
Received: 8 October 2023 | Revised: 19 February 2024 | Accepted: 8 March 2024 | Published online: 11 March 2024

REVIEW

Policy Implementation Roadmap, Diverse
Perspectives, Challenges, and Solutions
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Abstract:Hydrogen is a nearly emission-free energy carrier withmany enticing qualities, including wide availability, environmental friendliness, and
a high calorific value. There have constantly been a lot of challenges to establish an entire fledge low-carbon hydrogen (LCH) economy in the past
century. This study aims to critically analyze the economic, environmental, technological, and policy implementation and division of LCH to find novel
solutions, bridging the gaps and giving a perspective approach to the study. Differentiation of various LCH components, including green and blue
hydrogen, was also proposed based on the life cycle assessment emissions. Current policy perspectives and promised pledged perspectives are
considered to project hydrogen demand in 2030. A thorough economic analysis of LCH system technologies is also conducted from both
hydrogen production and storage perspectives by comparing various production and storage systems. Current policies toward LCH were critically
viewed from policymakers, consumers, and R & D perspectives, through which several challenges, gaps, and keynote necessities were also stated.
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Abbreviations

LCH Low-Carbon Hydrogen
LCAE Life Cycle Assessment Emissions

LCHEF Low-Carbon Hydrogen Economy Framework
PV Photovoltaics

FCEV Fuel Cell Electronic Vehicles
KT Kilo Tons
CPP Current Policies Perspectives
PPP Promised Policies Perspectives
NZE Net Zero Emissions

CCUS Carbon Capture Utilization and Storage
HRS Hydrogen Refueling Station
SR Steam Reforming
POx Partial Oxidation
ATR Autothermal Reforming
O&M Operation and Maintenance
LCA Life Cycle Assessment
OSG Origin Scheme Guarantees

LCHVC Low-Carbon Hydrogen Value Chain
FCV Fuel Cell Vehicles
R&D Research and Development

MOP Mission-Oriented Policy
GHG Greenhouse Gases
SDO Standard Development Organizations

LCHEPF Low-Carbon Hydrogen Economy Policy Framework
BAGS Bi-Annual Global Summit

1. Introduction

Hydrogen was discovered in 1776 by Cavendish, who then
named it phlogiston, which means “inflammable air” (Wright
1858). Since then, there have been several advances toward the
production and properties of hydrogen, particularly derived from
conventional energy sources like natural gas (grey hydrogen, blue
hydrogen, and turquoise hydrogen) [1] and coal (black hydrogen)
to contemporary energy sources like renewable energies (green
hydrogen) [2–5], nuclear energy (pink hydrogen), and solar
energy (yellow hydrogen). If we analyze the overall matter of the
universe, then hydrogen consists of 75% of the total matter [6].

Hence, in today’s world, to thoroughly apply hydrogen in our daily
lives, hydrogen research should be aligned in the following pathways: (a)
hydrogen production (electrolysis, catalysis, CO2 capture,
ammonification, etc.), (b) hydrogen transformation (synthetic fuels,
green ammonia, etc.), (c) hydrogen transport (shipping, trucks,
pipeline, and storage), and (d) hydrogen end-use (steel, chemical,
refineries, shipping, aviation, heating, power generation, etc.). Once
the research is aligned with the specific pathways, then a complete
integrated hydrogen ecosystem (or economy) can be proposed [7–12].
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As we all know, one of the primary reasons for using hydrogen
is to limit the current global carbon dioxide emissions caused mainly
by exploiting carbon-based energy sources. The carbon-based
energy sources roughly entail 73.4% of the total global emissions
generated, easily divided into industrial energy, transport, energy
used in buildings, unallocated fuel combustion, fugitive energy
emissions, and agricultural and fishing energy uses.

It is necessary to transition not only into hydrogen energy sources
but also to low-carbon emitting hydrogen energy sources to limit such
energy sources. For such a transition, it is essential to build a strong
foundation in policymaking as well as an economic setup
specifically based on low-carbon hydrogen (LCH). LCH consists of
roughly four types of hydrogen: green hydrogen, blue hydrogen,
aqua hydrogen, and turquoise hydrogen [5, 13]. For the in-depth
analysis of different colors and shades of hydrogen, it is essential to
understand the overview of the various hydrogen colors, shown in
Figure 1 [14]. Mostly, all the possible sources of hydrogen are
mentioned and differentiated by the respective colors. Further, the
primary current avenues of hydrogen energy usage and its future
applications, the annual hydrogen production capacity of 90 million
tons, and the corresponding investments of ∼ 150B USD have been
highlighted. The key to a hydrogen-based economy substantially
depends on the seamless source of inexpensive energy, which is
expected to be derived from renewable resources [5].

