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Abstract: Credit card fraud detection has become a critical concern for financial institutions as the volume of digital transactions grows
rapidly. This paper presents a comparative study of two advancedmethodologies – deep learning and real-time data stream analysis – applied
to credit card fraud detection. Deep learning models, particularly Long Short-Term Memory networks, demonstrated high accuracy (up to
92%) in predicting customer behaviors and contributing to the detection of fraudulent transactions. However, they require large amounts of
historical data and may not be ideal for real-time detection. In contrast, real-time data stream analysis, powered by innovative techniques
like the patented BEReTiC system, provides immediate fraud detection but with lower initial accuracy. This paper explores the trade-offs
between these approaches, highlighting the strengths of deep learning in pattern recognition and the adaptability of real-time data mining
in dynamic financial environments. We evaluate both techniques on real-world data, measuring accuracy, false positives, and adaptability
to novel fraud patterns. Results indicate that while deep learning offers high accuracy, BEReTiC enables faster detection with fewer false
alarms and enhanced responsiveness. The findings suggest that a hybrid model integrating both techniques may offer a more effective
solution for tackling the complexities of credit card fraud in real time, since it would combine the predictive power of deep models with the
agility of real-time analytics, opening new directions in fraud prevention for high-velocity financial environments.
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1. Introduction

In the modern era of digital transactions, credit card fraud has
emerged as a significant challenge for financial institutions and
consumers alike. As online payments and e-commerce activities
continue to rise, credit card fraud remains a persistent challenge
due to the sophistication of evolving fraud tactics and the imbal-
ance inherent in transaction datasets. This growing threat not only
causes substantial financial losses but also affects consumer trust
and compliance with regulatory obligations, making effective detec-
tion systems a critical operational priority. Consequently, there is a
need for more advanced, scalable solutions that can analyze data in
real time, ensuring quicker detection of fraudulent transactions.

Traditional methods, such as rule-based systems and machine
learning models trained on historical data, face limitations in real-
time fraud detection, where immediate action is critical. While
deep learning techniques like Long Short-Term Memory (LSTM)
networks excel in identifying intricate patterns within time series
data, they require extensive preprocessing and retraining, making
them less practical for dynamic environments. Conversely, real-time
clustering methods, such as the BEReTiC system, are designed to
detect anomalies instantly by analyzing data streams without prior
cleansing.
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Despite the emergence of such tools, existing literature lacks
a comprehensive, empirical comparison of real-time unsupervised
stream-based methods with deep learning-based batch-trained mod-
els, particularly in fraud detection scenarios involving highly
imbalanced, high-volume financial data. This gap is critical: without
such comparative analyses, system designers cannot make informed
decisions about deploying timely and effective fraud prevention
mechanisms.

This paper presents a comparative evaluation of these method-
ologies, exploring their performance on a large, real-world dataset
of credit card transactions. The study focuses on addressing criti-
cal gaps in speed, adaptability, and accuracy to propose a hybrid
solution that combines the strengths of both approaches. In partic-
ular, it aims to evaluate the effectiveness of the patented BEReTiC
real-time data stream analysis methodology, which is capable of
operating without prior data cleansing, against high-performing
deep learning frameworks trained on historical data. To our knowl-
edge, this is among the first comparative evaluations of deep
learning approaches against real-time data stream frameworks for
fraud detection. The deep learning methods are used only for
comparison; the research does not claim any contribution to
these.

The core research question explored in this paper is: Can
real-time pattern recognition without any a priori knowledge be
employed to detect fraud on data streams of transactions, and how
does it fare against batch-trained deep learning?
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The BEReTiC methodology, the SCoDe2 mechanism, and the
CluNN algorithm presented in this paper are the object of the patent
PCT/GR2024/000039 / 02-12-2024 (GR 1010876) [1].

2. Background

Typically, fraud detection in credit card transactions and finan-
cial risks in general is considered a data mining problem, where
clustering algorithms and other unsupervised machine learning
methods are employed to analyze datasets and detect suspicious
actions [2–6].

