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Abstract: Large-scale pre-trained models, such as GPT, greatly improve numerous areas of artificial intelligence (AI), including
natural language understanding, image recognition, and the integration of various data types. However, these models continue to encounter
significant challenges, including excessive computational resource requirements, inadequate adaptability to dynamic environments, sus-
ceptibility to catastrophic forgetting, and limited internal interpretability. By comparison, the human brain exhibits efficient learning from
sparse data, demonstrates robust adaptability across diverse contexts, operates with minimal energy consumption, retains information over
extended periods, and can be elucidated through its underlying cognitive processes. This review examines recent research and is the first
to categorize brain-inspired methods into three key dimensions. It explores how mechanisms of the human brain, such as hierarchical and
modular designs, biologically inspired attention mechanisms, memory enhancement strategies, synaptic plasticity, and predictive coding,
could inspire optimizations for large-scale models. This review not only synthesizes the current state of the field but also proposes potential
directions for future research. There remains a need for stronger theories, better testing methods, improved hardware–software coordina-
tion, and careful consideration of ethical issues. Overcoming these challenges will require closer collaboration between neuroscientists,
cognitive scientists, machine learning experts, and engineers. Through such collaboration, the field may develop the next generation of AI
systems that perform at the highest levels while being more efficient, flexible, and transparent.

Keywords: large-scale pre-trainedmodels, brain-inspired optimization, artificial intelligence, event-driven computation, continual learning,
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1. Introduction

Over the past decade, large-scale pre-trained models have
rapidly ascended to prominence within the field of artificial intel-
ligence (AI), demonstrating unprecedented capacities in natural
language processing, computer vision, and multimodal integration
[1–6]. Such models leverage extensive corpora of textual, visual,
and other data modalities, enabling them to achieve state-of-the-art
performance on a broad range of benchmark tasks. Despite these
advances, the increasing scale and complexity of these architectures
have precipitated several notable challenges. Chief among these are
excessive computational and energy costs, limited adaptability to
novel domains, difficulties in learning continuously over time, and
insufficient transparency in their decision-making processes [7–11].
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By comparison, the human brain exemplifies a remarkably
efficient and adaptable information processing system. Operating
within stringent energy constraints, the brain excels at rapidly
integrating multiple sensory modalities, adapting to dynamic envi-
ronmental demands, learning effectively from limited exposure, and
retaining accumulated knowledge over a lifetime without catas-
trophic forgetting. Neuroscientific research has begun to elucidate
the underlying principles that support these capabilities, encom-
passing hierarchical and modular cortical organization, selective
attention mechanisms, intricate memory consolidation processes,
and synaptic plasticity that continually reshapes neural circuits
as new information is acquired [12–17]. Together, these mech-
anisms facilitate a balance between efficiency, adaptability, and
interpretability that is often challenging to achieve in large-scale
machine learning models.

Motivated by these insights, a growing body of work seeks
to incorporate biologically informed principles into the design
and training of large-scale models. Such endeavors are grounded
in the proposition that harnessing brain-inspired organizational
structures and learning rules may yield more robust, flexible, and

Pdf_Fol io:1

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

01

https://doi.org/10.47852/bonviewFSI52026630
mailto:lzwqhk@bnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


FinTech and Sustainable Innovation Vol. 1 2025

resource-efficient computational systems [18, 19]. Notable rese
arch directions include the development of modular and hierar-
chical model architectures inspired by cortical organization; the
integration of attention mechanisms that dynamically allocate com-
putational resources based on task-relevant features, echoing the
brain’s selective attention processes [20–22]; and the adoption of
memory and plasticity principles that permit continuous, incremen-
tal learning without extensive retraining [23, 24]. Moreover, the
exceptionalmetabolic efficiency of the brain has stimulated research
into model compression, pruning, and other strategies aimed at
reducing computational footprints without sacrificing model quality
[25–27].

Notwithstanding these promising avenues, the process of sys-
tematically integrating brain-inspired mechanisms into large-scale
models remains far from straightforward. Fundamental questions
persist regarding how best to implement hierarchical structures that
can scale to complex tasks, how to align neural attentional dynamics
with computational attention heads, how to achieve stable memory
retention in continuously evolving environments, and how to ensure
that such modifications yield empirically demonstrable improve-
ments in interpretability, efficiency, and robustness [28–32]. The
inherently interdisciplinary nature of these challenges—spanning
machine learning, neuroscience, cognitive science, and computa-
tional modeling—underscores the necessity of collaborative efforts
that draw upon a broad spectrum of empirical and theoretical
perspectives.

