
Received: 21 May 2024 | Revised: 22 November 2024 | Accepted: 20 January 2025 | Published online: 7 February 2025

REVIEW

Mitigation of Seafood-Related Environmental
Pollution: A Green Chemistry Perspective

Vazhiyil Venugopal1,* and Se-Kwon Kim2

1Food Technology Division, Bhabha Atomic Research Centre and Kerala University of Fisheries and Ocean Studies, India
2Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University,

Republic of Korea

Abstract: The seafood industry discharges voluminous amounts of discards, consisting of fishery by-catch, process discards, and effluents.
Traditional disposals of these side stream materials by landfill, ocean dumping, and incineration are responsible for serious environmental
pollution. Emission of greenhouse gases including carbon dioxide, methane, and nitrous oxide from the discards significantly contributes to
global warming, while hydrogen sulfide, ammonia, methane, nitrous oxide, and other gases have detrimental effects on the health of living
systems. These environmental hazards can be abated by eco-friendly remedial solutions. Green chemistry-based valorization of seafood side
streams has potentials to lower environmental hazards simultaneously minimizing volume of the discards. These operations transform the
discards to interesting products. Integration of the green methods within the framework of a biorefinery within a circular economy protocol
allows a zero-waste strategy for the mitigation of environmental pollution by seafood discards. Possible industrial applications of the
recovered ingredients such as proteins, peptides, polyunsaturated fatty acids rich lipids, chitin, chitosan, and others make the fishery
discards a valuable resource. The green chemistry approach allows optimal mitigation of seafood-related environmental hazards paving
the way for responsible and economically viable conservation of resources for a resilient, sustainable, low-carbon seafood industry.
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1. Introduction

Modern food production systems leave a heavy environmental
burden, due to emission of greenhouse gases (GHG) responsible for
rise in average global temperature, besides causing significant
consumptions of energy, water, and other subsystems. In 2019,
the global net anthropogenic GHG emissions were 59 ± 6.6
GtCO2-eq, about 54% (21 GtCO2-eq) higher than in 1990. Food
production is responsible for a third of global GHG emissions
consisting of CO2, CH4, and N2O involved in global warming [1–6].
Annual global food loss and waste (FLW), which amounts to
approximately 1.6 billion tons, emitted 9.3 GtCO2-eq in 2017,
which were about half of the annual GHG emissions from the
whole food system. Animal products including seafood products
which are rich in proteins release almost twice GHG than plant-
based foods. The concerns in global warming encouraged the
2015 Paris Agreement to call for 42% reduction of GHG
emissions by 2030 with an aim to limit the rise in global average
temperature by 1.5oC by the end of 21st century. Besides GHG
emissions, FLW also emits hydrogen sulfide, ammonia, methane,
nitrous oxide, and others, which affect living systems, besides
being responsible for huge loss of nutrients. The serious concerns
of climate change, environmental degradation, and food waste-

associated nutrient loss call for a synergistic combination of
measures to address the problems.

2. The Environmental Burden of Seafood
Production

The total fishery and aquaculture production in the year 2020was
214 million tons (Mt), with a contribution of 122.6 Mt from
aquaculture. Seafood production is likely to increase by 21 to
44 Mt by 2050, provided favorable factors such as policy reforms
and technological innovation are available [7–9]. Fishery resources,
however, in recent times, are affected by overfishing, pollution, loss
of biodiversity, poor management, and other factors. Global
warming of modern times has also adverse influences on marine
ecosystems affecting fish species distribution, catch potential, and
consumer availability of proteins and other nutrients. Although
climate change may adversely affect ocean’s ability to supply food,
this can be prevented by sufficient measures to reduce emissions.

The carbon footprint value of a product dictates its
environmental impact. The value represents CO2 emissions
generated by the product or supply chain per unit of output on a
life cycle basis [10–16]. While aquatic foods form only 1.1% of
total food products, they contribute to about 9.9% of global
environmental footprints. Information on carbon footprints of
aquatic foods is essential to make the seafood industry
environmentally, socially, and economically sustainable. The
emission hotspots are spread over-fishing operations and post-
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landing product manufacture. Carbon footprint values are high for
fishing activities due to heavy fuel consumption. Overfishing
increases the carbon footprint of seafood production. Mariculture
has about 40% lower carbon footprints than freshwater
aquaculture, with emissions intensities for CH4 and N2O ranging
from 1 to 6 g and 0.05 to 0.2 g, respectively, per kg carcass
weight. Capture fisheries predominantly GHG emissions, with
small pelagic fishes generating lower emissions than all fed
aquaculture. Bivalve production provides a protein source with the
lowest GHG emissions. The bivalve shells sequester atmospheric
CO2 and therefore can be environmentally sustainable Studies
showed that more than 20 Norwegian seafood products had their
carbon footprints varying between 0.7 to 14.0 kg CO2-eq per kg.