An interesting approach, in the context of credit card fraud
detection,wherethenumberoffraudulent transactionsissignificantly
lower than non-fraudulent ones, leading to imbalanced datasets, is
Generative Adversarial Networks (GANs) [7]. Traditional binary
classification models may struggle with imbalanced data, as they
tend to bias results toward the majority class; while oversampling
the minority class is a common technique to address imbalance, it
has its limitations. GANs are deep learning models that are trained
to generate synthetic examples of the minority class, creating a more
balanced training set [8]. The generated minority class examples are
combined with the original dataset, creating an augmented training
set. Experiments show that classifiers trained on the augmented set
outperform those trained on the original data. Notably, sensitivity,
which is crucial in fraud detection, is significantly enhanced. The
combined approach of GANs and augmented training sets results in
a more effective fraud detection mechanism [9].

In financial applications, akin to numerous real-world scenar-
ios, the data poses challenges that are less prevalent in traditional
academic datasets. Notable among these challenges are issues
related to size, noise, sparsity, and uncertainty. Moreover, the major-
ity of financial datasets exhibit a pronounced imbalance [10]. Take
credit card applications, for instance, where, as noted above, the
number of reliable customers significantly outweighs that of prob-
lematic customers. Similarly, in fraud detection, the dataset is
predominantly composed of normal transactions, with only a sparse
representation of fraudulent ones. Consequently, there arises a need
for predictive analytics techniques adept at handling the intricacies
of unbalanced financial datasets, facilitating the creation of accu-
rate and interpretable financial models [11]. A wealth of research
exists regarding the classification of unbalanced datasets. An excel-
lent review, which does not focus on the real-time facet of the issue,
can be found at [12]. On the other hand, it presents a comprehen-
sive study on the application of machine learning techniques for
real-time fraud detection in financial transactions [13]. It explores
both supervised and unsupervised models (e.g., decision trees, Sup-
port Vector Machines, and neural networks) to identify patterns
and anomalies indicative of fraud. The study highlights the inte-
gration of these models into scalable systems capable of handling
high-transaction volumes with low latency and improved accuracy.
Experimental results demonstrate significant improvements in fraud
detection rates and false positive reduction.

Anomaly detection is a cornerstone of financial fraud detec-
tion, where malicious behavior often appears as subtle devia-
tions in high-volume, high-dimensional, or sequential transaction
data. The Empirical-Cumulative-distribution-based Outlier Detec-
tion (ECOD) methodology provides a lightweight, parameter-free,
and interpretable approach by identifying rare events through empir-
ical cumulative distributions, facilitating scalable and transparent
detection [14]. Score-Guided Networks (SGN) [15] further enhance
performance by learning scoring patterns from existing detectors
in a teacher-student setup, improving accuracy without domain-
specific tuning. Complementing these, rule-based approaches for

anomaly detection in sequence data [16] introduce symbolic rep-
resentations and interpretable rule violations, offering valuable
insights into time-dependent financial streams. Together, these
methodologies exemplify how unsupervised learning – grounded
in efficiency, accuracy, and explainability – can form the founda-
tion of adaptive fraud detection systems, with strong potential for
integration into near-real-time analytics pipelines.

Beyond specialized fraud detection efforts, advancements in
real-time financial modeling offer valuable conceptual parallels. For
example, Zhang et al. [17] introduced a cost-sensitive deep rein-
forcement learning approach for portfolio optimization, addressing
the challenges of non-stationary environments and asymmetric
transaction costs – both of which are fundamental to fraud analytics.
Similarly, Li et al. [18] present a multimodal LSTM architecture that
integrates temporal and textual signals for event-driven prediction
in financial markets. While the aim of the paper is stock forecast-
ing, the underlying mechanisms (i.e., sequence modeling, concept
drift adaptation, and multimodal fusion) resonate strongly with the
objectives of real-time, data-driven fraud detection systems.

In the next sections, we will present the dataset employed, as
well as analyze the employed methodology and present the results.

