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Abstract: Climate change, energy crisis, and geopolitical conflicts have become the triple dilemma of the world, which seriously hinders
global sustainable development. Against this context, achieving net-zero emissions and promoting energy transition have been put on the
urgent agenda. Therefore, it is necessary to have a deep understanding of the linkage among geopolitical risks, conventional/clean
energy, electricity, and carbon markets, so as to stabilize energy and carbon markets and ensure the orderly progress of energy transition
and carbon emission reduction. This study explores the dynamic and directional connectedness among these variables under multiple
time frequencies and conditions by using two volatility spillover approaches and the quantile vector autoregression model. We find that
the interconnectedness between variables is greatly strengthened during extreme conditions and dominated by the spillover effects in the
short run. Electricity market is always the critical risk spillover contributor in situations of various scales of shocks. Fossil and clean
energy are both net recipients of spillover effects from electricity and carbon markets. And notably, the geopolitical risks act as the net
short-term spillover receiver and medium- and long-term spillover transmitter in the connectedness network. Additionally, we show that
carbon market becomes a significant risk transmitter under extreme circumstances. Our findings have implications for preventing adverse
effects of cross-risk spillovers and promoting global sustainability.
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1. Introduction

The global community has been confronted with a range of
complex and pressing challenges in recent years, including
heightened geopolitical tensions, persistent climate change, and
intensifying energy crises [1–3]. Geopolitical conflicts such as the
Russian-Ukraine war which exacerbate instability in global supply
chains [4, 5] result in sharp swings in commodity markets [6, 7].
Climate change, mainly manifested as frequent extreme weather
and global warming from burning fossil energy, is threatening the
survival and development of human beings [8, 9]. Moreover, the
global economic recovery after the COVID-19 crisis, supply chain
disruptions, extreme climate, and unstable clean energy
production have impacted the supply and demand of energy,
ultimately leading to the energy crisis [10, 11]. Therefore,
ensuring energy security, promoting energy transition, and
achieving carbon emission reduction targets have been put on the
urgent agenda of governments [12, 13]. In the scenario of
increasingly complex geopolitical situations and accelerated
energy transformation, this paper undertakes a holistic
examination of the interconnectivity among geopolitical risks
(GPR), fossil/clean energy, electricity, and carbon markets.

The outbreak of geopolitical conflict has significantly affected
energy markets. For instance, the Russian-Ukraine conflict
that erupted in 2022 has severely disrupted the supply structure
of energy, contributing to extreme volatility in energy prices
[6, 14, 15]. Arguably, as fossil fuels are mainly produced in areas
where geopolitical conflicts are concentrated, including Russia
and the Middle East, GPR inextricably triggers the price
fluctuations of energy markets [16, 17]. Meanwhile, the price
shocks of energy which remain important strategic reserves can
lead to increased social and political instability in both energy-
exporting and energy-importing economies [7, 18]. In addition,
higher GPR stimulates the tilt of resources toward clean energy
industries by sparking conventional energy crises and trade
disputes [19]. Conversely, the expansion of the clean energy
sector also has an impact on GPR by affecting fossil energy prices
and inducing resource competition. In sum, the GPR raised by
negative geopolitical events is intricately bound up with the
energy markets (path I in Figure 1).

Additionally, there is also a linkage between conventional and
clean energy (path II in Figure 1), which is determined by the
substitution effect between them [20–23]. Electricity, as an
increasingly important type of secondary energy resource, is
generated by fossil fuels and clean energy. Due to the climate
change and energy crisis, governments are progressively shifting*Corresponding author: Wei Jiang, School of Economics, Qingdao University,
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toward renewable power. According to Renewable Energy Policy
Network for the 21st Century (REN21), during 2022, renewable
power capacity increased by 13% to 348 GW, from 306 GW in
2021. And notably, renewable energy sources contributed 92% of
the increase in global total power generation in 2022 [24]. The
International Energy Agency (IEA) reveals that high electricity
prices during the energy crisis in 2022 are mainly driven by high
fuel prices which comprise 90% of the increase in the average
costs of generating electricity [25]. The electricity market is
inescapably connected with fossil and clean energy markets (path
III in Figure 1).

The Paris Agreement is another landmark protocol to combat
climate change after the Kyoto Protocol, aiming to limit the rise
in the average surface temperature of the world to less than 2°C
over pre-industrial levels [26, 27]. The emissions trading system
(ETS) is an effective scheme to restrain CO2 emissions by
allowing carbon emission permits to be traded as a commodity
[28, 29]. The prices of the emission rights are treated as the cost
of corporations which are energy-intensive and further have an
effect on the demand for conventional and clean energy [30, 31].
Likewise, carbon prices are closely connected with electricity
prices by affecting electricity supply because the electricity sector
is the largest CO2 emitter of all sectors and accounts for about
40% of total global emissions, according to the report from Ember
[32]. Therefore, the carbon market is inextricably associated with
traditional/clean energy and electricity markets (path IV in
Figure 1). In addition, it can be seen from the price data collected
from the WIND database that since the outbreak of the Russian-
Ukraine conflict, European Union Allowance (EUA) future prices
have plummeted from 94.69 EUR/MT to their trough of 57.96
EUR/MT, partly because the conflict has intensified downward
economic pressure and resulting in curtailed production, and
finally reduced the demand for carbon allowances (path V in
Figure 1).

In sum, there is a close interconnection among GPR, various
energy submarkets (i.e., traditional fuels, clean energy, and
electricity), and carbon markets. Theoretically, GPR directly
affects these markets via the channels including supply and
market risks. On the one hand, GPR has an impact on the stability
of global supply chain, resulting in changes in the energy supply
and carbon emission demand, and then affecting the energy and

carbon prices. On the other hand, the GPR’s rise intensifies
uncertainty for energy producers and investors, which increases
the market risk premium. Meanwhile, GPR also impacts investor
expectations, which further leads to variations in prices of energy
and carbon markets. On the contrary, the fluctuations in energy
markets have an impact on GPR through triggering political and
economic stability and economic policy uncertainty in energy-
exporting and importing countries. Likewise, fossil and clean
energy, electricity, and carbon markets are also connected with
each other through the supply and market risk channels.

Moreover, as the financial liberalization and energy and carbon
financialization deepen, the fossil/clean energy, electricity, and
carbon emission allowance, which not only are affected by the
fundamentals but also exhibit financial market features, are
becoming more connected with each other [33]. More
importantly, the multiple and consecutive black swan events, such
as the COVID-19 crisis in 2019, the ongoing Russia-Ukraine war
in 2022, and Hamas’s attack on Israel in 2023, have left the
interconnectivity more complex and changeable [1]. Based on the
above, a detailed examination of the risk connectedness among
GPR, various energy submarkets, and carbon markets during
multiple market circumstances empirically can not only be of
significance to the governments in figuring out the risk contagion
mechanism among these markets, stabilizing the energy markets
and achieving carbon emission reduction targets, but also offer the
investors some suggestions on hedging options and portfolio
management.

The paper contributes to related literature from three aspects.
Firstly, this study conducts a holistic examination of the
interconnectedness between GPR, various energy submarkets, and
carbon markets. Considering the current international situation,
the interconnectedness between them is increasing and becoming
more intricate, but few papers focus on the relationship between
them. Although some scholars have investigated the impact of one
or several specific extreme events such as the Russian-Ukraine
war on the interdependence among energy and carbon markets by
simply dividing the sample period into several episodes based on
the timing of the crises [34–37], they cannot examine the
bidirectional spillovers between GPR, various energy submarkets,
and carbon markets. In this regard, we innovatively integrate an
index that can accurately measure global GPR and is derived from

Figure 1
Conceptual framework
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Caldara and Iacoviello [38] in the research network to effectively
capture the bidirectional spillovers between variations in GPR,
various energy submarkets, and carbon markets. Second, in the
connectedness network, we consider five energy submarkets
including oil, natural gas, coal, electricity, and clean energy. The
electricity and clean energy markets are gradually exerting a
deeper influence over traditional energy and carbon markets
because of the energy transition. Nonetheless, many studies
investigate exclusively the linkages among fossil fuels, clean/
renewable energy, and carbon [2, 39]. Consequently, electricity
sector’s impacts on other markets are disregarded and need to be
investigated. Thus, we construct a connectivity network that
includes GPR, electricity, traditional/clean energy, and carbon
prices to explore the role of different energy submarkets,
especially the electricity market, in the system. Third, this paper
employs Diebold and Yilmaz [40] (DY) and Baruník and Křehlík
[41] (BK) spillover indices and a approach based on the quantile
vector autoregression (QVAR) model to examine time-frequency
spillover effects at different quantiles, which can capture the
connectedness among variables under multiple market conditions.
Some scholars have explored the spillover among GPR, fossil
fuels, and carbon market during normal market states [42], which
cannot obtain the relationship under extreme states. To address
this gap, this study provides an in-depth view of the connectivity
among GPR, traditional/clean energy, electricity, and carbon
prices by using QVAR approach, which can support policymakers
and investors in taking differentiated strategies in terms of
different market states.

