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Abstract: Stock price prediction is an important problem in financial research. It is related to applications in investment, risk man-
agement, and algorithmic trading. However, accurate stock price prediction has a lot of challenges because stock price is affected by
various factors such as market noise, non-stationarity, and external factors such as macroeconomic events, corporate news, and investor
sentiment. In this review, we provide a comprehensive overview of traditional statistical models, machine learning approaches, emerg-
ing deep learning, and multimodal methods for predicting stock prices. We further discuss the recent application of large language
models for sentiment extraction and direct stock price prediction. In addition, this review covers commonly used features in stock price
prediction, including technical indicators, sentiment measures, and composite features, which are mathematical combinations of dif-
ferent basic features. Moreover, unconventional features such as environmental, social, and governance factors are included. We also
discuss key challenges and open research directions, aiming to guide researchers in selecting suitable methodologies and identifying
promising opportunities for future exploration.
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1. Introduction

Forecasting stock movements remains one of the most
persistent challenges in the field of finance and quantitative
trading. The goal is to forecast future prices or price move-
ments of financial instruments using historical data, market
indicators, and additional information. Accurate predictions
can provide significant advantages for investors, portfolio man-
agers, and algorithmic trading systems, contributing to enhanced
decision-making processes and more efficient risk management.

Nevertheless, stock markets exhibit high levels of noise and
volatility, driven by complex interactions among macroeconomic
variables, geopolitical events, and market sentiment. The efficient
market hypothesis [1] posits that financial markets fully incorpo-
rate all available information into asset prices, which suggests that
predicting price movements is theoretically impossible in an ide-
alized efficient market. Despite this, empirical research [2] shows
that short-term price patterns and correlations exist, providing
opportunities for prediction through sophisticated models.

Traditional statistical models such as Autoregressive Inte-
grated Moving Average (ARIMA) [3] and Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) [4] have been
widely used due to their interpretability and analytical foun-
dations. With the rise of machine learning and deep learning,
researchers have leveraged neural networks [5], ensemble meth-
ods [6], and transformers [7] to model nonlinear relationships
and capture long-term dependencies in stock data. Recently,
multimodal models that combine numerical price data, textual
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sentiment analysis, and visual chart patterns have emerged as
promising directions for improving predictive performance [8].
Figure 1 shows the evolution of stock price prediction methods.

This review aims to offer an in-depth examination of various
approaches used for stock price prediction, from classical statisti-
cal approaches to modern AI-based techniques. We also discuss
current challenges and future research directions.

In particular, although numerous reviews have summarized
traditional statistical and deep learning models, few have system-
atically addressed the emerging generation of methods, including
Transformer-based architectures, multimodal approaches that
integrate numerical, textual, and visual data, and the application
of large language models (LLMs) for financial forecasting. Fur-
thermore, more and more investors’ emphasis on sustainability
has spurred interest in incorporating environmental, social, and
governance (ESG) factors into predictive models, but their inte-
gration within advanced artificial intelligence (AI) frameworks
remains underexplored in the literature. This review is motivated
by the need to bridge this gap in the literature and provide a com-
prehensive, updated synthesis of these next-generation methods.
By critically analyzing their capabilities, limitations, and poten-
tial synergies, we aim to give readers a clear understanding of the
current state of the art and highlight avenues for future research
in AI-driven stock price prediction.

2. Traditional Statistical Methods

Statistical approaches have historically served as the corner-
stone of financial forecasting. These methods are valued for their
interpretability, mathematical rigor, and analytical tractability.
They are particularly useful when data is limited or when model
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Figure 1
Methodological trends in stock price prediction

Table 1
Summary of traditional statistical models for stock prediction

Model Input data Strengths Limitations

AR/ARIMA Historical
prices

Simple, inter-
pretable

Cannot
capture
nonlinear
patterns

GARCH Price
volatility
series

Models
volatility
clustering

Sensitive to
parameter
assumptions

VAR Multiple
price
series

Captures
inter-stock
dependen-
cies

Assumes
linear rela-
tionships

transparency is required. Table 1 shows the comparison between
different traditional statistical models.

2.1. Autoregressive (AR) and ARIMA models

Autoregressive (AR) models estimate future stock prices
based on a linear relationship with previous observations.
ARIMA extends AR models by integrating differencing to
achieve stationarity and adding a moving average component.
ARIMA models are effective for capturing linear temporal
dependencies but struggle with nonlinear patterns common in
financial time series [9]. For example, Ariyo et al. [10] apply
ARIMA models to stock price data from the New York Stock
Exchange (NYSE) and Nigeria Stock Exchange (NSE), show-
ing that ARIMA demonstrates strong potential for short-term
prediction and performs competitively with other existing meth-
ods. Ho et al. [11] compare the performance of ARIMA with

LSTM and the neural network in the prediction of the clos-
ing price in Bursa Malaysia. The results show that LSTM has
the best performance. Mahadik et al. [12] compare ARIMA and
LSTM models for stock trend forecasting using historical price
data, incorporating preprocessing techniques such as feature scal-
ing and autocorrelation checks. The results indicate that both
models achieve over 90% accuracy, with LSTM performing bet-
ter on larger datasets with fewer missing values, while ARIMA
provides higher accuracy but requires more computational time.

Nevertheless, the seemingly high accuracy figures in these
research papers should be viewed with caution. These results
might partly arise from overfitting to the historical dataset and
can vary depending on the market conditions present during
the testing period. Applying such models in actual trading can
be difficult, as factors like market volatility, transaction fees,
and unexpected events can lower their effectiveness. This under-
scores the importance of critically assessing reported performance
instead of taking the numbers at face value.