Even though different colors and shades of hydrogen have been pre-
defined in most of the cases, there emerged a necessity for the
fundamental redefining in the case of several divisions and
sub-divisions of hydrogen fuels based on origin. For example, many
renewable energy sources like wind energy, solar energy, biomass,
etc., used in hydrogen production technologies, are expected to
produce green hydrogen. However, upon close analysis and life cycle

assessment (LCA) data summarized in Figure 2 [15–23], the entire
processes are not completely green and can lead to emission of
harmful gases including carbon dioxide. The overview of the
greenhouse gas emissions caused by wind turbines and solar panels
upon analyzing the LCAs, life expectancy (usage time), and the types
of the materials used in the photovoltaic modules are significant in
deciding the carbon emissions. The data related to the emissions
caused by wind turbines and solar PV modules (amorphous,
monocrystalline, polycrystalline) are systematically shown in
Figures 2a and 2b, 2c, and 2d, respectively, which clearly establishes
that even those processes labeled as green and renewable may also
contribute significantly toward the CO2 emissions.

Significantly, the emissions produced due to the following
renewable energy production technologies are less when
compared to other conventional energy sources. While it is in the
right direction toward carbon neutrality and energy transition, it is
still not the final step toward a sustainable future and cannot be
considered 100% green. Therefore, it may be preferred to
differentiate green and blue hydrogen into further sub-divisions,
as shown in Figure 3. Meanwhile, it is expected that the
researchers, policymakers, environmentalists, and governments
initiate, promote, and devise action plans toward a pure carbonless
hydrogen economy [24].

The analysis of the LCA of solar panels and wind turbines was
put forward along with the conventional classification and the novel
classification of hydrogen based on the sustainability of the
feedstock used for production. Upon such classifications, it is pretty
evident that there is an exigent need to develop hydrogen policies.
Such policies could only be developed once there are variable
perspectives from policymakers to researchers to the public. Once
such perspectives are gathered and combined with national and

Figure 1
Different shades and colors of hydrogen for proper standardization and regulations toward supply chain

management of sustainable hydrogen types
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global surveys based on hydrogen demand and LCH economy setup, it
will be very impactful to create strong hydrogen policies for the
establishment of the hydrogen economy [25].

1.1. Hydrogen demand from current policies and
promised policies perspectives

In 2021, the world’s demand for hydrogen increased to over 94
million tons (Mt), up from 91 Mt in 2019 (pre-pandemic levels)
[26–29]. The majority of the increase was for the use of hydrogen
in conventional applications, especially in chemicals, with a rise
of about 3 Mt and refining, with an increase of almost 2 Mt from
2020. The COVID-19 epidemic had a significant impact on

several subsectors, notably refining. In 2021, activity slowed by
the lockdowns and the broader economic recession began to pick
up, as seen by the rise in hydrogen consumption. Most of the
provided hydrogen was made using fossil fuels, which had little
value for reducing climate change; greener production was not
used for hydrogen production due to the inadequacy of proper
facilities, efficiency, and affordability of green hydrogen
production technologies.

In 2021, there was very little demand for hydrogen in new and
modern applications, such as heavy industry, transportation, power
generation, the building sector, or the manufacturing of fuels derived
from hydrogen, at only 40 kilotons (kt) H2 (or roughly 0.04% of the
world’s need for hydrogen) [30–32]. This was mainly for usage in
road transport, which saw considerable growth (60%) even though
it started from a low base. This is due to the faster deployment of
fuel cell electronic vehicles, notably in China’s heavy-duty trucks.

The hydrogen demand based on sectors, which include refining,
industries, transport, buildings, power generation, hydrogen-derived
fuels, and hydrogen blending, is shown in Figure 4 [30, 33, 34].
Although this figure provides significant data from 2019 to 2022
and an estimation for the year 2023, it provides the relevant
projections of 2030 hydrogen demands in million tons. The
projections were made through the analysis of two perspectives,
which include (i) current policies perspectives (CPP) and (ii)
promised policies perspectives (PPP).

The current policies projections (CPP) represent current policy
settings based on assessing the policies implemented and those
declared by governments worldwide, sector by sector. By 2030,
the CPP’s projection predicts that the global demand for hydrogen
might reach 115 Mt [30]. Most of this expansion would come
from conventional usage, with little need (less than 2 Mt) for
novel applications or the further substitution of fossil-based
hydrogen in traditional uses.

The benefits of keeping climate promises would be minimal. The
Promised Pledges Policies (PPP) rely on the complete and timely
fulfillment of all climate pledges made by governments worldwide,
including nationally determined contributions and long-term net zero
emissions (NZE) objectives. It was observed that the hydrogen
demand would be higher in PPP projections than in CPP projections,
especially in transport, buildings, power generation, and hydrogen-
derived fueling sectors.

Catalytic naphtha crackers and steam crackers for specialized
on-site generation utilizing unrestricted fossil fuels produce the
most hydrogen supply in refining today (approximately 45% of
the reserve each in 2021). Although refineries in China had over 1
Mt of hydrogen from coal gasification in 2021, the latter primarily
relies on steam methane reformers fed with natural gas [35–38].
To satisfy demand, acquired (merchant) hydrogen, the majority of
which is created by steam methane reformers, is added to the on-
site output. To find a better method for hydrogen production, it is
necessary to compare and project the current techniques from
2023 to 2030; these methods include production through fossil
fuels synthesized by carbon capture utilization and storage
(CCUS) or electrolysis, and the projections are showcased in
Figure 5a and b [37].