The remaining sections of this article are organized in the
following manner. Section 2 provides a summary of the pertinent
literature. Section 3 explains the methods and data. Sections 4 and
5 provide our empirical analysis and robustness test, and
conclusions and policy implications are presented in Section 6.

2. Literature Review

This study investigates the linkages between GPR, fossil/clean
energy, electricity, and carbon allowance markets. Accordingly, we
divide relevant literature on this theme into three groups. The first
group of studies is about GPR’s impact on the interconnectedness
among energy and carbon markets. The second group of research
discusses the spillovers between GPR, energy, and carbon
markets. The third group of research examines the relations
between various energy submarkets and carbon prices. In
addition, we illustrate how our study complements the above three
groups of research.

Regarding the GPR’s impact on the connectedness among
energy and carbon, there has been an increase in attention recently
due to the emergence of some crucial geopolitical events
especially the Russian-Ukraine conflict. In this regard, Jiang et al.
[36] and Xing et al. [37] both take China as an example and
reveal the strengthened interconnectedness among traditional fuels
and renewable energy since the Russian-Ukraine conflict breaks
out by using DY approach. In addition, they also find the net
spillover effects from renewable energy stocks to traditional
energy prices during the Russian-Ukraine conflict. Applying the
TVP-VAR model and data from the global dimension, Rubbaniy
et al. [43] discover that the linkages between fossil fuels and
renewable energy increase when in time of the COVID-19 crisis
and the Russian-Ukraine conflict. Likewise, Naeem and Arfaoui
[34] highlight the strong tail-risk spillovers between electricity
and clean energy during tension episodes including the Russian-
Ukraine conflict. They also find the oil market plays a role as the

net risk recipient. Additionally, Si Mohammed et al. [44] capture
a higher volatility interconnectedness between metal, clean
energy, and conventional energy prices during the Russia-Ukraine
war. However, Hoque et al. [45] report a lower degree of overall
connectivity among carbon, climate, and fossil energy during the
war through the TVP-VAR approach. In addition, they argue that
oil market is a spillover transmitter in the short term while
switching into a risk recipient in the long term. By partitioning the
sample period into several episodes based on the timing of the
crises, these studies of the impacts of GPR on market
interconnectedness show varying results, which might be
attributed to the application of different samples. The risks caused
by the outbreak of geopolitical events may weaken over time, so
it is difficult to accurately reflect the GPR’s impact on the
relations between markets by simply grouping the sample periods
they selected. Unlike them, we apply a newly constructed daily
GPR index of Caldara and Iacoviello [38] and directly explore the
accurate influence of GPR on each market.

The second group of research is gaining attention as some
indicators to measure GPR are put forward. For instance, Lau
et al. [7] analyze the connectedness among GPR in five BRICS
economies, fossil fuels, and carbon allowance prices through
using five monthly regional GPR indices. The authors find that
GPR in Russia contributes the highest spillovers on fossil energy
returns and the risk spillovers between GPR and oil prices are
measurably varying in time and frequency domain and positive at
different quantiles. Jiang et al. [42] further reveal the higher short-
term spillover effects at the conditional mean among GPR, fossil
energy, and carbon prices. They find that GPR primarily plays a
role as the net spillover transmitter while GPR is more affected by
carbon allowance market, particularly in the short term. Moreover,
Gong et al. [18] confirm fossil fuel markets exhibit more
significant spillover effects than clean energy and GPR boosts the
risk connectedness among energy markets. Equally importantly,
based on the energy-GPR two-tier network, the authors also
confirm that the energy markets show positive net spillover effects
on GPR. However, these papers do not consider the role of the
power market. Energy transformation is imminent as world fossil
energy crisis frequently break out, which indicates that the power
market is playing an increasingly critical role. The relations
between GPR and electricity are gradually increasing. In addition,
since energy markets consist of various submarkets, the studies
that exclude certain energy or carbon markets may omit the
critical sources of spillover effects, which results in the change of
connectedness paths, and eventually come to different
conclusions. Therefore, this paper conducts a holistic and
systematic examination of the relationship between GPR, various
energy sub-sectors including electricity, traditional/clean energy,
and carbon allowance markets, which contributes to the literature.

The third group of research examines the relationship among
various energy submarkets and carbon markets. Theoretically,
carbon market and energy market are connected through two
channels, that is, the correlated information and the risk premium,
which transpires in the process of price discovery and risk
identification [46–49]. In turn, fossil energy influences carbon
market through the effects of substitution, production constraint,
and aggregate demand [46, 50]. Additionally, clean energy stocks
are connected with energy and carbon markets by substitution
effects and financial investment/speculation [51]. In this context, a
detailed study on the nexus of carbon market and various energy
submarkets is conducive to both the risk management for
investors and achievement of carbon reduction goals for
governments [30, 52]. Thence, a majority of extant papers have
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empirically studied the linkages between carbon and various energy
submarkets [31, 46, 49, 50, 53–58]. For example, Kumar et al. [59]
investigate the causal relations between EUAs and US clean energy
indices during the period 2005–2008. They find no evidence of
statistical causality between these two variables. Supporting the
conclusions drawn by Kumar et al. [59], Dutta [60] extend the
sample period to 2007–2016 and also find variations of EUA
prices do not influence returns on US clean energy stock.
However, Hanif et al. [31] find evidence of the relations in
conditional mean and tails between carbon allowance prices and
clean energy stock prices by using DY, BK, and copula models.
In addition, Jiang et al. [30] believe that there is a significant
Granger causality in lower and higher conditional quantiles
between carbon and fossil fuel prices while the causal relations in
the median quantiles are not significant. Nonetheless, by
employing the TVP-VAR-SV method, Qiao et al. [53] highlight
that the interconnectedness between carbon, fossil fuels, and
electricity is significant and time-varying. Additionally, they argue
that the variations in carbon prices more significantly affect fossil
energy and China’s electricity market, which is different from the
work of Naeem and Arfaoui [34] who take the conventional and
alternative electricity indices into account and find the alternative
electricity index in the network play a role as the risk transmitter.
In sum, these studies on the nexus between carbon and various
energy markets present heterogeneous results, partly because the
connection between these markets is becoming closer and more
intricate as the financial liberalization and the financialization of
energy and carbon continue to move forward, and the global
geopolitical landscape and policy environment change [46].
Moreover, the difference in conclusions may also be due to the
selection of samples. In this spirit, we select the more mature
representative market in Europe as our research object to present a
holistic view on the interconnectedness among GPR,
conventional/clean energy, electricity markets, and carbon markets.

After reviewing these articles, we find that the studies on GPR,
energy markets, and carbon market connectivity are still limited and
fail to conduct a more holistic examination of the interconnectivity
between GPR, traditional/clean energy, electricity, and carbon
allowance prices. Moreover, to examine the interconnectedness
among these variables, various techniques are applied in the
above-mentioned articles, for instance, GARCH family models
[58], TVP-VAR method [43, 53], BK and DY spillover indices
[36, 42, 46], asymmetric slope Value-at-Risk approach (CAViaR)
[34], and Tail Event driven NETwork technique (TENET) [18].
However, as the economic environment becomes increasingly
complex, the spillover effects among markets during upside and
downside periods may be different, and the above methods are
unable to capture such changes. Therefore, for the purpose to
explore the spillover effects in different market states, this paper
adopts the DY and BK approaches and the QVAR framework
which can analyze the time-frequency spillovers in quantiles
among variables to further supplement existing literature, provide
investment recommendations for market participants with different
investment cycles under different scales of shocks, and help for
policymakers to formulate carbon reduction policies and promote
energy transition.

