain and frequency average
connectedness

4.1.1. Time-domain average spillover effects
To construct a VAR model with an optimal lag order of 1, we

utilize the Hannan-Quinn criterion, Akaike information criterion,
Schwartz criterion, and final prediction error as model selection
criteria. Employing the DY method, we determine that the VAR
model with a lag order of 1 yields the most favorable outcomes
across these criteria. Table 2 presents the spillover matrix in a
static state for carbon emissions affecting both new energy and
traditional energy sectors. The diagonal elements of the matrix
signify the self-contribution of each variable to the variance of its
prediction error, reflecting the influence of its own lagged effects.
Conversely, the numerical values along the off-diagonal elements
represent the interdependencies among variables within the
network of volatility spillovers. Notably, the diagonal elements
play a pivotal role in capturing the autoregressive characteristics
of the variables. Furthermore, the “TO” row and the
corresponding “FROM” column within the “TO” row signify the
aggregate inflow influence and the comprehensive spillover
impact of tail risk in a particular energy market, respectively.
Additionally, the “NET” row illustrates the net magnitude of tail
risk spillover within the confines of the market.

Table 2 illustrates the static spillover effects between the carbon
emission index and both new and traditional energy sources under
normal market conditions. Firstly, in terms of risk spillover (TO),
the wind energy index exhibits the highest spillover level at
10.34%, followed by the photovoltaic index at 8.47%. The carbon
emission index shows the lowest spillover level, amounting to
0.09%. Regarding the risk spillover effect (FORM), photovoltaic
power generation displays the highest spillover level at 8.42%,

followed by hydroelectric power generation at 7.68%. The
minimum spillover effect of carbon emission indicators is 0.14%.
From this, it can be seen that in time-domain analysis,
photovoltaic power generation index and hydraulic power
generation index are the main risk spillovers and also the main
risk bearers. This further indicates that indices with higher
spillover levels are more vulnerable to the influences of other
indices. From the aforementioned table, it is evident that the
traditional energy market, owing to its well-established market
mechanism, exhibits relatively weak transmission of uncertainty
shocks to other markets, resulting in a comparatively low-risk
spillover level. Secondly, in terms of net effect NET, both the
carbon emission index and the traditional energy index have
negative net spillover effects as receivers, with the crude oil index
exhibiting the highest net spillover effect of −0.38% as the largest
risk taker. Regarding new energy, aside from the hydropower
index, all other indicators show positive effects, with the wind
power index reaching a peak of 1.27%, playing a role in risk
spillover. Additionally, based on the NPT index, the net spillover
index of carbon emissions is entirely negative, greatly influenced
by energy indicators. Meanwhile, the wind power generation
index is entirely positive, suggesting that wind power generation
is more mature in China and drives the fluctuations of other
energy indices. Furthermore, Figure 2 clearly illustrates a

Table 2
Static spillover table of carbon emissions and traditional energy and clean energy

Carbon Water Photovoltaic Wind Gas Oil FORM

Carbon 99.14 0.44 0.13 0.08 0.07 0.14 0.14
Water 0.10 53.94 17.87 27.67 0.01 0.41 7.68
Photovoltaic 0.10 16.39 49.46 32.85 0.10 1.10 8.42
Wind 0.14 23.40 30.29 45.57 0.02 0.58 9.07
Gas 0.16 0.04 0.17 0.02 98.31 1.31 0.28
Oil 0.02 0.71 2.35 1.39 1.36 94.16 0.97
TO 0.09 6.83 8.47 10.34 0.26 0.59
NET −0.05 −0.85 0.05 1.27 −0.02 −0.38 TCI
NPT 0 3 5 6 1 2 26.57

Figure 2
Total spillover effect
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noticeable rise in the overall connectivity index during the onset of
the epidemic and the Russia-Ukraine conflict. This signifies an
enhanced connection between energy and carbon emissions
throughout these periods.

4.1.2. Time-frequency average spillover effects
In addition to the time-domain analysis, this paper employs the

BK method to categorize spillover effects into long-term, medium-
term, and short-term components.