2.2. GARCH models

GARCH models capture the phenomenon of volatility clus-
tering commonly observed in financial markets. GARCH models
predict the variance of returns rather than prices themselves,
providing valuable insight into market risk [13]. For instance,
Franses and Dijk [14] evaluate GARCH, Quadratic General-
ized Autoregressive Conditional Heteroskedasticity (QGARCH)
and Glosten–Jagannathan–Runkle (GJR) models for forecasting
weekly stock market volatility, finding that QGARCH performs
best in the absence of extreme events, while the GJR model
is not recommended for prediction. Mutinda and Langat [15]
introduce hybrid models that integrate GARCH with Long Short-
Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Transformer architectures to forecast the stock prices of Air-
tel, addressing the challenges of nonlinear and non-stationary
financial data. Empirical results show that the hybrid mod-
els, particularly GARCH-LSTM, outperform their stand-alone
counterparts, demonstrating improved accuracy and robustness
in stock price forecasting. Caiado and Lucio [16] introduce a
clustering approach based on forecast errors from asymmetric
GARCH models to study how COVID-19 affects the US stock
market industries, revealing that sectors like hotels and airlines
were most affected, while pharmaceuticals and data processing
were least impacted. Wang et al. [17] apply ARMA-GARCH,
TGARCH, and EGARCH models to forecast volatility in the
Shanghai Composite and Shenzhen Component indices, finding
that ARMA(4,4)-GARCH(1,1) with t-distribution performs best
for Shanghai, while ARMA(1,1)-TGARCH(1,1) is most effective
for Shenzhen, providing insights for investors and policymakers.

In stock price prediction, the limitation of GARCH is
obvious. A GARCH model is designed to forecast conditional
volatility rather than the future level of stock prices. In practice,
GARCH cannot directly predict stock prices, because it mod-
els the variance of returns rather than their mean. In addition,
it should be emphasized that these volatility predictions rely on
past data and the particular market context in which they were
estimated. Unexpected shocks or structural shifts in the market
could reduce their forecasting accuracy. Moreover, although these
models are effective at capturing volatility clustering, they may
fall short in representing nonlinear patterns or extreme events,
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indicating that additional methods may be needed for practical
applications.

2.3. Vector Autoregression (VAR)

Vector autoregression (VAR) models extend AR models to
several interdependent time series. VAR is particularly useful for
modeling correlations between multiple stocks or market indices,
allowing analysts to capture the influence of one asset on another
[18]. For example, Bessler and Luckoff [19] use a Bayesian vec-
tor autoregressive (BVAR) model, incorporating macroeconomic
variables and past stock returns, to forecast returns of large
German firms, showing that BVAR outperforms alternative time-
series models, particularly over longer horizons. Khan et al. [20]
propose a hybrid VAR model with smoothly clipped absolute
deviation estimation to forecast US macroeconomic variables,
demonstrating improved accuracy and efficiency over baseline
models for multistep-ahead predictions. While these models
are useful for short-term prediction and risk estimation, their
reliance on linear assumptions limits their performance in highly
complex markets. In addition, they can become computationally
intensive when applied to a large number of time series.

3. Machine Learning Approaches

Machine learning methods allow for modeling nonlinear
relationships and complicated relationships in financial data.
They have become more and more popular in stock price fore-
casting because of their flexibility and performance potential.
Table 2 demonstrates the comparison between some commonly
used machine learning models in stock price prediction.

3.1. Supervised learning

Support vector machines (SVMs), Random Forests, and
gradient boosting machines (GBM) (e.g., XGBoost) are widely
used supervised learning algorithms that employ historical market

data along with engineered features to forecast subsequent price
dynamics or directional tendencies.

3.1.1. Support Vector Machine
SVMs are commonly applied in stock forecasting tasks

because they can effectively handle complicated and noisy finan-
cial data. In classification, SVM seeks the optimal hyperplane
that separates stock movements (e.g., up or down) with the max-
imum margin, improving generalization. For regression, support
vector regression (SVR) fits the data within a margin of tol-
erance, capturing nonlinear relationships between features such
as historical prices, technical indicators, sentiment, and future
stock prices. This makes SVM and SVR robust tools for both
directional prediction and price forecasting.

Building on this, Hu et al. [21] apply SVM to predict stock
performance using company-specific and macroeconomic factors,
demonstrating that SVM effectively addresses model uncertainty
and parameter instability, providing a robust tool for stock mar-
ket forecasting. Mahmoodi et al. [22] integrate SVM with particle
swarm optimization (SVM-PSO) to predict stock trading signals,
showing superior performance with a 77.5% hit rate compared to
SVM-Cuckoo Search and neural network models, demonstrating
its effectiveness for short-term stock market forecasting. Purnama
et al. [23] compare SVM and linear regression (LR) for predict-
ing stock prices of PT. Vale Indonesia (INCO), finding that LR
outperforms SVM, achieving a lower Root Mean Square Error
(RMSE) of 42.82 compared to 64.32. Myilvahanan and Sun-
daram [24] develop a hybrid approach to forecast stock prices
by combining LSTM and convolutional neural network (CNN)
models optimized with Aquila Circle-Inspired Optimization and
then fusing their outputs using SVM, achieving improved accu-
racy with an Mean Absolute Percentage Error (MAPE) of 0.378
and a normalized RMSE of 0.294. Henrique et al. [25] apply
SVR to predict stock prices across multiple markets and frequen-
cies, showing that SVR exhibits predictive power, particularly
when models are periodically updated and during periods of lower
volatility.

