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Abstract: Price spikes in electricity markets are very frequent, posing tremendous burden on household income and on manufacturing cost.
Electricity demand (load) can be divided into two parts, energy (MWh) and peak (MW), and most of the time peak is responsible for the
price spikes. Literature review while devoting most of the discussion to energy lags in the investigation of peak. In this research, a model for
peak demand analysis and forecasting is developed. The model is based on a portfolio of cluster and extreme value analysis (C-EVA)
methods using unit invariant knee, extremum distance estimator, and weighted scale load innovations for the optimal determination of clusters
and the daily peaks divulgence. The C-EVA method consists of the clustering part for an optimal number of clusters determination and
classification of day and month of peak and the part of EVA for computation of the statistical confidence interval for the load maxima.
C-EVA, after using all the currently available load maxima, estimates statistically the expected worst-case scenario for peaks of loads. Load
peaks will be determined by EVA based on an estimated bimodal distribution, while a signaling method will prompt the probability of
extremes. The added value of the proposed method is that it does not reject the extreme values as most methodologies do. EVA for maxima
and minima provides estimators for the highest and the lowest expected hourly load, while giving the confidence interval of the return level
using an optimization method for the selection of a rolling time window, as the return period. It was found that distributed generation of
renewables creates a camel effect on the load peaks which increases sharpness. The proposed methodology solved this issue while opening
the ground for future research for the role of storage, batteries, as well as for virtual power plants as an integrated portfolio of renewables generation.
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1. Introduction

Peak load forecasting is of high significance for electric utilities
as their cost structure is inelastic, inflexible in relation to demand
variations. This inflexibility is derived from the structure of fuel
procurement which is (the highest operational cost) based on take
or pay clauses and high investment cost (CAPEX). The uncertainty
of future power delivery at a competitive price increases the need
for an accurate profiling of demand and expectations. Accurate
representation of demand expectations is a prerequisite for trading
forward, for implementing efficient risk management and hedging
programs, and for the market integration of renewable resources
through the model of virtual power plant operation. The stochastic
and intermittent nature of renewables increases the need to alleviate
the extreme peak load (demand) through flexibility [1], as well as
other demand-side actions. This is why there is increasing need for
the virtual power plants (VPP) scheme, to realize flexibility through
aggregation, optimization, and control of renewables as well as
other resources that belong in different geographical areas. VPPs

have the capability to standardize the aggregation of such dispersed
renewable sources along with controllable loads, energy storage
devices, and other distributed generation (DG). This aggregation is
made within integrated portfolios through optimization and control.
In order not to abstract from our main subject, the readers who
need more information on VPPs and DG can read the works of
Gao et al. [2], and Naraindath et al. [3].

Electricity load forecasting can be divided into two parts (a)
energy and (b) peak forecasting. Energy forecasting is relatively
simpler and of lower risk (repetitive seasonal patterns) compared
to peak forecasting, especially if the availability of dispatching
units is guaranteed in low LOLP (loss of load probability)
situations (high reserves). Peak is the most important part of
demand as it triggers price spikes of high magnitude within
seconds. Spikes surpass significant parts of cost in a short time
and generate high premiums. Peak forecasting methods can be
used complementary to energy forecasting and provide more
accurate signal for capacity addition (CAPEX needed). If capacity
covers the peak, then inevitably volumetric load (integral) will be
covered as well; by the minimum realized costs. Furthermore,
apart from capacity additions, peak forecasting determines the*Corresponding author: Petros Theodorou, Athens University of Economics and
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appropriate level of reserves to minimize the loss of load probability
and guarantee normal system operation. Peak forecasting is an
essential input to energy forecasting, since in business practice,
the long- and medium-term expansion forecasts energy as a
function of peak. Finally, peak is of high risk since it is heavily
affected by externalities that humans cannot easily predefine or
affect. That is why most of the time reserves are kept at high
levels producing high costs for the system. But even though the
significance of peak forecasting is very high, most of research
discussion devoted only on the energy part of forecasting, and
very few studies have been focused on peak, which is why this
work is very significant as it covers a gap in the literature.

