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Abstract: This analysis proposes a prediction framework for estimating the probability of fulfilling nationally determined 
contributions (NDC). The framework using conventional empirical methodology (CO-STIRPAT, bootstrapping sampling, and 
system dynamics) is employed to project the paths of carbon emissions up to 2030. When the approach is applied to data in the 
Republic of Korea (ROK) presents that the effect of increasing the share of green energy alone may not be enough to achieve the 

NDC target by 2030. Additional efforts are required to adopt advanced climate technologies related to carbon intensity and energy 
efficiency, given the predicted economic conditions until 2030. Alternatively, it may be appropriate for ROK to slow down the 
pace at which it raises its NDC. Our prediction framework can provide information that can motivate countries to reevaluate 
whether the ambition level of its target is compatible with the projected economic conditions and to set more reasonable goals in 
their subsequent NDCs. 
 
Keywords: bootstrapping sampling, carbon emission, energy mix, Global Stocktake, NDC, STIRPAT, system dynamics 

 
 

1. Introduction 
 

The parties have committed to nationally determined 
contribution (NDC) targets in a concerted effort to reduce 
greenhouse gas emissions. The countries’ failure to achieve 
their targets will undermine the credibility of their 
commitments to limit global warming. If countries keep 
reducing emissions at the same speed after meeting their 
NDCs until 2030, the odds of maintaining warming below 
2°C increase from 5% to 26% (Liu and Raftery 2021). 

Thus, assessing the feasibility of NDC targets is a key 
element in charting a carbon-neutral pathway to sustainable 
development. Achievability can be influenced by the 
implementation gap, the ambition gap, and the current state 
of emissions. According to Perino et al. (2022), a country's 
targeted pathway may differ from the expected pathway 
achieved through current instruments of climate policy. As 
addressed in Friedlingstein et al. (2022), the 1.5° corridor 

of the Paris Agreement implies the carbon budget which 
relates to the ambition gap. Carbon emissions are strongly 
influenced by the level of economic activity and the energy 
demand it generates, so the likelihood of achieving the 
NDCs depends on the medium-term economic outlook to 
2030.    

This research aims to suggest an operational 
framework for assessing the NDC targets’ achievability. 
Our paper goes like this. First, we introduce the related 
literature and describe the framework used for the analysis. 
Next, we design the empirical model and show the data. 
We then apply the framework to ROK data and its NDC 
target, presenting the empirical results. Lastly, we present 
future research directions while concluding the paper.  

 

2. Literature Review 
 

This study is deeply related to four research streams: 
NDC target attainability, drivers of carbon emissions, system 
dynamics, and the nexus between GDP, energy, and 
emissions. Table 1 briefly summarizes the main findings of 
each research stream that are closely related to this paper. In 
Panel A, some papers have investigated if parties are 
progressing toward their NDCs. There is a concern that 
countries with high CO2 emissions will not be able to 

achieve their promised contributions simply by 
implementing current policies. In Panel B, many studies 
have analyzed the major drivers of carbon emissions by 
using the IPAT, the Kaya identity (or the ImPACT), and the 
STIRPAT framework. Many papers identify drivers of 
carbon emissions by analyzing factors of the Kaya identity. 
In Panel C, some works have applied system dynamics to 
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address how climate policy impacts the economy. Panel D 
shows some papers in which the causal links between carbon 
emissions, GDP, and energy consumption are analyzed. 
Those studies concentrate on whether energy consumption 

or GDP affects carbon emissions. Conversely, our analysis 
tries to verify the way NDCs make an impact on energy 
consumption or GDP through carbon emission reductions. 

 

Table 1 
Key findings of relevant research 

Panel A. Committed NDCs and feasibility 

Paper Finding 

den Elzen et 

al. (2019) 

Some of the G20 economies are off track to 

fulfill their NDCs. 

Dong et al. 

(2018) 

Among the top ten CO2 emitters, seven 

countries will shortfall in meeting targets. 

