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Abstract: The studymakes an attempt to investigate co-integrating relation between crude and three energy crops, namely sugarcane, soyabean,
and wheat, for India for a sampled period Jan 2011–Dec 2020 by taking log-transformed daily closing spot prices. The dynamic relation between
crude and energy crops is established using ARDL (ARDL) and non-linear ARDL co-integration techniques. The results revealed co-integration
being established only for sugarcane with crop’s critical region improving from 5% to 1% when dummy representing break was included in the
ARDL model. The asymmetric impact of crude on sugarcane was visible both in short and long run. Further, short-run results were in one
direction only, i.e., a rise in crude was impacting prices of two crops, namely sugarcane and wheat, with no visible impact of any of energy
crops on crude. The coefficient of error correction term (ECM(−1)) term for sugarcane was −0.005 which was negative and significant
showing stability of equilibrium; however, adjustment speed was rather slow at 0.5% per period. The study recommends policy makers to
harmonize and synergize energy and agricultural policies as both sugarcane and wheat are food staples in India. The country needs to
develop a pre-warning and a crisis response mechanism regarding biofuel policies so as to avoid any food crisis situation as seen in early
2000 in some of the countries where energy crops significantly make way to biofuels.
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1. Introduction

Traditionally, empirical research on commodities focused
primarily on prices and returns and revolved around theoretical
pricing model of demand–supply dynamics. However, during the last
two decades what has been witnessed is a clear shift in approach of
the researchers toward this asset class, the primary reason being
unexpected recurring price swings which go beyond the economic
fundamentals, thereby resulting in financialization of this asset class
(Dahl et al., 2020). Moreover, researchers now tend to focus on less-
researched areas including commodity price variability and return
volatility and have started applying models to commodities, which
are commonly applied to stocks and shares. This again would be
viewed by many as growing importance of commodities, which is
now ready to give tough fight to traditional assets like stocks and bonds.

Among the commodities, a center of attraction has been exploring
the linkages between energy crops and crude. The interest began after a
seminal work by Pindyck and Rotemberg (1990) when they formulated
the excess co-movement hypothesis, explaining how commodity prices
like crude, wheat, and cotton were moving in excess of what macros
could explain. Further, when researchers started exploring the
reasons responsible for this excess co-movement hypothesis,
interaction between food and fuel markets was brought to limelight.
Researchers initially worked on a theoretical model framework (de
Gorter & Just, 2008; Gardner, 2007) with some applying partial and

general equilibrium models to study this relation (Banse et al., 2008;
Hertel & Beckman, 2011). The recent studies have gone ahead and
developed the relation by studying the time series models (Shahani
et al., 2022; Zhang et al., 2010).

Among those who have studied crude–crops relation by
developing theoretical models include Gardner (2007) who
showed that when crude prices were high, there was a substantial
price transmission from crude to corn. On the other hand, Lapan
and Moschini (2012) showed how energy prices get delinked
from biofuel prices when the mandate determined these prices
over and above the tax credit. Then researchers like Searchinger
et al. (2015) using partial equilibrium models proved that all the
emission gains from using biofuels were obtained only at the cost
of reduction in food resources primarily used for consumption.
Banse et al. (2008) in their study showed that mandatory blending
policies of the government were impacting strongly the crop prices.

Apart from theoretical models explaining crude energy crops
relation, the field of crude–energy crops nexus has been studied
using empirical time series models. Such models have gained
importance after the food crisis of 2006 for which blame was
placed on biofuels obtained from energy crops. The research also
showed that the link between energy crops and crude had actually
strengthened during the period of the food crisis and thereby
enabling academicians and practitioners to look out for in-depth
reasons as to what had changed during this period of food crisis
which had created a strong bonding between energy crops and
crude (Eissa & Al Refai, 2019).
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A number of interesting explanations have been put forth for
this crude oil-energy crops nexus, and these include rise in input
costs of cultivation due to increased transportation costs, costs
associated with running tube wells and tractors, rise in prices of
fertilizers, pesticides, and so on (Fowowe, 2016; Janda &
Krištoufek, 2018). Then, research has proved that high crop prices
triggered a land use competition among different crops with
farmers inclined toward plantation of profitable energy crops
(Cheng & Cao, 2019). Also, rise in crude prices has a macro
dimension, i.e., it adds to the overall economy’s import bill
impacting balance of payment and foreign exchange reserves of
the economy (Eissa & Al Refai, 2019).

Studies have also found that state interference through
government policies has also contributed to increased correlations
among the crude and agricultural crops. Government policies
aimed at promoting ethanol production like renewable fuel
mandate, subsidies to blenders, import tariffs, etc. actually
performed the role of a catalyst in energy crops-crude nexus.
Government also provided support to the markets of biofuels
indirectly through the sustainability criteria (Chakravorty et al.,
2017; Janda & Krištoufek, 2018; Merkusheva, 2014; Serletis &
Xu, 2019). On the other hand, some researchers do not agree to
above arguments and studies like Tadesse et al. (2016) and
Nazlioglu et al. (2013) showed that co-movement in crude and
grains was mainly driven by the financialization of commodities,
their openness, and integration with other global markets of
equities and bonds. Then projections about the impact of crude
price rise on food prices tend to differ quite significantly among
researchers. Whereas Zhang et al. (2013) estimated a price rise of
corn owing to its usage as fuel between 5% and 53% in a short
time span of 2 years, National Research Council’s (2011) report
puts this figure between 20 and 40% during 2007–2009. A
working paper by National Center for Environmental Economics
estimated a nominal 2–3 % increase in long-run corn prices of
ethanol produced through corn (Condon et al., 2013).