The set of methods found in electricity demand forecasting
literature mostly belongs in the fields of time series, AI and Neural
Nets (AI&NN). AI&NN optimize various combinations of time
series methods by using the criteria of error minimization of cost
dispatching. Methods used include time series (e.g., parameterize
functions), pattern recognition, quadratic estimation, weighted
multimodel, or advanced informatics like expert systems, artificial
and neural networks, fuzzy logic, and wavelets. Most of the studies
focus on the identification of the factors that affect the load. Time
series models assume regularity of consumption over longer periods,
proclaiming that load exempts random behavior. In the actual market
operation, the random behavior of load (mostly derived from peaks
uncertainty) is largely hedged by reserves and dispatching merit
orders which both significantly increase the cost of the system. This
hedging cannot cease the gap and the importance of forecasting
peak’s uncertainty. Hedging with reserves and merit order cannot
absorb the effects by all operating hours as well as the significant
variation leveraged by the spillover (transfer) of uncertainty in the
fuel procurement (significant cost penalties). Moreover, time series
methods and NN heavily rely on historical data, which are distorted
by the shortage of generation and the low reserve margin. In our
sample, this has been the fact for 3 years 2005, 2007, and 2008. All
those methods have the restriction that the dataset must comply on a
number of design features which are described in detail by Bunn [4].
Those restrictions and the relevant “statistical handling” (seasonality,
detrending, distributional properties, etc.) lead to overweight the
average of load and exclude data that contain the risk and volatility,
restricting the explanatory power of forecasting extreme values.
Time series statistical tests ultimately result in dropout extreme
values (with filtering techniques) and analyze values around the
mean. Thus, nothing has been done so far to extract from raw load
information regarding the extreme values.

Suggested methodology will focus on peaks and the extreme
values of the univariate daily hourly loads, filling a research gap
by adding the methods of cluster and extreme value analysis
[5–7]. The developed model will extract all available information
from the load as well as the inherited risk and volatility pertained
in peaks and lows. The purpose of the proposed model is through
the clustering of load values through the separation of high and
low extremes to proceed through the extreme value analysis on
the estimation of peaks magnitude and generate relevant alert
signals. Clustering will aid the separation of the “normal
components” from the random components that belong in the max
or min extremes. Innovative methods will be applied to determine
the optimum number of clusters and to aggregate hourly daily
maxima.

The sections that follow are (a) the literature review, (b) the
research methodology, (c) descriptive analytics, (d) cluster analysis,
(e) extreme value analysis, and (f) daily extrema as spike alerts.
Finally, conclusions will be drawn at the end.

2. Literature Review

Literature on load and peak forecasting can be clustered
according to time, for example, short, medium, and long term.
Another distinction can be made in the following categories: (a) the
conditional modeling approach, generally based on macroeconomic
variables like inflation, GDP, and Forex [8–12], (b) the system
indicators of the electrical distribution and transmission system,
such as the number of connections and machinery capacity
[13–18], (c) the historical modeling approach [9, 19], and (d)
hybrid models [20, 21]. Finally, literature can be clustered around
the method used, a distinction used by Weron [22] in the
disciplines of (a) time series analysis-statistics [8, 21, 23, 24], (b)
informatics or computational intelligence, and (c) hybrid models
[25–28].

The statistical techniques related to time series include pattern
recognition, quadratic estimation, probabilistic modeling, and
weighted multimodel forecasting [5, 29–31] of which most
focused on the impact of weather [8, 9, 24, 32]. Regarding time
series, the most used models for load forecasting are those of
regression and autoregression. Regression methods used in load
forecasting include linear, nonlinear, logistic, nonparametric,
stepwise, and partial least squares [32–34]. Autoregression models
(mostly univariate) include autoregressive moving average
(ARMA), ARIMA with exogenous (ARMAX), autoregressive
integrated moving average (ARIMA), seasonal ARIMA
(SARIMA), vector autoregression (VAR), Bayesian VAR, and
GARCH [20, 35–37]. Furthermore, it is worth mentioning the
studies of Saqib et al. [38], Candila et al. [39] and An et al. [40].