Liobikienė 

and Butkus 

(2017) 

The EU countries are required to attempt 

more to raise the share of RES and to 

reduce energy consumption. 

Liu and 

Raftery 

(2021) 

The probabilities of achieving their NDCs 

for the largest emitters are low. 

Roelfsema 

et al. (2020) 

For the countries under evaluation, there 

may be an implementation gap to achieve 

their NDCs. 

 

Panel B. Carbon emissions drivers 

Paper Finding 

Ang and 

Zhang 

(2000) 

The impact on the intensity and the total 

carbon emissions are analyzed within the 

Kaya identity. 

Hwang et 

al. (2020) 

The decomposed variables in the Kaya 

identity have significant indirect effects on 

carbon emissions. 

Wang et al. 

(2021) 

For 198 countries between 1990 and 2018, 

the robust U-shaped EKC was confirmed 

from the STIRPAT perspective. 

York et al 

(2003) 

In STIRPAT, a more exact specification is 

allowed for the environmental impact 

sensitivity to the driving forces. 

 

Panel C. Climate policy and system dynamics 

Paper Analysis 

Ahmad et 

al. (2015) 

A model for Malaysia is constructed to 

investigate the effect of feed-in tariffs till 

2050. 

Al-Refaie 

and 

Abdelrahim 

(2021) 

A system dynamics model is used to 

analyze the effect of green logistics on the 

total transportation cost. 

Daneshgar 

and Zahedi 

(2022) 

A dynamic production profitability model is 

developed to analyze a hydro reservoir 

system in Iran. 

Nair et al. 

(2020) 

A model for Malaysia is used to examine 

the role of renewable energy in the energy 

mix. 

Smit, 

Musango, 

and Brent 

(2019) 

Issues about energy bias, energy fuel 

choice, and energy switching are 

investigated through system dynamics. 

 

Panel D. Nexus of climate policy, emission, NDC, 

energy, and GDP 

Paper Analysis 

Gyimah et 

al. (2023) 

Carbon emissions in Ghana are affected not 

by economic growth but by renewable 

energy and fossil fuel. 

Khan et al. 

(2021) 

The causality between carbon emission and 

GDP growth, along with the bidirectional 

causality between energy use and 

economic growth are identified. 

Raihan et al. 

(2022) 

In Malaysia, environmental quality is 

deteriorated by economic growth, whereas 

carbon emissions are reduced by 

technological innovation and renewable 

energy. 

Sohag, 

Chukavina, 

and 

Samargandi 

(2021) 

TFP in the production process is spurred by 

the use of renewable energy in the long run 

under various macroeconomic channels.  

Wen et al. 

(2021) 

In South Asia, economic growth leads to 

environmental pollution at the early stages 

of development, confirming 

the EKC hypothesis. 

 

3. Analytical Framework 
 

3.1 CO-STIRPAT 
 

The models used in this analysis are consistent with 
those that assess the impact of economic activity on carbon 
emissions: STIRPAT, ImPACT, and IPAT. For IPAT, the 
environmental impact (I) is expressed as the product of three 
components (population P; affluence, A; technology, T), as 
addressed in Commoner (2020) and Ehrlich and Holdren 
(1972). In this approach, environmental degradation is 
explained by increasing affluence patterns, technological 

advancements, and population growth. ImPACT is an 
extended version of IPAT (Waggoner and Ausubel 2002) 
that includes consumption (C) as an additional factor, 
emphasizing the interconnections between consumption 
patterns and other components (technological choices, 
economic development, population dynamics). STIRPAT is 
a statistical approach to IPAT (Dietz and Rosa 1994; Rosa 
and Dietz 1998), it estimates the impacts of PAT 

components on the environment through regression 
technique. As a modified STIRPAT (Jin 2023), CO-
STIRPAT incorporates a stochastic component in the 
dynamic path for each component of the Kaya identity (or 
ImPACT). The approaches aim to capture the relationship 
between environmental impacts and human activities while 
they incorporate different variables. 