3. Methodology and Data

3.1. Methodology

The DY spillover index is calculated by the generalized forecast
error variance decomposition (GFEVD). In contrast to the classic

variance decomposition approach based on the traditional VAR
framework, the DY method is able to avoid the problem of the
dependence on variable ordering and can be used to conduct
dynamic spillover analysis, which helps us investigate
bidirectional static and dynamic spillover effects among variables
in the time domain. The structural VAR(p) with n-dimensional
variables Yt ¼ ðy1t ; y2t ; . . . yNtÞ0 can be written as follows:

Yt ¼
Xp
i¼1

ϕiYt�i þ εt ; (1)

where t ¼ 1; . . . ;T and εt � Nð0;ΣÞ. We simplify Equation (1) as
ΦðLÞYt ¼ εt�i, where ΦðLÞ ¼ Φ0 �Φ0L� . . . ::� ϕpLp and Φ0

denotes the unit matrix. If Equation (1) is stable, we can further
express Yt as the moving average (MA) formula: Yt ¼ ψðLÞεt�i,
ψðLÞ ¼ ½ΦðLÞ��1. We define the forecast horizon as Hand the con-
nectedness as θH . Hence, ðθHÞj;k denotes the variable k’s contribution
to the element j’s forecast error variance, which is computed as:

ðθHÞj;k ¼
ðΣÞ�1

k;k

P
H¼1
h¼0 ðψhΣÞ2P

H�1
h¼0 ðψhΣψ

0
hÞj;j

; (2)

where we set H equal to 100 in this study. Furthermore, the stand-
ardized spillover effects ðθ̃HÞj;k can be written as:

ðθ̃HÞj;k ¼
ðθHÞj;kP
N
k¼1 ðθHÞj;k

; (3)

where
P

N
k¼1 ðθ̃HÞj;k ¼ 1 and

P
N
j;k¼1 ðθ̃HÞj;k ¼ N. Further, we can cal-

culate the net spillover effects from the element j to k by using the
following equation:

NPCH
j;k ¼ ðθ̃HÞj;k � ðθ̃HÞk;j: (4)

Then we define the spillover effects of the variable j to the other var-
iables and those of other variables to the variable j as TOH

j and

FROMH
j , respectively, which are calculated as:

TOH
j ¼

XN
j¼1;j 6¼k

ðθ̃HÞk;j; (5)

FROMH
j ¼

XN
j¼1;j 6¼k

ðθ̃HÞj;k: (6)

Thus, we can denote the net spillover effects of the variable j as
follows:

NETH
j ¼ TOH

j � FROMH
j : (7)

Then, we can obtain the total connectedness, which is defined as:

TCH ¼ N�1
XN
j¼1

TOH
j ¼ N�1

XN
j¼1

FROMH
j : (8)

Nevertheless, theDY index fails to capture the information spillovers at
different time frequencies.Meanwhile, the spillovereffectsmaychange
indifferent frequency domains because of the economic cyclicality, the
heterogeneous investment cycles of market participants, and
differences in external shocks. Based on the BK method put forward
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by Baruník and Křehlík [41], the interconnectedness among variables
in different time frequencies including high-, medium-, and low-
frequencies can be examined. Thus, we can obtain the short-,
medium-, and long-term static and dynamic spillovers among
variables. Based on the generalized causation spectrums, the
GFEVD on frequency ω, where ω 2 ð�π;πÞ, can be formulated as:

ðf ðωÞÞj;k ¼
P�1

k;k ðψðe�iωÞΣÞj;k
���

���2
ðψðe�iωÞΣψψ0ðeþiωÞÞj;j

; (9)

where ψ is the Fourier transformation and ψðe�iωÞ ¼ P
he

�iωmψm,
m ¼ 1; . . . ;H and i denotes the imaginary unit. Subsequently, the vari-
ance decompositions under the frequency b and d, where d is equal to
ða; bÞ and a; b 2 ð�π;πÞ is given by:

ðθdÞj;k ¼
1
2

ð1
d
ΓjðωÞðf ðωÞÞj;kdω; (10)

where ΓkðωÞ represents the weighting function. ðθdÞj;k denotes the
interconnectedness of the frequency band d. We can rewrite Equation
(10) as:

ðθ̃dÞj;k ¼
ðθdÞj;kP

k¼1 ðθ1Þj;k
; (11)

where ðθ1Þj;k ¼ ð1=2Þ Ð π�π ΓjðωÞðf ðωÞÞj;kdω. Consistent with DY

index, the TOd
j , FROMd

j , and NET
d
j under the given frequency band

d are given by Equations (4–7). Moreover, the directional connected-
ness between variables on frequency band dis:

Cw
d ¼ 100� ð1� Trfθ̃dg=

X
θ̃dÞ: (12)

However, it is challenging that the DY and BK methods under the
traditional linear VAR framework are applied to examine the risk
spillovers among markets in different conditions (quantiles).
Therefore, Ando et al. [61] propose a quantile connectedness
approach for the purpose of calculating the spillover effects in
multiple quantiles of the conditional distribution. Based on the
quantile VAR (QVAR) framework, this method is not sensitive to
the outliers, is conducive to the analysis of asymmetric and
nonlinear effects between variables, and is not subject to the
constraints of heteroscedasticity and normality assumptions as
required in the traditional VAR model.

We define the QVAR(p) process and the moving average
representation of it at the τ-quantile as:

Yt ¼ µðτÞ þ
Xp
i¼1

ðτÞYt�i þ εtðτÞ ¼ µðτÞ þ
X1
i¼0

ψiðτÞεt�i; (13)

Likewise, the time- and frequency-domain spillover effects among
variables can be calculated by the GFEVD. For instance, from the
time-domain perspective, the spillover effects at the τ-quantile are
given by:

ðθHÞj;k ¼
ðΣðτÞÞ�1

k;k

P
H¼1
h¼0 ðψhðτÞΣðτÞÞ2P

H�1
h¼0 ðψhðτÞΣðτÞψ0

hðτÞÞj;j
; (14)

ðθ̃HÞj;k ¼
ðθHÞj;kP
N
k¼1 ðθHÞj;k

: (15)

Next, “TO” spillovers (TOd
j ), “FROM” spillovers (FROMd

j ), and
“NET” spillovers (NETd

j ) can be measured via the Equations (4–8).

3.2. Data

A GPR indicator and six relevant asset prices are applied in our
analysis. First, we use the daily global GPR index of Caldara and
Iacoviello [38]. As defined by them, GPR arises from the threats,
occurrences, and escalations of geopolitical conflicts.
Accordingly, based on the text-searching approach, they tally the
percentage of articles with keywords associated with geopolitical
events in ten representative newspapers such as the Daily
Telegraph, and normalize it to 100. The keywords are determined
and searched in terms of 8 groups (e.g., War threats, Terrorist
threats, Beginning of war) from two aspects including threats and
acts. Specifically, compared with other measurement methods of
GPR, there are three advantages regarding this index according to
Caldara and Iacoviello [38]. First, compared to the construction of
dummy variables according to the realization of specific
geopolitical events, this index identifies the threat of a negative
event that hasn’t realized, which pinpoints the timing of various
geopolitical events and allows us to accurately explore their
impact. Second, relative to the War Deaths, another indicator of
adverse geopolitical events, the values of the GPR index have
always been larger since World War II because of higher global
attention to the geopolitical conflicts, indicating that the index can
reflect the strength of the adverse events more effectively. Third,
the calculation method of the GPR index is more robust compared
to the Boolean operators employed by Baker et al. [62] who
construct the economic policy uncertainty index. Moreover, the
newspaper-based index is more effective to reflect GPR’s impact
on financial markets since investors rely on news reports to access
timely information [63]. We collect the data of this GPR index
from https://www.matteoiacoviello.com/gpr.htm.