The computational intelligence models utilize in load forecasting
expert systems, artificial intelligence [41, 42] neural networks
[43–47], fuzzy logic and wavelets, and ICEEMDAN-GS-WT-
LSTM-ISSA [15–17]. Usually, most of the computational
intelligence models are used to calibrate parameters in time series.
Santos et al. [48] used artificial neural network (ANN) with
standard feedforward backpropagation algorithm for structuring the
model as well as the hyperbolic tangent function for learning
purposes. Hippert et al. [49] identify the increasing complexity in
many forecasting methodologies on the population of factors that
affect consumption. Amjady and Keynia [50] point to the low
interpretive value of adding many factors and complexities,
cancelled by the regularities already inherited in univariate time
series. Models of cooperative ant colony optimization genetic
algorithms are also utilized in load forecasting [35, 51] as well as
Gray prediction models [52]. Genetic algorithms have also been
utilized in conjunction with particle swarm optimization (PSO)
[20, 53], as we will also present in the discussion about hybridmodels.

Hybrid forecasting methods have been developed by mixing
neural networks, evolutionary algorithms, and time series
(autoregression) models [20, 21, 50]. Crone and Dhawan [54]
evaluate the performance of multilayer perceptron in forecasting
synthetic time series (with different forms of seasonal and trend
components) in order to evaluate the sensitivity of various
architectural choices, in neural networks forecasting. Multilayer
perceptron is the most frequently used method in neural network
time series for load forecasting [15, 35, 55]. Eventhough some
studies refer to the higher performance of hierarchical models in
relation to multilayer perceptron as concerns the peak load
forecasting [56]. Support vector machine (SVM) models have been
mixed with least square methods for better prediction [57, 58].
Abductory inductive mechanisms (AIM) and group method of data
handling were also used for iterated multiphase polynomial
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regression. This portfolio of methods summarized that (AIM)
forecasting performance is increased by applying regression models
alone [59]. Support vector regression (SVR) models are combined
with stimulated annealing and chaotic genetic algorithms for
improved forecasting performance [60]. Furthermore, firefly-based
memetic algorithm used to determine SVR parameters [61]. Load
forecasting ability of ARMAX models has been enhanced by
evolutionary algorithms and PSO [62]. PSO combined also with
moving average models to determine the weights of the coefficients
while minimizing mean absolute percentage error of the load
forecasting function [63]. PS also combined with ant colony
optimization for the enhancement of forecasting performance [64].
Ant colony optimization combined also with SVM for short-term
load forecasting [65, 66]. The gravitational search algorithm was
also used in conjunction with regression and Kohonen neural
network [67]. Immune algorithm was utilized for the parameter
selection of an SVR model [68, 69]. Appropriate parameter
combination in SVR and SVM models was also enhanced by
simulated annealing algorithms [16, 59, 68, 69].

From the above presentation, it can be concluded that nothing
has been done with a focus on peak demand forecasting, leaving a
gap in literature (which this study attempts to cover). Moreover,
nothing is referred to about the portfolio of models suggested by
the methodology of this study (cluster and extreme value analysis
(C-EVA)).

3. Research Methodology

As previously mentioned, after a brief description of the sample
and relevant data analysis, we will proceed with descriptives
regarding the density estimation and the probability density function
to finalize the load duration curve and the DGE effect. The C-EVA
method consists of two parts: the clustering and the EVA. The first
part is used for determining the optimal number of clusters by
classifying the month and day of the peak, while the second part
involves computing the statistical confidence interval of the load
maxima. By determining all the currently available load maxima,
C-EVA statistically estimates the expected worst-case scenario for
peak loads. The fundamental essentials of the EVA method can be
found in Coles [70, 71]. The season, month, and day and hours
where peaks mostly appear (historically) are estimated by using a
first-time applied metric, the weighted scale load (WSL). The WSL
was developed specifically for this research to identify the daily
hours of high load and aggregate hourly daily maxima. WSL is
calculated by dividing the mean by the standard deviation and
considering the relevant frequency of occurrences (Equation (2)).
The calculations are provided in Table 9. The innovative method of
UIK point will also be utilized for the optimal cutting of clusters.
Having determined (by use of optimal clustering) the time, month,
and day the peaks mostly appear, we will proceed with the EVA to
determine the bandwidth of MW in which the system might operate
in the worst-case scenario. Alert metrics will be developed for peak
signaling purposes. By combining the results of clustering and EVA
will determine the magnitude of peaks. Estimators will be generated
for peak alerts, and benchmarking of the estimators will also be
provided. It is worth mentioning that the extremum distance
estimator (EDE) method is a statistical estimator of the inflection
point which computes the two slanted maxima from the chord that
connects the initial and final point of a sigmoid curve (more analysis
on the subject, mathematical formulations, definitions, explanatory
figures, and examples can be found in https://doi.org/10.48550/arXiv.
1206.5478). The unit invariant knee (UIK) method is an estimator of
the “knee” or “elbow” point for a strict convex or concave curve