1.2. Motivation of the review and gaps of current
research

The first article ever reported on hydrogen production was in 1858
by R N Wright; the preparation method stated in his research was a

Figure 2
Generalized greenhouse gas emissions data caused by wind
turbines and solar panels. (a) Wind turbine emissions are
distinguished into air emissions and environmental impacts

(KWh/year). (b) Solar amorphous PV system greenhouse gases
emissions (G-CO2/KWh). (c) Solar monocrystalline PV system

greenhouse gases emissions (G-CO2/KWh). (d) Solar
polycrystalline PV system GHG emissions (G-CO2/KWh), where

EIGWP means environmental impacts GWP
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primary decomposition of water. The procedure included passing water
vapors over red hot iron bits in a porcelain gun barrel tube; pure hydrogen
is obtained through this. It has been nearly 170 years since this research
articlewas published, and still, there has not been a 100%green, efficient,
and affordable process to produce hydrogen. Several obstacles and
limitations that can be broadly categorized into a few pathways
include but are not limited to waste and cost management challenges,
hydrogen transport and storage infrastructure requirements, and
environmental safety concerns, which are currently impeding the
viability of hydrogen as a viable alternative to fossil fuels [39–47]. A
complete overview of the current gaps in LCH economy and research
is showcased in Table 1 [48–54].

2. Economic Analysis of LCH Production

Hydrogen should undoubtedly be as inexpensive as feasible.
However, the hydrogen economy would not take off until
economically and energetically viable. If not, better options will take
over the market. Infrastructures are already in place for practically all
synthetic liquid hydrocarbons, but a brand-new distribution system is
needed for hydrogen [40, 46, 49, 50, 55–61]. The whole energy
supply and distribution system will change as the world moves
toward a pure hydrogen economy. Therefore, all facets of a
hydrogen economy should be explored before making investments.
Due to its low density, hydrogen is far more difficult to store than
fossil fuels. By 2050, 3–4 times more storage infrastructure would
need to be created at the cost of $637 billion to offer the same
degree of energy security as it now if hydrogen were to replace
natural gas in the global economy [41, 42, 62–64].

High carbon emissions (grey H2) are created when hydrogen is
produced, mostly from hydrocarbon-based sources. Moreover, while
being regarded as carbon-neutral energy sources, green and blue H2

have high production costs. The most economical option for
producing hydrogen from natural gas while retaining minimal
carbon emissions is said to be the SMR [47, 65, 66]. To compete

with the current commercial production of grey H2, large-scale
green and blue H2 production systems require a combination of
renewable energy sources. Given the potential benefits of the new
H2 policy and carbon pricing, significant green and blue H2

production can be expected. Due to its ability to connect the green
and blue H2 production systems, H2 may be a viable option for
multi-sectoral decarbonization. Today, providing hydrogen to
industrial customers is a significant global industry. It has been
observed that the worldwide demand for hydrogen is still rising and
already increased more than triple since 1975. Six of the world’s
natural gas and 2% of its coal are used to produce hydrogen. As a
result, the generation of hydrogen results in annual CO2 emissions
of around 830 million tons, equal to the combined emissions (total
or yearly) of the United Kingdom and Indonesia [67, 68]. Large-
scale hydrogen storage is one of the biggest obstacles to a future
hydrogen economy. The expense of adopting alternate liquid
storage methods is frequently more than the cost of creating
hydrogen in the first place, and low-cost, large-scale possibilities
like salt caverns are geographically constrained [69].

2.1. Economic analysis from a hydrogen
production perspective

For a prosperous hydrogen economy, it is necessary to have an
affordable hydrogen production system and a highly efficient
hydrogen-producing facility. For example, bio-photolysis of
hydrogen is a very affordable system that costs $2.13/kg H2 but
has significantly less production efficiency (10–12%). Hence, both
variables are equally crucial for a successful transition. The
emission produced by the current hydrocarbon-based production
pathways, such as steam reforming (SR), partial oxidation (POX),
and autothermal reforming (ATR), primarily limits the use of H2

as a clean energy source. Developing environmentally friendly
hydrogen production methods like electrolysis has provided a
cleaner option for H2 generation. However, detractors quickly

Figure 3
A novel and systematic approach toward differentiating green and blue hydrogen primarily based on

emission output in life cycle assessment

Green and Low-Carbon Economy Vol. 00 Iss. 00 2024

04



point out that the manufacturing process is energy-demanding even
though it produces “green” H2 and O2 [2, 66, 68]. Therefore, the
process is not overall carbon neutral unless alternative renewable
sources are used to lower the energy penalty. Another issue is that
green technologies like electrolysis, which produces green
hydrogen, have more significant production costs than traditional
H2 production methods, which produce grey hydrogen. Figure 6
[70] demonstrates that the cost of producing H2 using electrolysis
($10.3 per kg H2) is five times higher than that of more
established methods ($1.5–2.3 per kg H2). As a result, another
obstacle to the involvement of H2 in the energy mix is the
expense of “green” H2 [70].