 

3.2 System dynamics 
 
We utilize the CO-STIRPAT dynamic system to 

analyze the feedback loops and interconnections to gain 

insights into its dynamic behavior. Table 2 shows the 
notation, definition, and type of components included in the 
system. Each element represents the key angles that describe 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-pollution
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the national economy. Two components (K, P) are stock 
variables. Eight components (A, B, C, E, G, L, Q) are flow 
variables. The remainder (α, β, γ) are ratio variables 
calculated by other components. 

 

Table 2 

Components of dynamic system 

Notation Definition Type 

A Total factor productivity Flow 

B Brown energy consumption Flow 

C Carbon emission Flow 

E Energy consumption Flow 

G Real GDP Flow 

K Real capital stock Stock 

L Labor Flow 

P Population Stock 

Q Production Flow 

α Economic activity participation rate Ratio 

β Brown energy weight Ratio 

γ Capital growth rate Ratio 

 
Figure 1 shows a causal loop diagram of the CO-

STIRPAT dynamic system with 12 components. The 

diagram includes three feedback loops (yellow, blue, and 
brown). The yellow loop describes the dynamic evolution of 

labor supply. For an exogenously given population 𝑃𝑡, the 

economic activity participation rate 𝛼𝑡  is affected by the 

previous level of TFP 𝐴𝑡−1. Labor supply 𝐿𝑡 is determined 

by multiplying the population 𝑃𝑡 by the economic activity 

participation rate 𝛼𝑡 . Labor then enters the production 
function as in traditional economic growth theory. The blue 
loop shows the dynamic evolution of capital accumulation. 

Once the current TFP level 𝐴𝑡 is determined, along with the 
level of production, this, in turn, affects the growth rate of 

capital 𝛾𝑡. The current level of capital 𝐾𝑡 is then the result of 

the growth rate 𝛾𝑡 multiplied by the previous level of capital 

𝐾𝑡−1. Capital is another input to the production function. The 
brown loop identifies key causal relations related to carbon 
emissions: production, energy consumption, carbon 

emissions, and productivity. Production activities 𝑄𝑡  first 

drive total energy consumption 𝐸𝑡, then only brown energy 

consumption 𝐵𝑡  entails carbon emissions 𝐶𝑡 . The share of 

brown energy consumption in total energy consumption 𝛽𝑡 

is affected by TFP levels 𝐴𝑡−1. 
 
 
 
 
 

 
 
 
 
 

 

Figure 1 
Causal loop diagram 

 
Note: Color-coded squares are flow variables, white squares with 

double borders are stock variables, and white squares with single 

borders are ratio variables. The population is set as an exogenous 

variable and uses projections from the KOSIS system of Statistics 

Korea. Arrows indicate causal relationships between factors, and 

arrows with two short slashes indicate causal relationships with a 

time lag. 

The CO-STIRPAT dynamic system contains several non-
linear causal relationships, represented in the equations 

below: BL1-2, BR1-4, LO1-2, PR1-3, and YE1-2. The main 
relationship is associated with traditional inputs (labor and 
capital) in production function. The constant elasticity of 
substitution (CES) is assumed for the production between 
the two inputs. Deviating from a typical CES function, we 
set productivity as a non-linear function that varies with time 
and carbon emissions, as shown in Equation 6. Causality in 
the yellow and blue feedback loops is related to the economic 

cycle of inputs to production (capital and labor): Equations 
BL1-2, PR1-3, and YE1-2. The brown loop corresponds to 
causal relationships in ImPACT: Equations BR1-4. For 
example, these causal links reflect energy efficiency 
(Equation BR3) and carbon intensity (Equation BR2), which 
are key indicators of the extent of the transition to a low-
carbon economy. 