There is still a pool of researchers who do not believe that such a
relation between crude and energy crops does exist or even if such a
relation exists, then their view is that such a relation has not gained
strength after the food crisis of 2006. As claimed by many
researchers, their studies have found either negative or no co-
movement between crude and agriculture crops (Du et al., 2011;
Gardebroek & Hernandez, 2013; Nazlioglu & Soytas, 2011).
These studies primarily support the neutrality hypothesis. For
them, the crop price rise was simply as a result of rise in food
needs of growing population and not due to crude price rise
(Reboredo, 2012; Zhang et al., 2010). A study by Fernandez-
Perez et al. (2016) pointed out rise in economic activities being
responsible for global rise in demand for grains. Then, Myers
et al. (2014) showed that co-movement between crude and crops
was primarily a short-run phenomenon, which simply disappeared
in the long run. In an interesting study, Wetzstein and Wetzstein
(2011) argued that entrepreneurs who ventured into a biofuel
capacity invested substantially keeping into consideration a long-
time horizon and hence studying the relation between the crops
and crude by focusing only on short/limited period of time as
approached by some researchers cannot be fully justified.

Going ahead, the study is an attempt to empirically investigate the
co-integrating relation between crude and three energy crops for India,
namely soyabean, wheat, and sugarcane. The choice of three energy
crops has been made considering the share and contribution of these
crops to biofuels (primarily ethanol production) in major ethanol
producing economies including US and Brazil, which together
contribute 84% of global ethanol production (Sarwal et al., 2021).

The study would achieve its objective of establishing dynamic
linkages among crude and energy crops by developing co-
integrating relation. The study would further test whether crude has
an asymmetric impact on these energy crops. The period of current
study has been taken as 10 years: Jan 2011–Dec 2020 (daily
closing prices, 2446 data points), and the co-integration has been
tested by employing autoregressive distributed lag methodology
(ARDL) developed by Pesaran et al. (2001) and Pesaran and Shin
(1999). Further, we have applied both linear and non-linear ARDL
models, the non-linear version (NARDL) developed by Shin et al.
(2014) being an asymmetric expansion of linear ARDL. The
variables considered under the study include crude (INR per barrel),
wheat (INR per metric ton), soyabean (INR per metric ton), and
sugarcane (INR per Kg).

The study is mainly an outcome of the desire to comprehensively
investigate crude–energy crops nexus for India, which has become so
important nowadays not only owing to global concerns but also
considering recent state promotion of biofuel in the country (Sarwal
et al., 2021). The blending targets as laid down by Govt. of India
have now been advanced by 5 years. These pertain to achieving a
mix of 20% ethanol in petrol and 20% biodiesel in diesel by 2025
and not 2030 as planned earlier (Sarwal et al., 2021; Shahani et al.,
2022). Moreover, the blending model also provides a big jump in
usage of biofuels from current E-5 to E-20 fuels. This change in
blending model would be a big savings in terms of foreign exchange
outflows, which has been estimated at 32 billion US $ (Sarwal et al.,
2021), which also constitutes a substantial portion of India’s import
bill for crude, which for the year 2022–23 was 158 billion US $.
This though would be a significant development, the flipside here is
that India being the largest consumer of sugarcane in the world,
diverting even a small portion of sugarcane crop which also is a
staple food might have far-reaching implications on local
consumption and therefore the paper makes an attempt to discuss
this aspect with some realistic projections.

The rest of the paper is structured as follows: Section 2 reviews the
existing literature in the area of co-integrating relation between crude and
energy crops, Section 3 gives the distribution characteristics of our
variables, Section 4 explains the methodology employed, Section 5
provides empirical results, and finally Section 6 ends with conclusion,
and limitations of study and policy implications.

2. Literature Review

Empirical studies on crude–energy crops nexus have decisively
gained momentum after the world saw a simultaneous surge in their
prices during 2000–2010. Dimensions explored through these
empirical studies include crude demand and supply linkages,
short- and long-run co-integration, causality and spillover studies,
asymmetric impact of crude on energy crops, establishing linear
and non-linear relation, time-varying analysis, and so on.
However, considering the focus of the present study which is on
investigating the dynamic time series asymmetric linkages among
crude and energy crops by establishing a linear and non-linear
co-integrating relation, the literature review mainly highlights
these aspects of crude-food crops linkages. Some important papers
reviewed along with their key findings are discussed as follows.

Eissa and Al Refai (2019) applied both ARDL and NARDL
models to study the dynamic linkages between three energy crops
and oil prices and found that while ARDL showed no long-run
co-integration, NARDL model showed the opposite, i.e., long-run
co-integration was proved along with asymmetric impact of crude
on two of the three crops. Another study examining ARDL and
NARDL Models was carried out by Hadj cherif et al. (2021)
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where they tested asymmetric relation for the Middle East North
American (MENA) countries totalling 19 in number and after
grouping them as oil exporters, oil importers and also together as
a pool. The asymmetric impact of crude on food crops was seen
in both short and long run for entire pool of MENA countries,
with long-run food prices always rising irrespective of rise or fall
in crude. ARDL results showed co-integration for both subgroups.
In another study, Karakotsios et al. (2021) found no long-term
effects using plain ARDL model; however, after incorporation of
a break, the causality was seen moving from crude to food prices
and when model was made NARDL, causality became bi-
directional. The asymmetry was also proved along with long-run
co-integration for this NARDL model.

In a study on Chinese markets, Wang et al. (2015) found using
ARDL that when rice was taken as a function of other crops and crude,
co-integration was proved but the same was not seen with other
variables. Also long-run price elasticities from crude, corn, and
wheat to rice were also seen from the results. Another country-
specific study by Fasanya et al. (2019) on Nigerian markets
employed ARDL and NARDL on crude and six agricultural crops.
The co-integration was proved using both ARDL (linear) and
ARDL (linear with breaks) models, the only difference being the
results of the ARDL with breaks being more robust.

Nigerian markets were also considered by Gokmenoglu et al.
(2021) where they could establish the long-run relation between oil
and crop prices with uni-directional causality from oil to agricultural
prices. On the other hand, different study results for short and long
run were noticed by Abdul-Rahim and Zariyawati (2011) where
short-run results showed that crude was not impacting any crop
while in long run, crude was impacting rice but not soyabean.