Table 2
Machine learning and deep learning models for stock price prediction

Model Strengths Limitations

SVM Can model nonlinear relationships between features
and price movements

Sensitive to parameter tuning and kernel
choice; struggles with large datasets

Random Forest Robust to noise and outliers; good for capturing
feature importance

Less interpretable

Gradient Boosting High predictive accuracy and flexibility; handles
complex feature interactions

Prone to overfitting; less effective for
sequential data without feature engineering

FNN/LSTM/GRU Effectively captures temporal and sequential
patterns in price data

Requires large datasets and long training time

CNN Extracts local and spatial patterns from stock
features or chart images (e.g., candlesticks)

May lose long-term dependencies;
performance depends on input
representation

Transformer Captures long-range dependencies and attention
across multiple stocks or modalities

Requires large data and high computational
cost; sensitive to hyperparameters

Multimodal Approach Integrates diverse data sources (text, images,
numerical) to capture broader market signals

Complex model design and training; requires
careful data alignment and fusion strategy
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In terms of limitations, SVM is sensitive to parameter
selection and kernel choice, which can lead to overfitting. More-
over, they struggle with large datasets, noisy financial data, and
capturing complex nonlinear and temporal relationships.

3.1.2. Random Forest
The Random Forest algorithm integrates multiple decision

trees, merging their outputs to deliver more accurate and robust
predictions. In stock prediction, each tree may capture different
aspects of market behavior, such as historical price patterns, tech-
nical indicators, or sentiment signals. By averaging predictions in
regression and using majority voting in classification, Random
Forest reduces overfitting and increases stability, which makes it a
robust baseline model for stock movement and return forecasting.
However, Random Forest can be computationally intensive and
memory-demanding, especially with large datasets or many trees.

For example, Li [26] evaluates Random Forest for financial
market forecasting, highlighting its capability to process data with
a large number of features and reduce overfitting, while proposing
integration with time-series methods like ARIMA and GARCH
to address temporal dependencies and improve prediction accu-
racy. Du et al. [27] develop a stock market prediction model
using Random Forest on historical trading data from Shang-
hai Stock Exchange (SSE) A-share stocks and Exchange-Traded
Funds (ETFs), demonstrating that the approach achieves accurate
predictions and provides valuable guidance for investors. Mano-
jlovi and Štajduhar [28] use Random Forest to build 5- and
10-day-ahead stock market prediction models for the CROBEX
index and selected Zagreb Stock Exchange companies, achieving
average classification accuracies of 76.5% and 80.8%, respectively.
Vijh et al. [29] use Artificial Neural Network and Random Forest
models to predict the next-day closing prices of five companies
with stock price features as inputs, showing strong performance
through low RMSE and MAPE.

3.1.3. Gradient Boosting
Gradient boosting is an ensemble approach that builds mod-

els in sequence, where each successive tree addresses the mistakes
of the previous ones. Unlike Random Forest, which trains trees
independently, gradient boosting focuses on minimizing predic-
tion errors by iteratively improving weak learners. In stock price
forecasting, this allows the model to capture complex nonlin-
ear relationships between historical prices, technical indicators,
and sentiment features, often leading to higher accuracy but at
the expense of greater computational complexity and risk of
overfitting.

For instance, Yuvaraj et al. [30] use a GBM with EMA tech-
nical indicators to forecast adjusted closing stock prices, achieving
outstanding performance with an R2 of 0.99 and demonstrat-
ing its effectiveness in handling nonlinear patterns and mitigating
autocorrelation in time-series data. Shahin et al. [31] propose a
hybrid approach combining a Gradient Boosting Neural Net-
work and SVR for feature selection, using technical indicators to
predict cryptocurrency prices, and demonstrate higher accuracy
compared to leading machine learning models. Deng et al. [32]
use an explainable XGBoost model with sentiment features from
institutional, individual, and foreign investors to predict the move-
ment of Shanghai and Shenzhen composite indices, finding that
institutional investor sentiment is the most influential and that the
model achieves high forecasting accuracy. Reddy and Kumar [33]
compare GBMs and Naive Bayes for stock price prediction, show-
ing that GBM with a novel loss function achieves higher accuracy
(92.3%) than Naive Bayes (87.7%). Mukhaninga et al. [34] apply

GBMs and principal component regression (PCR) to predict the
JSE All-Share Index, finding that GBM consistently outperforms
PCR in accuracy across multiple training–testing splits, with the
superiority confirmed by the Diebold–Mariano test, highlighting
GBM’s ability to capture nonlinear relationships in financial time
series.

4. Deep Learning and Multimodal Approaches

Recent advances in deep learning and multimodal AI have
further enhanced predictive performance in stock markets.

4.1. Neural networks

Deep learning approaches provide considerable improve-
ments in stock price forecasting compared to conventional
machine learning models like SVM, Random Forest, and gra-
dient boosting. Although traditional models are proficient at
capturing structured patterns and relationships, they often strug-
gle with highly nonlinear and sequential dependencies inherent
in financial time series [35]. Neural networks provide a power-
ful framework for capturing such nonlinearities, enabling them to
learn complex feature interactions that may be difficult to engi-
neer manually. Feedforward neural networks (FNNs) have been
applied to short-term predictions, while recurrent neural networks
(RNNs), including LSTM and GRU, excel at modeling temporal
dependencies. LSTM and GRU networks, in particular, are adept
at capturing long-term dependencies and mitigating vanishing
gradient problems, making them especially suitable for dynamic
and volatile stock market data.