Generation of voluminous discards, also referred as side streams, is
characteristic of seafood processing industry. The industry operates on a
linear and throw-away model, based on the paradigm, “produce now,
clean up later”. Such an attitude results in buildup of discards as high
as 70% of the raw materials. The discarded biomass organic matter
originating from living tissues, include by-catch, process discards, and
effluents are referred as side streams. The by-catch forms low-value
fish and shellfish species that are caught during commercial fishing
having smaller size than prescribed, poor quality, or that is caught in
quantities in excess of specified by regulatory quota. Processing
generates up to 70% of shrimp, lobster, and other crustaceans as
discards containing heads and shells. These have proteins, minerals,
and chitin up to 40%, 50%, and 30%, respectively, besides small
amounts of lipids and carotenoids. Fins, heads, bones, and scales
comprise up t 50% of the raw materials [17–24]. The action of
endogenous enzymes and contaminant microorganisms make seafood
discards susceptible for rapid spoilage causing serious environmental
pollution. Disposal of the discards by landfilling is responsible for
heavy pollution of soil and water. Waste from a seafood processing
industry contributed to 66% of total emissions of 19,144 tons of CO2-
eq in 2023. Landfilling of the waste released approximately 410 tons
methane per year, equivalent to about 95% of the total emissions.
Rapid spoilage of landfilled discards causes heavy release of
ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), nitrous
oxide (N2O), methane, hydrogen sulfide (H2S), and other volatile
gases, which are responsible for obnoxious odor, contamination of
surface and groundwater causing several health issues. Ocean
dumping of by-catch adversely affects oxygen levels at the ocean
bottom, causing smothering of living organisms, disturbance of water
acidity, making the sea floor ecosystem susceptible to diseases.
Incineration of fishery discards generates CO2, NO2, and sulfur
dioxide (SO2), adversely impacting global freshwater use, chemical
pollution, biodiversity loss, and others, has caused ban of incineration
by several countries. Composting, on a limited extent, has been used
to develop organic manure. Seafood process effluents contain
significant quantity of nutrients, particularly proteins oils, and others
affecting the environment.

2.1. Managing environmental hazards of seafood
discards

The rising concerns of global environmental hazards particularly
global warming have come to a realization that climate action cannot
wait, requiring industries to prioritize investing in technologies and
processes to cut the GHGs of value chains [6, 25, 26]. At COP29,
Baku, Azerbaijan, held in November 2024, the WorldFish1

observed a need for urgent action to incorporate aquatic foods into
climate action plans, since integration of fisheries and aquaculture

into climate strategies can offer both climate adaptation and
sustainable economic growth. In this respect, food waste
management and process optimization need effective mitigation
strategies. In the US, food waste comprises of 24 and 22%,
respectively of landfilled and incinerated municipal solid waste. The
US Environment Protection Agency has called for cutting food
waste into half in the country to increase food security, control
environmental pollution, reduce climate change, and accrue other
benefit of landfilled and incinerated municipal solid waste. The
objective is to increase food security, foster productivity and
economic efficiency, promote resource and energy conservation,
and address climate change (https://www.epa.gov/land-research/fa
rm-kitchen-environmental-impacts-us-food-waste, accessed October
26, 2024). Significant reduction of food waste has also been
suggested by the European Union. The Committee on Fisheries of
the Food and Agriculture Organization (FAO) has recognized the
importance of reduction of seafood loss and waste, including by-catch.