Some studies have focused exclusively on explaining crude–
energy crop relation during crisis periods; Vatsa and Miljkovic
(2022) observed a clear shift in crude–crop relation after the
global financial crisis (GFC) of 2008. It was noticed that till 2009,
crude led crop prices; however, post-2010, crude lagged crop
prices clearly reflecting the impact of GFC in shifting the relation.
The correlations however remained positive both before and after
GFC, with only crude prices witnessing a change from being lead
variable to lagged variable in relation to crops. A study by Chen
et al. (2022) found that the relation between crops and crude
gained strength during the Covid-19 crisis period with more
strength seen between crude and crop soyabean.

Asymmetric impact of crude on energy crops was studied by
Zhang and Qu (2015) where they found negative asymmetric
impact of crude on both cash crops and food crops with
asymmetry of cash crops being higher. Similarly, Bakhat and
Würzburg (2013) found that in the short run, positive as well as
negative deviations existed among crops and crude; however,
long-run adjustment process was highly asymmetric. Further,
Zmami and Ben-Salha (2019) concluded that energy crop prices
were seen rising with rising crude, while for falling crude no
impact was visible on crop prices. Other researchers who could
find asymmetric response of crude to crops include Merkusheva
(2014) and Nazlioglu (2011). Among the reasons identified for
asymmetry were state policies like fuel mandates, import tariffs,
and subsidies to blenders among others.

Thus, literature review on co-integration and asymmetry studies
on biofuels do provide some interesting takeaways: first, many
researchers tend to go for NARDL only when co-integration is
not proved using ARDL, second, the quasi-linear ARDL (i.e.,
ARDL with structural breaks) does not alter the results to a
significant extend in most studies but only makes the results more

robust, third, NARDL, an asymmetric expansion of ARDL is
considered as an independent approach by most research studies,
fourth, in almost all studies, the results of linear and NARDL did
not match and co-integration was primarily detected only after the
relation was shifted to non-linear, fifth, asymmetry due to rise of
crude prices on energy crops was seen from results while
negligible impact of fall in crude on energy crops was noticed by
most studies, and lastly during the crisis periods the relation
between crops and crude did gain additional strength, be it GFC
or the Covid-19 pandemic.

3. Descriptive Statistics

3.1. Statistical description of returns

Table 1 gives statistical description of daily returns for the 10-
year period Jan 2011–Dec 2020 (2446 data points) of all four
variables employed in our study viz. crude, wheat, soyabean, and
sugarcane. Out of four commodities, crude generated highest
average return of 0.358% on daily basis (130% in annualized
terms) followed by wheat at 0.075% as daily return (27% on
annualized basis), soyabean at 0.059% (21%), and finally
sugarcane at 0.014% (5%). The average return comparison clearly
reveals that crude is way ahead of all the three energy crops and
enjoyed a return, which was approximately five times the nearest
competitor, i.e., wheat. Further, among the three energy crops,
wheat had the highest while sugarcane had the lowest daily return
with none of four variables giving negative daily average returns,
which constitutes an important consideration for investors and
those hedging through commodity derivatives.

Crude, being the highest return generator, also had the highest
standard deviation of returns, a popular proxy for risk, thereby
making this variable a high risk-high return candidate. Among the
three energy crops, sugarcane had the lowest standard deviation
followed by soyabean while wheat had the highest. Although wheat
had the highest standard deviation of the three crops, the standard
deviation of wheat was mere 22% of standard deviation of crude.

We apply coefficient of variation (CV) = σ /μ, to balances risk
with return and the results reveal that crop soyabean had the lowest
CV among all four variables, thereby making this crop the best risk-
adjusted return performer followed by crude.

Table 1
Statistical description of returns of crude and three energy crops

during the period Jan 1, 2011–Dec 30, 2020

Parameter Crude Wheat Sugarcane Soyabean

Mean 0.003583 0.000750 0.000141 0.000589
Maximum 8.697759 1.620574 0.179365 0.892088
Minimum −0.901841 −0.620676 −0.145626 −0.470611
Std. Dev. 0.179232 0.041556 0.014395 0.026998
Skewness 46.64058 26.44504 0.938980 17.04870
Kurtosis 2265.708 1063.421 37.09536 679.5777
Coeff. of
variation

50.02 55.408 102.127 45.83

JB statistics 5.23E+08 1.15E+08 118836.9 46771596
Probability (JB) 0.000000 0.000000 0.000000 0.000000
Observations 2446 2446 2446 2446

Note (1): JB statistics = n
6 {S

2 + 1
4 K � 3ð Þ2g,

Note (2): Coefficient of variation (CV) = σ /μ
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In terms of the shape of the distribution of four variables, all the
four distributions were positively skewed and leptokurtic. Their
distributions had tails, which were taller and appeared to be a
profusion of outliers. Peaks of all four distributions were higher
and sharper than that of a normal distribution (Figures 1, 2, 3, and
4). Clearly with these characteristics and shapes, all the four
variables/distributions rejected the formal test for normality, i.e.,
JB test statistic. These variables were therefore modified at their
log prices and log returns for subsequent analysis.

3.2. Graphic representation of return of crude and
three energy crops

The section provides for the plots of returns of crude and three
energy crops (Figures 5, 6, 7 and 8) for the sampled period Jan
2011–Dec 31, 2020.

The plots (Figures 5, 6, 7, and 8), besides displaying the daily
return, also display the dates for highest single day rise and single day
fall in returns. The following analysis has been made on the basis of
these plots: (i) maximum fall in returns for all the four variables could
be seen in the first half of year 2020 andmatches with the early phase
of Covid-19 pandemic. (ii) Highest rise in returns for crude and
sugarcane could also be seen during the Covid-19 period,
reflecting the vulnerability of these two asset classes during crisis
periods while for other two crops, wheat and soyabean highest
return was witnessed during the months of November 2016 and
2017, respectively. (iii) There appears to be a clear indication of
increase in volatility in sugarcane for the sub-period 2018–2020
showing some kind of external forces inflicting their prices. (iv)
During first 6 months of 2020, high volatility was noticed not
only for energy crops but also crude, which witnessed extremely
high volatility during this period. (iv) During the entire sampled
period, return volatility for all the three energy crops was seen to
be far lower as compared to crude.