As demonstrated in Table 3, the overall spillover index remains
stable at approximately 26.6%, indicating that the spillover between
carbon emissions and energy is not significantly affected by time in
the absence of major events. Furthermore, the table reveals a greater
short-term spillover effect compared to the long-term effect,
suggesting intensified competition between renewable and
traditional energy sources in the carbon reduction process. This
phenomenon is primarily driven by investor sentiment. Notably,
the photovoltaic power generation index has gradually shifted
from a negative net overflow in 2019 to a positive value,
signifying a change in the position of the photovoltaic market in
both the medium and short to long term.

4.2. Dynamic quantile connectedness

To investigate the spillover effect between carbon emissions
and traditional energy sources in extreme scenarios, this article
employs the QVAR model for comprehensive analysis.

Tables 4, 5, and 6 demonstrate that total connectivity exhibits
dynamic and symmetrical quantile characteristics. During extreme
conditions, the risk spillovers between these markets are more
robust (τ < 0:10; τ > 0:90), with total connectivity fluctuations
exceeding 70. The findings of this paper are consistent with recent
research that indicates an intensification of risk spillovers between
markets during periods of economic shocks or downturns
[57, 58]. A comprehensive understanding of the Russia-Ukraine con-
flict’s unique impact on connectivity has been achieved. The conflict
not only significantly increased connectivity between low and high
quantiles but also notably elevated the connectivity of the median
during the initial phases of the conflict. The research findings of
Tiwari et al. [59] diverge from this observation, revealing an increas-
ing trend in risk spillovers caused by the COVID-19 at both low and
high quantiles.

As shown in Figure 3, from a time-domain perspective, a
significant escalation in tail risk spillover levels among energy

Table 3
Frequency-domain spillover index

Carbon Water Photovoltaic Wind Gas Oil FROM-ABS FROM-WTH

Carbon 77.99 0.28 0.08 0.05 0.06 0.08 0.09 0.11
Water 0.06 43.48 14.16 22.25 0.01 0.27 6.13 7.59
Photovoltaic 0.06 13.66 39.67 26.95 0.06 0.87 6.93 8.59
Wind 0.09 19.33 24.38 36.93 0.02 0.48 7.38 9.14
Gas 0.10 0.04 0.12 0.02 81.41 1.01 0.21 0.26
Oil 0.02 0.49 1.64 0.96 0.97 76.28 0.68 0.84
TO_ABS 0.06 5.63 6.73 8.37 0.19 0.45 21.43 TCI
TO_WTH 0.07 6.98 8.34 10.37 0.23 0.56 26.54
NET −0.03 −0.5 −0.2 0.99 −0.02 −0.23

The spillover table for bands 3.14 to 0.63 roughly corresponds to 1 day to 5 days.

Carbon Water Photovoltaic Wind Gas Oil FROM-ABS FROM-WTH

Carbon 17.78 0.14 0.05 0.03 0.00 0.05 0.04 0.27
Water 0.03 8.80 3.12 4.56 0.00 0.12 1.30 8.04
Photovoltaic 0.03 2.30 8,24 4.98 0.03 0.19 1.26 7.73
Wind 0.04 3.44 4.98 7.28 0.00 0.08 1.42 8.77
Gas 0.05 0.00 0.04 0.00 14.24 0.26 0.06 0.36
Oil 0.00 0.19 0.60 0.36 0.33 15.05 0.25 1.52
TO_ABS 0.03 1.01 1.46 1.65 0.06 0.12 4.33 TCI
TO_WTH 0.16 6.23 9.01 10.19 0.38 0.71 26.68
NET −0.01 −0.29 0.2 0.23 0.00 −0.13

The spillover table for bands 0.63 to 0.10 roughly corresponds to 5 days to 30 days.