Saving food is essential to mitigate climate change [2, 10, 27–29].
Attempts to save food need to be ideally built up on a zero-waste strategy.
The Zero Waste International Alliance defined zero waste as “the
conservation of all resources by means of responsible production,
consumption, reuse, and recovery of products, packaging, and
materials, without burning and with no discharges to land, water, or
air that threaten the environment or human health” (https://zwia.org/co
ntact-zwia/, accessed April 2, 2024). Mitigation of carbon emission
should be at the center of zero-waste strategy for maximum reduction
of environmental pressures on the ecosystem, marine conservation
and health of the seafood industry. The global carbon emissions have
been classified as Scopes 1, 2, or 3 emissions. Emissions from the
food chain are designated Scope 3 emissions, which account for more
than 70% of total emissions, while Scope 1 and Scope 2 emissions
arise from sources owned by the industry such as electricity, fuel
combustion, and others, whereas food factories have better control
over Scope 1 and Scope 2 emissions, minimizing Scope 3 emissions
can have a significant contribution to a carbon neutral future.
Challenges and opportunities for mitigation of carbon emission in the
food industry have been discussed. The environmental protocols to
manage food waste are decarbonization, to remove CO2 and other
GHG gases from the atmosphere to reduce global warming;
detoxification, to reduce impacts of pollutants; and dematerialization
to extract resources to reduce environmental impacts of the waste.

Decarbonization of food and beverage industries to reduce global
warming employing current and emerging practices including
potential transformations have been pointed out [2, 30–32]. These
processes, ideally, require cleaner production strategies and
resource-intensive technologies. Such approaches essentially
involve upcycling (replacing the old terminology “recycling”,
which is implied as “down-cycling”) and are highly beneficial to
address environmental pollution through minimization of waste. An
interesting process related to upcycling is transformation of the
food waste into acceptable and valuable products and is built on the
“trash to treasure” concept, i.e., what is considered waste can
become useful materials including food in a new product cycle.
The strategy has huge potentials to minimize waste, lower waste
disposal expenses, abate environmental hazards, and enhance
sustainability and financial returns of the industry. The European
Union’s Green Deal is a comprehensive set of policy initiatives
aimed to significantly reduce GHG emissions by 2030 compared to
1990 levels (commission.europa.eu’ European-green-deal en,
accessed November 2, 2024). The FAO has proposed a “Blue
Transformation Framework” for efficient, inclusive, resilient, and
sustainable management of aquatic resources. The framework aims
improving fisheries management through environment-friendly1WorldFish, https://worldfishcenter.org/cop29
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policy as well as technological practices. Emerging biotechnological
strategies are able to provide a green leap for environmental abatement
through recovery of high-value products. This article discusses
potentials of green chemistry-based protocols for transformation of
seafood discards in order to mitigate environmental hazards.

3. Green Chemistry to Address Environmental
Hazards of Seafood Side Streams

Nature-friendly solutions are essential to decouple economic
growth from adverse environmental impacts. The International
Union of Pure and Applied Chemistry is involved in identification
of emerging technologies to find chemistry-based solutions for a
more sustainable future [33–37]. The green chemistry (also known
as sustainable chemistry) emerged in the 1990s. Its aims include
design, development, and implementation of products and processes
that reduce the use and generation of hazardous substances. In
1998, Anastas and Warner elaborated on 12 principles of green
chemistry for design, development, and implementation of chemical
products in order to reduce or eliminate the use and generation of
hazardous materials. These principles were complimented by 12
principles of chemical engineering. Green chemistry-related
approaches are powerful leverage points to minimize environmental
hazards by designing products and processes, which use only
minimal amounts of hazardous substances. Green chemistry is well-
placed to benefit the bottom line, with less waste and faster, more
energy-efficient manufacturing processes. It has ample potentials to
address seafood-related environmental pollution. The operational
protocol essentially involves biotransformation of seafood discards,
relying on ““waste to wealth” concept, namely, what is considered
waste can be transformed into new beneficial products. The
advantages of green chemistry-based processes are summarized in
Table 1.