This review brings together current knowledge from neuro-
science and from large-scale pre-trained and foundation models
and primarily covers literature published from 2019 to 2025
while including earlier seminal works when necessary for con-
text. It distills core biological principles—how the brain organizes
information, focuses attention, stores memories, and adjusts its
connections—which underwrite efficiency and adaptability, and it
maps these principles to architectural, training, and optimization
strategies for large models. Methodologically, we identified stud-
ies through keyword-based searches and citation tracing, prioritized

peer-reviewed articles and influential preprints with methodolog-
ical or empirical contributions aligned to our scope, excluded
nontechnical editorials and out-of-scope applications, and orga-
nized the corpus along three analytic axes—adaptability, efficiency,
and interpretability—that guide the structure and synthesis of the
review.

2. Background and Preliminary

2.1. Cognitive mechanisms in the human brain

The human brain stands as a model of remarkable efficiency
and adaptability, supporting complex cognitive functions and learn-
ing processes under stringent energetic constraints. Central to
its success is a suite of interrelated mechanisms—hierarchically
organized processing, modular specialization, selective attentional
control, robust memory formation, and synaptic plasticity—that
collectively underpin flexible, context-aware information process-
ing and long-term knowledge retention [33, 34]. Understanding
these foundational principles not only advances our comprehension
of human cognition but also provides valuable insights into how
we might guide the development of more efficient and adaptable
large-scale computational models.

As illustrated in Figure 1, five core mechanisms—hierarchical
and modular organization, selective attention, memory, synaptic
plasticity, and predictive coding—may work in concert to achieve
robust and efficient cognition. The conceptual diagram highlights
these interdependencies, with arrows indicating how each mech-
anism both shapes and is shaped by the others, underscoring the
dynamic and bidirectional nature of cognitive processing. It is
important to note that this diagram illustrates possible points of
interaction rather than claiming a literal, exhaustive neural map-
ping. For example, selective attention may amplify relevant signals
within hierarchical modules, while predictive coding processes can
dampen predictable inputs to conserve resources. Memory consol-
idation and synaptic plasticity further adapt these pathways over

Figure 1
Five key cognitive mechanisms of the human brain
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time, gradually integrating new information into existing knowledge
structures. The following subsections delve into each mechanism,
explaining its role and relevance to large-scale models.

2.1.1. Hierarchical and modular organization
Neural processing in the brain is structured in a hierarchical,

modular fashion. Sensory information often proceeds from lower-
level cortical areas, which extract basic stimulus features, toward
higher-level associative regions that integrate and interpret these
features in more abstract terms [33, 35, 36]. This layered architec-
ture supports both bottom-up and top-down processing, enabling
the brain to integrate prior knowledge, contextual information,
and attentional signals to refine perception and decision-making
[34, 37]. Such hierarchical networks are organized into functionally
specialized modules—discrete neuronal populations that are selec-
tively tuned to particular categories of stimuli or cognitive tasks
[38]. By conferring specialization and flexible recombination, mod-
ularity and hierarchy support generalization and transfer of learned
skills across domains—qualities that large-scale models often strive
to emulate.

2.1.2. Selective attention and gating mechanisms
Human cognition is supported by attentional systems that high-

light salient information while suppressing irrelevant inputs. This
selective gating mechanism allows the brain to efficiently allocate
its limited computational and energetic resources to the most behav-
iorally pertinent signals [39, 40]. Attentional control arises through
distributed yet interconnected networks involving the frontoparietal
cortex and subcortical structures, dynamically adjusting the gain
on sensory streams and internal representations [41, 42]. By doing
so, the brain can flexibly switch between tasks, adapt to environ-
mental changes, and maintain stable performance under varying
conditions. These principles inform computational attention strate-
gies that large-scale models have begun to adopt, seeking more
context-sensitive resource allocation and improved interpretability
of model outputs.