whose estimate is made by the EDE method (more analysis on
mathematical formulations, definitions, explanatory figures, and
examples can be found in https://doi.org/10.2139/ssrn.3043076)
[72, 73]. For the reader who need a deep dive into extreme value
theory, information can be found in Coles [70, 71] and in Elsevier’s
heuristic and machine-learning monitoring of the topic (https://www.
sciencedirect.com/topics/mathematics/extreme-value-theory).

4. Descriptive Analytics

The data used represent the net real load as an hourly average in
MW per day from 2002 to 2017 of the Greek interconnected system.
This dataset excludes pumping and distributed generator
consumption, as well as all types of demand from decentralized
producers located close to the load. The data matrix is given in
Figure 1 (140256 h X 5844 days):

The database included the consumption of high-voltage consumers,
mines, self-consumption of producers, consumption metered at
substations in systems’ borders (with distribution), as well as the
system losses (metered over the Greek interconnected network). At
this point must be mentioned that after 2004 energy demand at
distributions’ substations, decreased, due to the emergence of DG
(photovoltaics connected in low and medium voltage). The same
effect for the peak (of net load) started later around 2009 along with
the macroeconomic crisis. This effect, termed as the DE effect (DGE),
is the primary reason for the significant decrease in demand (metered
at the limits borders of transmission with distribution). By the end of
2016, the installed photovoltaic capacity was approximately 2400
MW (2623 MW at the end of 2017, installed in the Greek
interconnected system) of which the most in low and medium voltage
(LMV). This capacity is expected to expand drastically in the coming
years, along with the corresponding DGE effect. The historical effect
of DGE on demand is also significant especially for the decade after
2006 when its contribution to total net energy demand rocketed from
393 to 4374 GWh an annual compound growth rate of approximately
28% (1105% for the whole period). Similarly, the compound effect on

Figure 1
Hourly load
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annual peak growth was 12% for a 7-year period (the significant part of
the effect started 5 years later than that of energy) and up to 221% since
the start of the period.

In Table 1, we observe both the demanded energy (volume) and
peak. It can be noticed that in 2011, 2012, and 2015, the DGE effect
was at its highest level. DGE covers a significant part of peak
demand, which might be of the magnitude (sometimes larger) of a
conventional CCGT capacity. In the diagram below, we can see
that for the years 2002–2017, the DGE phenomenon starts at
12:00 and ends around 18:00, with an average capacity of 454
MW, measured as the distance from the previous change in
concaveness (Figure 2).

In Figure 2, the camel effect is evident, signifying 2 local peaks
affected by the net contribution of renewables, approximately 456
MW or 1314 GWh. The overall peak from the cumulative
perspective is depicted below (duration curve in Figure 3):

Figure 3 presents a peak approximately 2912 MW higher than
base load, which is up to 1913 MW. It can be noticed that the middle
load spread with peak since 2013 has started to decrease, but the
percentage of peaks since 2011 has increased drastically, pulling

the middles upward as well. This evidences the sharpness of peak
and its importance regarding the volumetric demand (Figure 4).

At the end of 2016, a capacity of up to approximately 5 GW
renewables was installed with wind and photovoltaics comprising the
majority. Permissions suggest that this capacity could be increased up
to 30 GW for the entire country. According to the Greek TSO
(ADMIE) 10-year development study projections (May 2017), the
installed renewables capacity is expected to approximately double,
with a larger peak in the forefront and a compound growth rate of up
to 7% p.a for the decade following the release of the study. The

Table 1
DGE

Year DGE on energy GWh DGE on peak MW

2006 393 0
2007 437 0
2008 635 0
2009 1054 47
2010 1216 78
2011 1423 237
2012 2322 703
2013 4214 397
2014 4462 171
2015 4714 618
2016 4734 151