4. Methodology

4.1. Model development

In this section, we would first develop the linear ARDL model
(Pesaran et al., 2001; Pesaran & Shin, 1999) followed by NARDL
(Shin et al., 2014). The complete ARDL/NARDL model has been
covered in five parts: the first part (sub Section 4.1.1.–4.1.2.)
discusses the ARDL and NARDL model representative equation,
a single equation which includes both short and long-run
variables, the second part (Section 4.2) discusses the co-
integration relation, while the third and fourth parts (Section 4.3
and 4.4) reveal the long-run and the short-run relation among the
variables. This section also provides for error correction toward
equilibrium. The fifth and the final part (Section 4.5.) provides for
short- and long-run asymmetry among the variables. For all these
models, we would consider Y1 as the dependent while Y2, Y3 and
Y4 as independent variables; Y1 could be any of the three crops
while Y2 and Y3 would signify the remaining two crops and Y4
would represent the variable crude.

Figure 1
Log return crude vs normal

Figure 2
Ln return of sugarcane vs normal

Figure 3
Log return soyabean vs normal

Figure 4
Log return wheat vs normal
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Figure 5
Ln return (crude)

Figure 6
Ln return (wheat)

Figure 7
Ln return (sugarcane)
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4.1.1. ARDL model representation

Δln:Y1;t ¼ δ1 þ δ1;BD
# D1;t þ δ2 ln:Y1;t�1 þ δ3 ln:Y2;t�1

þ δ4 ln:Y3;t�1þ δ5 ln:Y4;t�1 þ
X

r
i¼1

δ6;iΔ ln:Y1;t�i

� �
þ
X

n1
i¼0

δ7i; Δ ln:Y2;t�i

� �þX
n2
i¼0

δ8;iΔ ln:Y3;t�i

� �
þ
X

m1

i¼0
δ9;iΔ ln:Y4;t�i

� �þ et . . . :

(1)

For Equation (1), which is the ARDLmodel equation,Δ ln. Y1,t is the
logarithms change in Y1 in period “t” (Y1 being the dependent
variable and as already stated would be any one of the three
energy crops, viz. sugarcane, wheat, or soyabean), “δ1” is the
intercept while “δ1

#” is the coefficient of intercept dummy (D1)
reflecting a single break (with BD as break date) in intercept of
the dependent variable (if any). To identify the break, we have
applied Perron and Vogelsang’s (1992) methodology, which uses
innovative outlier method and the test compares the results obtained
with asymptotic one-sided “p” values. The intercept dummy variable

(D1) takes the following values D1,t =
1 if t � BD
0 if t < BD

�

i.e., dummy shall be “‘0” if “t” is before the break date (BD) and
shall be “1” if “t” is after the break, including break date.

The next term “δ2” in Equation (1) is the slope coefficient of first
lag of dependent variable Y1, which is of the nature of AR (1)
representation. Y2, Y3, and Y4 with slopes δ3, δ4, and δ5, respectively,
are the three independent variables and these are included in the
regression at first lag only and all together represent long-run relation
with the dependent variable. The term

P
r
i¼1 δ6;iΔ ln:Y1;t�i

� �
is the

log change in dependent variable Y1 with “r” being the optimal number
of lags as determined by Akaike Information Criteria (AIC). All the
coefficients δ6;i; i ¼ 1; 2; . . . r are summed up in Equation (1). Simi-
larly,

Pn1
i¼0 δ7i;Δ ln: Y2;t�i

� �
and

Pn2
i¼0 δ8;iΔ ln:Y3;t�i

� �
reflect the log-

arithm change in the independent variables (two energy crops) Y2, and
Y3,with “n1” and “n2” being the number of lags for these variables again
determined by AIC lag determination criteria. The last termPm1

i¼0 δ9;iΔ ln:Y4;t�i

� �
is a natural log change in variable crude. Again

just like the long-run relation, all the terms
Pn1

i¼0 δ7i;Δ ln:Y2;t�i

� �
,Pn2

i¼0 δ8;iΔln:Y3;t�i

� �
and

Pm1
i¼0 δ9;iΔ ln:Y4;t�i

� �
collectively make

up the short-run relation with the dependent variable. Finally, the equa-
tion has et as stochastic error term.

4.1.2. NARDL model representation
NARDL was developed by Shin et al. (2014) to capture the

asymmetric effects and here a variable is decomposed into
positive and negative values. Non-linear model representation
Equation (1(a)) has same variables as in ARDL Equation (1)
except the variable crude, Y4, which has been decomposed as
Yþ
4 and Y�

4 both in short as well as long run, i.e.,

Y4
þ ¼ Y4 if Ret Y4 > 0

0 if Ret Y4 � 0

�
andY�

4 ¼ Y4 if Ret Y4 < 0
0 if Ret Y4 � 0

�

Δln:Y1;t ¼ λ1 þ λ1;BD
#D1;t þ λ2 ln:Y1;t�1 þ λ3 ln:Y2;t�1 þ λ4 ln:Y3;t�1

þ λþ5A ln:Yþ
4;t�1 þ λ�5Aln:Y

�
4;t�1 þ

X
r
i¼1

λ6;iΔln:Y1;t�i

� �
þ
X

n1
i¼0

λ7;iΔln:Y2;t�i

� �þX
n2
i¼0

λ8;iΔln:Y3;t�i

� �
þ
X

m1A

i¼0
λþ9A;iΔln:Yþ

4;t�i

� �
þ
X

m2A

i¼0
λ�9B;iΔln:Y�

4;t�i

� �
þ et . . . :

(1a)

4.2. Partial “F” bounds long-term co-integration
test

Under this section we discusses the model decision, i.e.,
decision with respect to existence of long-run co-integration and
tool employed would be partial ‘F’ bounds test which establishes
the null hypothesis for co-integration as a joint null amongst the
long-run parameters: Ho: = δ2 = δ3 = δ4 = δ5= 0 (see Equation
(1)). “F” bounds upper and lower critical values are given by
Pesaran et al. (2001) and decision on existence of co-integration
follows the following criteria:

• If F computed < Lower bound critical, result: no co-integration.
• If F computed > Upper bound critical, co-integration gets
established.