Even if we find the necessary efficiency and cost of generation
techniques, we must see their environmental impacts and capital cost
in millions of USD for a more secure future hydrogen economy. The
ecological effects could be easily assessed by energy sources (fossil
fuels, internally generated steam, solar, wind, and nuclear) and
feedstock (natural gas, coal, woody biomass, water + algae,
organic biomass, and water). Using natural gas with the SMR to
produce hydrogen is currently thought to be the most economical
option while still emitting little carbon [70–73]. Large-scale green
and blue H2 production systems’ techno-economic analyses
indicate that integrating renewable energy sources is necessary to
compete with the market’s current grey H2 output [33, 34, 74–76].

If the carbon tax is implemented, the argument will be
considerably stronger. Therefore, the large-scale green and blue H2

generation can profit from considering the new H2 policy and carbon
pricing. Since it enables connections between the green and blue H2

production systems and the other energy sectors, H2 may also be a
promising option for multi-sectorial decarbonization. If integrated
techniques are used, the large-scale manufacturing of green and blue

Figure 4
The projected hydrogen demands both estimated and literature

projections for ammonia, steel, refining, and methanol
production from 2019 to 2023, and up to 2030 based on current
policies perspectives (CPP) and promised policies perspectives

(PPP)

Figure 5
Low-carbon hydrogen production through (a) electrolysis and

(b) CCUS in a million tons (mt) H2
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H2 will be more energy-efficient and commercially feasible. Hence, a
critical outlook on the processes, energy sources, feedstock, and capital
cost in millions of USD is stated in Figure 7 [33].

2.2. Economic analysis from a hydrogen storage
perspective

The power generating (fuel cell) and hydrogen synthesis unit
(electrolyzer) for the hydrogen energy storage system are
independent systems with separate costs, which is shown in
Equation (1) [7, 77–82].

Total capital cost ¼ Electrolyzer cost þ Fuel cell cost

þHydrogen tank or reservoir cost (1)

Suppose a full LCA has to be calculated. In that case, it includes the
system’s running expenses, such as operation and maintenance

(O&M), consumables (such as power), and component replacement
costs for parts that do not last the system’s lifespan. The annual fee
is given in Equation (2) [55].

Annual costð$=KW � yrÞ
¼ Capital cost þ Fixed operation and maintenance cost

þ Variable operation and maintenance cost þ Replacement cost

þ Consumable costðfuel and electricityÞ

(2)

The lifespan of the system and the capital charge rate affect the cost of
capital. Previous studies have determined the expenses of fixed and
variable O&M. Throughout the plant’s life, replacement costs are
annualized for capital expenses. Except for CAES, which also uses
natural gas, other forms of energy storage solely use electricity as a
consumable. Similarly, the annual analysis of the cost to understand
the present values of hydrogen storage can also be calculated as
shown in Equation (3) [83–86]. The various assumptions taken for

Table 1
Gaps, challenges, and solutions of the current hydrogen economy and research

Gaps Challenges Solutions

Economics and cost
management

1. Limitation of adoption and usage of green hydrogen
production procedures

2. The challenge of declining the cost of renewables for the
decrease in green hydrogen generation cost

1. Increasing end-user demand will also reduce the
cost of producing hydrogen through economies of
scale, leading to a decrease in LCOH

2. Spending, regulatory framework alignment, and end-
user demand development are required to scale up
hydrogen supply options

Transport and storage
infrastructure

1. Most massive hydrogen infrastructure projects are still in
the research and development stage

2. Underground pipelines and fueling stations not close to
channels make the hydrogen economy rely on trucks and
trailers for transportation

1. Hydrogen refueling station (HRS) network’s
density must increase to bridge the gap between
remote demonstration fields and the pre-
commercial stage

2. An HRS implementation will enable speedier
deployment and commercialization of hydrogen and
safe and affordable hydrogen delivery for the
rearrangement of gas pipes for hydrogen transport

Hydrogen safety and
environmental
impacts

1. A hydrogen leak will result in an explosion when ignited
or sparked

2. Security and detection are further complicated by
hydrogen’s odorless, nearly invisible flame

1. Setting up standards for hydrogen blending.
2. A dedicated hydrogen network and market need the

modernization and harmonization of regulatory rules
controlling hydrogen

Waste management Each year, 2.01 Gt of rubbish accumulates globally and
eventually ends up in landfills and water supplies,
creating severe environmental problems

1. Recycling should be done to convert the garbage
into hydrogen while boosting waste minimization
and energy conservation

2. There is also a pressing need for more waste to
hydrogen projects and agreements

Key technologies 1. The absence of cutting-edge technology
2. Increasing the commercialization of hydrogen FCVswould

place a high premium and cost on fuel cell-related
technology

1. Commercialize water electrolysis using renewable
energy and then work toward the advancements of
other technologies

Hydrogen
standardization and
specification

1. The overall system and hydrogen refueling stations’
dependability have not met the acceptable standard,
or> 95%.

2. An accurate or standardized measuring technique or
instrument cannot check the hydrogen meter’s accuracy

3. No formation of hydrogen quality standards, compliance,
and efficient methods

The only solution is a need for a global agreement to
pass several hydrogen standardization legislative
policies to make it strict for every country to adhere
to certain hydrogen quality, accuracy, and safety
measures in general

Public ignorance There was a lot of reluctance to switch to a hydrogen
economy among the public. Some of the reasons were
their safety measures and comfort with conventional
energy sources

1. Social acceptance is required for successfully
implementing a hydrogen economy

2. There should be policies based on national as well as
state laws for a successful implementation of the
hydrogen economy
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Equation (3) are system lifetime (20 years), capital charge rate (15%),
discount rate (10%), and inflation rate (2%).