Carbon Water Photovoltaic Wind Gas Oil FORM-ABS FORM-WTH

Carbon 3.37 0.03 0.01 0.01 0.00 0.01 0.01 0.28
Water 0.01 1.66 0.59 0.86 0.00 0.02 0.25 8.07
Photovoltaic 0.01 0.43 1.55 0.93 0.01 0.04 0.23 7.68
Wind 0.01 0.64 0.94 1.36 0.00 0.02 0.27 8.75
Gas 0.01 0.00 0.01 0.00 2.65 0.05 0.01 0.36
Oil 0.00 0.04 0.12 0.07 0.06 2.83 0.05 1.55
TO_ABS 0.01 0.19 0.28 0.31 0.01 0.02 0.81 TCI
TO_WTH 0.17 6.19 9.06 10.17 0.38 0.72 26.69
NET 0.00 −0.06 0.05 0.04 0.00 −0.03

The spillover table for bands 0.10 to 0.00 roughly corresponds to 30 days to Inf days.
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Table 4
Carbon emissions in the time domain and tail risk net spillover table of traditional and new energy sources (conditional median)

Carbon Water Photovoltaic Wind Gas Oil FROM

Carbon 99.14 0.44 0.13 0.08 0.07 0.14 0.86
Water 0.10 53.94 17.87 27.67 0.01 0.41 46.06
Photovoltaic 0.10 16.39 49.46 32.85 0.10 1.10 50.54
Wind 0.14 23.40 30.29 45.57 0.02 0.58 54.43
Gas 0.16 0.04 0.17 0.02 98.31 1.31 1.69
Oil 0.02 0.71 2.35 1.39 1.36 94.16 5.84
TO 0.52 40.99 50.81 62.02 1.55 3,54
NET −0.34 −5.07 0.26 7.59 −0.14 −2.30 TCI
NPT 2 3 4 4 1 1 26.57

Table 5
Carbon emissions in the time domain and tail risk net spillover table of traditional and new energy sources (0.05 conditional quantiles)

Carbon Water Photovoltaic Wind Gas Oil FORM

Carbon 24.75 15.01 15.17 16.17 13.78 15.12 75.25
Water 13.15 21.96 17.78 19.46 12.61 15.04 78.04
Photovoltaic 12.60 17.31 22.51 20.63 12.23 14.71 77.49
Wind 12.42 18.53 19.75 22.71 12.02 14.57 77.29
Gas 14.10 14.63 14.58 15.24 25.61 15.85 74.39
Oil 13.64 15.33 15.29 15.73 14.44 25.57 74.43
TO 65.91 80.81 82.58 87.23 65.08 75.28
NET −9.34 2.77 5.09 9.94 −9.31 0.85 TCI
NPT 1 3 4 5 0 2 76.15

Table 6
Carbon emissions in the time domain and tail risk net spillover table of traditional and new energy sources (0.95 conditional quantiles)

Carbon Water Photovoltaic Wind Gas Oil FORM

Carbon 29.22 14.22 13.94 14.73 14.30 13.59 70.78
Water 11.65 23.86 18.60 19.77 13.02 13.10 76.14
Photovoltaic 11.26 17.91 23.97 20.95 12.61 13.31 76.03
Wind 11.67 18.62 20.19 23.24 12.88 13.39 76.76
Gas 12.68 14,61 14.60 15.17 27.92 15.01 72.08
Oil 12.19 15.11 15.57 15.34 15.13 26.67 73.33
TO 59.44 80.46 82.91 85.97 67.94 68.40
NET −11.33 4.32 6.88 9.21 −4.13 −4.94 TCI
NPT 0 3 4 5 2 1 74.19

Figure 3
Total spillover effect
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markets during extreme conditions. However, spillover indices that
rely on conditional median measures face challenges in accurately
capturing the impact of tail risk spillovers in such scenarios.
Furthermore, the emerging energy market is particularly affected
by market conditions, demonstrating a substantial increase in
directional spillover levels. Despite these dynamics, traditional
energy markets and carbon emission indices continue to maintain
their dominant positions as risk bearers, exerting a considerable
influence on spillover effects. Additionally, the propagation of
risk shocks can lead to varying frequency responses, which can be
attributed to economic cyclical fluctuations and the diverse nature
of investors. Consequently, the analysis of tail risk contagion
across different time periods is not effectively captured through
time-domain analysis. Consequently, the adoption of a frequency-
domain approach is crucial for analyzing tail risk spillovers in the
global energy market, encompassing a range of frequency

Figure 4
Univariate connectivity index

Figure 5
Dynamic total connectivity index on quantiles
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domains, such as high-frequency short cycles and low-frequency
long cycles.