For instance, Shinde et al. [36] assess the performance of
LSTM models in forecasting long-term stock prices, showing
that LSTM outperforms SVR, RNN, and other traditional mod-
els by better capturing stock price trends, providing a reliable
tool for financial analysts and investors. Zhang et al. [37] pro-
pose a hybrid VMD–TMFG–LSTMmodel to predict stock price,
combining Variational Mode Decomposition (VMD) for noise
reduction, Triangulated Maximally Filtered Graph (TMFG) for
feature selection, and LSTM for prediction. The model signifi-
cantly outperforms ARIMA, Neural Network (NN), deep neural
network (DNN), CNN, and other LSTM-based variants in fore-
casting multiple stocks, achieving substantial reductions in RMSE,
Mean Absolute Error (MAE), and runtime, while improving
R2, demonstrating enhanced accuracy, stability, and computa-
tional efficiency. Gao et al. [38] develop a stock price forecasting
model incorporating technical indicators, investor sentiment, and
financial data, using LASSO and Principal Component Analy-
sis (PCA) for dimensionality reduction, and compare LSTM and
GRU networks. Results show that both neural models perform
efficiently, with LASSO-based models achieving better predictive
accuracy than PCA-based models. Hafshejani and Mansouri [39]
conduct a systematic review of 98 studies on LSTM networks
applied to stock market prediction, highlighting their ability to
model temporal dependencies in financial data. It also exam-
ines how LSTM networks can be integrated with approaches like
sentiment analysis, providing insights for improving predictive
accuracy and guiding future research and practical applications
in financial forecasting. Rahmadeyan and Mustakim [40] apply
LSTM and GRU models to predict the stock price of Bank
Rakyat Indonesia, focusing on the banking sector. The results
indicate that the GRU model outperforms LSTM, achieving
low Mean Squared Error (MSE), RMSE, and MAPE values,
and predicts a decrease in stock prices in the following month.
Das et al. [41] introduce GRU and ConvGRU models for
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stock price prediction, leveraging historical data and feature extrac-
tion to capture temporal and spatial patterns. Experimental results
show that GRU outperforms traditional models like LR and
ARIMA, demonstrating its potential as a robust tool for forecast-
ing stock prices, though predictions should be supplemented with
broader market factors. Naeini et al. [42] compare two neural net-
work architectures—feedforwardmultilayer perceptron (MLP) and
Elman recurrent network—for stock price prediction. Results show
that MLP better predicts the magnitude of stock value changes,
while the Elman network andLRmore accurately predict the direc-
tion of stock value movements. Kumarappan et al. [43] propose
a Federated Learning-enhancedMLP–LSTM (Fed-MLP–LSTM)
model for stockmarket prediction. By combining LSTMnetworks,
which capture sequential dependencies, with Federated Learning,
the approach allows multiple institutions to collaboratively train
models on local CAC40 stock data while preserving privacy. Local
MLP–LSTM models extract features and model sequences, and
their parameters are aggregated centrally to create a global model.
Evaluation using RMSE and accuracy demonstrates superior per-
formance, achieving an RMSE of 0.0108 and 98.3% accuracy. The
study highlights Fed-MLP–LSTM as a reliable, privacy-preserving
solution for collaborative stock forecasting.

These studies indicate that RNNs, especially LSTM models,
are capable of modeling temporal patterns and complex rela-
tionships in stock price series. However, their effectiveness often
hinges on proper hyperparameter selection and the availability of
sufficiently rich historical data. LSTMs can also be challenged by
noisy or limited datasets, and their predictions may be prone to
overfitting when tested on unseen data. Therefore, while they offer
strong potential for sequential financial modeling, careful imple-
mentation and, in some cases, combination with other approaches
may be necessary to ensure robust performance.

4.2. CNNs on stock charts

CNNs are frequently applied to analyze visual patterns in
candlestick charts, price-volume charts, or heatmaps of correla-
tions. Compared to numerical data, stock charts offer a richer
representation by embedding temporal and structural patterns
into a visual format. Candlestick charts, for instance, compactly
convey information on price movement, volatility, and market
sentiment that may be difficult to capture from raw numerical
sequences. CNNs are particularly effective in this context because
they automatically extract hierarchical features from visual inputs,
reducing the reliance on manual feature engineering. By lever-
aging spatial feature extraction, CNNs can detect subtle shapes,
textures, and local dependencies in stock charts that traditional
numerical indicators or machine learning models might over-
look. Transforming financial time series into images also enables
researchers to apply advances from computer vision to uncover
latent structures in stock movements, thereby enhancing predictive
performance.

For example, Wojarnik [44] investigates the use of CNNs for
analyzing stock market charts. Motivated by the growing pop-
ularity of deep learning in stock price prediction, the research
builds a CNN capable of recognizing patterns from simplified
stock chart images. Using TensorFlow and Keras, the model
processes graphical data to extract relevant information. Experi-
mental results demonstrate near-perfect efficiency, suggesting that
CNNs have strong potential for analyzing stock data visually and
capturing trends in share prices and other financial instruments.
Khalid et al. [45] propose a convolutional DNN (2D-CNN) for
predicting stock price trends by classifying images generated from

financial time-series data. Technical indicators computed over 21-
day periods are transformed into images labeled as Sell, Hold, or
Buy. Experimental results show that the 2D-CNN outperforms
both LSTM models and one-dimensional CNNs, demonstrating
its effectiveness in capturing complex patterns for stock trend
prediction. Wu et al. [46] propose a hybrid model called Stock
Sequence Array Convolutional LSTM (SACLSTM) for more
accurate stock price prediction. The model combines CNN and
LSTM networks by constructing a sequence array of historical
stock data and leading indicators (e.g., options and futures). CNN
extracts feature vectors from this array, which are subsequently
input into LSTM models for forecasting. Experiments on 10
US and Taiwan stocks demonstrate that SACLSTM outperforms
previous methods, achieving improved prediction accuracy.