Regarding conventional energy, we consider the futures
settlement price of three important fossil energy sources, including
Brent crude oil futures (hereafter OIL), UK natural gas futures
(hereafter NG), and Rotterdam coal futures (hereafter COAL). The
price data of OIL, NG, and COAL are collected from the WIND
Database. About the electricity market, we select the Phelix-DE
Power Baseload Year Future (hereafter ELEC) of the European
Energy Exchange (EEX), given that EEX Phelix-DE Power Future
contracts have the most liquidity for European electricity. As for
clean energy, we focus on the European Renewable Energy Index
(hereafter ERIX) that comprises the ten biggest European clean
energy sector stocks. The carbon market is reflected by the price of
EUA Future. ERIX and EUA are both obtained from the Bloomberg
Database. Given the EUA prices were chronically low in the first
and second phases (2005–2012) of EU ETS due to a large surplus of
EUAs, and the allocation of EUAs becomes more reasonable and
their prices are higher and more robust since Phase III, we use the
seven daily data from January 2, 2013 to March 28, 2024.
Meanwhile, we transform the seven time series into the logarithmic
growth rates by the equation rt ¼ lnðYtÞ � lnðYt�1Þ to ensure the time
series stationarity and identify the connectedness of growth rates.
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Table 1 displays the summary for each time series. The standard
deviation for each variable is low except for GPR, implying GPR is
the most volatile among all seven variables. Every time series has
asymmetry distribution and is significantly non-normal in the
application of the Jarque and Bera [64] test. Moreover, according
to the ADF [65], PP [66], and KPSS [67] tests, all the series are
stationary, which applies to the BK and DY methods. In addition,
in order to more fully and intuitively observe the trends of
variables of the trend of target variables during the sample period,
we plot the original data and log-difference data simultaneously.
As depicted in Figure 2, all the index/price series generally exhibit
similar trends, especially after 2021. The GPR index experiences
multiple spikes throughout the whole sample interval, which
stems from several major adverse geopolitical events, e.g., the
Paris terror attacks of 2015, the US-Iran conflict of 2020, the
Russia’s invasion of Ukraine of 2022, and Hamas’s attack on
Israel of 2023 [38]. Notably, the Russian-Ukraine conflict causes
energy and carbon prices to hit new highs during the sampling
period. The ERIX index steeply increases since the middle of
2020 and peaks around the beginning of 2021, after which the
index experiences large fluctuations. Among the seven series, the
logarithmic growth rates of GPR have the higher volatility across
the whole sample duration, which supports the results of Table 1.

4. Empirical Results

The time-frequency connectedness in conditional mean and
quantiles between GPR, fossil/clean energy, electricity, and
carbon markets under the mean- and quantile-based framework is
examined in this section. The lag lengths in the VAR model and
QVAR model are both set to one according to the Schwartz
information criterion. The “TO” spillovers capture the shocks of
the specific market or GPR to other six variables, and “FROM”

spillovers measure the shocks to the market or GPR from other
series. The “NET” spillovers are equal to the “TO” spillovers
minus “FROM” spillovers.

4.1. Time-frequency connectedness of spillovers

4.1.1. Time-domain connectedness
Table 2 shows the results of time-domain average spillover

effects at the conditional mean estimated by the VAR model. The
TCI value denotes the total inter-variable connectedness level and
is equal to 21.17%, revealing the spillover effects between

geopolitical risk, traditional/clean energy, electricity, and carbon
prices. However, GPR occupies a small proportion of the inter-
variable spillovers. GPR’s effects on the other six variables
account for 0.18%, and the spillovers received from the six
markets to GPR reach 0.51%. This finding is consistent with
Jiang et al. [42]. They uncover the weak interaction among GPR,
traditional energy, and carbon markets. Under normal
circumstances (conditional mean), the small fluctuations in GPR
do not have a significant impact on the stability of the energy
supply chain and weakly affect the investor expectations and
market uncertainty. In turn, under normal market conditions
(conditional mean), the weak fluctuations in energy markets do
not lead to large economic or political pressure on countries or
economies. Thus, in this scenario, GPR is less connected to
financial markets, including energy and carbon markets. However,
during periods of extreme states, the degree of tail-risk contagion
between GPR and markets may be quite different (discussed in
Section 4.2).

By contrast, the connectivity among the five energy submarkets
and the carbon market is stronger, which supplements the research of
Su et al. [2]. They reveal the weak interconnectedness between
traditional/clean energy and EUA prices during normal market
states. In terms of the connectedness among the six markets, the
ELEC contributes to the biggest impact on the other markets,
followed by the NG and EUA (30.77% and 16.72%, respectively).
Also, the ELEC receives the most significant return spillover
effects from the five other markets (40.69%–0.07%= 40.62%),
followed by the NG and EUA (32.32% and 20.95%, respectively).
Meanwhile, the ELEC plays a role as the largest net spillover
transmitter (10.74%), while GPR and other markets in the system
are the net information receivers.

The reason of electricity market as the biggest risk transmitter
may be its lower liquidity level compared with other markets, which
adds to the difficulty of trading this asset and the possibility of bigger
investment losses [34]. Hence, the fluctuations in electricity prices
can have a larger effect on the traditional/clean energy and carbon
prices. Additionally, the electricity sector is responsible for the
highest carbon emissions, which means that variations in power
prices have a relatively significant influence on carbon allowance
market [53]. Moreover, although the percentage of clean energy
generation increases rapidly, the primary sources of generating
electricity are still coal and natural gas, implying a stronger
correlation of electricity with gas and coal prices than that with
clean energy market. In addition, global crude oil consumption

Table 1
Descriptive statistics for the log-difference data

GPR OIL NG COAL ELEC EUA ERIX

Mean −0.0020 0.0000 0.0004 0.0004 0.0007 0.0008 0.0005
Median −0.0040 0.0010 −0.0004 0.0000 0.0000 0.0010 0.0010
Minimum −3.00 −0.28 −0.36 −0.54 −0.20 −0.43 −0.13
Maximum 2.34 0.19 0.41 0.33 0.23 0.25 0.10
Std. Dev. 0.43 0.02 0.05 0.02 0.02 0.03 0.02
Skewness −0.04 −0.99 0.62 −2.82 0.55 −0.98 −0.26
Kurtosis 1.71 17.78 10.46 117.91 13.78 16.36 4.06
J-B test 339*** 37,044*** 12,839*** 1,612,260*** 22,130*** 31,416*** 1,942***
ADF −58.89*** −36.77*** −39.09*** −34.08*** −37.53*** −39.48*** −35.34***
PP −87.55*** −51.71*** −51.46*** −49.46*** −48.58*** −53.84*** −51.16***
KPSS 0.01 0.04 0.05 0.06 0.17 0.09 0.05
Observations 2773 2773 2773 2773 2773 2773 2773

Note: *** indicates 1% significance level.
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accounts for the largest share of conventional energy consumption,
leading to clean energy as a substitute closely connected with the oil
market [68]. Significantly, the ERIX yields larger spillover effects to
OIL and EUA relative to the spillovers from it to other variables,
implying that the clean energy market has a stronger ability to
transmit the risk information to oil and carbon markets. One

possible explanation for that is the fluctuations in the clean energy
market can have an impact on allocation of crude oil and carbon
assets in the portfolios of investors due to the strong substitution
between clean energy and crude oil and the emission reduction
ability of clean energy, ultimately resulting in price changes in
OIL and EUA.