𝐺𝑡 = 𝐴𝑡𝑄𝑡 (PR1) 

𝑄𝑡 = {𝜔𝐿𝑡
𝜌

+ (1 − 𝜔)𝐾𝑡−1
𝜌

}
1 𝜌⁄

+ ε𝑄,𝑡 (𝑃𝑅2) 

𝐴𝑡 = 0.5π(t) + 0.5π(𝐶𝑡−1) + ε𝐴,𝑡 (PR3) 

𝐾𝑡 = 𝛾𝑡𝐾𝑡−1 (BL1) 

𝛾𝑡 = 0.5π(t) + 0.5π(𝐴𝑡) + ε𝛾,𝑡 (BL2) 

𝐿𝑡 = 𝛼𝑡𝑃𝑡 (YE1) 

𝛼𝑡 = 0.5π(t) + 0.5π(𝐴𝑡−1) + ε𝛼,𝑡 (YE2) 

𝐵𝑡 = 𝛽𝑡𝐸𝑡 (BR1) 

𝐶𝑡 = 0.5π(t) + 0.5π(𝐵𝑡) + ε𝐶,𝑡 (BR2) 

𝐸𝑡 = 0.5π(t) + 0.5π(𝐺𝑡) + ε𝐸,𝑡 (BR3) 

𝛽𝑡 = 0.5π(t) + 0.5π(𝐴𝑡−1) + ε𝛽,𝑡 (BR4) 

π(𝑧𝑖) =
θi,0

1 +  exp[−θi,1(𝑧𝑖 − θi,2)]
(LO1) 

ε𝑖~N(μ𝑖  , 𝜎𝑖
2) (LO2) 
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We also introduce time lags in some causal links. In 
Figure 1, straight lines with two short slashes represent those 
causal links with time lags. In the brown loop, we assume 
that the previous year's carbon emissions have a staggered 

effect on the current year's TFP in Equation PR3. A 
relationship in which productivity decreases as carbon 
emissions increase implies that green growth is possible, and 
our empirical analysis confirms this relationship. Similarly, 
the previous year's TFP has a staggered effect on the current 
year's share of brown energy consumption in Equation BR4. 
Other influences can be found in the yellow and blue rings. 
The capital evolution function considers the lag between 

when capital is used for production (Equation PR2) and 
when it is accumulated (Equation BL1). Similarly, TFP in 
the previous year has a staggered impact on the labor force 
participation rate in the current year in Equation YE2. 

 

3.3 Scenarios 
 
The pathway without the effect of implementing 

climate policies is the baseline scenario Path[A]. An 
alternative scenario is the pathway with a changing energy 
mix (brown vs. green). For a given output, an increasing 
share of green energy reduces carbon emissions, which leads 

to a gradual decrease in carbon intensity while energy 
efficiency is constant. This scenario Path[B] assumes 
meeting the 2030 NDC target through climate policy 
compatible with a gradually increasing share of green 
energy. Carbon emissions projections in Path[B] are 
compared with the NDC pathway.  The result of the baseline 
scenario can provide clues to whether NDC goals are 
compatible with implemented policies. We compare the 

NDC target pathway announced by the ROK with the 
projected pathway derived from the dynamic system.  

 

3.4 Prediction interval 
 
We use Monte Carlo methods to derive the distribution 

of projected carbon emissions. The prediction interval shows 
the range of values that are likely to contain the true value of 
future carbon emissions based on the CO-STIRPAT 
dynamic system. The derivation of the prediction interval 
proceeds as follows. After obtaining residuals from training 
the CO-STIRPAT dynamic system, we generate randomized 

noise data by bootstrapping technique for each year from 
2023 to 2030. Once you have estimates for the parameters 
and initial values in 2022, you can predict the trajectory of 
the component's path from year to year until 2030. Repeat 
this step tens of thousands of times. The next step is to 
calculate the prediction interval by calculating the intervals 
of the selected confidence levels, 95%. From the distribution 
of paths, we calculate the probability of achieving the NDC 

goal. This can help identify ambition gaps and 
implementation gaps for current NDC targets.  