4.3. Transformers and attention models

Through self-attention mechanisms, Transformers capture
dependencies across both short and long ranges in sequential data.
In contrast to LSTMs and GRUs, which process sequences one
step at a time, Transformers operate on all time steps in parallel,
making them more efficient and better adapted to large datasets.
This parallelization allows Transformers to capture long-range
dependencies without the vanishing gradient problem inherent in
recurrent models. In the context of finance, Transformers have
been applied to stock price sequences, sentiment series, and cross-
asset correlations, where they excel at identifying subtle patterns
across multiple modalities. Moreover, their ability to evaluate the
importance of each time step and input feature enables them to
perform well in multistep forecasting and to model complex inter-
dependencies between markets. Compared to LSTMs, which are
limited by sequential processing and memory bottlenecks, Trans-
formers provide greater scalability, flexibility, and interpretability
through attention weights, offering a significant advantage for
stock price prediction.

For example, Gopali et al. [47] extend time-series fore-
casting to a multivariate setting, comparing models including
LSTM, Bi-directional LSTM (Bi-LSTM), Temporal Convolu-
tional Network (TCN), VAR, and Transformer-based Multi-Head
Attention, and find that the Transformer model achieves superior
performance for both stock and cryptocurrency data. Karthika
et al. [48] develop a deep learning model to forecast stock
prices using historical data, aiming to improve accuracy, stability,
and generalization. The proposed BiLSTM-MTRAN-TCN-TFT
model integrates Temporal Fusion Transformer (TFT) with
MTRAN-TCN and Bi-LSTM, combining transformer and tem-
poral convolutional networks for enhanced prediction. Using data
from 14 Shanghai and Shenzhen firms and five benchmark stocks,
the hybrid model consistently outperforms existing approaches
across multiple evaluation metrics. Malibari et al. [49] also apply
Transformer neural networks to predict stock price, employing
self-attention mechanisms to identify nonlinear relationships in
volatile time-series data. Their model predicts next-day closing
prices using inputs from the Saudi Stock Exchange (Tadawul) and
achieves over 90% predictive accuracy across four evaluation met-
rics. Yongchareon [50] investigates the performance of advanced
deep learning models, such as Transformers, in comparison with
conventional methods for predicting long-term stock market
indices, employing data from the S&P 500, NASDAQ, and Hang
Seng. The performance of 10 models is evaluated over multiple
time horizons with both predictive accuracy and financial metrics
such as returns, volatility, drawdown, and Sharpe ratio. Statistical
tests confirm significant differences in performance. Results show
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that transformer-based models (e.g., PatchTST) perform best in
short-term forecasts, while simpler models provide more stable
results in longer horizons. Hartanto and Gunawan [51] explore the
application of the Temporal Fusion Transformer (TFT) for short-
term stock market prediction. By integrating feature engineering
and technical indicators and addressing multicollinearity with the
variance inflation factor, the model captures complex temporal
dynamics across multiple time series. Experimental results show
that TFT significantly outperforms traditional statistical models
and other transformer architectures. It achieves a remarkably low
SMAPE of 0.0022, highlighting its ability to capture stock-specific
patterns and improve forecasting accuracy.

4.4. Multimodal models

Multimodal models integrate multiple data sources, includ-
ing numerical prices, textual news sentiment, or visual chart
patterns. These models leverage complementary information to
improve prediction accuracy. For example, Chen and Kawashima
[52] propose a Dual Transformer model that incorporates news
sentiment of related companies to improve stock price predic-
tion. The architecture includes an Enhancement Transformer
to strengthen inter-company correlations and a Forecast Trans-
former for price forecasting. Using polarity scores and historical
prices from 2015 to 2024 for eight companies, the model pre-
dicts the closing price for the next day. Experiments show
that considering related companies’ sentiment improves accuracy,
and the Dual Transformer outperforms Temporal Fusion Trans-
former, N-Beats, Informer, and LSTM in terms of MSE. Chen
and Kawashima [53] investigate the use of LLMs for financial
news sentiment analysis to enhance stock price forecasting with
transformer-based models. Six sentiment models (GPT-4, Llama
3, Gemma 2, Mistral 7B, FinBERT, VADER) are compared,
showing that modern LLMs outperform traditional models like
FinBERT and VADER. Llama 3 is selected for classifying news
sentiment of target companies. Stock prices are predicted using
Informer, Transformer, TCN, LSTM, SVR, Random Forest, and
Naive Forecast with various sliding windows. Results indicate
that incorporating news sentiment improves prediction accuracy,
with Informer achieving the best performance. An ablation study
highlights the importance of Informer’s generative-style decoder
in enhancing predictions. Li et al. [54] address the challenges
of stock price forecasting, noting that existing neural models
only consider time-aligned stock correlations and assume static
feature effectiveness. They propose MASTER (MArkert-guided
Stock TransformER), a model that captures both short-term and
cross-time stock correlations and leverages market information for
automatic feature selection. MASTER achieves this by alternat-
ing between aggregating information within individual stocks and
across different stocks, enabling it to model complex inter-stock
relationships. Experimental results show that MASTER outper-
forms previous methods and provides interpretable insights into
realistic stock correlations.

These studies collectively highlight the benefits of incorporat-
ing additional information, such as company interrelations, news
sentiment, and market-driven feature selection, into transformer-
based stock prediction models. They show that using data beyond
historical prices can noticeably improve forecasting performance.
At the same time, models like the Dual Transformer and MAS-
TER tend to be complex, which can make them harder to
interpret and more computationally demanding. Many of these
approaches also rely on the assumption that correlations and sen-
timent patterns remain stable, which may not hold during sudden

market changes. This indicates that future work could explore
more robust and adaptive models that balance accuracy with
interpretability for practical use in financial markets.

4.5. Large Language Models

Recently, LLMs have proven effective in financial prediction
by capturing subtle semantic and contextual information from
large volumes of text. Originally, LLMs were primarily applied
to sentiment analysis, where they outperformed traditional natu-
ral language processing methods in extracting market sentiment
from financial news, social media, and reports.