In Equation (3), PV is taken as a current value, F as future cash
flow, n is the number of years, and I is the discount rate. (1+i)n is
denoted as the compound amount factor.

PV ¼ F0=ð1þ iÞ0 þ F1=ð1þ iÞ1 þ F2=ð1þ iÞ2 þ F3=ð1þ iÞ3
þ . . . . . .þ Fn=ð1þ iÞ (3)

It is essential to know that the equations stated abovewere taken from
the literature to understand the present and future value of hydrogen
system costs. Equations (1), (2), and (3) justifications and proof are
thoroughly presented in the National Renewable Energy Laboratory
Technical Report, 2009 [87].

Figure 8a presents the base scenario with current technology
and goal technology and the situation of spilt wind (i.e., free
charging power) with the present value of expenses for bulk
hydrogen systems with 6 h of storage. Figure 8b [80] depicts the
20 year current value of these advantages over the present value
of expenses hints at a potential market for hydrogen if additive
benefits can be realized, affordable charging is made possible, and
system costs are within goal ranges.

Up to this point, cost and benefit analyses have been considered
on a$/kWbasis.Utility companies frequently evaluate energy storage
andproduction technologies, as hasbeen the case for thepast 10years.
Estimation based on a $/kWh basis facilitates comparing energy
storage solutions. Figure 8c [51] illustrates the advantages of
renewables integration and capacity credit on a per-kWh basis.

3. Current Policies and Policy Implementations
from a Policymaker’s Perspective

One of the significant fundamental questions is the necessity
and need for energy transition and sustainability policies. The
other important aspect is to project a LCH economy with and
without policy implementations [88–91]. Policymakers can have a
beneficial influence on both the environment and people by
putting into practice a successful sustainable policy or project. In

addition to enabling businesses to make a difference, this
strengthens their value chains, bottom line, and reputation on the
national, international, state, and corporate levels. Some of the
necessary vital notes that policymakers should use for
implementations of LCH production are demonstrated in Table 2
[42, 56, 88, 92–97].

3.1. Policy implementation challenges from a
consumer perspective

Several barriers must be overcome to hasten the adoption of
hydrogen and fuel cells. Lack of coordination between stakeholders
(such as automakers, fuel suppliers, and customers) and technology
standards, which might promote economies of scale, is a significant
impediment. This is a big challenge since many investments in
hydrogen energy systems need a long-term horizon of at least 10–20
years [26, 96]. All these problems raise the risks of long-term
investments. Additionally, the absence of explicit and legally
enforceable carbon reductionobjectives deters prospective investment.

Policies include purchase incentives for low-emission
automobiles and CO2 taxation systems for vehicles (such as
registration taxes and ownership taxes). In addition, there are also
significant non-financial policies that apply to zero-emission cars,
such as the unrestricted use of public parking spaces, the use of
bus lanes, and free access to cities’ zero-emission zones
[98–100]. Furthermore, as fuel cell vehicles (FCVs) are a low-
emission vehicle technology and help the automotive sector
comply with agreements, stricter fuel efficiency criteria would
boost the deployment of FCVs.

Policymakers must provide a solid, long-term policy and
regulatory framework that directs the transition to a clean energy
economy in all sectors if they want hydrogen to play a significant
role in the decarbonization of the energy system. All parties
involved in this transformation must work together to coordinate
[74, 101, 102]. The advantages of economies and, subsequently, a
decrease in the cost of hydrogen technologies would result from the
harmonization of standards and safety regulations for hydrogen
production and its usage across geographical regions and industries;
this harmonization will occur primarily because of safer conduction
of research as well as free flow adaptation of the technology for

Figure 6
Cost analysis ($/kg) and efficiency of low-carbon hydrogen production technologies to determine the most suitable technology for

LCH hydrogen economy
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industrialization. The use of hydrogen in the energy systemwould also
be supported by an improvement and adaption of current laws and
procedures (such as CO2 emission restrictions and tariffs) by long-
term environmental goals [103–106].

3.2. Policy implementations from a research and
development perspective

Industry decarbonization through hydrogen will necessitate
establishing a supply chain infrastructure and regulatory
mechanisms that encourage hydrogen supply and consumption.
Although current initiatives focusing on producing and using
renewable energy can be built upon, hydrogen-focused policy
tools are required.

National policies include a specific distribution of cash to
encourage R&D in academia and business [107–110]. Providing
programs are also utilized to create specific hydrogen research
centers and programs within centers and provide research project
funding. Some frameworks for regulation and certification address

the hydrogen sociotechnical system’s manufacturing, supply
chain, and industrial usage aspects. Regarding the execution of
rules, countries have had varying degrees of success in putting
policy principles into practice, with many developing nations still
in the early stages of building hydrogen policies, as shown in
Mexico and Latin America [88, 100, 111, 112].