2.1.3. Memory encoding, consolidation, and retrieval
Memory formation in the brain is distinguished by its capacity

to encode, store, and retrieve information over diverse timescales.
Short-term and working memory rely on sustained neural activity
patterns, whereas long-term memory depends on synaptic modifi-
cations that underlie stable information storage [43, 44]. Critical
to this process is the consolidation of memories, wherein initially
labile traces, often formed in the hippocampus, are gradually inte-
grated into distributed cortical networks to achieve long-lasting
representation [45]. These consolidation dynamics are supported by
offline reactivation events such as hippocampal replay, which helps
strengthen synaptic connections and update cortical storage [46, 47].
In parallel, associative and semantic memory structures enable flex-
ible retrieval of stored information, permitting the recombination of
knowledge to support inference, problem-solving, and generaliza-
tion [48, 49]. Such biological memory systems offer blueprints for
constructing large-scale models capable of integrating new infor-
mation continuously without catastrophic forgetting and performing
efficient knowledge retrieval.

2.1.4. Synaptic plasticity and continuous adaptation
Synaptic plasticity underlies the brain’s capacity to update

internal representations in response to novel stimuli, shifting

task demands, or altered environmental contingencies. Molecu-
lar and cellular mechanisms such as long-term potentiation and
long-term depression, combined with neuromodulatory influences
(e.g., dopamine, acetylcholine), serve to fine-tune synaptic weights
according to reward signals, prediction errors, and contextual rel-
evance [50–52]. This distributed, continuous adaptation process
ensures that new information can be incorporated without eras-
ing previously acquired skills. Emulating similar plasticity-inspired
update rules in large-scale models may improve their capacity for
online learning and adaptation, allowing these systems to maintain
stable performance across shifting data distributions and extended
temporal horizons.

2.1.5. Predictive coding and energy efficiency
Despite its extensive computational capabilities, the brain

operates with constrained energetic resources. Evidence suggests
that the cortex implements predictive coding principles whereby
higher-order areas generate probabilistic predictions of forthcom-
ing sensory input, and only the unpredicted components are further
processed [53–55]. Such predictive schemes efficiently allocate pro-
cessing capacity to deviations from expectation, therebyminimizing
redundant computations and conserving energy. Integrating predic-
tive coding frameworks into large-scale models may improve their
ability to handle variable input quality, reduce computational over-
head, and enhance their overall adaptability to uncertain conditions.

2.2. Large-scale pre-trained models: capabilities
and limitations

Large-scale, pre-trained models have facilitated impressive
advancements in natural language processing, computer vision, and
multimodal tasks. Such models—trained on extensive corpora and
comprising billions of parameters—demonstrate remarkable capa-
bilities, ranging from fluent, context-sensitive text generation to
coherent multimodal reasoning [3–5, 56–59]. Their widespread
deployment across research and industry underscores their appeal
as general-purpose learners capable of few-shot adaptation, multi-
lingual translation, and even code synthesis [60]. However, despite
these successes, fundamental challenges impede their broader,
more sustainable integration into complex, dynamic real-world
environments.

Foremost among these challenges is the escalating computa-
tional and energetic cost associated with training and deploying
increasingly large architectures. The resources required to han-
dle vast datasets and train models with unprecedented parameter
counts have raised concerns regarding environmental impact, car-
bon emissions, and the long-term economic viability of these
approaches [11, 61–63]. Unlike the human brain’s low-power neu-
ral computations, current artificial systems often rely on brute-force
optimization, extensive hyperparameter tuning, and massive paral-
lelization rather than exploiting biologically inspired trade-offs that
balance efficiency with representational complexity.

Another persistent limitation pertains to adaptability and con-
tinual learning. Although foundation models can be fine-tuned for
new tasks, they often struggle to maintain previously acquired com-
petencies without retraining on past data, a phenomenon known as
catastrophic forgetting. Overwriting of earlier representations and
poor accommodation of novel data distributions remain significant
obstacles to flexible, long-term knowledge accumulation [64–66].
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Recent surveys and analyses further systematize strategies for
mitigating catastrophic forgetting and enabling continual adaptation
across tasks and settings [64, 67, 68]. In contrast, human cognition
seamlessly integrates new information into existing schemas while
retaining past skills, suggesting that insights from synaptic plastic-
ity and hippocampal-cortical consolidation processes could inform
more resilient approaches to model updating.