Figure 8
Ln return (soyabean)
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4.3. Long-term relation and long-run elasticity

If the co-integration gets proved, then one (or more) of the
independent variables shall be impacting dependent variable. We
then establish long-run relation given as Equation (2) below:

ln:Y1;t ¼ β1 þ β1;BD
#D1t þ

X
r2
i¼1

β2;iln:Y1;t�i

� �
þ
X

n3
i¼0

β3i;ln:Y2;t�i

� �þX
n4
i¼0

β4;iln:Y3;t�i

� �
þ
X

m2

i¼0
β5;iln:Y4;t�i

� �þ et (2)

For Equation (2), we would be considering r2, n5, n6; andm2 as nota-
tions for lags of dependent variable, two energy crops, and crude,
respectively, and all these lags would be following lag criteria as
given by AIC. The coefficient of these natural log variables shall
be interpreted as long-run elasticities and we shall be applying
“L” backshift operator and the modified equation is displayed as
Equation (2(a)) below:

AðL; r2Þln:Y1;t ¼ β1 þþβ1;BD
#D1t þ BðL; n3Þln:Y2;t

þ CðL; n4Þln:Y3;t þ DðL;m2Þln:Y4;t þ et (2(a))

For Equation (2(a)), A represents the dependent variable (energy
crop) while B and C would be representing the remaining two crops
while D represents crude. The long-run price elasticity under ARDL
for each of the three energy crops against crude shall be determined
by applying the following formula shown as Equation (3(b)) below:

A L; r2ð Þ
D L; m2ð Þ ¼

1� β2;1 � β2;2 � . . . : β2;r2

β5;0 þ β5;1 þ β5;2 þ β5;3 . . . . . . :β5;m3

(3(b))

4.4. Short-term relation and error correction
toward equilibrium

The estimated residuals from regression of first lag of long-run
variables are considered for specifying the short-run relation and error
correction representation, which takes the shape as Equation (3)
below:

Δ ln:Y1;t ¼ α1 þ α1:BD#D1t þ α2ECt�1 þ
X

r3
i¼1

α3;iΔln:Y 1;t�1

� �
þ
X

n5
i¼0

α4i;Δln:Y 2;t�1

� � þ
X

n6
i¼0

α5;iΔln:Y 3;t�1

� �
þ
X

m3

i¼0
α6;iΔln:Y 4;t�1

� �
ut

(3)

The coefficients α4;0 and α5;0 reveal the price transmission elasticities
with respect to two crops Y2 and Y3, and coefficient α6;0 shows price
elasticity with respect to crude. The ECM term (EC t–1) shows how fast
the market would adjust to achieve long-run equilibrium following a
shock in the system with speed of adjustment given by α2. The speed
of adjustment must decrease as we move toward long-run equilibrium
reflecting convergence. The proportion of shock adjusted after “n”
periods is given by 1– 1� α2ð Þn

Coming to the adjustment mechanism under NARDL, the same
has been shown under Equation (3(a)) below:

ΔY1;t ¼ β1 þ β1:BD
#D1t þ β2ECt�1 þ

X
r3
i¼1

β3;iΔY 1;t�1

� �
þ
X

n5
i¼0

β4i;ΔY 2;t�1

� �þX
n6
i¼0

β5;iΔY 3;t�1

� �
þ
X

m3A

i¼0
βþ6A;iΔY 4;t�1

� � X
m3B

i¼0
β�
6B;iΔY 4;t�1

� �
þ utÞ

(3a)

4.5. Test for short- and long-run asymmetry

Under this section, we determine short- and long-run asymmetric
response of each of the energy crops to the changes in the price of
crude. The long-run asymmetry is tested by applying standard Wald
procedurewith null hypothesis as θþ= θ�, θþ= λ5A

þ
λ2

, and θ�= λ5B
�

λ2
(from

Equation (1(a)), while for short-run symmetry null is defined asP
n
i¼1 βþ6A;i

� �
=
P

n
i¼1 β�6B;i

� �
(from Equation (3(a)); the results of the

same are discussed under the next section Empirical Results.

5. Empirical Results

Tables 2, 3, and 4 summarize the results of our study. Whereas
Table 2 gives co-integration test results usingARDL andARDLwith
dummy approaches, Tables 3 and 4 give the long- and short-run
relation of energy crops with crude. Using NARDL, these tables
also give response of decomposed variable, crude on energy
crops. We first discuss Table 2 co-integration results using partial
“F” bounds test (Pesaran et al., 2001; Pesaran & Shin, 1999).
Table 2 displays the results for two models: ARDL and ARDL
after incorporation of dummy with single structural break, break
follows Perron and Vogelsang’s (1992) methodology.

Column (1) under Table 2 gives the model specification and the
bounds test specifies different normalization schemes for variables
(energy crops) as dependent variable, keeping the rest as forcing
variables. Column (2) displays the exact date of structural break for
the dependent variable using a dummy variable, the parenthesis
showing “p” values for respective break dates. The results revealed
all breaks as significant, hence it was strongly felt a need for the
further construction of NARDL model. Further, two of four
dummy variables, crude and wheat, had their breakpoints during
the Covid-19 pandemic period, reflecting the vulnerability of the
pandemic on the prices of these commodities.

Column (3) of Table 2 gives “F” test results; for sugarcane, the
computed “F”was 4.178907 underARDL and 5.140523 underARDL
with break. Null hypothesis was rejected for sugarcane under both
models at 1% level showing that co-integration exists. For wheat
and soyabean, no co-integration was observed from the results.