Figure 2
Dynamics of the level values and the log-difference of the related variables
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4.1.2. Time-frequency connectedness
Given that the investor behavior may also have different

cyclical characteristics [33], we further decompose the time-
domain spillover effects into the connectedness in three frequency
domains by using BK method. As displayed in Table 3, the short-
term TCI (17%) contributes to the prominent part of the total
connectedness (21.7%), while the medium- and long-term TCIs
only account for 3.51% and 0.66%, respectively. This finding
indicates that information spillovers are mainly concentrated
within 5 five trading days, which is aligned with the conclusion of
Qiao et al. [53]. They also suggest the higher short-term spillovers
among fossil fuels, electricity, and EUA prices. One potential
explanation for that is the investment behavior of investors with
short-term horizons contributes more to the fluctuations of
financial markets and the markets are sensitive to shocks [1]. As a
result, the information spillovers of markets are quickly responded
to and digested by other markets in the short term. In line with the
results of Table 2, the interconnectedness in the mean of the
distribution remains concentrated among the five energy markets
and carbon market no matter in which frequency domains.
Noteworthily, in the short run, the GPR and EUA both act as the
net risk recipients, while they switch into the information
transmitter in the lower frequency domains. This suggests that the
GPR’s impact on the traditional/clean energy, electricity, and
carbon prices is gradually larger than that of the six asset prices
on GPR risk as time prolongs, which supports the conclusions of
Jiang et al. [42]. One explanation for that is that GPR, as one of
the macro-economic factors, has a continuous and far-reaching
impact on the markets by affecting the macro-economy, which is
reflected by the net spillover effects of GPR in low-frequency
domains (medium and long term). However, the fluctuations of
financial markets tend to be affected by short-term factors such as
investor sentiment, with larger high-frequency (short-term)
spillover effects.

4.2. Quantile connectedness of spillovers

4.2.1. Time-domain spillover effects in quantiles
In view of the fact that the DY and BK spillover indices under

the VAR framework fail to capture the degree of interconnectedness
under extreme shocks [69], this study further investigates the
connectedness in quantiles by using DY and BK methods based
on QVAR model. Tables 4 and 5 show the spillovers at the
extremely low (τ ¼ 0:05) and high (τ ¼ 0:95) tails of the distribution
among the GPR and the six markets using the DY approach, respec-
tively. In contrast to the results in Table 2, the TCI values at the

quantiles 0.05 and 0.95 are 0.37% and 89.90%, respectively, imply-
ing the much stronger interconnectedness among variables during
periods of extreme falling and rising states. The findings are sup-
ported by Chen et al. [69] and Gong et al. [33]. They also reveal a
stronger bond between the underlying markets during extreme mar-
ket states. Nevertheless, they find evidence of around 70% tail con-
nectedness, while the 0.05- and 0.95-quantile connectedness in our
system reaches 90.37% and 89.9%, respectively. The reason may be
that we consider the GPR and electricitymarket which exhibit critical
spillover effects in our connectedness network.

Moreover, the static connectedness between GPR and energy
and carbon prices in extreme conditions is much higher compared
to the case of normal circumstances. More specifically, GPR
shows a significant increase in “to” and “from” spillovers
(0.18%–72.27%, 0.51%–75.19%) at the extreme right tail
(τ ¼ 0:05), and the same is true (0.18%–69.83%, 0.51%–74.63%)
at the extreme right tail (τ ¼ 0:95). This suggests that the drastic fluc-
tuations in geopolitical risk significantly affect the five energy and
carbon markets, and vice versa. Similarly, the tail connectedness
among the six markets in the network exhibits excess connectedness
relative to the connectedness undermean conditions [70]. In line with
Table 2, the GPR is still a net risk receiver in both extreme rising and
falling states, which indicates that the extreme fluctuations of GPR
are more affected by these six markets. Driven by the setting of net-
zero emissions goals, the electricity and carbon market are getting
more and more global attention. We can see that the electricity mar-
ket remains the critical net contributor of spillover effects during
extreme periods. Moreover, the carbon market turns from the net risk
recipient at the conditional mean into the transmitter at the tails of
distribution (the largest transmitter at the 0.95-quantile, especially).
Moreover, the NG becomes the important net transmitter at the right
tail, which supports the conclusions of Li et al. [71] which argue that
NG is more dominant than OIL against the backdrop of rising GPR
and global energy supply shortages. At the left tail, the net risk spill-
over of NG is close to zero, revealing the possibility of natural gas as
the diversification option in hedging the risks in other assets under
extreme falling states. Similarly, under extreme conditions, the abso-
lute values of the net spillover index of OIL are relatively low, which
means the oil asset can act as a haven asset. Moreover, it is worth
noting that ERIX has a larger effect on GPR during periods of large
fluctuations than that on other markets, which differs from the results
in Table 2. This may be because large variations in the clean energy
market trigger competition among countries for clean energy tech-
nologies and scarce resources and indirectly lead to changes in
GPR. In addition, ERIX acts as a net spillover contributor to COAL,
implying the possibility of using clean energy markets to reduce coal

Table 2
Time-domain connectedness

GPR OIL NG COAL ELEC EUA ERIX FROM

GPR 99.49 0.00 0.04 0.05 0.15 0.15 0.11 0.51
OIL 0.01 89.02 1.11 1.58 3.23 2.39 2.66 10.98
NG 0.03 0.84 67.65 4.45 25.23 1.71 0.09 32.35
COAL 0.03 1.56 5.48 84.23 7.89 0.62 0.20 15.77
ELEC 0.07 2.16 21.98 5.52 59.31 10.44 0.51 40.69
EUA 0.04 2.27 2.16 1.08 14.13 79.02 1.30 20.98
ERIX 0.01 2.94 0.04 0.42 0.80 1.55 94.25 5.75
TO 0.18 9.76 30.81 13.11 51.42 16.87 4.87 TCI
NET −0.32 −1.22 −1.54 −2.66 10.74 −4.11 −0.88 21.17

Note: the element of the static matrix ðm; nÞ represents the directional spillovers from the n�th variable on the m�th variable.
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Table 3
Time-frequency connectedness

GPR OIL NG COAL ELEC EUA ERIX FROM

Short-term spillovers: 1 day to 5 days
GPR 92.15 0.00 0.04 0.05 0.15 0.15 0.10 0.49
OIL 0.01 71.69 0.85 1.28 2.58 2.01 2.17 8.90
NG 0.03 0.71 54.30 3.24 20.01 1.40 0.09 25.48
COAL 0.02 1.13 4.04 66.33 6.13 0.57 0.12 12.02
ELEC 0.05 1.84 17.46 4.34 46.30 8.27 0.43 32.39
EUA 0.03 2.05 1.96 1.07 12.04 64.77 1.15 18.30
ERIX 0.01 2.19 0.04 0.40 0.67 1.16 75.65 4.45
TO 0.14 7.93 24.38 10.38 41.57 13.55 4.05 TCI
NET −0.34 −0.97 −1.10 −1.64 9.19 −4.74 −0.40 17.00

Medium-term spillovers: 5 days to 30 days

GPR 6.22 0.00 0.00 0.00 0.00 0.00 0.01 0.02
OIL 0.00 14.59 0.21 0.25 0.55 0.32 0.42 1.75
NG 0.00 0.11 11.23 1.01 4.39 0.26 0.00 5.78
COAL 0.00 0.35 1.21 15.04 1.48 0.04 0.06 3.15
ELEC 0.02 0.27 3.81 0.99 10.93 1.83 0.06 6.98
EUA 0.01 0.18 0.17 0.01 1.77 12.01 0.13 2.27
ERIX 0.00 0.63 0.00 0.02 0.11 0.33 15.66 1.09
TO 0.03 1.55 5.40 2.30 8.29 2.79 0.69 TCI
Net 0.02 −0.21 −0.37 −0.86 1.31 0.52 −0.40 3.51

Long-term spillovers: 30 days to Infinite days

GPR 1.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OIL 0.00 2.74 0.04 0.05 0.10 0.06 0.08 0.33
NG 0.00 0.02 2.12 0.20 0.83 0.05 0.00 1.10
COAL 0.00 0.07 0.23 2.85 0.28 0.01 0.01 0.60
ELEC 0.00 0.05 0.72 0.19 2.08 0.35 0.01 1.32
EUA 0.00 0.03 0.03 0.00 0.32 2.25 0.02 0.41
ERIX 0.00 0.12 0.00 0.00 0.02 0.06 2.94 0.21
TO 0.01 0.29 1.02 0.44 1.56 0.53 0.13 TCI
NET 0.01 −0.04 −0.07 −0.17 0.24 0.12 −0.08 0.66