3. Dataset

Two separate datasets that contained historical data for a single
year were provided:

IND dataset: 17514242 individual credit/debit card transac-
tions and

SUM dataset: 1207817 summaries for credit/debit card
purchases

The data were labeled, complete, and well structured. The IND
dataset contained a non-negative time series, where each record,
besides the timestamp of the purchase and the customer index, also
contained information regarding the specific transaction (merchant
type, coarse location, month, season, and price range), as well as
demographic information (whether the customer has children or
not, gender, education, occupation category, age range, total funds
range). The SUM dataset contained the total number of purchases
of every customer separated by category of expense (automotive
and maritime, gambling, energy, government and taxes, health,
home equipment, insurance, education, leisure activities, dining,
clothing, services, FMCG, electronics, travel) along with their total
amount and demographic information (the demographic informa-
tion included in the SUM dataset was the same as IND, with the
addition of education level, marital status, city, customer type).

4. Methodology

Traditional approaches to fraud detection primarily frame the
problem as a data mining challenge, often dealing with unbalanced
datasets where fraudulent transactions represent a tiny fraction of the
data. While these approaches have been somewhat effective, they
come with several inherent limitations when applied to real-world,
dynamic environments. Specifically, traditional methods rely on:

Machine learning on unbalanced data: These models must
contend with the imbalance of legitimate versus fraudulent transac-
tions, requiring strategies such as oversampling, undersampling, or
synthetic data generation. However, these techniques can fall short
in adapting to emerging fraud patterns.

Vetted, pre-cleansed datasets: For accuracy, these models
often depend on pre-processed, well-curated datasets, a step that
not only introduces delays in fraud detection but also limits the
adaptability of the models to real-time environments.
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Frequent retraining:Machine learningmodels require regular
retraining to recognize new types of fraud, which incurs a significant
cost in terms of both time and resources. This retraining cycle can
hinder the detection of rapidly evolving fraud tactics in real time.

These limitations make conventional methodologies less suit-
able for real-time fraud detection, where transactions must be
analyzed instantly to prevent fraudulent activities as they occur. In
this paper, we propose a real-time clustering approach that directly
addresses these shortcomings and represents a novelmethodological
contribution to the field.

Our key innovation lies in the development of a real-time
clustering methodology designed to detect anomalies in credit card
transactions as they happen. This approach diverges from traditional
methods in several crucial ways:

Dynamic clustering on live data: Instead of relying on histor-
ical, pre-cleansed datasets, our system operates on live transaction
streams. Transactions are clustered dynamically based on their fea-
tures, such as transaction amount, location, time, and frequency. By
continuously updating these clusters in real time, our model is able
to identify transactions that deviate from established patterns and
flag them for further investigation.

Immediate detection of novel fraud patterns: Traditional
methods can struggle to detect new fraud tactics until they have
occurred, and the models have been retrained. In contrast, our
real-time clustering approach is inherently adaptive, capable of
identifying emerging patterns without needing retraining. Any sig-
nificant deviation from existing clusters is immediately flagged as
suspicious, allowing for faster fraud intervention [19].

Scalability and adaptability: Unlike deep learning and tra-
ditional machine learning models, which can be resource-intensive
and require significant computational power for retraining, our clus-
tering method is lightweight and highly scalable. This makes it
particularly well-suited for environments with large volumes of
transactions, such as those handled by financial institutions. Our
system can analyze and adapt to patterns in real time, even as the
volume of transactions fluctuates.

No need for data cleansing or preprocessing: One of the
major bottlenecks in fraud detection is the time spent cleansing and
vetting datasets to ensure models are accurate. Our real-time clus-
tering methodology bypasses this requirement, as it works directly
on raw transaction data, making it far more efficient in practical
deployment. This allows for quicker detection and response to fraud,
without the overhead of preparing datasets.

To assess the effectiveness of our real-time clustering method,
we also developed a deep learning-based approach as a benchmark
for comparison. Deep learning models, known for their ability to
identify complex patterns, were applied to the same dataset used
for real-time clustering. However, despite their powerful capabili-
ties, the deep learning models required extensive preprocessing and
retraining, making them less suitable for real-time fraud detection.
The comparison highlights the capability of real-time clustering to
deliver acceptable results in environments where immediate detec-
tion is crucial but also exemplifies the excellent results that can be
achieved through finely tuned deep learning methodologies.