Figure 2
Camel effect
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historical 5-yearmonthly average capacity factor up to 2016 (for all Rens)
was approximately 33% with a 15% dispersion above and below the
mean. With such high rates of renewables penetration, the DGE effect
will certainly increase. The influence of DG and energy storage on the
power system, specifically on the peak, is analyzed in the work of Ufa
et al. [74]. Ufa et al. [74] represents this influence by the duck curve
and the concept of peak saving, as well as leading/lagging power
factor. The effect of energy storage and DG on the power system’s
uncertainty and volatility is presented in Pothireddy et al. [75]. The
assessment of storage potential as a peaking capacity resource is
provided in Frazier et al. [76] and Cole et al. [77]. For further depth
and breadth on the influence of DG and energy storage, readers can
explore relevant topics on ScienceDirect monitored by heuristic and
machine-learning algorithms. (https://www.sciencedirect.com/topics/
engineering/distributed-energy-resource and https://www.sciencedire
ct.com/topics/engineering/energy-storage-technology).

Finally, it should be noted that our dataset for the years 2005,
2007, and 2008 does not include load cuts that have been made.
Estimates suggest up to 165 MW, 500 MW, and 150 MW,
respectively. In Table 2, an estimation of the peak is provided
under the assumption that load cuts have not been made:

Following the historical values given above, we conclude, in
Table 3, that the average forward estimation of all scenarios taken by
the TSO’s for the load peak along with its dispersion around the
mean. The estimations below include transmission losses and the
generation of dispersed production (DGE effect). What can be
observed is the drastic increase of risk over time, ending up at
the capacity level of an average CCGT station (Figure 5). Thus, in the
earlier timeframe, the risk inherited in the peak is at a magnitude of
30–100 MW and can be covered by a small turbine. However, at the
end of the timeframe, the magnitude skyrockets to 400 MW,
equivalent to a CCGT station (with a CAPEX of up to 200–250 M€).
Therefore, in terms of capacity additions, and considering that
depreciation is more than 20 years for such a size of CAPEX, it is
very significant to have a concrete long-term view in order to avoid
idle and sunk costs from many small installations (refer to Table 3).

It is noticed that every day two main local maxima and minima
exist. This evidence obliges us to seek a two-mode distribution that
will be used in extreme value analysis (Equation (1), Table 4). We
come to the same conclusion by using the density plot below
(Figures 2 and 5):

X ~
X

2
i¼1

λiNðµi; σiÞ (1)

5. Cluster Analysis

Finding the optimum number of clusters will be the first task of
this method [78–80]. The procedure mostly found is a subjective
determination of the number of clusters: k= 1, : : : n with n> 10 by
calculation of the sum of squares where graphically the elbow point
of the relevant convex curve is determined, values k≥ 3 are the
candidate solutions. In this research, a robust and nonvisual method
for choosing the elbow or knee point was suggested using procedure
(UIK) based on EDE method developed by Christopoulos [81–83].
Extensive use in archetypal analysis cases [84] indicates better
results for finding absolute values of SS second differences for UIK
application, see Figure 6 where the same solution has been obtained
for k= 10, : : : , 15. Since the optimum number of cluster found by
this method does not change if we vary the upper limit of k, it is
reasonable to accept it as robust UIK method.

Following, we will proceed with cluster analysis for our 65424
hourly loads with 5 clusters. In Figure 7, we see the ranges, while in
Tables 5 and 6, the description of clustering can be found in

Table 2
Estimated peaks with load cuts

Year Load cuts MW Estimated peak MW

2005 165 9651
2007 500 10911
2008 150 10367

Table 3
Yearly risk of DGE effect (MW)

Year Average Risk

2017 9869 30
2018 10076 65
2019 10260 110
2020 10593 145
2021 10700 190
2022 10773 235
2023 10842 278
2024 10910 325
2025 11520 375
2026 11603 430
2027 11690 470

Figure 5
Camel effect PDF estimations
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Table 4
Normal mixtures model for hourly loads (MW)

Component1 Component2

λ 0.23 0.77
μ 4461.78 6117.13
σ 429.36 1077.89
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ascending order of central point. Clusters derived can be named as
Minima, Midlower, Midupper, and Maxima.