Table 4
Time-domain connectedness in the quantile τ ¼ 0:05

GPR OIL NG COAL ELEC EUA ERIX FROM

GPR 24.81 12.97 12.60 10.03 12.70 13.84 13.06 75.19
OIL 12.56 22.07 12.59 10.67 14.03 14.71 13.38 77.93
NG 12.25 12.70 21.74 11.25 15.75 14.47 11.84 78.26
COAL 11.57 12.28 13.24 23.86 14.06 13.28 11.71 76.14
ELEC 11.29 13.13 14.59 11.38 20.44 17.09 12.08 79.56
EUA 12.06 13.23 13.01 10.66 16.57 21.87 12.60 78.13
ERIX 12.54 14.14 12.11 10.30 13.46 14.44 23.01 76.99
TO 72.27 78.45 78.13 64.28 86.58 87.83 74.66 TCI
NET −2.92 0.51 −0.13 −11.85 7.03 9.69 −2.33 90.37

Table 5
Time-domain connectedness in the quantile τ ¼ 0:95

GPR OIL NG COAL ELEC EUA ERIX FROM

GPR 25.37 12.57 12.76 10.94 12.78 12.66 12.93 74.63
OIL 11.77 23.30 13.03 11.56 13.90 13.18 13.25 76.70
NG 11.72 12.34 22.69 12.12 15.94 13.36 11.83 77.31
COAL 11.26 12.35 13.77 23.38 14.33 12.61 12.31 76.62
ELEC 11.16 12.50 15.12 12.12 20.73 16.25 12.12 79.27
EUA 11.45 12.46 13.10 11.26 17.04 22.02 12.67 77.98
ERIX 12.47 13.69 12.54 11.33 13.45 13.39 23.13 76.87
TO 69.83 75.91 80.32 69.32 87.44 81.45 75.11 TCI
NET −4.80 −0.79 3.01 −7.30 8.17 3.47 −1.77 89.90
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use. On the contrary, ERIX always is the net spillover recipient from
OIL and NG under extreme conditions, but not for COAL. Against
the context of energy transformation, the role of the clean energy sec-
tor in fossil fuels and further reducing their use is still limited except
for coal.

4.2.2. Time-frequency spillover effects in quantiles
Likewise, we break the tail connectedness in the time-domain

down into short-, medium-, and long-term spillover effects at the
extreme quantiles (i.e., τ ¼ 0:05; 0:95). Tables 6 and 7 represent
the results of time-frequency connectedness of spillovers among var-
iables at the quantiles 0.05 and 0.95, respectively. In line with
Table 3, the total connectedness across the time series is mainly
attributed to the short-term factors (73.17% for τ ¼ 0:05 and
72.69% for τ ¼ 0:95). In addition, the mean-based connectedness
analysis underestimates the connectedness under the extreme falling
and rising states nomatter in which frequency domains. That is, com-
pared to the short-, mid-, and long-term interconnectedness among
GPR, traditional/clean energy, electricity, and carbon prices during
normal states, the risk spillover degrees of these three frequency
domains between each pair of variables under extreme circumstances
are all considerably greater [33]. GPR and EUA act as the net tail-risk
contributors in the medium and long run. In general, the geopolitical

risks and carbon market have an impact on the energy price mainly
by influencing the fundamentals (e.g., supply and demand), which
are often associated with long-term spillovers. In addition, we find
the potential hedging capacity of EUA under extremely falling states
in the short term due to its net spillover index close to zero. Differing
from the times of normal conditions, EUA turns into the net short-
term transmitter at the extremely high quantile, implying carbonmar-
ket exerts more short-term influence on GPR and energy markets in
extremely rising states.

In addition, OIL becomes a net spillover transmitter (4.15%) at
the left tail in the short run, second only to ELEC (6.23%). NG
switches into a net transmitter (6.93%) at the right tail in the short
run, second only to ELEC (10.04%). However, the net spillovers
from OIL, NG, and ELEC to other variables are mainly
significant in the short run. Fossil fuels and electricity serve on
the net receivers under extreme falling and rising states in the
long run, except for the weak net transmitter for oil under rising
states. In the case of ERIX, at the left tail, the positive net
spillover effects are found over a short term, while negative net
effects are examined over the medium and long term. However,
these results are quite the opposite for the right tail, which means,
for each frequency domains, the clean energy market plays
distinct roles in the research network during different market states.

Table 6
Time-frequency connectedness in the quantile τ ¼ 0:05

GPR OIL NG COAL ELEC EUA ERIX FROM

Short-term spillovers: 1 day to 5 days
GPR 22.50 11.43 11.24 8.94 11.37 11.62 11.47 66.07
OIL 9.92 17.31 9.79 8.34 10.87 10.76 10.24 59.93
NG 10.47 10.68 18.20 9.42 13.14 11.40 9.80 64.91
COAL 9.33 9.46 10.34 18.65 10.90 9.79 8.98 58.79
ELEC 9.36 10.70 11.99 9.48 16.69 13.09 9.72 64.35
EUA 10.51 11.37 11.36 9.34 14.27 17.74 10.72 67.57
ERIX 9.69 10.44 9.17 7.88 10.02 10.17 17.19 57.37
TO 59.27 64.07 63.89 53.41 70.58 66.83 60.93 TCI
NET −6.80 4.15 −1.02 −5.39 6.23 −0.74 3.57 73.17

Medium-term spillovers: 5 days to 30 days

GPR 1.87 1.15 1.06 0.85 1.04 1.46 1.19 6.75
OIL 2.10 3.77 2.23 1.86 2.53 2.86 2.45 14.03
NG 1.42 1.57 2.90 1.47 2.10 2.17 1.56 10.28
COAL 1.79 2.20 2.34 4.26 2.55 2.51 2.11 13.50
ELEC 1.51 1.82 2.06 1.49 3.02 2.87 1.78 11.53
EUA 1.23 1.39 1.31 1.03 1.84 2.97 1.42 8.21
ERIX 2.28 2.92 2.35 1.94 2.76 3.12 4.67 15.36
TO 10.31 11.05 11.35 8.64 12.81 14.99 10.51 TCI
NET 3.56 −2.99 1.07 −4.85 1.28 6.78 −4.85 13.28

Long-term spillovers: 30 days to Infinite days

GPR 0.44 0.38 0.30 0.23 0.29 0.76 0.40 2.37
OIL 0.54 0.98 0.56 0.47 0.63 1.09 0.69 3.97
NG 0.36 0.46 0.64 0.36 0.51 0.90 0.48 3.06
COAL 0.46 0.63 0.56 0.96 0.61 0.97 0.62 3.85
ELEC 0.43 0.61 0.54 0.41 0.74 1.12 0.57 3.68
EUA 0.33 0.47 0.34 0.29 0.46 1.16 0.46 2.34
ERIX 0.57 0.79 0.58 0.48 0.69 1.15 1.16 4.27
TO 2.68 3.33 2.88 2.23 3.19 6.00 3.22 TCI
NET 0.32 −0.65 −0.18 −1.61 −0.49 3.66 −1.05 3.92
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4.3. Dynamic quantile connectedness

Furthermore, we employ the 200-period rolling window analysis
to investigate the dynamic quantile connectedness. Figure 3 shows the
dynamic time-domain information spillovers for τ 2 ð0:05; 0:95Þ the
equally spaced grid of 10 quantiles (). As seen from the figure, the spill-
overs are symmetrical on quantiles and time-varying [1].More specifi-
cally, the total connectedness index is greater than 80% in both the
lower tail (τ � 0:10) and upper tail (τ � 0:90) and continues to decline
as the quantiles gradually converge to themedian. For the time-varying
characteristics,wecannote the increases inconnectednessover the four
distinctperiods: between2015and2016, from2018 toearly2019, from
2020 to early 2022, and after late 2023. Global financial market turbu-
lence and the oil crisis are the possible agents of the rising connected-
ness during 2015 and 2016 [72]. Heightened global trade frictions,
volatile oil and natural gas markets subject to shocks of supply and
demand, and fluctuating carbon prices caused by a series of reforms
to the EU carbon market may have been the driving forces behind
the increased spillover effects in 2018 and early 2019. The COVID-
19 and theRussian-Ukraine conflict havewitnessed the closer relations
among the variables from 2020 to early 2022, which is in line with
Tiwari et al. [73].Finally, for theperiodafter late2023, theconsequence

may be attributed to the Hamas’s attack on Israel. Figure 4 presents the
dynamic quantile connectedness on three frequency bands. First, the
risk spillovers among variables are larger at the extreme quantiles than
that at the mean quantile over the short-, mid-, and long-term, which is
in linewith the static spillover effect analysis results in the previous sec-
tion. Second, the dynamic connectedness in all quantiles mainly
focuses on the short term, once again confirming the previous findings.
Third, the short-, mid-, and long-term spillovers all show time variant
characteristics.