Some notable research on the applications of LLMs is
outlined as follows. Kirtac and Germano [55] evaluate OPT,
BERT, FinBERT, and the Loughran-McDonald dictionary on
over 965,000 US financial news articles (2010–2023), showing that
the GPT-3-based OPT model achieves the highest performance
with 74.4% prediction accuracy. Moreno and Ordieres-Meré [56]
apply RoBERTa, FinBERT, and GPT to analyze sell-side equity
analysts’ reports from 2016 to 2022 on the IBEX 35 index. Find-
ings show that LLM-extracted sentiment can effectively forecast
stock price trends while mitigating bias in analysts’ target prices,
underscoring their value in supporting informed investment deci-
sions. Mun and Kim [57] examine how LLMs can be applied to
analyze financial news sentiment and inform investment strate-
gies. Applying both discriminative models (BERT, FinBERT)
and generative models (Llama 3.1, Mistral, Gemma 2) with
advancedprompting techniques suchasSuper In-ContextLearning
and Bootstrapping, the results show that generative LLMs out-
perform discriminative ones, with long strategies yielding the best
portfolio performance. The study also highlights explainability con-
siderations and potential risks, demonstrating the value of LLMs
fordata-driven financial decision-making. Iacovides et al. [58] intro-
duce FinLlama, a finance-specific LLM based on Llama 2 7B,
designed to classify sentiment and quantify its strength in financial
news. By fine-tuning on supervised financial data and employing
parameter-efficient techniques, FinLlama provides nuanced senti-
ment analysis, improving portfolio returns and generating resilient
investment strategies even in volatile market conditions.

More recently, researchers have begun to explore their direct
application to stock price prediction by leveraging their gen-
erative and reasoning capabilities. This shift reflects a growing
interest in using LLMs not only as feature extractors but also
as predictive models that can integrate textual, numerical, and
even multimodal inputs for forecasting. For example, Yan and
Huang [59] propose MambaLLM, a hybrid framework combin-
ing state-space models and LLMs to integrate micro-level stock
features with macroeconomic index information. Tested on six
major US stocks, it reduces RMSE by up to 28.5% relative to
traditional RNNs and MAMBA baselines, effectively capturing
both asset-specific dynamics and broader market trends for stock
price prediction. Koa et al. [60] propose the Summarize-Explain-
Predict framework, which enables LLMs to generate explainable
stock predictions autonomously. By combining a self-reflective
agent with Proximal Policy Optimization (PPO), the framework
lets the LLM teach itself to summarize, explain, and predict
stock movements without requiring human-annotated explana-
tions, achieving superior prediction accuracy and effectiveness in
portfolio construction.

Despite the advantages of LLMs, the application of LLMs
in finance faces several challenges. Computational costs remain
high, and fine-tuning large-scale models requires significant
resources. Domain adaptation is another critical issue, as generic
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LLMs trained on general corpora may not capture the specific
language of finance without targeted pre-training. Furthermore,
the interpretability of LLM outputs and the potential risks of
hallucination raise concerns for practical adoption in high-stakes
financial decision-making. Nevertheless, the ongoing rapid devel-
opment of LLMs implies they will increasingly contribute to
financial forecasting and decision support, especially when lever-
aged alongside numerical and visual data within multimodal
prediction frameworks.

4.6. Reinforcement learning for trading and portfolio
optimization

Reinforcement learning (RL) approaches frame stock trading
and portfolio optimization as sequential decision-making prob-
lems. An RL agent interacts with the market environment by
choosing actions such as buy, sell, or hold, and obtains evaluative
feedback as reward signals linked to portfolio performance. These
rewards are often adjusted by risk metrics like the Sharpe ratio,
ensuring that strategies balance both returns and risk. Unlike
supervised models that passively predict prices, RL actively learns
optimal trading and allocation strategies through trial and error,
making it particularly suitable for dynamic portfolio manage-
ment. RL methods are therefore highly promising for algorithmic
trading, where adaptive, real-time decision-making is required.

For example, Chen and Kawashima [61] develop an RL
framework using PPO to dynamically assign weights to formulaic
alphas generated by LLMs for stock trading. Using DeepSeek
to generate fifty alphas for five companies in different indus-
tries, the framework adaptively integrates signals and achieves
higher returns and Sharpe ratios than equal-weighted portfolios
and major market benchmarks. The results highlight the value
of integrating LLM-generated signals with RL for more effective
trading strategies. Jeon et al. [62] introduce FreQuant, a deep RL
framework for optimizing portfolios by operating in the frequency
domain through Discrete Fourier Transform techniques. By cap-
turing both dominant and subtle market frequencies, FreQuant
adapts more effectively to sudden market shifts than time-domain
approaches. Experiments on real-world datasets show that Fre-
Quant significantly improves profitability, achieving up to 2.1×
higher annualized returns and 2.9× higher portfolio value com-
pared to leading benchmarks. Choudhary et al. [63] introduce a
Risk-Adjusted Deep Reinforcement Learning (RA-DRL) frame-
work for portfolio optimization, integrating three DRL agents
trained with different reward functions—log returns, differential
Sharpe ratio, and maximum drawdown. A CNN fuses its actions
into a single risk-adjusted policy, balancing multiple investment
objectives. Tested on Sensex, Dow, TWSE, and IBEX data,
RA-DRL consistently outperforms baseline DRL agents and
benchmark methods across risk and return metrics. Enkhsaikhan
et al. [64] propose a risk-constrained RL framework for port-
folio optimization, integrating risk tolerance estimation with a
Variational Autoencoder and Cost Network to manage epistemic
uncertainty. The approach avoids unsafe actions, achieves zero
constraint violations in testing, and shows strong potential for
risk-averse investors.