From Tables 7 and 8 of daily minima and maxima, the
frequencies can be obtained. Months of low load seem to be in
April, May, October, March, while high loads appear in July,
August, January, and December.

In order to reveal the daily hours of high load, a new index
defined as WSL:

Definition 5.1. Weighted Scaled Load (WSL) for an aggregated
hourly daily maxima is the mean in standard deviations scaled by
the relevant frequency of occurrences

WSL ¼ f
µ

%
(2)

Figure 7
Range of clusters

Table 7
Monthly cases of minima cluster

Month Frequency

Jul 477
Aug 1220
Jan 2204
Feb 2414
Dec 2510
Jan 2988
Sep 3718
Nov 3790
Mar 4096
Oct 5143
May 5563
Apr 5719

Table 8
Monthly cases of maxima cluster

Month Frequency

Apr 43
Oct 134
May 223
Mar 576
Nov 727
Sep 766
Feb 1693
Jun 1776
Dec 2171
Jan 2270
Aug 2875
Jul 4625

Figure 6
Robust UIK

Table 5
Load clusters (MW)

Center Lower Upper Size %

1 4343 1936 4884 39842 28.41
2 5426 4885 5963 41458 29.56
3 6501 5964 7142 41077 29.29
4 7785 7143 10421 17879 12.75

Table 6
Descriptive load clusters (MW)

1 2 3 4

Min. 1936 4885 5964 7143
1st Qu. 4100 5152 6215 7355
Median 4379 5427 6478 7633
Mean 4343 5426 6501 7785
3rd Qu. 4633 5702 6771 8062
Max. 4884 5963 7142 10421
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Based on Equation (2), Table 9 can be derived, where the
criticality of hour 20:00 is noticed. Having determined the
probable season, month, day and hour of peaks, the method
proceeds to the extreme value analysis such as to determine the
magnitude of peaks.

6. Extreme Value Analysis

By collecting the daily minima and maxima, the generalized
extreme value (GEV) distribution will be estimated whose
PDF is given by Equation (3) and CDF in Equation (4), given that
x ≥ μ.

f xð Þ ¼
1
σ

1þ ξ x�µ

σ

� ��1
ξ
�1 e� 1þξ

x�µ

σð Þ�1
ξ

; ξ 6¼ 0
1
σ
e�

x�µ

σ e�e�
x�µ
σ ; ξ ¼ 0

(
(3)

F xð Þ ¼ e�
x�µ

σð Þ�1
ξ

; ξ 6¼ 0

e�e�
x�µ
σ ; ξ ¼ 0

(
(4)

An interesting point with this family of distributions is the existence
of a support interval, i.e., the range of definition, which is shown in
Equation (5), where we see that cases with ξ≠ 0 are of special interest
because they give upper and lower barriers.

S ¼
�1;µ� σ

ξ

i�
ξ < 0

�1;þ1ð Þ ξ ¼ 0

µ� σ
ξ

h
;þ1

�
ξ > 0

8>><
>>: (5)

The estimation of parameters for maxima following Coles [70, 71] and
using the relevant Original S functions written by Janet E. Hefernan
with R port and R documentation provided by Heffernan et al. [85]
is presented in Table 10, while for minima is given in Table 11, the
support of the distribution included and is �1;µ� σ

ξ

� �
,

since ξ< 0 (Weibull type distribution) which is bounded.

A plot of the overall diagnostics of estimations is given in
Figure 8, where the goodness of fit is observed. For the effect of
lower and upper points on the value of support, the next
approximation from calculus follows:

f µ0 þΔµ; σ0 þΔσ; ξ0 þΔξð Þ � f µ0; σ0; ξ0ð Þ þ @f
@µ

Δµ

þ @f
@σ

Δσ þ @f
@ξ

Δξ (6)

for the function

f µ; σ; ξð Þ ¼ µ� σ

ξ
:

The central estimation for the worst-case scenario of daily hourly
loads is approximately Min= 9 GW, Max= 12 GW and is the
heaviest daily task expected from GEV analysis [86–95]. Next is
a challenge to find the specific number of days for return level
and current time by using an optimization method. Starting with
the below definition that,

Definition 6.1. A Return Period of T days for a specific load means
that such a load appears with probability 1/T while the relevant
Return Level RT is the corresponding quantile.