 
 
 
 

 

4. Empirical Analysis 
 

4.1 Data and Estimation 
 
We first estimate the relationship between components 

of the CO-STIRPAT dynamic system. Our dataset comprises 
capital, carbon emission, (brown and total) energy 
consumption, GDP, labor (economic activity population), 
and population. We obtain their annual data from the KOSIS 
system of Statistics Korea and the Bank of Korea ECOS 
system, for 43 years (1980-2022). As for value-based 
indicators such as GDP and capital, we use real variables 
rather than nominal variables to control the effects of 

inflation. By standardizing each variable as a ratio of its level 
at base year 2018, the empirical analysis is conducted on 
variables that are scale- and unit-independent. Note that the 
carbon emissions in Korea peaked around the year 2018. In 
our empirical analysis, we also use years divided by 1,000 to 
adjust for scaling differences with other variables. The 
population is set as an exogenous variable and uses 
projections from the KOSIS system of Statistics Korea. 

We estimate six causal relationships based on the 
nonlinear function given in equation (1): the relationship 
between inputs (labor, capital) and output (GDP), GDP and 
energy demand, energy demand and carbon emissions, 
productivity and employment, productivity and carbon 
energy share, and capital growth and productivity. We 
assume a nonlinear relationship between the components of 
each causal relationship, and we use nonlinear regression 

techniques to account for this nonlinearity. Compared with 
traditional linear regression, which assumes linearity of 
causality, nonlinear regression has more flexibility to 
capture various forms of nonlinear relationships between 
factors, like in the equations: BL1-2, BR1-4, LO1-2, PR1-3, 
and YE1-2. Table 3 shows estimates for the coefficients of 
the functions that make up the dynamic system. 

 

Table 3 

Estimated parameters 

 π(t) π(𝑧𝑖) 

Equation θ0 θ1 θ0 θ1 

BL2 2.08  0.22  2.08  0.56  

BR2 2.49  35.83  2.48  -4.47  

BR3 1.44  -162.13  1.44  -1.37  

BR4 1.62  -3.97  1.62  0.88  

PR3 1.52  -97.29  1.53  0.25  

YE2 1.26  0.77  1.26  -0.76  

 ρ ω   

PR2 -0.08  0.31    

Note: These parameters are estimated under the condition that θ2 =
2 in π(t) and θi,2 = 1 in π(𝑧𝑖). 

 
Figure 2 shows fitted values along with observed values 

for six components of the CO-STIRPAT dynamic system. 
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The curve is shaped by the non-linear regression 
coefficients, and the causal relationship between 
components is represented through the fitted line in Figure 
1. These estimated lines are used to predict the trajectory of 

the elements until the target year of NDC, 2030. Note that 
the carbon emissions in Korea peaked around the year 2018. 
Given this, we perform an empirical analysis of the yearly 
levels of the variable in proportion to 2018 levels and set 
θi,2 = 1 in π(𝑧𝑖) (corresponding to the value at the peak year 

2018). Also, we set θ2 = 2 in π(t) (corresponding to the year 

2,000). The assumption is to consider that the Korean economy 

experienced structural changes before and after the 1997-98 East 

Asian financial crisis. In Figure 2, the green vertical dotted 
line represents the year 2018. 

 

Figure 2 
Observed value vs. Fitted value 

A. Emission B. Energy 

  
C. GDP D. Capital change 

  
E. Employment rate F. Share of brown energy 

  
 

4.2 Distribution of residuals 
 
Next, we check the distribution of estimated residuals. 

Table 4 shows descriptive statistics for residuals of six 
components of the CO-STIRPAT dynamic system. The table 
shows the Jarque and Bera (JB) normality statistics along 
with other descriptive statistics. Under the null hypothesis of 
normality, the p-value means the probability of obtaining the 
estimated test statistic. The test results show that residuals 
for ratio components (α, β, γ) are log-normally distributed 
whereas residuals for level components (C, E, G) are not log-

normally distributed. This shows that it is appropriate for us 

to use the bootstrapping technique to derive the prediction 
interval. 

 

 

Table 4 
Normality test of residuals 

Vari. Mean SD Skew Kurt JB p-val. 