Based on the analysis above, it is found that during the entire
sample period, the connectivity among GPR, various energy
submarkets, and carbon market at the low and high tails is much
stronger than that at the mean quantiles, indicating the presence of
significant tail contagion. The findings suggest that policymakers
should closely monitor periods of high changes in GPR, energy
markets, and carbon prices to manage tail-risk contagion.
Additionally, it is observed that connectedness increases at all
quantiles during major geopolitical conflicts and public health
events. Nevertheless, this paper does not empirically analyze how
different external events such as government debt crises, interest rate
changes, and extreme weather events affect variables at different
quantiles, which could be explored in future research.

Table 7
Time-frequency connectedness in the quantile τ ¼ 0:95

GPR OIL NG COAL ELEC EUA ERIX FROM

Short-term spillovers: 1 day to 5 days
GPR 23.39 11.55 11.76 10.06 11.73 11.68 11.97 68.76
OIL 9.79 19.22 10.55 9.48 11.53 10.98 10.99 63.32
NG 8.93 9.31 17.04 8.91 11.87 10.01 8.95 57.98
COAL 8.50 9.39 10.01 17.72 10.78 9.66 9.13 57.47
ELEC 8.61 9.69 11.54 9.23 15.76 12.67 9.22 60.95
EUA 9.35 10.26 10.73 9.23 13.96 18.06 10.25 63.77
ERIX 10.47 11.42 10.35 9.37 11.12 11.15 19.28 63.88
TO 55.64 61.61 64.95 56.28 70.99 66.15 60.51 TCI
NET −13.11 −1.71 6.97 −1.19 10.04 2.38 −3.37 72.69

Medium-term spillovers: 5 days to 30 days

GPR 1.67 0.83 0.81 0.70 0.86 0.82 0.80 4.82
OIL 1.59 3.33 1.96 1.63 1.91 1.80 1.83 10.73
NG 2.22 2.40 4.52 2.50 3.26 2.69 2.31 15.38
COAL 2.21 2.35 2.97 4.55 2.86 2.37 2.56 15.32
ELEC 2.09 2.30 2.91 2.33 4.07 2.96 2.38 14.97
EUA 1.76 1.84 1.96 1.67 2.58 3.35 2.05 11.85
ERIX 1.68 1.89 1.81 1.61 1.94 1.89 3.26 10.82
TO 11.56 11.62 12.42 10.43 13.42 12.52 11.93 TCI
NET 6.74 0.89 −2.97 −4.89 −1.56 0.67 1.12 13.98

Long-term spillovers: 30 days to Infinite days

GPR 0.32 0.18 0.18 0.18 0.19 0.16 0.16 1.05
OIL 0.39 0.75 0.52 0.45 0.46 0.41 0.42 2.65
NG 0.57 0.63 1.14 0.71 0.81 0.66 0.57 3.94
COAL 0.55 0.61 0.79 1.11 0.69 0.57 0.62 3.83
ELEC 0.46 0.52 0.67 0.56 0.90 0.62 0.52 3.34
EUA 0.34 0.37 0.40 0.36 0.51 0.62 0.38 2.35
ERIX 0.32 0.38 0.38 0.36 0.39 0.35 0.59 2.18
TO 2.63 2.68 2.95 2.61 3.04 2.77 2.67 TCI
NET 1.58 0.03 −1.00 −1.22 −0.31 0.42 0.49 3.22
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4.4. Net quantile connectedness

We further calculate the dynamics of net quantile spillover
effects for each variable. Through this analysis, we can identify
whether the variable acts as a net information recipient or
contributor under different scales of shocks in certain periods.

Figure 5 shows the dynamic time-domain net connectedness in
quantiles for each related variable in our system. GPR is the net
spillover receiver over most of the sample period. Notably, GPR
turn into the net transmitter under extreme conditions during 2014
in which the Ukraine crisis occurs, and 2022 when the Russia-
Ukraine war breaks out. At the extreme low (τ ¼ 0:05) and high
(τ ¼ 0:95) quantiles, OIL shifts between the risk transmitter and
receiver during the sampling period. As for other quantiles
(0:15 < τ < 0:85), Oil primarily acts as the net recipient except
for the period 2015–2016 (oil crisis), and 2022 (Russia-Ukraine
war). Before 2022, NG is the risk receiver around median quantiles
and shifts between risk transmitter and receiver at the lower and
higher quantiles. However, the net spillovers of NG are positive
and larger in almost all quantiles during the ongoing Russian-
Ukraine conflict. In line with the results of previous sections, COAL
is shown as the net risk recipient at the lower and higher quantiles,
and ELECmostly acts as the net spillover transmitter in all quantiles.
EUA has had an increasing impact on energy markets and GPR since
the adoption of the Paris Agreement in 2015. Particularly during the
COVID-19, the carbonmarket has shown resilience under themarket
stability reserve (MSR) mechanism despite the global economic

Figure 3
Dynamic time-domain total connectedness in quantiles

Figure 4
Dynamic frequency-domain total connectedness in quantiles

Figure 5
Dynamic time-domain net connectedness in quantiles
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slowdown and the weak energy market, ensuring the long-term pros-
pect of rising EUA prices and the market effectiveness of EUAs.
However, EUA switches into the net receiver across all quantiles
from the beginning of 2022, which is due to the fact that the energy
crisis aggregated by the Russia-Ukraine war has to some extent

weakened the role of EUA in reducing fossil energy usage. Most
of the time, ERIX acts as the net receiver, implying the clean energy
market has taken more shocks from other variables.

Figure 6 presents the dynamic frequency-domain net
connectedness in quantiles. For each variable, the subplots from

Figure 6
Dynamic frequency-domain net connectedness in quantiles
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left to right in Figure 6 represent the dynamic net spillover effects
for the equally spaced grid of 10 quantiles (τ 2 ð0:05; 0:95Þ) in the
short-, mid-, and long-term, respectively. It can be seen that net
spillovers of each variable change with different frequency bands.
Among that, the GPR shows the most significant difference
among the three frequency domains. In the short run, GPR is
shown as a net risk recipient. However, for almost the entire sam-
ple period, GPR becomes the net spillover contributor over the
mid- and long-term, particularly significant at higher quantiles.
This implies that rising geopolitical risks have more implications
for energy and carbon prices over the mid- and long-term. Gen-
erally, the market behavior of short-term investors is responsible
for the high-frequency spillover effects. Over a longer time frame,
low-frequency spillover tends to be attributed to macro-economic
factors which include GPR [33]. Therefore, the risk transmission
of GPR lasts longer. Over the mid- and long-term, ELEC acts as
the risk recipient during 2022. In the short run, the role of EUA
oscillates dramatically between spillover transmitter and receiver.
Nevertheless, over the mid- and long-term, EUA exerts a greater
influence on other markets as its net spillover effects are positive
in most sample periods except after early 2022, which indicates
the EUA market plays a critical part in aspect of carbon abate-
ment, with a lasting impact on energy markets. However, the Rus-
sian-Ukraine conflict and subsequent energy dilemma weaken the
role of carbon markets in the system.

4.5. Connectedness network analysis

Lastly, the net pairwise directional interconnectedness is
depicted in Figures 7 and 8. The arrow represents the direction
of the net spillover effects between each pair of variables, and
the thickness of each line reflects the strength. Each vertex’s
size and color denote the level and sign of overall net
spillovers between the specific variable and the other six
variables, with gold-colored and blue-colored vertex
representing negative and positive net spillovers, respectively.
Figure 7 shows the time-domain net pairwise directional

connectedness under extreme (τ ¼ 0:05; 0:95) and normal
(τ ¼ 0:50) conditions. From this network, we find that ELEC is
the prominent information transmitter to fossil/clean energy and
GPR. COAL is susceptible to the shocks of other variables. Under
extreme conditions, EUA acts as a net information transmitter to
fossil/clean energy, as the carbon market is playing an increas-
ingly important role in promoting net-zero emissions and energy
transition. The clean energy sector is still at an early stage and is
more vulnerable to shocks from other variables.