F RTð Þ ¼ 1� 1
T

(7)

given F from Equation (4) thus is exactly

Table 9
Hourly maxima cluster

h freq mean sd WSL

0 154 7507.8 330.8 3494.7
1 36 7421.2 313 853.4
2 6 7598.7 202.3 225.4
3 5 7369.2 179.9 204.9
4 3 7312.3 87 252.1
5 3 7238.3 89.5 242.6
6 2 7284 32.5 447.9
7 21 7392.9 245.6 632.1
8 243 7517 344.7 5299.3
9 789 7700.1 470.6 12909.7
10 1001 7796.8 548.3 14235.3
11 1153 7888.1 610.8 14889.6
12 1281 7943.9 673.7 15104.8
13 1243 7983 725.8 13671.5
14 903 8004.6 741.6 9747.3
15 706 7942.8 701.3 7996.3
16 740 7816.3 619.4 9338.4
17 1104 7737.6 520.1 16425.1
18 1692 7775.1 478.4 27501.2
19 2063 7723.3 444.6 35836.2
20 2201 7671.4 413.4 40842.5
21 1530 7672.7 476.1 24656.5
22 640 7719.9 465.3 10619.3
23 360 7644 394.7 6971.8

Table 10
GEV for load maxima (MW)

Lower 2.5% Estimation Upper 97.5%

μ 6711.61 6734.37 6757.13
σ 806.39 825.01 843.63
ξ −0.17 −0.16 −0.14
support 11282.75 11958.3 12633.84

Table 11
GEV for load minima (MW)

Lower 2.5% Estimation Upper 97.5%

μ 4128.62 4142.9 4157.19
σ 506.74 516.31 525.88
ξ −0.12 −0.11 −0.1
support 8285.79 8915.43 9545.07
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Figure 8
Diagnostics for GEV of daily maxima
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S ¼
�1;µ� σ

ξ

i�
ξ < 0

�1;þ1ð Þ ξ ¼ 0

µ� σ
ξ

h
;þ1

�
ξ > 0

8>><
>>:

RT ¼ µ� σ
ξ
þ σ

ξ
�ln 1� 1

T

� �� ��ξ; ξ 6¼ 0

µ� σ ln �ln 1� 1
T

� �� �
; ξ ¼ 0

(
(8)

Following, the temporal data range divided into many subintervals
and compute the relevant return levels. Then we choose the upper
0.5% part of daily maxima until current time and find the
minimum Euclidean distance for all proposed time windows.
Finally, the one with the smallest distance is used to extract the
return level. The results of this procedure are presented in Figure 9.

It is interesting to study the temporal evolution for the support of
GEV in the case of maxima, see Figure 10, where a relatively stable
pattern at the end of the time curve is observed, around the capacity of
12 MW.

7. Daily Extrema as Spike Alerts

The development of the relevant alerts will be done by giving
the below definitions:

Definition 7.1. Load spike alert (LPA) is called a Boolean
procedure that takes as input a set of past load data and returns
TRUE or FALSE as an alert for the appearance of a spike on the
next month.

Our task is to use daily minimum (DN) and daily maximum
(DX) as reliable predictors used by LPA. A plot of loads for the
entire time range is given in Figure 11, with blue and red
colors the relevant minima and maxima, while the LOWESS
approximation of load (LA) is also plotted. Following Cleveland
[96] in Figure 11, it can be concluded as given below:

1) When minima are much below the LA curve, then relevant
maxima are not spikes

2) When minima reach the LA curve, then relevant maxima are
spikes

3) When minima cross the LA curve from below, then relevant
maxima are extreme spikes

4) When maxima cross from above the the LA, then extreme spikes
follow

So, provided that we can transform our load data to deference’s
from LA approximation, then our conclusions can be
reformulated by using zero axis as a reference. See Figure 12,
where we have also marked the critical points (those that will
lead to the highest spikes). Now that have found two
estimators for dangerous maxima the bellow definitions can be
developed:

Definition 7.2. DailyMin Alert (DNA) is next function of past Daily
Minima (DN) and value:

DNA DNð Þ ¼ TRUE; DN � LA Pð Þ
FALSE; DN < LA Pð Þ

�
(9)

Figure 9
Rolling return level for GEV of daily maxima
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Figure 10
Rolling support for GEV of daily maxima