Table 3 discusses long-run relation results and here column (1)
lists all the regressors while column (2) gives three regressands along
with slope coefficients and their “p” values. The decomposed
independent variable crude takes the following shape:

Crudeþ ¼ Crudeþ if Ret Crude > 0
0 if Ret Crude � 0

�
andCrude�

¼ Crude� if Ret Crude < 0
0 if Ret Crude � 0

�

The table reveals that for energy crop, sugarcane, regressor variable crude
contemporaneous, and at lag 1 are statistically significant; however, the
same is not true for other two crops.We also computed long-run elasticity
for sugarcane with respect to crude (see Equation (2(a)) and Table 3
footnotes) and found the same to be elastic with elasticity being+ 1.227.
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Further, the study employed Wald test to test for long-run
symmetry with null hypothesis: Ho: θþ=θ�= 0 (Equation 1(a)).
The null of long-run symmetry was rejected for sugarcane showing
that the response of positive changes in crude on sugarcane was not
the same as negative changes while null of symmetry stands accepted
for the other two crops.

The next table, i.e., Table 4, discusses the results of short-run
relation along with the error correction toward equilibrium. The
results reveal that a rise in crude (regressor D(Crudeþ) enables a rise
in both sugarcane and wheat prices while a fall in crude (regressor

D(Crude�) has no impact on prices of any of the three energy crops.
These results were also confirmed when short-run symmetry was
proved only for sugarcane and wheat.

ECM (−1) coefficient for sugarcane is −0.005, which is both
negative and statistically significant (“p” value is 0.008) showing
stable equilibrium; however, speed of adjustment toward
equilibrium is rather slow at 0.5% per period.

The last table, i.e., Table 5 discusses model diagnostics and table
has five columns, column (1) lists down all the diagnostics, viz.
stationarity, heteroscedasticity, and serial correlation while columns

Table 2
Results of the partial bounds test ARDL and ARDL with break models

Critical table value at 5%* and
1% **

Model specification (1)
Break date

(“p” values) (2)

“F” bounds
(computed
value) (3)

Lower bound
I(0) (4)

Upper bound
I(1) (5) Inference (6)

ARDL: F Sugarcane/wheat, soyabean, and
crude

NA 4.178907* 2.79*
3.65**

3.67*
4.66**

Co-integration is
established at 5% level

ARDL (with dummy): F Sugarcane/wheat,
soyabean, and crude

21 JAN 2011
(0.0264)

5.140523** 2.79*
3.65**

3.67*
4.66**

Co-integration is
established at 1% level

ARDL: F Wheat/sugarcane, soyabean, and
crude

NA 1.441628 2.79*
3.65**

3.67*
4.66**

Co-integration is not
established

ARDL (with dummy): F Wheat/sugarcane,
soyabean, and crude

24 APRIL 2020
(0.0343)

1.681698 2.79*
3.65**

3.67*
4.66**

Co-integration is not
established

ARDL: F Soyabean/sugarcane, wheat, and
crude

NA 0.844736 2.79*
3.65**

3.67*
4.66**

Co-integration is not
established

ARDL (with dummy): F

Soyabean/sugarcane, wheat, and crude
24 Jan 2011
(0.0276)

1.062441 2.79*
3.65**

3.67*
4.66**

Co-integration is not
established

Note (1): *significant at 5% and ** significant at 1% levels (value for “n”= 1000 and above; nearest to number of observations)
Note (2): Null hypothesis Ho: δ2 = δ3= δ4 = δ5= 0 (Equation (1))
Note (3): Table result: Co-integration is established only for sugarcane and the relation becomes stronger after inclusion of break dummy variable

Table 3
Long-run relation

(2) Regressand

(wheat) (sugarcane) (soyabean)

(1) Regressors Coeff. “p” val Coeff. “p” val Coeff. “p” val

Crudet 9.66E-05 0.115 0.013 0.03 0.023 0.343
Crude(−1) – – 0.012 0.06 0.002 0.154
Crude(−2) – – – – – –

Wheatt 0.006 0.019 0.025 0.186
Wheat(−1) 0.832 0.000 0.051 0.033 −0.001 0.953
Wheat(−2) 0.071 0.000 −0.111 0.723 −0.028 0.139
Soyabeant 0.027 0.194 0.001 0.452 – –

Soyabean(−1) 0.002 0.937 – – 0.643 0.000
Soyabean(−2) −0.034 0.113 – – 0.033 0.000
Sugarcanet 0.002 0.118 – – 0.001 0.938
Sugarcane(−1) – – 0.264 0.040 – –

Sugarcane(−2) – – 0.067 0.032 – –

Crudeþ 0.002 0.314 0.168 0.037 0.044 0.046
Crude� 0.002 0.119 0.005 0.041 0.007 0.123
Long-run asymmetry
θþ=θ�= 0 (F Wald test) Null accepted Null rejected Null accepted

Note (1): θþ ¼ λ5A
þ

λ2

� �
and θ�= λ5A

�
λ2

� �
; λ5Aþ and λ5A

� are coefficients from eq (1a),
Note (2): Long-run elasticity of sugarcane with respect to crude A L;r2ð Þ

D L; m2ð Þ =
1�0:264�0:067
0:413þ0:132 =+1.227
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2, 3, 4, and 5 give the results for these diagnostics. For diagnostics
stationarity, results are displayed both at level and at 1st differences
while for other diagnostic tests these are displayed at level only.
For stationarity, we have applied two tests: Dickey Fuller
generalized least squares (DFGLS) and augmented Dicky Fuller
(ADF) with a single break. The results from ADF with breakpoint

revealed that all the variables were stationary only at 1st difference
while DFGLS test results showed that except for crude all other
variables were stationary at 1st difference, crude being stationary
both at level and 1st difference. Thus, mixed nature of stationary
results in terms of I(0) and I(1) reinforces the use of ARDL co-
integration technique.