3.1. Green processes

The traditional chemical treatment of seafood waste releases
hazardous chemicals such as hydrochloric acid and alkali, causing
serious environmental hazards [17, 24, 36–41]. In contrast, green
chemistry-based innovative processes are environmentally friendly
and can be a roadmap to alleviate seafood-borne environmental
issues. These processes essentially involve initial biotransformation
of the discards followed by recovery of valuable materials from the
transformed materials. One such method is fermentation, which
besides reducing the environmental burden can also produce value-
added products from the seafood discards. The process leverages

cultivation of bacteria, fungi, microalgae, and protozoa, and may be
operated under aerobic, anaerobic, or facultative conditions. The
fermentation efficiency depends on the starter culture, pH, and
substrate composition. The process can be either solid state
fermentation (SSF), submerged, batch, continuous, or fed-batch
fermentation. The advantages of SSF are lower sterility
requirements, lower water demand, and higher production volume.
Precision and biomass fermentation make use of recent advances in
genomics and synthetic biology to produce specific ingredients.
Downstream processing of fermented products can yield valuable
food ingredients from abundant and inexpensive substrates.

The products of seafood fermentation includemicrobial biomass,
proteins including collagen and gelatin, lactic and other organic acids,
chitin, fish oil, bioactive peptides, hyaluronic acid, liquid fertilizer,
vitamins, enzymes, and others having interesting applications
[42–52]. The popular fermentation using lactic acid bacteria in SSF
or fed-batch modes can be useful to develop food, feed, flavors,
enzymes, fuel, industrial chemicals, and biomaterials. Non-thermal
extraction and ultrafiltration are greener approaches for extraction
of collagen from suitably fermented fishery products. Fermentation
and enzymatic action have emerged for valorization of shrimp
discards for its use in agriculture, pharmaceutical, cosmetic, and
food industry to foster environmental sustainability and green
economy. A novel microbial process for complete biodegradation
of shrimp waste with co-production of chitinase and chitin
oligosaccharides has been reported. Single-stage co-fermentation
using proteolytic and chitinolytic bacteria gave 90%
deproteinization and demineralization of crustacean crab shell
wastes, with production of N-acetyl glucosamine and amino acids.
Cultivation of oleaginous microorganisms is promising for biofuel
production from organic waste. Cultivated seafood making use of
cells harvested from salmon and other popular fish reduces
environmental impact of fishing and pressure on fisheries besides
helping seafood sustainability.

Biomass fermentation using microalgae can transform seafood
resources into valuable ingredients. Growth of phototropic
microalgae such as Galdieria spp., Chlorella spp., Spirulina spp.,
Dunaliella spp., diatoms, and cyanobacteria (commonly referred to
as blue-green algae) in seafood process effluents or media enriched
with nutrients from seafood discards results in 40–50% higher yield
of biomass than that from terrestrial crops [24, 53, 54]. The algal
biomass, referred as single cell proteins, has protein contents as
high as 60% on dry weight basis, besides lipids, polysaccharides,
minerals, pigments, and others. These ingredients can be recovered
by green downstream processes, for their uses in food, feed,
cosmetics, and medicine.

Table 1
General advantages of green chemistry-based processes

Parameters General advantages

Reaction conditions Reactions at ambient temperature and pressure
Extraction of materials Green solvents are mostly inert, recyclable, and sustainable.

Therefore, they are ideal for extraction
Energy requirements Generally low energy requirements
Catalysts Microorganisms and enzymes serve as low-cost, biocatalysts in

comparison with traditional metal catalysts, which are generally used for reactions
Advantages with respect to resources Degradation is part of design causing “triggered instability”
Functionality of the product Functionality is mostly enhanced by a modified structure
Type of processes Ideally circular in nature
Management approach Waste upstreaming and utilization, not waste disposal
Profitability Maximum chemical production with minimum use of benign material for increased profitability

Green and Low-Carbon Economy Vol. 00 Iss. 00 2025

03



Anaerobic digestion (AD) is useful for waste management,
biofertilizer production, and renewable energy generation. AD of
aquaculture and fish processing waste is a promising
for effective material-energy recycling. Salinity, low-carbon/
nitrogen ratio, high lipid content, and others can influence AD
of waste from aquaculture and seafood processing [10, 32, 55,
56]. The synergistic effects of co-substrates, characterization of
microbial communities, the prediction of biogas production, and
future research directions for the development of AD-based
sustainable biorefinery have been discussed. Cultivation of
microorganisms in wastewater results in a reduction of GHG
emissions as high as 96%.