Challenges in robustness and generalization further limit the
applicability of large-scale models. Despite ingesting immense
training corpora, these systems frequently exhibit brittle behavior in
the face of distributional shifts, adversarial perturbations, and pre-
viously unseen modalities [69–71]. Rather than extracting stable,
abstract concepts, they often rely on superficial statistical regulari-
ties that fail to transfer to unfamiliar contexts. The brain, in contrast,
routinely copes with sensory noise, environmental volatility, and
complex social cues, adjusting its internal representations through
attention, prediction, and memory consolidation. Emulating these
adaptive strategies in large-scale models may yield more robust
performance under real-world conditions.

Opacity and interpretability pose yet another major limitation.
Although large models often develop rich latent representations
and can capture intricate patterns, these representations are diffi-
cult to explain or alignwith human-understandable concepts. Efforts
to uncover latent knowledge or identify hidden biases reveal that
many models harbor problematic associations and knowledge struc-
tures that arise without explicit guidance [72–75]. The resulting lack
of transparency complicates attempts to ensure fairness, reliability,
and accountability, and it impedes the creation of models that can
provide justifications for their decisions. In contrast, the hierarchi-
cal and modular organization of the human brain—coupled with
decades of neuroscientific research—offers at least partial insights
into how neural circuits implement representational transforma-
tions. Drawing inspiration from these biological principles may
facilitate the design of architectures with more interpretable internal
dynamics.

Following the lifecycle perspective illustrated in Figure 2, we
can identify the major limitations of large-scale pre-trained models.

The diagram conceptualizes the entire process, from model training
and fine-tuning to deployment and continuous learning, highlighting
that each stage presents distinct difficulties. As the figure suggests,
these challenges—such as high compute costs, brittle generaliza-
tion, and catastrophic forgetting—correspond to the remarkable
strengths of the human brain. These biological strengths can, in turn,
be leveraged to inspire features that overcome the difficulties faced
by artificial systems. The following section explores how integrat-
ing these neuroscientific principles can inform the design of more
efficient, adaptable, and interpretable large-scale models.

3. Adaptive, Efficient, and Interpretable
Optimization of Large-Scale Models Through
Brain-Inspired Principles

We apply the methodological framing stated at the end of
the Introduction: studies identified through keyword-based searches
and citation tracing are organized along the three analytic dimen-
sions of adaptability, efficiency, and interpretability. Evidence is
synthesized directionally rather than through cross-paper numerical
aggregation; where feasible, interpretations are made under shared
or normalized compute and energy budgets. The following subsec-
tions map neurobiological and cognitive mechanisms to computable
architectures and training strategies.

Overcoming the core limitations of large-scale models—
ranging from their prohibitively high computational demands
and inflexibility to their fragile generalization and limited
interpretability—may benefit from the systematic incorporation
of neuroscientific principles. The human brain excels at adapting
to novel conditions, efficiently coding information, and operating
under severe metabolic constraints. Consequently, research at the
intersection of neuroscience and machine learning has increasingly
aimed to distill the mechanistic underpinnings of cortical process-
ing to inform the next generation of computational architectures
[12, 15, 19]. Realizing these bio-inspired improvements requires
translating high-level biological concepts into scalable, efficient,

Figure 2
The large model lifecycle: challenges and brain-inspired solutions
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Figure 3
Overview of major brain-inspired approaches for large-scale models categorized into adaptability, efficiency, and interpretability

strategies

and robust computational frameworks. Before delving into specific
strategies, Figure 3 provides an overview of how these brain-
inspired approaches can be categorized along the three primary
dimensions of adaptability, efficiency, and interpretability.

We further organize brain-inspired approaches along a two
dimensional taxonomy that distinguishes physical structure inspired
methods including neuronal and synaptic dynamics, spiking and
neuromorphic or predictive coding, from human behavior inspired
methods including attention and gating, memory consolidation,
transfer and meta learning, and reinforcement or imitation learning,
and we map mechanisms in both streams to computable architec-
tures and training strategies that are analyzed along adaptability,
efficiency, and interpretability.

Table 1 consolidates representative brain-inspired strategies
with their implementations and assesses adaptability, efficiency,
and interpretability as directional evidence rather than absolute
numbers. The table operationalizes our mechanism-to-algorithm
mapping by linking neurobiological and cognitive mechanisms
to computable architectures and training strategies, including
sparsely gated mixtures of experts, retrieval-augmented generation
(RAG) and parameter isolation, attention and network-level gating,
predictive-coding objectives, and spiking or event-driven platforms.
Given heterogeneous tasks and reporting protocols, interpretations
are made under shared or normalized compute and energy bud-
gets whenever feasible. The table serves as a compact design aid,
indicating robust gains, key trade-offs, and areas where evidence
remains inconclusive, and it anchors the subsection-level analyses
that follow.