Table 4
Short-run relation and error correction

Regressand

D (wheat) D (sugarcane) D (soyabean)

Regressors Coeff. p val Coeff. p val Coeff. p val

D(Crudet) – – 0.013 0.035 0.023 0.061
D(Crude(−1)) – – 0.009 0.027 – –

D(Crude(−2)) – – 0.002 0.176 – –

D1t 0.002 0.034 0.008 0.0264 0.023 0.001
D(Wheat(t) – – – –

D(Wheat(−1)) 0.077 0.000
D Sugarcanetð Þ – – – –

D(Sugarcane(−1)) – – 0.235 0.000
D(Crudeþ) 0.332 0.015 0.035 0.012 −0.523 0.667
D(Crude�) 0.812 0.124 0.025 0.250 0.198 0.221
ECM(−1) −0.324 0.453 −0.005 0.008 −0.003 0.419
Short-run asymmetry Null rejected Null rejected Null accepted

Note (1): Short-run asymmetry is given by
P

n
i¼1 βþ6A;i

� �
=
P

n
i¼1 β�6B;i

� �
=0 from Equation (3(a))

Table 5
Model diagnostics

(1) (2) (3) (4) (5)

Stationary test no. 1 @

ADF unit root with break point Crude Wheat Sugarcane Soyabean
1. Coefficient “p” values
2. Table result null (accepted/rejected)
3. “Break date” identified

Level 1st diff Level 1st diff Level 1st diff Level 1st diff
1 0.1443 <0.01 0.454 <0.01 0.448 <0.01 0.9828 <0.01
2 Accept Reject Accept Reject Accept Reject Accept Reject
3 28.04.20 – 24.04.20 – 21.01.11 – 24.01.11 –

Stationary test no. 2% Dickey fuller GLS Crude Wheat Sugarcane Soyabean
Level 1st diff Level 1st diff Level 1st diff Level 1st diff

1. | Computed “t” values | 1 2.3494 32.949 0.4158 4.9586 1.616 3.7307 1.2608 3.2523
2. Table result null (accepted/rejected) 2 Reject Reject Accept Reject Accept Reject Accept Reject
3. Critical at 5% (absolute value) 3 1.940954
BPG heteroscedasticity test # Crude Wheat Sugarcane Soyabean
1. Observed R2 1 0.2737 0.186 0.342 0.795
2. Probability χ2 2 0.609 0.665 0.532 0.372
B G serial corr. test ** Crude Wheat Sugarcane Soyabean
1. F statistics 1 0.5621 0.9861 0.6634 0.9324
2. Prob F (2,2422) 2 0.3351 0.2866 0.4834 0.3937

Note (1): @ ADF equation with single break is given as Δ Y V,t =β1,v+ β1,v* D v,t + (β2,v – 1)Y v, t –1+
P

m
i¼1 β3i;vΔ Yv,t –i +β4;vt + uv,t ; (v=1,2,3 &4) “v”

denotes variables: crude, sugarcane, soyabean, and wheat, D v,t is the intercept dummy representing a single break in intercept. Y v, t –1 reveals the
stationarity of variable “v” and has (β2,v – 1)as its coefficient, β4;v is the coefficient of trend variable “t”, and uv,t. is the random error term. Null: non-

stationarity time series.
Note (2):%DFGLS stationary equation is given as Δ Ÿv;t = β1Ÿv; t�ið Þ +

P
m
j¼1 βj Δ Ÿv; t�jð Þ+ uv,t, Ÿv;t is the de-trended variable with coeff. β1 which tests

for the variable stationary, “v”’= 1,2,3, and 4. Δ Yv; t�ið Þ being the augmentation term added “m” times to take care of serial correlation. The de-

trended data exclude intercept and time variable. Null hypothesis: Time series has a unit root
Note (3): # B.P.G Heteroscedasticity test is given by n.R2

aux ∼ χ2m–1. R2 is computed for auxiliary equation: ut2 = δ1+ δ2 X2t + δ3 X3t + : : : .+ δk Xkt,,
Null: no heteroscedasticity
Note (4): ** B G serial Cor. test is given as ut = β1+ β2 Yt–1 + β3 Y t–2 + : : : : : :+ βp Y t–p + ρ1 ut–1 + ρ2 u t–2 + : : : : : :+ ρm u t–m + et
Null : ρ1 = ρ2 = : : : . ρm= 0 (no serial cor. between residuals). Accept the null if R2(n–p) < χ2n
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Next, we tested for heteroscedasticity by applying BPG
heteroscedasticity test and the results accepted null of
homoscedasticity for all the variables. For testing serial correlation, we
applied BGLM serial correlation test and here too null of no serial
correlation gets accepted for all variables. Lastly, we tested for the
stability of variables by constructing cumulative sum of the residuals
(CUSUM) stability plots and these are depicted in Figures 9, 10, 11,
and 12. The stability of fitted models stands proved as all the plots are
within the upper and lower critical lines.

6. Conclusion, Study Limitation, and Policy
Recommendations

To conclude, the present study investigated the co-integrating
relation between crude and three energy crops, namely soyabean,
wheat, and sugarcane for India for a period of 10 years, ranging
from Jan 2011 to Dec 2020 by taking log-transformed daily
closing spot prices. The dynamic relation was established using
linear and NARDL co-integrating techniques. The study also
tested for asymmetric impact of crude on energy crops.

The study results showed that co-integration using ARDL was
established only for sugarcane with other variables acting as forcing
variables. The critical region for sugarcane improved from 5% to 1%
when dummy variable representing single break was added in the
ARDL model. Further asymmetric impact of crude on sugarcane
was visible both in short and in long run. The long-run study
results showed that the impact of crude on sugarcane was
contemporaneous and also at first lag while no impact of any
other variable on sugarcane was visible from the results.

Among the other study results, the short-run results were seen to
be working only in one direction, i.e., a rise in crude impacting both
sugarcane and wheat while no impact for a fall in crude on their
prices. The coefficient of ECM (−1) for sugarcane was −0.005,
this being negative and significant reflecting stability of long-run
equilibrium with slow speed of adjustment at 0.5% per period.
The above results also satisfied the diagnostics in terms of
stationarity, stability, serial correlation, and heteroscedasticity.