Enzymes, because of their catalytic specificity and appreciable
activities at moderate temperatures, make economically viable
bioconversions to give proteins, chitin, chitosan, chitooligomers,
oil rich in polyunsaturated fatty acids, and others from seafood
discards [57–71]. Immobilized enzymes can efficiently convert
waste streams. Seafood side streams themselves are rich sources
of enzymes like proteases, lipases, chitinase, transglutaminase,
hyaluronidase, and others. These enzymes can be used for
biotransformation of seafood side streams for the recovery of
ingredients including proteins, chitin, and lipids, textural
modification, removal of allergens, flavor modification and
others. Green extraction techniques including fermentation,
enzyme-assisted extraction, and non-thermal extractions can
extract polysaccharides, proteins, carotenoids, and fatty acids
from shrimp waste. Novel enzymatic and other green methods
are available for extraction of chitin and its conversions into
chitosan and chitooligosaccharides. Chitinases are valuable
biocatalysts for waste management, biofuel production, food
preservation, and other applications. Chitin and chitosan have
innumerable industrial, medicinal, and other applications. The
3-acetamido-5-acetylfuran (3A5AF), prepared from chitin via
chemo-enzymatic protocol, is a platform chemical. Proteins
recovered from side streams and process effluents can be
sustainably used for nutritional and other purposes. Lipid-rich
seafood discards can be resource materials for biodiesel and
biogas. A new synergy between marine chitinases from Bacillus
magnesia and bioethanol production has been reported.
Sustainable materials from fishery wastes have been developed
for energy storage and other uses. Rearing of insects such as
black soldier fly is an innovative bioprocess to manage food
waste nitrogen. The cycled protein-rich material can be used as
animal feed and soil fertilizer.

Green solvents such as ionic liquids and deep eutectic solvents
are ideal to extract compounds released through biotransformation of
seafood discards. These solvents have remarkable thermal stability,
low viscosity, and low vapor pressure under ambient conditions.
They are also less corrosive compared to mineral acids and bases.
These solvents can efficiently extract proteins, chitin, lipids, and
polyphenols [37, 43, 72, 73].

Ultrasound-assisted extraction (UAE), microwave-assisted
extraction, supercritical fluid extraction (SFE), pressurized liquid
extraction, and pulsed electric field extraction are efficient eco-
friendly non-thermal processes for extraction of proteins, minerals,
polysaccharides, flavor compounds, and others [24, 40, 74–79].
UAE and SFE demonstrated high extraction yields and purity
levels of carotenoids and other pigments. Coagulation by electro-
flocculation can recover suspended proteins and other particles
from seafood processing effluents. The coagulated particles can be
concentrated by techniques such as microfiltration, ultrafiltration,
nanofiltration, reverse osmosis, or forward osmosis. Table 2

summarizes potential benefits of green systems in the recovery of
components from seafood side streams.

3.2. Enhancing efficiency of green chemistry-based
processes

3.2.1. Integration of green processes through biorefinery
Biorefineries allow a holistic approach for maximum utilization

of biowaste and to minimize environmental pollution. Optimization of
innovative green technologies within the framework of a biorefinery
platform can facilitate zero-waste transformation of food side
streams into high-value products [17, 90–96]. These biorefineries,
depending on the green processes, have potentials to recover chitin,
chitosan, astaxanthin from crustacean shells with significant
efficiency and production yield. An anchovy biorefinery extracted
PUFA-rich lipids, vitamin D3, and zeaxanthin from the fish
discards. The AD of the leftover sludge produced methane as
biogas. Technoeconomic studies on microalgae-based biorefineries
suggested biomass processing in a cascading manner can achieve a
zero-waste operational benefit. An example for practical success is
the WaSeaBi project of the European Union, which through
innovative technologies recover proteins, bioactive peptides, mineral
supplements, and other marketable products from fishery and
aquaculture side streams accruing benefits of environmental
conservation and economic value.