To evaluate fraud detection capabilities, we injected synthetic
fraudulent transactions into the IND dataset, which contains individ-
ual transaction records. The first step was to define what constitutes
a fraudulent transaction. A transaction conducted by someone other
than the rightful party is clearly fraudulent; however, detecting such
behavior requires thepresenceof additional indicators.These include
deviations from the customer’s typical transaction profile, as inferred
from attributes such as merchant type, general location, time of year
(month and season), price range, and the recorded demographic

characteristics of the transaction (children, gender, education,
occupation category, age range, and total funds range). We also
incorporated aggregated behavioral data from the SUM dataset,
specifically the distribution of purchase categories per customer.

Based on this, we performed an initial processing step where
we averaged the transactional features of each customer. Using
these profiles, we generated 1000 synthetic transactions that aligned
with the average behavior of a different customer than the one they
were assigned to – thereby simulating fraudulent behavior based on
behavioral inconsistency.

The main contribution of this paper is the introduction of
a real-time fraud detection system based on dynamic clustering.
This method offers several advantages over traditional and deep
learning-based approaches, including:

Speed: Instantaneous detection of fraud without the need for
data cleansing or retraining.

Adaptability: The ability to identify novel fraud patterns in
real time, addressing the rapidly evolving nature of fraud tactics.

Scalability: Efficient operation in high-transaction environ-
ments with minimal computational overhead.

By addressing the limitations of existing fraud detection meth-
ods, our real-time clustering approach presents a novel solution that
is both practical and effective for high-velocity transaction systems.

To address the challenges of fraud detection in high-velocity
financial environments, we implemented and evaluated two distinct
approaches:adeeplearning-basedpipelineandareal-timedatastream
analysis system. This section outlines the methodology followed in
this comparative study, broken down into two main branches:

Deep learning pipeline: This approach involved preprocess-
ing a large historical dataset, training multiple supervised models
(LSTMandMLP) to classify key demographic and behavioral labels
of the customer and computing the degree to which transactions
deviate from the expected profile. The deviation was quantified
using a composite metric (SST), which enabled the identification
of potentially fraudulent transactions based on misclassification
consensus among the ensembles.

Real-time clustering and classification: In parallel, we
deployed a real-time system (BEReTiC) capable of processing
streaming data without prior cleansing. This system dynamically
clusters transactions and customer profiles using a semi-supervised
approach, detects behavioral deviations in real time, and flags
anomalies through concept drift and similarity analysis (Gower
metric).

In both approaches, synthetic fraudulent transactions were gen-
erated and injected into the dataset to assess detection capability.
The deep learning models operated in a batch setting, while the real-
time pipeline processed data incrementally, adapting to emerging
patterns. The subsequent sections describe these methodologies in
detail, along with the experimental design and evaluation criteria.

4.1. Deep learning

Inspired by the paradigm of ensemble classifiers and the fact
that each credit card transaction is performed between two known
bank entities (customer and business), for whom the bank has ample
information, we used the approaches described below.

Our initial approach focused on employing state-of-the-art
machine learning methodologies to predict the total funds category
of the customer that performed the transactions, based on the IND
dataset. The total funds category was selected due to its capability
to be used in fraud detection or targeted advertisements. The higher
possibility of a customer who will consistently be classified into a
higher total funds category can indicate that they (a) are implicated
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in fraud; (b) can exceed their credit limit, increasing the probabil-
ity of having to pay interest; and/or (c) are interested in specific
categories of advertisements. As the allegation of fraud cannot be
based on the misclassification of a model, however accurate this
might be, the case of a fraudulent transaction should be based on
firmer grounds. In order to do this, our approach was augmented by
expanding the usual ensemble classifier scheme. Instead of using
the ensemble to classify an object into a class, we used the ensem-
ble to classify an object into multiple classes and then verify that the
predicted classes were correctly selected for this object.