Further, this being an India-specific study where concept of
biofuels has not picked up like in US or Brazil markets, it has its
own limitations, e.g., data on ethanol supplies, blending, etc. are
available only for recent period with only one or two reliable
sources to assist such kind of a study. This was the primary

Figure 9
CUSUM plot: Soyabean

Figure 10
CUSUM plot: Sugarcane

Figure 11
CUSUM plot crude

Figure 12
CUSUM plot wheat

Table 6
Ethanol supplies and blending: Existing and proposed for India

Year Supply of ethanol Blending %

2014–15 67.4 crore liters 2.33
2017–18 150.5 crore liters
2020–21 332 crore liters 8.5
2025 projections 1016 crore liters 20
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reason why the study had to focus on data collection from single
source, MCX Website (www.mcxindia.com) while many other
prominent studies do collect data from multiple sources and then
obtain their averages, e.g., a study by Eissa and Al Refai (2019)
has taken average of crude prices of West Texas Intermediate,
Dated Brent, and Dubai Fateh. However in spite of being a single
source data, we performed a quick check about crude price
compatibility between our source and other commonly used data
sources by researchers and the correlation was found to be very
high, thereby ruling out any doubt regarding the source of data.
Furthermore, a lot of research studies on commodities from India
do rely on the same data source.

Furthermore, as revealed by literature review, most of the
existing studies on crude–energy nexus have focused on countries
like US, Brazil, and some European Countries where biofuel
products are already available, have gained popularity, and also
enjoy good demand while the current study has been carried out
for a country, India, where things are at a very early stage with
respect to biofuels. However, in spite of this difference, the study
does provide useful, interesting, and largely unexplored insight
and facts, which can be of great use to policy makers. This is also
important as the country has ambitious plans with respect to
biofuels with biofuel targets being advanced by few years with
annual targets to be achieved in a planned time bound manner.
Then, some researchers strongly feel that any kind of co-
integration study requires a minimum period of 25 years to
achieve reliable results; however, viewpoint being stressed upon
here is that the same depends upon type of model and frequency
of data. We have chosen ARDL model, which gives robust results
even when the sample size is not very large and moreover ours
being a daily price data, a 10-year period of study from 2011 to
2020 as considered in our study therefore is quite reasonable to
develop a relation between energy crops and crude.

Thus, broad conclusion we draw from above is that in spite of
certain limitations our results do provide an initial indication of a co-
integration between crude and sugarcane, which for India is also the
main crop supplied to bioethanol industry. Also, crude impacting
sugarcane in long run and also having an asymmetric impact on
sugarcane are some important takeaways, which cannot be ignored
and may be extremely useful for policy makers while designing
future policies on energy fuels. In light of the above, study would
like to make a few recommendations: first, as the government moves
toward promotion of biofuel policies aiming at an ambitious target of
20% ethanol blending by 2025 and with sugarcane being both a
staple crop and main ingredient for bioethanol, India’s agricultural
producers shall have to decide on whether to choose food or fuel as
a final destination for their crops, a debate very common in other
countries. In this context, the policy makers are expected to
harmonize and synergize energy and agricultural policies and also
need to develop a mechanism so that biofuel policies are not blindly
followed in India, thereby creating a food crisis situation like the one
seen in early 2000. If we go by the projections of Govt of India’s
policy document: Roadmap for Ethanol Blending in India 2020–25,
then by 2025 to achieve a blending target of 20%, the country would
be requiring 1016 crore liters of ethanol (see Table 6), which would
require 7.3 lakh metric tons of sugar for that year (assuming 1 ton of
sugar produces 70 liters of ethanol).

Now with India exporting 40 lakh tons of sugar annually,
meeting above target of ethanol using sugar or molasses by
diverting exports would not be a problem for the country but the
sacrifice of export revenues from the crop would be unavoidable.
Further, since a part of sugarcane production is still mainly
dependent upon rainfall, things may not go exactly as planned and

therefore it is suggested that all biofuel policies must be supported
by a pre-warning and a crisis response mechanism.

Another important consideration is that a rise in crude prices
could trigger a rise in prices of other crops through a chain
reaction resulting in a food inflation. Food inflation in India in the
past has been mainly on account of external reasons like uncertain
weather conditions but the same due to spillover effect of energy
crops is something the country has not seen before. Hence,
government must monitor the prices of biofuel crops and
intervene whenever any sudden surge is visible due to crude price
increase after ruling out other reasons for rise in prices. Another
concern for government would be to keep a watch on area under
cultivation under the biofuel crops as the farmers might shift land
use from other agricultural crops to more profitable energy crops.
Then risk of diverting forest land for cultivation of these energy
crops cannot be ruled out and would require a strong
environmental regulation to overcome such a possibility. The
government thus must keep a close watch on such undesirable
outcomes while promoting biofuel crops.

Further, from an investor’s perspective, the association between
crude and sugarcane prices might help in forecasting one set of prices
based upon available information on prices of another. This would
also imply that for investors in agricultural commodity markets,
crude movement becomes an important risk factor and those
strategizing portfolio hedging may not be able to achieve the
desired result by diversifying into these energy crops. Further as
seen from the return plots (Figures 5, 6, 7, and 8), the lowest
10-year return on all the three energy crops was seen during the
early days of Covid-19 pandemic period much in line with the
crude’s lowest return, which entails a cautionary approach while
investing in energy crops. Then, after analyzing biofuel
movements against variable crude we further conclude that these
biofuels especially sugarcane do not appear to qualify as a “safe
haven” asset during a crisis, something which may not be good
news for investors. This is important because of two reasons, first
the recurrence of crisis has now become quite a regular
phenomenon and second, investors are also quite keen in knowing
more about new “safe haven” assets especially when the so-called
traditional “safe haven” assets appear to have become less
responsive during a crisis, which too have now become a global
phenomenon with larger intensity.
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