3.2.2. Circular economy approach
A circular economy (CE) approach efficiently utilizes resource

through regeneration of products in a sustainable and
environmentally friendly manner thereby minimizing waste and
emissions. It has advantages compared to the conventional linear
take-make-dispose systems [18, 97]. The CE is built on a 3R
protocol, namely, Reduce-Reuse-Recycle and aims elimination of
waste, circulation of materials, and regeneration of natural
systems. The operational strategy of CE is recycling. In the
process, the used goods are collected at the end of their life and
are used as feedstock to develop new products. These products are
safe for humans, animals, and the environment. Muscat et al.
[26, 38, 60, 86, 97–105] suggested five ecological principles to
guide the use of biomass towards a circular bioeconomy. These
encompass prioritizing biomass streams for basic human needs;
utilizing and recycling by-products; using renewable energy, and
safeguarding and regenerating the health of the ecosystems. The
environmental, social, and economic advantages of CE are
reduction in carbon footprints, conservation of resource, waste
reduction, and others. The European Green Deal points out the
importance of transforming Europe’s economy into a circular one
to achieve a climate-neutral economy by 2050. The benefits are
environmental protection, optimal resource utilization for food
security, sustainability, and resilience of the industry. The
environmental and other benefits of CE-based recovery of
by-products from shrimp and bivalves have been reported. The
benefits are also with respect to recovery of umami-rich seasoning
from tilapia and collagen, chitin/chitosan, gelatin, and
hydroxyapatite from fish scales. Circularity principles supported
waste recycling practices and also nutrient-supplemented feed
formulations offering environmental benefits to aquaculture.
Green chemistry in conjunction with CE and waste recycling have
potentials to efficiently convert seafood waste into carbon
nanomaterials, which had large surface area, porous structure,
high reactivity, and abundant active sites. Figure 1 summarizes
the advantages of CE in the valorization of seafood discards in
comparison with conventional linear economy strategy.
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Table 2
Potential benefits of green processes for seafood side streams

Green processes Benefits References

Protein, protein hydrolysates, and bioactive peptides
Fermentation Almost total bioconversion, low energy processes [38, 46–48, 80]
Enzymatic processes Almost total bioconversion [81].

[74]
Extraction by green solvents Inert, recyclable, and sustainable solvents.

Optimal and eco-friendly extraction
[72];
[73].

Non-thermal technologies Shorter processing time, higher extraction efficiency [78],
[40];
[77];
[75]

Iso-electric solubilization precipitation Almost complete recovery [82].
Membrane filtration Complete recovery, low energy processes [79]
Lipids
Enzymatic extraction Almost total bioconversion

Degradation is part of design
[74];
[68]

Sub-critical water extraction Efficient extraction [83]
Carotenoids
SC-CO2 extraction Astaxanthin and others [84]

Chitin, chitosan, chitooligosaccharides, 3-acetamido-5 acetyl furan
Various green processes and strategies Almost total recovery,

entail many advantages
[85];
[37];
[65];
[62]

Other processes
Calcination, pH activation, heat treatment, etc., Nanocarbon materials for energy storage

and other uses
[15, 42, 70, 86]

Fish bone calcium by fermentation Bioavailable calcium [87]
Enzymatic, pH shift, ultrasound, and
other procedures

Development of biofilters from crustacean
and mollusk shell waste

[88]
[89]

Valorization using biorefineries
Integrated green processes Up to 90% waste conversion into products,

environmental, and economic viability
[60, 90, 91]

Figure 1
Advantages of circular bioeconomy strategy over linear bioeconomy in the valorization of seafood discards

Green and Low-Carbon Economy Vol. 00 Iss. 00 2025

05



3.2.3. Other potential supports
The upcoming Industry 4.0 technologies including artificial

intelligence, the Internet of Things, smart sensors, and others can
encourage minimization of GHG emissions, waste reduction, and
recovery of food ingredients [106, 107]. Furthermore, digitalization
can support green practices and sustainable economic development.
These technologies optimize green chemistry-based valorization of
waste through timely interventions for maximum advantage.

3.2.4. Life cycle analysis
Life cycle analysis (LCA) is a powerful methodology to evaluate

the environmental benefits of green processing of seafood supply chain
[6, 99, 108–113]. LCA in conjunction with material flow analysis is
commonly used to quantify environmental impacts of FLW. LCA
studies, in general, have shown that fishing activities constituted the
highest carbon footprint, while post-landing product development
displayed lower carbon footprints. LCA of different
biowaste conversion processes revealed benefits with respect to
environmental sustainability, and positive environmental impacts
with respect to seafood biorefineries. A “cradle-to-grave” LCA
showed that the recovery of CaCO3 from oyster shells had a lower
environmental impact than landfill.