Concisely, the models learn the patterns of the various trans-
actions being performed by each customer, and then, by calculating
how probable it is that the customer would have normally performed
the transaction, they are able to collectively flag a transaction as
suspicious. Below, we define the method that accomplishes that:

Each customer can be classified using a number of labels:
whether the customer has children or not, gender, occupation cat-
egory, age range, total funds range, education level, marital status,
city, and customer type.

Each transaction can also be classified using the following
labels: merchant type, coarse location, and price range.

Each transaction is being performed by a debit or credit
card that belongs to a customer: As such, every transaction
inherits the labels of the customer.

A number of classifiers are trained using the dataset: In
order to be able to classify a transaction into each of these labels.

We defined the Scale of Suspicious Transaction (SST): The
percentage of the classifiers that did not correctly predict the rel-
evant labels of the customer that performed a transaction and the
Scale of Legitimate Transaction (SLT) as the complement of the
SST.

We defined the Confidence of the SST (CSST): The product
of the accuracy that had been achieved during the training of the
classifiers that comprised the SST and the Confidence of the SLT
(CSLT) as the relevant value for the SLT.

Consequently: If the SST is larger than 0.5 (i.e., the majority
of the methods in the ensemble misclassified the transaction), and
the CSST is larger than the CSLT, then the transaction is considered
as a possible fraud with a confidence factor of CSST, and thus, a
large amount of transactions flagged as possible fraud within a short
period of time signifies a high probability of fraud.

The method above aims to determine, through this “fuzzy”
classification of a transaction to labels that match the labels assigned
to the customer, the probability that a transaction could have been
performed by this customer under standard conditions. A mount-
ing number of transactions of high SST and CSST values can
indicate fraudulent movements [20]. We employed two deep learn-
ing methods for the models using the TensorFlow infrastructure.
Specifically:

We created a model that used an LSTM Recurrent Neural Net-
work, since the dataset was a time series of transactions and LSTMs
have been shown to work well with time series [18, 21–24].

We also performed experiments using simple deep sequential
multilayer perceptron models (MLP) [25].

After training the models, we employed them on a dataset that
included only legitimate transactions (according to the bank) and
afterward on the same dataset enriched with some that would have
to be classified as possibly fraudulent.

4.2. Real time

Credit card transactions can be considered as a data stream –
a stochastic time series – that can contain patterns. By being able

to detect and analyze patterns in real time, a multitude of new pos-
sibilities could emerge, for example: (a) better and more efficient
protection of a bank’s customers from theft, (b) real-time detection
of fraudulent transactions, (c) ability to support gamified challenges
for more playful customers (e.g., by automatically notifying cus-
tomers and providing rewards for transactions performed according
to a newly detected trend) [26], (d) automatic deduction of appro-
priate advertisements for the customers, or (e) fast response to
unprecedented events.

To tackle real-time pattern recognition, we employed our
work in [1], where we defined a system that can analyze the
data stream in real time using a semi-supervised machine learning
methodology (Best Effort Real-Time Clustering and Classification
adapter – BEReTiC). This contains the modules described below.
Their relations are depicted in Figure 1 [1].

Figure 1
Relations of the BEReTiC modules

Data receptor: This module undertakes the reception and ini-
tial parsing of the data, discarding any items that cannot be properly
parsed. It does not perform any filtering or preprocessing of the data;
it maps the data to a data structure.

Sample collector and deviation detector (SCoDe2): The
SCoDe2 monitors the stream, stores a representative sample of the
received detections, measures the statistical properties (standard
deviation), and calculates and keeps track of the mode of distances
between the entities.

Clustering module: The clustering module detects clusters
on the sample collected by SCoDe2, using the calculated mode of
distances as an additional input. The clustering module processes
the sample whenever input is available from the sample collec-
tor, initiating a new clustering round. A concept drift gets detected
whenever the clusters differ from the clusters of the previous
round.

Classification module: Every data point, whether it was used
in the context of the previous modules or not, is also classified by
the classification module in one of the detected clusters.