4.3. Net quantile connectedness

Table 7 presents the tail risk spillover effects in the energy
market under normal conditions. The short-term spillover index is
21.34%, while the medium-term index is 4.33%. The tail risk
spillover index for the short term is 21.34%, while it is 4.33% for
the medium term. In contrast, the long-term spillover index is

0.81%. The analysis indicates that short-term risk spillovers
primarily drive the overall tail risk spillover in the energy market.
Furthermore, when assessing risk spillovers across both short-to-
medium and long-term horizons, it becomes clear that the new
energy market, especially the wind energy sector, demonstrates
the highest level of risk spillover. The dominant risk spillover
between carbon emissions and both traditional and new energy
sources positions new energy as a significant systemic risk.
Consistent with the time-domain analysis, new energy exhibits a
stronger spillover effect on carbon emissions, highlighting its

Table 7
Averaged joint connectedness

Carbon Water Photovoltaic Wind Gas Oil

Carbon 99.14 0.44 0.13 0.08 0.07 0.14
Water 0.10 53.94 17.87 27.67 0.01 0.41
Photovoltaic 0.10 16.39 49.46 32.85 0.10 1.10
Wind 0.14 23.40 30.29 45.57 0.02 0.58
Gas 0.16 0.04 0.17 0.02 98.31 1.31
Oil 0.02 0.71 2.35 1.39 1.36 94.16
TO 0.52 40.99 50.81 62.02 1.55 3,54
NET −0.34 −5.07 0.26 7.59 −0.14 −2.30
NPT 2 3 4 4 1 1

1–5

Carbon Water Photovoltaic Wind Gas Oil FROM

Carbon 77.99 0.28 0.08 0.05 0.06 0.08 0.55
Water 0.06 43.48 14.16 22.25 0.01 0.27 36.75
Photovoltaic 0.06 13.66 39.67 26.95 0.06 0.87 41.61
Wind 0.09 19.33 24.38 36.93 0.02 0.48 44.29
Gas 0.10 0.04 0.12 0.02 81.41 1.01 1.28
Oil 0.02 0.49 1.64 0.96 0.97 76.28 4.08
TO 0.33 33.79 40.37 50.23 1.11 2.71
NET −0.21 −2.96 −1.23 5.94 −0.17 −1.36 TCI
NPT 2 3 4 4 0 2 21.43

5–30

Carbon Water Photovoltaic Wind Gas Oil FROM

Carbon 17.78 0.14 0.05 0.03 0.00 0.05 0.26
Water 0.03 8.80 3.12 4.56 0.00 0.12 7.83
Photovoltaic 0.03 2.30 8.24 4.98 0.03 0.19 7.53
Wind 0.04 3.44 4.98 7.28 0.00 0.08 8.54
Gas 0.05 0.00 0.04 0.00 14.24 0.26 0.35
Oil 0.00 0.19 0.60 0.36 0.33 15.05 1.48
TO 0.16 6.07 8.78 9.93 0.37 0.69
NET −0.10 −1.76 1.25 1.38 0.02 −0.78 TCI
NPT 2 2 5 2 3 1 4.33