4. Environmental Benefits of Green Processing

The green chemistry protocols, discussed above, can minimize
waste through bioconversion, replacing GHG-intensive materials
with recovered products having lower emissions. The supply chain
decarbonization reduces scope 3 emissions and carbon footprints to
improve carbon credits of the industry, besides minimizing
polluting gases and release of other hazardous agents. A low-
carbon, resource-efficient transition allows a cleaner, quieter, more
secure, and productive economy [29, 114]. Reducing the waste by
cleaner production strategies helped to lower up to 35% of the total
GHG emissions from two Western Australian finfish supply chains.

The benefits of green processing are due to generally lower treatment
costs and generally higher yields of products. Furthermore, the low cost of
seafood side streams, their consistent availability, high value of the
recovered products offer make green processing foster environmental
stewardship. Integration of the green chemistry protocols within a
framework of CE can optimize resource utilization in an eco-friendly
manner to extend product life span that ultimately realize a sustainable
economy [115, 116]. Most of the products obtained through
biotransformation protocol can have lower carbon footprints, as shown
by LCA studies. Huang et al. [23, 57, 117–122] observed that as many
as 24 biochemicals out of a total of 25 ingredients, which were
recovered through biorefinery, emitted 88 to 94% less amounts of
GHG. It has been reported that for each kilogram of food protein
wasted, up to 750 kg of CO2 end up in the atmosphere. Therefore,
comprehensive management of protein-rich waste through
transformation by green processing has potentials to greatly reduce its
carbon footprints. The environmental benefits of recovering materials
from fishery discards have been reported with respect to tilapia, catfish,
shrimp, lobster, and snail.

In addition to environmental benefits, green processing can be a
new driving force promoting sustainable, economic, and social
development [23, 24, 67, 68, 88, 103, 105, 107, 108, 123–127].
These technologies generally offer enhanced yields of ingredients
from seafood discards. The recovered proteins including collagen
and gelatin retain good functionality such as emulsifying,
antimicrobial, antioxidant, and other functional properties. These
products command a wide range of applications in multiple
industries enhancing values of the seafood supply chain and hence

economic returns, simultaneously meeting environmental
challenges. For instance, the recovered marine proteins can
enhance the value of supply chain as sources of peptides, nutritional
supplements, and components in active seafood packaging,
biodegradable plastics, water purification, and others. Shrimp-
derived ingredients are promising in the development of formulated
aquafeed items. Production of biochar and bio-oil from biomass for
fuel can help decarbonization. The production of collagen from
seafood waste for nutritional or high-value applications is rising.
Proteins from squid and cuttlefish, because of their characteristics,
have been used to develop adhesives, gels, nano capsules, and
microneedles. Crustacean and bivalve processing side streams can
be raw materials for developing fast time-to-market products
including animal feeds, bio-pesticide/stimulants, and cosmetic
ingredient. Some of these products comply with specific EU
regulations. Calcined shells from crustaceans and mollusks can
sequester CO2 and remove pollutants such as SO2, hydrogen sulfide
(H2S), NOx, and heavy metals. Valorization of effluents from
seafood processing by green methods helps recovery of ingredients
having wide industrial applications. Recent interests of the seafood
industry in waste valorization are indicated by a Finnish company,
which upcycled seafood side streams to restructured products that
commanded acceptable mouthfeel and texture.

In addition tominimizing environmental hazards, the green approach
can meet the 2030 Sustainable Development Agenda of the United
Nations (UN), particularly the Sustainable Development Goal 13 that
aims minimizing climate change. The zero-waste approach through
green processing can help meet SDG 12, which aims to reduce food
losses along the production and supply chains. In addition, meeting the
SDG 14, which targets to conserve and sustainable use of the oceans,
seas, and marine resources can be another advantage of green
processing of seafood side streams.

5. Conclusion

Seafood production results in the generation of large amounts of
side streams. Traditional disposal of these side streams by landfill,
incineration, etc., is responsible for heavy environmental pollution
and global warming. The article highlights the prospects of green
chemistry-based waste management in mitigation of seafood-related
environmental pollution and global warming. Green processing can
be natural solution for low-carbon, environmentally viable, resilient,
and sustainable seafood supply chain. The biotransformation of the
side streams using green chemistry protocols, ideally on a biorefinery
platform supported by CE protocol, can abate global warming and
other environmental hazards. Multi-disciplinary interactions and
collaborative ventures on the lines discussed in the article can be key
to mitigate environmental hazards of seafood processing industry that
can provide a dynamic, safe, and sustainable seafood supply chain.
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