These studies highlight the promise of combining RL with
advanced signals, such as LLM-generated alphas or frequency-
domain features, for portfolio optimization. Adaptive frameworks
like PPO, FreQuant, and RA-DRL show improved returns
and risk-adjusted performance. Still, their evaluation is largely
based on historical data, and real-world challenges such as
market shocks, transaction costs, and interpretability remain.

Future work could focus on enhancing robustness and practical
applicability while keeping models computationally efficient.

5. Feature Engineering

In stock prediction, feature selection is essential because it
has a direct impact on the performance and accuracy of predic-
tive models. Historical stock prices, including open, high, low,
close, and trading volume, are the most commonly used features,
providing essential information on past market behavior and
trends.

In addition to raw prices, technical indicators derived from
historical data play a significant role in capturing market momen-
tum and trend signals. These include measures such as Simple and
Exponential Moving Averages, Relative Strength Index, Moving
Average Convergence Divergence, and Bollinger Bands, which
are widely used by traders and researchers to identify potential
buy or sell signals. For example, Yuvaraj et al. [65] examine the
ability of a Light Gradient Boosting Machine (LightGBM) to
predict stock prices with Exponential Moving Averages (EMA_5)
and Simple Moving Averages (SMA_5) as primary technical
indicators. Fozap [66] introduces an LSTM-CNN deep learning
model that leverages technical indicators to strengthen prediction
performance for stock price movements.

Market sentiment is another valuable source of informa-
tion and can be extracted from news articles, financial reports,
or social media. Sentiment features allow models to incorpo-
rate behavioral and psychological factors that influence stock
price movements, which are often not reflected in numerical data
alone. For example, Maqbool et al. [67] propose a machine learn-
ing model that integrates financial news with historical stock
data to predict short- and medium-term stock trends. Mamilla-
palli et al. [68] demonstrate that integrating sentiment analysis
with machine learning improves stock price prediction, show-
ing that the proposed GRUvader model outperforms stand-alone
approaches and highlighting the strong correlation between sen-
timent indicators and market movements. Agrawal et al. [69]
develop a hybrid model that combines insights from social media
sentiment with technical indicators to improve stock market
forecasting.

Finally, macroeconomic indicators such as interest rates,
inflation, and GDP growth offer a broader economic context,
helping models account for external factors that can significantly
impact stock prices. Combining these diverse feature types enables
machine learning models to capture a more comprehensive view
of the market and enhance prediction performance. For exam-
ple, Patsiarikas et al. [70] apply macroeconomic, technical, and
sentiment indicators to forecast the S&P 500 index. Latif et al.
[71] introduce a predictive model for S&P 500 returns that com-
bines key macroeconomic indicators with 10 technical indicators
to enhance forecasting accuracy.

Apart from basic features, researchers have also explored
composite features to enhance stock prediction models. One
notable example is formulaic alphas, which represent mathe-
matically defined signals derived from various market inputs,
including price and volume. Traditional approaches to mine these
alphas include manual feature engineering [72], statistical anal-
ysis, and genetic programming. More recently, RL and deep
learning-based generative frameworks have been applied to auto-
matically generate and optimize sets of synergistic alphas. These
alphas aim to capture subtle patterns and predictive signals that
may not be evident from individual features alone, providing
richer inputs for machine learning and deep learning models.
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By integrating formulaic alphas, models can potentially improve
forecasting accuracy and better inform trading strategies. For
example, Yu et al. [73] address quantitative trading by focus-
ing on formulaic alpha factors. Unlike traditional methods that
mine alphas individually, their proposed framework prioritizes
generating synergistic sets of alphas optimized for downstream
combination models. Leveraging RL, the framework uses the
contribution to portfolio returns as a reward to guide alpha
generation. Experiments on real-world stock data demonstrate
that this approach improves stock trend forecasting and achieves
higher simulated investment returns compared to previous meth-
ods. Shi et al. [74] address the challenges of formulaic alpha
factor mining in quantitative investment, where financial data
is highly variable and noisy. Traditional methods with fixed
alpha weights lack adaptability to dynamic markets. The pro-
posed AlphaForge framework integrates a generative-predictive
neural network for producing multiple alpha factors with a com-
bination model that continuously adjusts factor weights based
on their time-dependent effectiveness. Experiments on real-world
datasets show that AlphaForge outperforms existing methods in
alpha factor mining and enhances portfolio returns in quantita-
tive investment. Zhao et al. [75] propose a novel RL algorithm
based on REINFORCE, leveraging Monte Carlo policy gradient
estimation with a dedicated baseline to reduce variance. Addition-
ally, reward shaping with the information ratio encourages stable
alpha factors adaptable to market volatility. Experiments on real-
world data demonstrate improved correlation with returns and
stronger excess return generation compared to existing alpha fac-
tor mining methods. Shi et al. [76] present a novel approach that
leverages LLMs alongside Monte Carlo Tree Search (MCTS) to
efficiently generate interpretable formulaic alpha factors. By lever-
aging LLM reasoning and MCTS-guided backtesting feedback,
the approach discovers predictive alphas with improved accu-
racy, trading performance, and human interpretability compared
to traditional methods. Tang et al. [77] introduce AlphaAgent, a
framework that combines LLM-driven agents with regularization
mechanisms to mine alpha factors resistant to decay. By enforcing
originality, aligning factors with market hypotheses, and control-
ling complexity, AlphaAgent consistently generates predictive and
durable alpha factors, outperforming traditional and LLM-based
methods in both Chinese and US markets.