Despite the absence of national strategies and policy
frameworks (roadmaps, action plans), existing regulatory,
certification, and standardization policy frameworks have been
utilized to guide the creation of technical rules on hydrogen usage
in new markets. Therefore, national and sub-national (i.e.,
regional) regulatory bodies should work to adopt harmonized
policy instruments or risk being excluded from accessing
international hydrogen markets, regardless of whether a top-down
(i.e., national policy-driven) or bottom-up (i.e., industry demand-
driven) approach to standards setting is observed, which is also
shown in Figure 9 [14, 113–116]. The regulations and standards
required for LCH based on a research and development
perspective are shown in Table 3 [26, 117–120].

Figure 7
Comparative cost analysis of various low-carbon hydrogen-producing technologies based on capital cost, energy source, and
feedstock. (a) Capital cost for low-carbon hydrogen producing technologies. (b) Energy source and feedstock for low-carbon

hydrogen producing technologies
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3.3. Roadmap of low-carbon hydrogen policies
(LCHP)

LCH, if not the final energy transition tool, requires heavy research
and development to industrialize and commercialize it. As discussed
earlier, policymaking, implementation, and legislative acceptance are
at international, national, and state levels [69, 75]. One of the first
policies implemented in the earliest initiations of policies was in
1999 in Denmark, which was based on the hydrogen energy carriers.
After that, a significant number of policies have been made on the
hydrogen economy, which, once analyzed, numbered out to 158,
based both on national and sub-national levels.

The areas previously covered by policies implemented
included cross-sectoral, transport, buildings, distribution
infrastructure, power generation, energy system level, safety
management system, industry, legislature, purification,
production, etc. Whenever such policies are divided, they are
divided into strategy, committee, national law, program,
scheme, funding, financial incentive, road tax exemption,
innovation strategy, energy strategy, legislative decree, national
plan, etc. [33, 34, 67, 69, 70, 73, 74, 76, 98, 100, 104].

To better analyze the LCHP globally, it is crucial to calculate the
global and national policies in hydrogen electrolysis technology,
hydrogen refueling stations, hydrogen and CO/CO2-based chemicals,

Figure 8
Present and future projections of hydrogen storage system costs. (a) Present value of hydrogen system costs (6 hr–20 yr system). (b)
Present value of hydrogen system costs through additional capacity credit value. (c) Present value of hydrogen system cost through

renewable integration values and 10% interests
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Figure 9
Top-down bottom-up mission-oriented policy (MOP) framework

Table 2
Necessary keynotes for policy implementations of low-carbon hydrogen production and development changes

Keynote necessities Descriptions

Hydrogen strategies on state, national, and
international levels

Each nation must specify the extent of its vision for hydrogen, determine the degree of
assistance needed, and offer a resource on hydrogen development for private financing
and investment

Prioritizing of policies Many different end applications are possible for low-carbon hydrogen economy. The
applications that offer the most value should be identified by policymakers and given
their attention

Origin scheme guarantees (OSG) The entire hydrogen life cycle should be taken into account when calculating carbon
emissions. Explicit hydrogen and hydrogen-based goods labels must be included in
origin schemes to raise customer knowledge and support incentive claims

Support from governments and policy enabling Policies should address low-carbon hydrogen’s incorporation into the larger energy grid
as it gains popularity. To maximize the advantages, industry and civil society must be
involved

Life cycle assessment (LCA) and low-carbon
hydrogen value chain (LCHVC)

Offering sector-by-sector advice on how to develop and put into practice low-carbon
hydrogen policies

Table 3
Standards and regulations of low-carbon hydrogen economy based on research and development perspective

Regulations and standards Overview

Carbon dioxide emissions 1. Foundations of current policies on hydrogen are built on existing approaches that aim to reduce
industrial CO2 emissions

2. A lack of solid and well-defined fiscal and financial incentives for the uptake of hydrogen for industrial
decarbonization could be overcome by such regulations

Energy and environmental impacts 1. Hydrogen policies that encourage the growth of the larger hydrogen ecosystem rather than those
specifically relevant to the industrial use of hydrogen

2. The environmental effects of using hydrogen are typically discussed in policy discussions in various
industries

Origin scheme guarantees (OSG) 1. Renewable energy systems currently employ origin scheme guarantees (OSG) to account for
lifecycle GHG emissions and allow for geographically segregated production and usage

2. The certification programs have also established process boundaries inside the supply chain for
emissions accounting

Low-carbon hydrogen safety,
quality and control

1. Safety, quality, and control are three more significant areas where regulatory frameworks for
hydrogen are robust

2. International, national, and state standard development organizations (SDO) have thorough rules and
standards on current hydrogen applications due to the usage of fossil hydrogen, with end-user safety,
process quality assurance, and other environmental effect controls being handled

Economical regulations 1. As producers will only introduce hydrogen (up to the blend allowances) when renewable hydrogen
is supportive, market price stabilization for hydrogen blending reduces the price

2. Excess renewable energy may be used to combine a prediction of renewable energy capacity with one of
two hydrogen-compatible allocation strategies, either hydrogen storage or network supply
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hydrogen, and alternate fuels. Figure 10 [30] shows the LCHP in
developed and developing countries.