20
02

−M
ar

−0
2

20
02

−S
ep

−0
2

20
03

−M
ar

−0
2

20
03

−S
ep

−0
2

20
04

−M
ar

−0
2

20
04

−S
ep

−0
2

20
05

−M
ar

−0
2

20
05

−S
ep

−0
2

20
06

−M
ar

−0
2

20
06

−S
ep

−0
2

20
07

−M
ar

−0
2

20
07

−S
ep

−0
2

20
08

−M
ar

−0
2

20
08

−S
ep

−0
2

20
09

−M
ar

−0
2

20
09

−S
ep

−0
2

20
10

−M
ar

−0
2

20
10

−S
ep

−0
2

20
11

−M
ar

−0
2

20
11

−S
ep

−0
2

20
12

−M
ar

−0
2

20
12

−S
ep

−0
2

20
13

−M
ar

−0
2

20
13

−S
ep

−0
2

20
14

−M
ar

−0
2

20
14

−S
ep

−0
2

20
15

−M
ar

−0
2

20
15

−S
ep

−0
2

20
16

−M
ar

−0
2

20
16

−S
ep

−0
2

20
17

−M
ar

−0
2

20
17

−S
ep

−0
2

6000

8000

10000

12000

14000

D
ai

ly
 P

ea
k 

(M
W

)

Support Lower 0.1%
Support
Support Upper 99.5%

Green and Low-Carbon Economy Vol. 2 Iss. 4 2024

318



Definition 7.3. Daily Max Alert (DXA) is next function of past
Daily Maxima (DX) and value:

DXA DXð Þ ¼ TRUE; DX � LA Pð Þ
FALSE; DX > LA Pð Þ

�
(10)

However, it would be interesting to investigate the predictions
given by the two approaches just before the worst-case

scenario, that of 2017, June and August. It is remarkable that
we had next sequence of alerts in (see Figure 13) May 1 and 27
and June 14 and 26–29, and July 19–21 and 23–25 (Figure 14),
and we remind that the highest system spike was on July 23,
13:30:00 at the level of 10421 MW. It is a remarkable
observation that DXA is the first alert while DNA is just before
or on the same day of the spike. Both indicators seem to work
perfect.

Figure 12
Load–LA (Load) (MW)
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Figure 11
Load extrema (MW)
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Daily max alerts

Figure 14
Daily min alerts
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8. Conclusion

The purpose of this research was to develop an innovative
methodology for forecasting the peak of electricity demand to fill a
gap in literature, which is mainly devoted to the energy part of load
(volume). A portfolio of models was developed under an algorithm
utilizing advances of cluster and extreme value analysis [97–101].
The innovative methods of UIK & EDE were used for the optimal
determination of clusters along with the WSL metric to reveal the
daily peaks. It was found that DG of renewables generates a camel
effect on peaks that increase sharpness. This finding opens the door
for future research on the role of storage, batteries, as well as VPP
as an integrated portfolio of renewable generation. The Camel effect
was solved by the use of two normal distributions that simulated the
observations, one component lying at the lower end around a mean
value of ∼4462 MW for 23% of cases, while the second component
lies to the mid-upper with a mean of ∼6177 MW (rest 77% of
hours). The temporal evolution of peak was examined to conclude a
relatively stable pattern producing daily extreme generalized spike
alerts as estimators of daily maxima. A reliable upper limit for the
highest expected hourly peak was found to be at ∼11958 MW to
support the distribution, while for the minima a value of ∼1923 MW
was found as a lower threshold. The rolling return period as an
output from minimizing Euclidean distances from the upper 0.5% of
daily maxima converged to a value of three years, while close to the
historical high of year 2007 reached the value of 16 years. Thus, it
can serve as an estimator of the upcoming peak. Two spike alerts
have been found, the DNA that rises when Daily Minima exceeds
LOWESS approximation and the DXA, which rises when Daily
Maxima is below LOWESS. First alert acts as an index of increasing
load, while the second is closer to the phenomenon of “hook
contraction” before its expansion. The last effect is similar to the
potential energy behavior of a classical mechanical system. The
above results are very important for use by risk management,
strategy and planning of renewables, as well as for their combination
in the wholesale markets under the virtual power plant scheme.
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