3.1. Adaptability

Adaptability in large-scale models is crucial for handling
dynamic environments and is a primary focus of brain-inspired
optimization. A central strategy for enhancing adaptability lies
in emulating the brain’s hierarchical and modular network orga-
nization. This biological principle has been computationally
realized most prominently through Sparsely Gated Mixture-of-
Experts (MoE) architectures [76]. The MoE model formalizes this
concept as:

Output (x) = N∑
i=1

gi (x) · Ei (x) (1)

where a trainable gating network g(x) dynamically routes each
input x to a small subset of specialized “expert” networks Ei(x).

This input-dependent routing achieves computational sparsity and
has demonstrated substantial efficiency gains. For instance, the
Switch Transformer reported a pre-training speedup of up to 7×
over an equivalently performing dense model [77]. However, this
approach introduces a trade-off between computational efficiency
and memory, as all expert parameters must be stored, and it presents
challenges in maintaining training stability and load balancing
across experts [76, 77].

Another critical aspect of adaptability is inspired by the brain’s
mechanisms for memory consolidation and synaptic plasticity,
which mitigate the catastrophic forgetting common in artificial
networks [64]. The brain integrates new information without over-
writing prior knowledge through processes like hippocampal replay
and neuromodulated synaptic adjustments [51, 78]. Computation-
ally, this has inspired approaches that aim for stable, continuous
learning. For example, some models incorporate differentiable plas-
ticity in recurrent networks to adapt to new tasks without extensive
retraining [79]. A more direct analogue to memory retrieval is
seen in modern RAG models, which externalize knowledge in a
nonparametric store and retrieve relevant information at inference
time, thereby separating knowledge storage from model parameter
updates and enhancing adaptability to new information [80]. The
biological synaptic plasticity update rule, often abstracted as:

ΔWi j = 𝜂 · 𝜙(xi) · 𝜓( y j) (2)

This rule underscores the principle of local, activity-dependent
weight adjustments. While powerful, implementing such fine-
grained plasticity at the scale of large models remains a significant
challenge, often simplified to more coarse-grained techniques like
selective fine-tuning or parameter isolation.

3.2. Efficiency

Improving computational and energy efficiency is another
paramount goal. Selective attention and gating mechanisms in
the brain, which allocate processing resources to the most salient
information, offer a powerful blueprint [41, 81]. While the self-
attention mechanism in Transformers is brain-inspired, it is a highly
simplified version. Its formulation is given by:

Attention(Q,K,V ) = softmax (QKT√dk
)V (3)

where query (Q), key (K), and value (V) matrices interact to
compute context-aware representations [21]. More biologically
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grounded gating mechanisms, however, seek to dynamically
allocate computational resources at a network level. For exam-
ple, some approaches use recurrent gating to activate only rele-
vant model parameters during inference, reducing computational
overhead without sacrificing performance [82].

The brain’s reliance on predictive coding provides another
compelling framework for energy-efficient computation. Neurosci-
entific theories propose that cortical circuits continuously generate
predictions about sensory inputs and primarily process the “pre-
diction error”—the discrepancy between expectation and reality
[37, 54]. This principle minimizes redundant computations on pre-
dictable signals. In machine learning, this is often implemented by
training models to minimize a prediction error loss function:

L = |x − ̂x|2 (4)

where the model learns to generate a prediction ̂x of the actual input
x. Beyond a simple loss, a true predictive coding framework implies
an internal generative model that actively suppresses predictable
information flow—a feature explored in models for video prediction
and unsupervised representation learning [83, 84]. On the hardware

front, neuromorphic systems that utilize spike-based, event-driven
computation directly mimic the brain’s sparse signaling, offer-
ing a path to radically lower power consumption, though their
integration with large-scale deep learning remains an active research
area [27, 85]. Representative platforms and surveys illustrate this
trajectory, including large-scale neuromorphic systems and recent
hardware–software advances for spike-based learning [20, 27].
Deployment involves inevitable trade-offs among accuracy, inter-
pretability, and efficiency, often under constraints on compute,
latency, privacy, and robustness. In practice, training typically
targets GPU or TPU clusters with memory bandwidth and intercon-
nects as primary bottlenecks, whereas inference must meet latency
and energy budgets on edge or data center systems. Event -and
neuromorphic platforms offer energy advantages for sparse spik-
ing workloads, while large language and vision models benefit
from quantization and memory-aware scheduling in conventional
accelerators.