3.4. Comparative analysis of LCH along with
alternative renewables: A global policy perspective

To understand the stance of LCH in front of other alternative
renewable energy, it is essential to analyze the national and
globalized policies implemented for the energy transition, especially
for renewable energy sources [121–125]. Table 4 [126, 127]
discusses some successful global policies implemented for renewable
energy sources, including LCHP.

The four primary categories of national and international policy
concerns vary by nations

1) policy uncertainties and delayed policy responses to the new
macroeconomic environment.

2) insufficient investment in grid infrastructure.
3) bureaucratic administrative barriers and permitting procedures

and social acceptance issues.
4) insufficient financing in emerging and developing economies.

The accelerated case in this paper demonstrates how resolving
those issues can boost the growth of renewables by over 21%,
putting the world on track to fulfill the global pledge to triple
energy production.

Once the successful ongoing global policies under implementationwere
analyzed, one can draw multiple conclusive remarks:

1) Most ongoing globalized policies toward primary renewable
energy sources come from the European Union.

2) From the early 2000s, primary renewable energy sources for
which global policies were made usually involved solar, wind,
and biofuels.

3) Major LCHP came in the 2020s, after the post-pandemic era, in
which most of the current global policies implemented globally
are of LCH in the overall renewable energy sources.

3.5. Net zero targets toward LCH from a global
perspective

Even though different policies, techniques, LCAs, environment
impact analysis, sustainable labeling, climate modeling, and techno-
economic perspectives could be proposed for several LCH
technologies for different industries and countries, it is still essential
to analyze the current and recent development of net zero targets
for several countries. Table 5 [128] discusses the current net zero
targets toward LCH globally.

Figure 10
Number of national and global policies implemented in

developed and developing countries for low-carbon hydrogen

Table 4
Comparative analysis of globalized policies toward renewable energy sources

Policy Country of initiation Year Renewable energy sources

RePowerEu European Union 2022 Low-carbon hydrogen/solar
Australia-Germany hydrogen supply chain Australia 2021 Low-carbon hydrogen
Israel-US clean energy projects United States of America 2022 Wind energy
Global bioenergy partnership United States of America 2006 Bioenergy
Global methane initiative United States of America 2004 Biomethane
Cross-border energy infrastructure European Union 2021 Low-carbon hydrogen
UKEF offshore wind deal United Kingdom 2021 Wind energy
Solar Decathlon United States of America 2002 Solar
Methane to markets partnership United Kingdom 2004 Methane
Norway-Sweden green certificate Norway 2012 Low-carbon hydrogen (for green electricity)
Hydrogen strategy European Union 2020 Low-carbon hydrogen
Strategy on offshore renewable energy European Union 2020 Wind
European climate and energy package European Union 2011 Biofuels
European Union biofuels strategy European Union 2006 Biofuels
Biofuels energy technology platform European Union 2006 Biofuels
Solar thermal technology platform European Union 2006 Solar
Wind energy technology platform European Union 2006 Wind
Biomass action plan European Union 2005 Biofuels
European photovoltaic technology platform European Union 2005 Solar
Directive on biofuels for transport European Union 2003 Biofuels
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Well-crafted and ambitious net zero targets are essential to reduce
greenhouse gas emissions to net zero by 2050 and 2070. This is required
to maintain the 1.5 °C temperature limit set by the Paris Agreement
2015. In the near and medium term, ambitious net zero targets can
also guide the implementation of Paris-aligned activities, particularly
2030 carbon reduction goals [25, 94, 95, 128]. Recently, many
countries, especially G20 nations, have drafted net zero promises,
comprising firm commitments from various stakeholders, such as
environmentalists, governments, citizens, industrialists, citizens, and
policymakers, to envision the Paris Agreement’s targets. Although
various initiatives and actions are taken by public and privately
funded organizations regarding technological solutions, they seem
insufficient to fulfill even 20% of the desired values.

The major technologies adopted by countries through which
such emissions could be reduced entailed two factors: CCUS and
lowering the current emissions. To lower the emissions, green

hydrogen is one of the promising energy alternatives toward a
LCH economy and could also play a significant role in targeting
the United Nations Sustainable Development Goals and
environmental footprint [25, 94].

When the G20 countries—India, China, the United States,
Russia, and so on—present their NZEs, it becomes clear that most
targets are imprecisely worded and do not yet adhere to best
practices for many design components. It will take short-term
solid goals and a clear action plan to reach their full potential,
becoming one of the exigent challenges of LCH technologies.
These assessments aim to comprehensively analyze national net
zero targets so that their breadth, structure, and transparency can
be understood. Without this kind of examination, there is a chance
that claims of net zero that are not adequately supported could
become worthless [25].