In addition to traditional financial indicators and textual
data, ESG factors are increasingly being incorporated into stock
price prediction models to account for sustainability consider-
ations. ESG data can be used as numerical features, including
scores or ratings from providers such as MSCI or Sustain-
alytics, or extracted via text-based sentiment analysis from
company reports and news. These features can be integrated
with conventional financial indicators in machine learning or
deep learning models, including multimodal and Transformer-
based approaches, allowing models to capture both market and
sustainability-driven signals.

For example, Dincă et al. [78] investigate whether incor-
porating ESG factors improves financial forecast accuracy using
machine learning models across 2548 firms from 98 countries. The
results indicate that ESG scores generally do not enhance predic-
tive performance, except marginally in the business services sector.
Rosinus and Lansky [79] examine the impact of annual ESG
scores on monthly stock return predictions for German DAX
companies through multivariate LSTM models. Results show that
incorporating ESG data does not enhance predictive accuracy,

suggesting that low-frequency ESG information offers little addi-
tional value beyond historical returns and highlighting the need
for more timely data for investment decisions. Liang [80] investi-
gates the impact of ESG performance on annual stock returns of
Chinese A-share energy companies using an MLP model. Results
indicate a significant positive relationship, with higher ESG scores
increasing returns partly through improved profitability, demon-
strating the potential of deep learning methods to leverage ESG
metrics for financial forecasting.

Overall, these studies show mixed evidence regarding the
usefulness of ESG factors in financial forecasting. These mixed
results highlight several challenges in integrating ESG information
into stock prediction. First, ESG data is often reported infre-
quently and lacks standardization across companies and regions,
making it difficult to use in high-frequency forecasting. Second,
ESG metrics may be noisy or subjective, reducing their reliabil-
ity as predictive features. Finally, the impact of ESG factors can
be sector-or market-specific, requiring careful model design and
feature selection. Future research could focus on higher-frequency
ESG data, better standardization, and adaptive modeling tech-
niques to more effectively leverage ESG information in stock price
prediction.

6. Challenges and Open Issues

While earlier sections discussed several specific challenges,
this section synthesizes those points and further extends them to
provide a broader perspective.

For stock forecasting, one of the most fundamental difficul-
ties lies in the nature of financial markets, which are inherently
noisy and often non-stationary. Market dynamics are influenced
by a wide range of unpredictable factors, making it difficult for
models to capture stable and consistent patterns over time.

Another challenge lies in the risk of overfitting, especially
when dealing with complex neural networks. While such models
may achieve impressive performance on training data, they can fail
to generalize to unseen market conditions, reducing their reliabil-
ity in practice. Closely related to this issue is the problem of data
availability and quality. Financial datasets may be incomplete,
inconsistent, or subject to biases, which can negatively impact
model training and evaluation.

In addition, there exists a trade-off between interpretability
and accuracy. Highly sophisticated models often achieve strong
predictive performance, but their inner workings remain opaque
to human analysts. This lack of transparency poses difficulties
for practical adoption, especially in finance, where explainabil-
ity is often essential. Finally, the issue of transferability remains
a significant open problem. Models trained on one market or
asset may not generalize well to other markets with different
structures, regulations, or investor behaviors, limiting the broader
applicability of prediction methods.

In addition to the challenges discussed above, data snoop-
ing remains a significant concern. Models may perform well on
historical data but fail to generalize to unseen market condi-
tions, leading to overly optimistic assessments. Another important
issue is the lack of standardized benchmarks. Differences in
datasets, preprocessing methods, evaluation metrics, and exper-
imental setups make it difficult to compare models fairly or
evaluate their real-world effectiveness. Addressing these issues is
essential to improve the robustness, reproducibility, and reliability
of financial prediction models.
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7. Future Directions

Several promising directions can guide future research in
stock prediction. One key area is the development of explainable
AI methods, which enhance the transparency and trustworthiness
of predictive models. For instance, researchers could apply SHap-
ley Additive exPlanations (SHAP) values to a gradient boosting
model to identify which features—such as trading volume, tech-
nical indicators, or news sentiment—most strongly influence a
stock’s predicted movement. By revealing the factors driving pre-
dictions, such techniques can help analysts better understand
model behavior and increase confidence in using AI for real-world
financial decisions.

Another promising avenue is multimodal learning, which
integrates numerical, textual, and visual data to deliver a more
complete understanding of market dynamics. For example,
combining traditional stock features with news sentiment and
candlestick chart analysis has the potential to capture richer
and more diverse signals that can improve predictive accuracy.
Related to this, LLMs represent a powerful tool for sentiment
extraction and market analysis. Their ability to process and inter-
pret vast amounts of unstructured text data enables a deeper
understanding of market sentiment and its influence on asset
prices.

Hybrid approaches that combine statistical models with AI-
based methods also have considerable potential. Such methods
can leverage the interpretability and robustness of traditional
techniques while benefiting from the flexibility and predictive
strength of modern machine learning models. Finally, risk-aware
RL offers a promising pathway for developing trading strategies
under uncertainty. By explicitly incorporating risk into decision-
making, RL models can generate more reliable and practical
strategies suited for real-world financial applications.

8. Conclusion

Prediction of stock prices has evolved from classical statisti-
cal methods to machine learning, deep learning, and multimodal
approaches, each contributing to our understanding of mar-
ket dynamics. Traditional models offered interpretability but
were limited in capturing nonlinear patterns. Machine learn-
ing and neural networks enabled the modeling of complex
relationships, revealing insights into patterns that classical meth-
ods could not detect. Multimodal deep learning models further
integrate information from multiple sources, uncovering cross-
domain dependencies and improving predictive performance.
These advances have collectively expanded both the methodolog-
ical toolkit and our scientific understanding of how financial,
textual, and visual signals influence stock movements. Future
research should focus on enhancing model interpretability, miti-
gating market noise, and developing approaches that generalize
across markets and timeframes to further strengthen both
practical forecasting and theoretical insights.
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