3.3. Interpretability

Enhancing the interpretability of opaque large-scale models is
a critical challenge for ensuring their reliability and trustworthiness.

Table 1
Brain-inspired strategies mapped to representative implementations and evaluated along adaptability, efficiency, and

interpretability

Strategy
Representative
implementation Adaptability Efficiency Interpretability

Hierarchical–modular routing
[76, 77]

Sparsely Gated
Mixture-of-Experts;
Switch Transformer

Positive. Improves
task switching
and continuous
adaptation via
input-dependent
expert routing.

Positive. Substan-
tial pre-training
speedups reported,
with memory and
load-balancing
trade-offs.

Mixed. Functional
specialization aids
post hoc attribu-
tion, but global
transparency
remains limited.

Memory consolidation and
synaptic plasticity, includ-
ing externalized memory
[79, 80]

Differentiable
plasticity; retrieval-
augmented
generation;
parameter isola-
tion or selective
fine-tuning

Positive. Mitigates
catastrophic forget-
ting and supports
continuous inte-
gration of new
information.

Mixed. Efficiency is
implementation-
dependent; this
review does not
quantify compute or
energy impacts.

Mixed. External
knowledge stores
improve traceabil-
ity, while internal
weight changes
remain difficult to
explain.

Attention and gating [21, 82] Self-attention;
network-level
dynamic gating
and on-demand
parameter
activation

Mixed. Benefits are
context-dependent
across tasks and
distributions.

Positive. Activat-
ing only relevant
parameters reduces
unnecessary
computation with-
out degrading
performance.

Positive. Attention
weights provide
limited but useful
transparency.

Predictive coding [54, 83] Prediction-error-
minimization
training; unsuper-
vised and video
prediction models

Positive. Often
improves robust-
ness to uncertainty
and variable input
quality.

Positive. Reduces
redundant process-
ing and supports
energy-oriented
computation.

Inconclusive.
Explanatory
pathways
remain under
development.

Spiking and neuromorphic,
event-driven [20, 27]

Spiking neural net-
works; event-driven
or neuromorphic
hardware platforms

Mixed. Integration
with large-scale
deep learning
remains an active
research area.

Positive. Event-
driven sparsity
offers significant
power advantages in
suitable workloads.

Inconclusive. Varies
with platform and
methodology.
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Brain-inspired principles offer two main avenues for improvement.
First, the attention mechanism itself, as formulated in Equation
(3), provides a degree of transparency. By visualizing the atten-
tion weights, researchers can infer which parts of the input
data the model deemed most influential in its decision-making
process, revealing the model’s focus and potential biases [21]. Sec-
ond, the principle of modular specialization, as implemented in
MoE architectures (Equation (1)), aids interpretability by design.
Segmenting a network into specialized modules allows for clearer
attribution of function. One can analyze the behavior of individ-
ual experts to understand their specific roles or identify which
experts are activated for particular types of inputs, thereby decom-
posing the model’s complex decision-making process into more
understandable sub-problems [76, 86]. While neither approach
achieves full transparency, both represent significant steps toward
creating models whose internal workings are more aligned with
human-understandable concepts.

3.4. Summary

In conclusion, the integration of brain-inspired principles into
large-scale models presents a promising path toward addressing
their fundamental limitations. These approaches can be broadly
categorized by their primary goals. To enhance adaptability, princi-
ples of hierarchical modularity and memory consolidation are being
explored to create models that can learn continually and handle
dynamic tasks, moving beyond the static “train-once” paradigm.
To improve efficiency, strategies like selective attention, pre-
dictive coding, and event-driven neuromorphic hardware aim to
significantly reduce the immense computational and energy costs
associated with large models by minimizing redundant informa-
tion processing. Finally, to increase interpretability, the inherent
structure of attention mechanisms and modular specialization pro-
vides a clearer view into the model’s decision-making process,
fostering greater trust and accountability. While most efforts remain
in an exploratory phase, these converging lines of research sug-
gest a future where AI systems are not only powerful but also
more flexible, efficient, and transparent. Beyond description, we
synthesize several tensions that shape current research: fidelity
of brain-inspired mechanisms versus engineering tractability, con-
tinual adaptation versus stability, energy efficiency versus task
generality, and post hoc interpretability versus decision faithfulness.
These tensions delineate where mechanisms transfer effectively and
where they fall short, motivating evaluation under shared budgets
and comparable conditions.