4. Cost–Benefit Analysis of LCH

A cost–benefit analysis of LCH is necessary to identify affordable
and effective environmentally benign hydrogen production technology.
The other crucial element is whether or not all factors deciding whether
technology is successful are considered. GHG emissions, consumption
of rawmaterials and utilities,waste disposal, and atmospheric emissions
support renewable techniques over fossil fuel-based technology
[129, 130].

4.1. Strength-weakness-opportunities-threats
analysis (SWOT analysis)

To understand the cost–benefit analysis of LCH production, it is
also essential to analyze the SWOT analysis of LCH production as
described in Figure 11 [75, 116].

4.2. Cost–benefit analysis of LCH

A cost–benefit analysis systematically evaluates a specific plant
or project’s economic, technological, and social performance. For
cost–benefit analysis in LCH, it is necessary to completely break

Table 5
Current net zero targets toward low-carbon hydrogen from a

global perspective

Countries Net zero target year

Chile 2050
Colombia 2050
Costa Rica 2050
European Union 2050
United Kingdom 2050
Canada 2050
Germany 2045
Nepal 2045
Nigeria 2050–2070
South Korea 2050
Switzerland 2050
Thailand 2065
United States 2050
Viet Nam 2050
Argentina 2050
Australia 2050
China 2060
India 2070
Japan 2050
Kazakhstan 2060
New Zealand 2050
Russian Federation 2060
Saudi Arabia 2060
Singapore 2050
The Gambia 2050
United Arab Emirates 2050
Türkiye 2053
Bhutan 2050
Brazil 2050
Ethiopia 2050
Indonesia 2060
Morocco 2030
Peru 2050
South Africa 2050
Egypt No Signified target
Iran No signified target
Kenya No signified target
Mexico No signified target
Norway No signified target
Philippines No signified target

Figure 11
SWOT analysis of low-carbon hydrogen production
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down the analysis process as shown in Figure 12. The process
includes different steps to thoroughly analyze the cost–benefit
analysis of LCH which provides for:

1) Identification of scope of LCH production
2) Cost determination of production
3) Determination of LCH benefits
4) Computational analysis of calculations for cost–benefit analysis

toward LCH
5) Making recommendations and implementing the analysis in the

LCH projects or industrial plants.

A complete in-depth analysis of cost–benefit analysis is shown in
Supporting Information 1.

5. Future Perspectives

Even though several new hydrogen-producing, storage, and
safety technologies have recently emerged, it is still vital for a
complete transition to LCH energy to make it more affordable and
efficient. It is also exigent to produce affordable and efficient
LCH and safer hydrogen storage technologies for future research.
The demand for hydrogen is growing exponentially compared to
other renewable energy sources, and to counter such demand, it is
necessary to bring more advancements to the LCH economy.
Even though technological advances should be made rapidly, it is
also essential to implement policies to commercialize the
applications of affordable and efficient LCH. In recent times,
national strategies have been absent, as well as robust policy
frameworks; hence, for a strong hydrogen economy in the future,
regulatory bodies must adapt to harmonized policy instruments to
commercialize and strengthen the international hydrogen market.

6. Conclusions

The hydrogen economy is the potential future of humankind
and the next phase; arguably, the last phase toward energy
transition is low-carbon/carbon-less hydrogen energy. Several
novelties, challenges, solutions, gaps, and policies were stated in
the study, which had conclusive solid points as follows:

1) With less expensive electrolyzers and renewable power, the cost
of electrolytic hydrogen will surely decrease. However, in areas
with inexpensive fossil fuels and CO2 storage supplies, CCUS-
equipped hydrogen will remain a viable choice.

2) A significant LCA analysis of green and blue hydrogen is
necessary, and as shown in the study, green and blue hydrogen
should be further differentiated into shades based on their
actual emissions caused by respective overall system
technologies.

3) There is a significant projection for both CPP and PPP toward the
demand for hydrogen in 2030 for transport, buildings, power
generation, hydrogen-derived fuels, and hydrogen blending.

4) When the solutions to the current research gaps in the LCH
economy were analyzed, it was adamant to see the exigency to
work toward scaling up, increasing the TRL, safety concerns,
and ignorance shown by the public.

5) Economic analysis from the hydrogen storage perspective
showcased the efficiency and affordability of SR, POX, and
ATR. Still, many research gaps exist in decreasing the cost and
increasing the efficiency toward electrolysis of LCH
production systems.

6) Current policies needed proper district, state, and national
cooperation. For the start of an economy, looking at the
grassroots level first and then moving toward the global level
is necessary and highly recommended.

Figure 12
Step-by-step process of low-carbon hydrogen cost–benefit analysis
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7) The significant research gaps in the current stance of LCH
economy were in the economics and cost management, transport
and storage infrastructure, hydrogen safety, waste management,
and critical technologies. The research found that the most
efficient and affordable LCH production technology was POX

(68% efficiency, 10$/kg) and ATR (66% efficiency, 10$/kg).

Since we are undergoing an energy transition, much research,
development, industrialization, and commercialization are left to
implement an LCH economy fully. Based on the current scenario,
to reach carbon neutrality as an end goal, it is highly important to
address the concerns about the current challenges and gaps faced
not only in the LCH economy but also in other renewable source
technologies and energy transition alternatives.
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