Figure 8 presents the frequency-domain net pairwise
connectedness in three quantiles (τ ¼ 0:05; 0:50; 0:95). Over the
short run, GPR is the net receiver of information from OIL,
NG, ELEC, ERIX, and EUA. Among that, OIL, ELEC, and
ERIX occupy the major proportion of net spillover effects on
GPR under extremely falling states, and NG, ELEC, and EUA
occupy that on GPR under extremely rising states. In the medium
term, GPR and EUA become the significant risk transmitters. In
this regard, EUA is the major risk transmitter to the fossil/clean
energy and electricity under extreme falling state, and GPR
dominates the fluctuations in fossil/clean energy, electricity,
and carbon prices in the extremely falling state. In addition,
ERIX becomes a net transmitter to COAL and NG at the right
tail, mostly due to the enhanced substitution effects in the aspect
of power generation between them under the pressure of the
global energy transformation [2].

5. Robustness Test

Considering that DY and BK spillover indices have
sensitivity to the rolling window width [1], we further alter it
to test the robustness and validity of our results. Figure 9
shows the dynamic time-domain total connectedness across all
quantiles by employing 150- and 250-period rolling window. It
can be seen that these results follow a similar trend to those of
Figure 4, indicating our findings are robust to different settings
of different rolling window.

Figure 7
Time-domain connectedness networks in three quantiles
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Figure 8
Time-frequency-domain connectedness networks in three quantiles

Figure 9
Overall spillovers across all quantiles
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6. Conclusion and Recommendation

In this paper, we provide new insights into the time-frequency
and quantile interconnectedness between geopolitical risks (GPR),
traditional/clean energy, electricity, and carbon prices by applying
the Diebold and Yilmaz [40] approach, the Baruník and Křehlík
[41] approach and the QVAR framework. The following are
several notable findings. Firstly, the overall time-domain
interconnectedness among variables is much more significant in
extremely low (τ ¼ 0:05) and high (τ ¼ 0:95) quartiles than in the
median (τ ¼ 0:50) quantile, with 90.37%, 89.9%, and 21.17%,
respectively. Second, the geopolitical risks receive more spillover
effects from the variations in energy and carbon prices in both normal
and extreme circumstances. Third, the risk spillovers under normal
conditions are dominated by electricity market, while carbonmarkets
become another source of risk spillovers in extreme cases. Fourth,
through decomposing the spillover effects into the short-, mid-,
and long-term spillovers, we find evidence that the geopolitical risks
and carbon market have positive net spillover effects over the
medium and long run.

The paper explores the risk transmission mechanism between
GPR, various energy markets, and carbon markets from time-
frequency and quantile perspectives through the connectedness
analysis. We reveal the time-frequency spillover effects among
them under normal conditions, which aligns with the existing
research. However, the analysis using the conditional mean
regression fails to capture the connectedness in extreme
circumstances. Empirically, larger fluctuations in an asset price
tend to attract more attention from market participants, which
prompts them to adjust the investment portfolios and ultimately
leads to a deeper correlation between different assets. On this
basis, we use quantile-based analysis and uncover more
significant risk contagion (spillover effects) and paths of risk
contagion among GPR, various energy markets, and carbon
markets in extreme states, which adds to the existing research.

According to our findings, some implications are provided for
the investors. First, considering the increased connectedness between
markets in extreme states, investors should be mindful of tail-risk
contagion. As the geopolitical situation and market environment
evolve, a flexible investment strategy should be taken into
account by investors to get greater benefits. Furthermore, short-
term investors in the fossil fuel markets should pay closer
attention to abnormal fluctuations in the electricity and carbon
markets, thereby benefiting from information spillovers from the
electricity and carbon markets. Thirdly, investors with long-term
objectives may consider incorporating oil assets into their
investment portfolios to achieve diversification benefits due to the
relatively weak long-term connections between oil and other
energy prices.

Moreover, the findings of this paper also have certain
implications for policymakers. From the perspective of risk
regulation and prevention, policymakers need to focus on the risk
connectedness among GPR, energy markets, and carbon markets
under multiple circumstances and time-frequency bands and
develop specific policies accordingly. To be specific, in extreme
cases with increased market interconnectedness, both electricity
and carbon markets are crucial sources of risk spillovers. For
instance, the fossil energy crisis results in the prices of fossil fuels
fluctuate considerably, which further affects the power, clean
energy, and carbon prices through the channels including the
behavior of energy producers and investors, ultimately
intensifying the market tail-risk contagion. At this point, the prices
of fossil fuels are susceptible to the changes in electricity and

carbon markets according to our conclusions. Moreover, in the
context of finance deepening, the local risks may gradually evolve
into systemic financial risks. Therefore, when an energy crisis
breaks out, the government should regulate the tail risks promptly
and utilize the power and carbon markets to stabilize energy
markets. Also, the government should take similar measures to
stabilize markets when the outbreak of geopolitical conflicts
causes fluctuations in GPR and then affects the energy markets. In
addition, macro-economic factors including interest rate
fluctuation and inflation can have an effect on the
interconnectedness among markets. For instance, lower interest
rates can boost demand, resulting in the higher energy and carbon
prices and creating market upside risk. Likewise, inflation, which
is usually caused by high demand or production costs, is often
linked to rising energy and carbon prices. The larger fluctuations
in energy and carbon prices correspond to higher market
connectedness. As a result, interest rate changes, inflation, and
deflation may exacerbate market tail-risk contagion. Other
external shocks such as global pandemics, technological
disruptions, and environmental events can also exert a
considerable influence on energy prices, which intensifies the tail
connectedness. During these periods, policymakers should also
consider the function of information transmission of carbon and
electricity markets. Meanwhile, policymakers can draw on the role
of central banks and international institutions in stabilizing energy
markets. In extreme economic circumstances, central banks can
employ monetary policy instruments to adjust interest rates, curb
inflation, and ultimately stabilize financial markets. International
bodies, including the International Monetary Fund and the World
Bank, can offer financial assistance to countries facing economic
crises.

Under normal conditions, the risk spillovers are mainly from the
electricity market. Hence, policymakers should necessitate attention
to its volatility. Geopolitical risks and carbon market become the
primary sources of net risk spillovers in the long run, which
requires the government to monitor the geopolitical situation and
take timely measures to mitigate shocks of geopolitical risks to
energy markets. In addition, specific measures including adjusting
the pricing of carbon allowances can be applied to influence other
markets, ultimately reducing the fossil energy use.

From the perspective of sustainability, policymakers should
ensure clean energy and carbon market stability by minimizing
the impact of traditional energy and geographical risks.
Policymakers are supposed to enhance the carbon market’s
operation mechanism and accelerate energy transformation by
giving tax incentives or subsidies in the clean energy industry.
Moreover, policymakers should also prioritize international
cooperation to prevent and mitigate geopolitical risks. Notably,
the formulation of differentiated measures against different market
and geographical circumstances to manage risks and the tax
incentives and subsidies to develop the clean energy sector are
conducive to preventing systemic risks, avoiding energy crises,
and obtaining long-term benefits, but at the same time, these
measures increase government operating costs and fiscal
expenditure. Therefore, the government should uphold the
principle of cost-effectiveness by improving the efficiency of
government operation, in order to increase the economic
feasibility of the above measures. Specific measures include
promoting digital transformation and strengthening internal
control construction.

This study focuses on the time-frequency spillovers of
geopolitical risks, traditional/clean energy, electricity, and carbon
prices under different states. Nonetheless, there are still some

Green and Low-Carbon Economy Vol. 00 Iss. 00 2025

16



aspects that need to be further explored. For instance, future studies
can look into the Granger causality in quantiles among GPR, energy,
and carbon prices and establish a model to predict the movement of
prices for effective decision-making. Moreover, future research can
further investigate the effects of various external shocks (e.g., climate
change) on the connectedness across different quantiles.
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