Illustrative implementation examples help ground the synthe-
sis. In streaming fraud detection, event-driven features and budgeted
inference on edge or near-edge systems enable low-latency deci-
sions under strict energy and privacy constraints. In credit risk
assessment, compact surrogate models paired with auditable rea-
soning traces support regulatory review while preserving task
performance. In grid and building energy forecasting, deployment
on resource-constrained devices requires memory-aware scheduling
and quantization, linking efficiency gains to real-world reliability
[27, 85].

4. Future Directions and Emerging Frontiers

The integration of brain-inspired principles into large-scale
models, while promising, is still in a nascent stage. The analy-
ses presented in the previous section reveal not only the potential
of these approaches but also their limitations, thereby charting a
clear course for future research. Advancing the field will require
addressing specific theoretical gaps, engineering challenges,

and evaluation paradigms that have emerged from these early
explorations.

4.1. Theoretical gaps and foundational obstacles

A primary obstacle is the lack of rigorous theoretical frame-
works that can translate biological mechanisms into scalable,
mathematically principled algorithms. While empirical successes
exist, a deeper foundation is needed. For instance, as highlighted by
the load-balancing challenges in MoE models (Section 3.1), a key
theoretical gap is the development of more principled, less heuristic
routing algorithms inspired by theories of neural resource allocation
and competition [15, 19]. Similarly, the critique of predictive cod-
ing’s implementation via a simple loss function (Section 3.2) points
to a pressing need for theoretical work on how internal generative
models can be efficiently learned and updated within large-scale
architectures, moving beyond simple error minimization [87, 88].
Establishing such theories is essential to guide the next generation
of model design systematically.

4.2. Balancing performance, efficiency, and
hardware realities

The trade-offs identified in current brain-inspired models
present direct challenges for hardware and systems design. For
example, the tension between computational efficiency and param-
eter inefficiency in MoE architectures (Section 3.1) necessitates
a co-design of future hardware. Systems will need to accommo-
date models with massive, sparsely accessed parameter stores,
demanding innovations in memory bandwidth and dataflow man-
agement that differ from today’s GPU architectures optimized for
dense matrix operations [89, 90]. Furthermore, to fully realize the
energy-saving potential of event-driven computation and predic-
tive coding (Section 3.2), new compiler infrastructures and runtime
environments are required that can exploit asynchronous, sparse
processing—a paradigm for which current deep learning stacks are
ill-suited [27, 85].

4.3. Specialized and multidimensional benchmarks

The limitations of current evaluation methods call for the
development of new, specialized benchmarks. Standard datasets like
ImageNet or GLUE are insufficient for measuring the core advan-
tages promised by brain-inspired models [91, 92]. As discussed
in the context of memory consolidation and synaptic plasticity
(Section 3.1), there is a pressing need for robust benchmarks that can
rigorously quantify catastrophic forgetting in continual learning sce-
narios [68, 93]. Moreover, the analysis of MoEmodels (Section 3.1)
reveals that new evaluation metrics are required to assess not only
task accuracy but also the efficiency of dynamic resource alloca-
tion, such as routing quality and expert utilization under diverse data
distributions. Such benchmarks are critical for driving the iterative
refinement of these complex architectures.

4.4. Complexities of multimodal and multitask
integration

The brain’s ability to seamlessly fuse information from diverse
sensory modalities remains a formidable challenge for AI [94,
95]. However, the modular architectures discussed in Section 3.1
offer a promising substrate for tackling this problem. A key future
direction is to explore how specialized expert modules can be
trained on distinct modalities (e.g., vision, audio), while a shared or
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hierarchical gating mechanism learns to effectively route and fuse
their representations in a context-dependent manner. This approach
could provide a more principled way to manage the inductive
biases of different data types, moving beyond the current trend of
forcing all modalities through a single, homogeneous architectural
backbone.