C 0.000 0.075 -1.405 1.818 20.06 0.000 

E 0.000 0.048 1.092 0.224 8.63 0.013 

G 0.000 0.025 -1.617 5.018 63.85 0.000 

α 0.000 0.021 0.242 -0.914 1.92 0.383 

β 0.000 0.015 0.795 0.216 4.61 0.100 

γ 0.000 0.030 -0.531 -0.544 2.55 0.279 

 

4.3 Probability to fulfill NDC 
 
Figure 3 compares the predicted pathway with the NDC 

target pathway until 2030. Carbon emissions increased 
through 2018, dropped during the pandemic, and recovered 

after the pandemic. Our analysis shows that the NDC target 
pathway remains below the estimated pathway until 2030. 
ROK may not fulfill its NDC target unless it significantly 
improves policy implementation through that point, since the 
NDC target path deviates from the 95% prediction band 
before 2030. 

 

Figure 3 

Predicted pathway vs. NDC target pathway 

 
 
Figure 4 presents the trajectory of the probability of 

going along with the NDC target pathway during the coming 
eight years (2023 to 2030). Using the baseline pathway [A], 

the probability of achieving the NDC target by 2030 is less 
than 0.1%. The continuous decline over time indicates that 
the effectiveness of current climate policies may not be 
sufficient to achieve the final NDC target in 2030. In 
pathway [B], policies that change the energy mix may be 
somewhat effective in increasing the probability of 
achieving the NDC target pathway. However, the probability 
of meeting the NDC target is still less than half under the 

assumption that the existing patterns among the components 
of the CO-STIRPAT dynamic system up to 2022 continue 
through 2030. This means that the effect of increasing the 
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share of green energy alone may not be enough to achieve 
the NDC target by 2030. 

 
 

Figure 4 
Probability of meeting the NDC target 

 
 

5. Discussion  
 

5.1 Main results 
 

The model predicts that South Korea faces material 
risks of being short of its NDC goals. Prior research shows 
similar results. According to Dong et al (2018), South Korea 
is expected to fall short of its NDC targets. According to 
Elzen et al. (2019), South Korea appears to need to do more 
to meet its targets. However, readers should consider these 
results carefully, as Elzen et al. (2019) provide the following 
caveats: First, uncertainty exists in all projected pathways 

related to exogenous factors such as population growth, 
technological advances, and policy impacts. Pathway [B] 
can take into account recent information through 2022, but 
there is uncertainty about the implementation gap. Second, 
countries that are far from their NDCs may be able to take 
more effective mitigation actions than countries that are 
currently close to their NDCs. The level of ambition could 
affect the level of effort to fulfill NDCs along with the 

strength of current policies. 
 

5.2 Implication for NDC update 
 

Measuring the achievability of NDC targets provides 

significant insights for Global Stocktake (GST) and regular 

NDC updates. Global Stocktake serves as a reality check on 

countries' collective efforts to fulfill their NDCs. Global 

Stocktake identifies the gap between current emissions 

trajectories and the emissions reductions demanded to stay 

within desired temperature limits. It highlights areas where 

countries' NDCs may fall short in terms of ambition and 

implementation. Höhne et al. (2018) suggest that it is 

particularly important to assess the ambition of national 

climate proposals because periodic reviews of national 

                                                
1 Matters relating to the global stocktake under the Paris 

Agreement. https://unfccc.int/documents/636584. 

contributions are called in the Paris Agreement. Our analysis 

can provide information that can motivate countries to 

reevaluate whether the ambition level of its target is aligned 

with the latest economic conditions and to set more 

reasonable goals in their subsequent NDCs. Our analysis can 

also inform countries about areas of implementation where 

they need to improve their efforts. It may be required for a 

country to adopt more effective policies for raising the 

probability of fulfilling its target. Measures for carbon 

intensity and energy efficiency are included in such policies. 