30-inf

Carbon Water Photovoltaic Wind Gas Oil FROM

Carbon 3.37 0.03 0.01 0.01 0.00 0.01 0.05
Water 0.01 1.66 0.59 0.86 0.00 0.02 1.48
Photovoltaic 0.01 0.43 1.55 0.93 0.01 0.04 1.48
Wind 0.01 0.64 0.94 1.36 0.00 0.02 1.40
Gas 0.01 0.00 0.01 0.00 2.65 0.05 1.60
Oil 0.00 0.04 0.12 0.07 0.06 2.83 0.07
TO 0.03 1.13 1.66 1.86 0.07 0.13 0.28
NET −0.02 −0.34 0.25 0.26 0.00 −0.15 TCI
NPT 2 2 5 2 3 1 0.81
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higher risk compared to traditional energy sources.Moreover, the net
spillover of tail risk within the new energy sector exhibits significant
heterogeneity across frequency domains. Specifically, in the short
term, the photovoltaic market emerges as the primary bearer of
risk, demonstrating distinct patterns of heterogeneity across
various frequency domains; however, in the medium to long term,
it evolves into a risk spillover agent. From a risk spillover
perspective, the wind energy sector within the new energy market
demonstrates the most prominent characteristics of spillover
across both short- and long-term horizons.

The results of the complete dynamic connectivity index for a
single quantile are illustrated in Figure 5. Warmer colors on the
chart signify a higher degree of correlation. Notably, there is a
strong correlation—both positive and negative—between carbon
emissions and both traditional and renewable energy sources.
Notably, in 2020, the dynamic total connectivity index observed
an increase, signifying a substantial augmentation in the
correlation between carbon emissions and the energy market,
potentially attributed to the pandemic’s influence. This heightened
relationship has resulted in increased market risks.

In this section, the paper investigates the dynamic network
connectivity across all quantiles. The blue shadow represents a
negative net overflow, while the red shadow indicates a positive
net overflow. As illustrated in Figure 5, the net overflow of these
products fluctuates between negative and positive values,
underscoring the importance of examining dynamic connections.
The analysis indicates that during the epidemic, the spillover
effect of new energy significantly increased, while at the onset of
the Russia-Ukraine conflict, traditional energy’s spillover
transitioned from negative to positive. Throughout the entire
spillover effect, new energy and traditional energy primarily serve
as signal transmission agents, although they exhibit high
sensitivity within a limited timeframe. In contrast, carbon
emissions predominantly function as recipients during most periods.

Figure 6 illustrates the net spillover effects of various variables
across different time periods and quantiles. This phenomenon can be
ascribed to an elevated sensitivity in the dynamic connectivity
among energy markets in response to various external shocks,
such as financial crises, policy adjustments, and geopolitical

conflicts. Notably, the emerging energy market tends to act as a
net disseminator of short-term spillover effects, while carbon
markets and traditional energy exhibit the opposite trend,
particularly during periods of conflict, when traditional energy
serves as a hedge against short-term risks. In extreme market
conditions, the energy market undergoes a notable transformation
in its role over the medium to long term, alternating between
being a net risk transmitter and a net risk receiver. However, the
hedging function of traditional energy diminishes over time.
Furthermore, the carbon market demonstrates a greater
susceptibility to influences from other markets, as evidenced by
its predominantly negative net connectivity across all time and
frequency domains.

4.4. Connectedness network results

Expanding upon this foundational understanding, the study
delves deeper into the contagion effect of tail risk among carbon
emissions, traditional energy markets, and new energy sources. To
investigate this phenomenon, the study utilizes complex network
analysis to examine the topological structure of the network.
Utilizing the generalized prediction error variance decomposition
of the QVAR model, this paper constructs a tailored tail risk
contagion network specifically for carbon emission energy
markets. The network comprises six indicator variables as nodes
and represents the spillover relationships between energy and
carbon emissions fluctuations through the network edges. From a
time-domain perspective, Figure 7 visually represents the tail risk
spillover network under normal market conditions, while
Figures 8 and 9 depict the energy market’s spillover network
analyzed from a frequency-domain perspective, considering
conditional quantile conditions.