4.5. Ethical and societal considerations

As AI models incorporate more brain-like features, new ethi-
cal and societal questions emerge. The brain-inspired methods for
interpretability discussed in Section 3.3, such as visualizing atten-
tion weights or analyzing modular function, offer a path toward
more transparent AI [96, 97]. However, this very transparency can
introduce new risks. For instance, if a model’s attentional focus
can be clearly understood, could it also be more easily manipu-
lated by adversarial attacks? If functions are localized to specific
modules, could these modules develop concentrated, hard-to-detect
biases? These questions demand proactive, interdisciplinary dia-
logue between AI researchers, neuroscientists, and ethicists to
ensure that the pursuit of humanlike AI aligns with societal values
[98, 99].

4.6. The critical role of collaborative endeavors

Ultimately, bridging the gap between biological intelligence
and large-scale models is not a task for any single discipline.
The specific challenges and opportunities identified throughout this
review—from developing new routing theories for modular net-
works to designing hardware for sparse computation—underscore
the need for deep, sustained collaboration. Machine learning
researchers, neuroscientists, cognitive scientists, and hardware engi-
neers must align priorities to systematically test and scale the most
promising neuro-inspired principles. Forging such cohesive com-
munities of practice is essential to ensure that the next generation of
AI not only achieves higher performance but also embodies the effi-
ciency, adaptability, and interpretability exemplified by the human
brain [13, 16, 19].

5. Conclusion

The challenges confronted by contemporary large-scale
models—ranging from their massive computational demands
and rigid adaptation to their fragile generalization and lim-
ited interpretability—underscore the need for more sophisticated
paradigms. In parallel, the human brain’s remarkable ability to
efficiently process diverse sensory inputs, adapt to changing con-
ditions, consolidate memories over extended periods, and maintain
robust performance under stringent energy constraints offers a
compelling blueprint for improving these models. Recent interdis-
ciplinary efforts have begun to incorporate brain-inspired principles
into large-scale model optimization, drawing inspiration from
hierarchical and modular architectures, attentional mechanisms,
memory consolidation strategies, synaptic-like plasticity rules, and
predictive coding frameworks.

Although early empirical studies have yielded promising
initial results, these attempts remain at a formative stage. Sig-
nificant theoretical gaps persist, and the widespread adoption of
such neuro-inspired techniques faces engineering hurdles, including
hardware–software integration and the development of meaning-
ful, multidimensional benchmarks. Moreover, extending these ideas
to multimodal environments, addressing real-time adaptability, and
ensuring that emerging methods align with ethical and social values

represent substantive, ongoing challenges. Themapping from neural
principles to engineering abstractions simplifies biological com-
plexity and may vary with task, data, and hardware; we therefore
treat the three-dimensional framework of adaptability, efficiency,
and interpretability as a heuristic rather than a one-to-one correspon-
dence. Ethical and regulatory considerations increasingly require
transparency, auditability, and fairness in high-stakes settings. We
therefore treat interpretability not only as a scientific goal but
as a compliance and governance requirement that shapes model
selection and deployment.

Looking ahead, progress will depend on deepening collabo-
rations across disciplinary boundaries. Neuroscientists, cognitive
scientists, machine learning researchers, hardware engineers, ethi-
cists, and policymakers all have a role to play in shaping how
brain-inspired methods evolve and integrate into next-generation
models. Robust theoretical foundations, sophisticated measurement
tools, and carefully curated benchmarks will guide the refinement
of these bio-inspired approaches, ensuring that models become not
only capable but also versatile, energy-efficient, and interpretable.
Promising directions include (i) standardized protocols for evaluat-
ing adaptivity, efficiency, and interpretability under shared budgets,
(ii) co-design of representations and hardware that preserve event
sparsity without sacrificing task generality, and (iii) causal anal-
yses that disentangle when brain-inspired priors help or hinder
foundation model updates.

Ultimately, although the path forward is complex, the potential
rewards are substantial. If researchers leverage the brain’s fun-
damental computational strategies to enhance large-scale models,
the field may move closer to developing intelligent systems that
genuinely approach human-like adaptability and resourcefulness.
Such advancements could catalyze the emergence of sustainable,
context-aware, and trustworthy AI, marking a significant milestone
in bridging the gap between biological and artificial intelligence.
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