In addition, high odds of being short of the NDCs indicate 

that opportunistic or strategic motivations might result in 

overly ambitious targets. In such a case, efforts to improve 

transparency and accountability will be required to ensure 

robust reporting and monitoring systems. 

 

5.3 Research contribution and limitation 
 
Our analysis is so flexible that it can be modified easily 

to compute the probability of meeting the NDC target of 
individual countries by accommodating uncertain factors. 
Any projection includes the uncertainty associated with 

several components. According to Rogelj et al. (2017), the 
likelihood of limiting warming below 2 °C can be affected 
critically by this uncertainty. When we need to incorporate 
additional components, our model can be easily revised to 
add error terms relevant to those components. Liu and 
Raftery (2021) suggest a large-scale statistical framework 
using a joint Bayesian hierarchical model. Whereas the 
large-scale model concentrates on global carbon emissions, 

we propose a small-scale model to design a concise tool to 
predict each country's emissions. It would be more 
manageable to accommodate the specificities of individual 
countries in our small-scale model. Also, it would be easier 
to identify properties of the whole that are difficult to find 
among the elements’ properties. In particular, the co-
movement in major drivers of carbon emissions can be 
assessed systematically in our approach. In STIRPAT 

(similarly, ImPACT or IPAT), the components are assumed 
to change individually. Although CO-STIRPAT tries to 
incorporate interconnections, it is done through indirect 
relationships (the correlations between shocks). By 
comparison, our approach includes direct interconnections 
between main components. For instance, COP28 assessed 
the level of implementation of NDCs by Parties to the 
UNFCCC through the first GST and adopted the UAE 
Consensus as a decision document. 1  The consensus 

recognizes the need for deep, rapid, and sustained reductions 
in emissions by tripling renewable energy capacity globally, 
doubling the global average annual rate of energy efficiency 
improvements, and accelerating zero- and low-emission 
technologies by 2030. Our methodology can contribute to 
analyzing the economic effects of these changes. In such a 
context, it may be useful to try machine learning models 
(extreme learning machines, support vector machines, 

random forests, LSTM neural networks, and 
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backpropagation neural networks) reviewed by Zhao et al. 
(2023). Lastly, the size of climate finance can affect the 
feasibility of the NDCs. It is critical to scale up private 
climate finance, which can be addressed by linking it to ESG 

investments. Since climate risk is regarded as a systemic 
ESG risk, our methodology can integrate ESG investment 
which coevolves with climate finance.2  

 

6. Conclusion 
 
This paper suggests a framework to estimate carbon 

emissions through the CO-STIRPAT dynamic system. The 
approach assumes that the inter-connectedness of the 
components will remain unchanged for the prediction period 
and measures the probability of fulfilling the NDC targets.  

The analysis results show that advances in energy mix are 
critical to making achieving the 2030 NDC target more 
feasible without hampering economic growth, given 
exogenous population growth. The information on the 
probability provides essential implications for the NDC 
updates. Empirical evidence implies that ROK faces a quite 
challenge to fulfill its 2030 NDC target. More efforts are 
required to be made to promptly adopt emerging climate 
technologies regarding carbon intensity and energy 

efficiency, given the predicted economic conditions until 
2030. Alternatively, it may be appropriate for the ROK to 
slow down the pace at which it raises its NDC. 

We make some suggestions for the following research. 
Our framework’s premise is that the CO-STIRPAT dynamic 
system correctly captures the major components determining 
carbon emissions. Follow-up studies may examine the effect 
of incorporating additional components to uncover richer 

associations. Next, our investigation is conducted under the 
hypothesis that the inter-connectedness of components 
remains stable over time. If future research needs to modify 
the model to serve as an appropriate benchmark for a 
particular country, the model can be improved to 
accommodate the structural breaks observed in that country's 
economy. Last, our analysis provides an intuitive description 
of evaluating the probability of achieving NDC targets. Our 

conveniently modifiable tool would be utilized to explore 
policy strategy about how the observed gaps against NDC 
targets can be managed. We hope the framework enables us 
to improve climate policy implementation. 
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