Firstly, the tail risk spillover network demonstrates a stronger
connection among its nodes, indicating a robust transmission of
tail risk between markets. Secondly, upon examining individual
markets, the interdependence between wind and hydropower
emerges as the most significant, highlighting a strong bidirectional
risk spillover between these two energy sources. In contrast, the
correlation in volatility between new energy and traditional energy

Figure 6
Total directional connectivity of dynamic networks on quantiles
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markets appears relatively weak, as evidenced by the low levels of
tail risk transmission. This suggests that the interconnectedness
among traditional energy markets plays a dominant role in
determining the volatility of the global energy market and serves
as a crucial channel for tail risk contagion. Therefore, in scenarios
where extreme events impact the traditional energy market and
lead to increased levels of tail risk spillover, the new energy
market can serve as a viable option for mitigating risks associated
with the traditional energy market.

5. Robust Test

In this section, the study performs a robustness test by
substituting the ICE Brent crude oil price with the NYMEX crude
oil futures price. The results, as shown in Figures 10 and 11,
demonstrate a high degree of similarity between the two curves.
This confirms that the findings of this study remain unaffected by
changes in oil futures prices, thereby indicating the robustness of
the conclusions presented in this paper.

Figure 7
Conditional median

Figure 8
0.05 Quantiles

Figure 9
0.95 Quantiles

Figure 10
Total spillover effect (robust test)

Figure 11
Total spillover effect (robust test)
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6. Conclusion and Policy Implications

At present, the global economy is actively focused on
promoting energy conservation and reducing emissions, while the
energy industry is undergoing a transition toward cleaner and
more sustainable practices. The objective of this study is to
investigate the risk spillover effects of carbon emissions and
traditional energy sources during periods of extreme events. To
achieve this, the paper employs VAR models and QVAR models
across three time-frequency domains and over time. Building on
this foundation, the study further explores dynamic spillover
effects and constructs a network of spillovers to investigate the
directionality between markets. Lastly, this paper conducts a
robustness test. Of course, this paper also has limitations. And the
existence time of new energy technologies is relatively short and
the scale is small, which means that existing data may not be able
to fully capture long-term trends or cyclical changes. We also
have identified the spillover effects of energy and carbon
emissions, which will also be a pathway for future research. And
we will also introduce more energy variables for comparative
analysis to enhance the reliability of the research results.

Our research has yielded intriguing findings. Firstly, this paper
utilizes the time-frequency spillover framework and QVARmodel to
effectively analyze the spillover effects of carbon emissions,
traditional energy, and new energy across different market
conditions and frequencies. The tail risk spillover among carbon
emissions, traditional energy, and new energy exhibits dynamic
and time-varying features, making it susceptible to extreme
events. Secondly, the findings of this paper indicate that the
spillover effect primarily operates in the short term, highlighting
the significant influence of investor sentiment on near-future
outcomes. Thirdly, a substantial increase in the overall spillover
effect is noted during the initial stages of both the epidemic and
the Russia-Ukraine conflict. This escalation can be attributed to
the heightened impact of these events on energy prices. Our
research results underscore the importance of conducting more
comprehensive investigations into the underlying factors that drive
market dynamics. Finally, our findings indicate that the carbon
market and traditional energy market are the main net recipients
of spillover effects and can serve as effective hedging assets.

This paper proposes relevant policy recommendations based on
the research findings mentioned above. Market participants are
advised to adjust their investment portfolios according to the
targeted spillover effects among different assets. This proactive
strategy can help mitigate the adverse impacts of extreme events.
Short-term investors should remain vigilant about the negative
repercussions of cross-risk spillovers across different time frames.
For policymakers, a crucial step involves strengthening
regulations in traditional energy markets. Close monitoring of
fluctuations in energy prices and preventing chain reactions
among assets should be prioritized. Furthermore, recognizing the
long-term spillover risks from the new energy market underscores
its significance in both traditional energy and green finance
sectors. Enhancing the pricing mechanisms for new energy and
leveraging its potential for sustainable environmental development
may prove beneficial. Simultaneously, during the policy
formulation process, policymakers should carefully consider the
risk transmission mechanisms between various markets and take
appropriate measures to effectively respond to crisis events. By
implementing these recommendations, both market participants
and policymakers can contribute to a more resilient and stable
financial system in the face of spillover effects and extreme events.
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