Reporting module: As the designed system is a web service,
it does not contain a user interface; this module has been designed
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in order to provide information, such as the statistical properties of
the stream, the clusters detected, and the number of concept drifts.

By converting the IND dataset into a data stream and feeding
it to the BEReTiC, we were able to detect the patterns of the trans-
actions being performed in real time. The clustering module and the
classification module were configured to use the CluNN algorithm
[1] and KNN [27], respectively.

The data structure employed by the system included, for each
customer:

Their demographic information
A fingerprint of their transactions (the customer’s transac-

tion profile)
The mode of the amount of the total transactions
The percentage of transactions per merchant type
The mode of the amount of transactions per merchant type
The percentage of transactions per location
The mode of the number of transactions per location
The percentage of transactions per month
The mode of the number of transactions per month
The percentage of transactions per merchant type per

location
The mode of the amount of transactions per merchant type

per location
The percentage of transactions per merchant type per

month
The mode of the amount of transactions per merchant type

per month
The percentage of transactions per location per month
The mode of the number of transactions per location per

month
The similarity metric used, which compared instances of the

data structure described above, was the Gower similarity [28].
This was selected because it allows the combination of categori-
cal (demographic information) and numerical (the fingerprint of the
transactions) data.

Using the aforementioned metric, we were able to com-
pare transactions, customers’ fingerprints, and clusters with other
transactions, customers’ fingerprints, or clusters.

The comparisons above were used to create clusters of trans-
actions (i.e., collections of similar transactions) and fingerprints of
customers (i.e., collections of transactions performed by the same
customer). As such, by employing the BEReTiC, we were able
to dynamically create and update the aforementioned clusters and
fingerprints.

Regarding the example insights mentioned at the beginning of
the section:

Protection of bank customers from theft and real-time
detection of fraudulent transactions.Abig dissimilarity of a trans-
action from the respective customer’s fingerprint can indicate a
fraudulent transaction.

Ability to support gamified challenges for more playful
customers (e.g., by automatically notifying customers and pro-
viding rewards for transactions performed according to a newly
detected trend). New trends can be considered as new clusters
of transactions, and challenges could be proposals to customers to
perform transactions that are classified in this cluster.

Automatic deduction of appropriate advertisements for the
customers. Using the most common recent transactions of the cus-
tomers, advertisements for products or services that exist in the same
cluster can be proposed.

Fast response to unprecedented events.An example of this is
the gamified challenges mentioned above, and these can be enabled
through new clusters of transactions and respective actions upon
their detection.

5. Results

5.1. Deep learning

Our initial approach, which was designed to predict the field
total funds range, achieved a 92% accuracy.

The results of the extended classifier scheme were promising
and allowed us to predict each one of the labels with accuracies of
up to 92%. Specifically, when using LSTM models, the accuracies
were:

• total funds range: 92%
• age range: 86%
• children: 82%
• occupation category: 79%
• customer type: 79%
• education level: 75%
• gender: 73%
• marital status: 72%
• city: 59%

When using MLP models, the accuracies were:

• total funds range: 78%
• age range: 81%
• children: 64%
• occupation category: 71%
• customer type: 64%
• education level: 67%
• gender: 72%
• marital status: 64%
• city: 47%

After injecting the fraudulent transactions, both in the training
dataset and the testing dataset, 788 out of the 1000 injected fraudu-
lent transactions were able to be detected, while 1340 false alarms
were also classified as possibly fraudulent, that is, transactions that
were contained in the original IND dataset, a less than 0.007%
misclassification rate (assuming that the provided dataset did not
contain additional illegal transactions).

5.2. Real time

When using real-time analysis, the overall accuracies, after
feeding the entire dataset, were:

• total funds range: 66%
• age range: 53%
• children: 57%
• occupation category: 62%
• customer type: 51%
• education level: 63%
• gender: 44%
• marital status: 48%
• city: 51%

After injecting the fraudulent transactions, 619 out of the
1000 injected fraudulent transactions were able to be detected,
while 574 false alarms were also classified as possibly fraudulent,
achieving a 0.003% misclassification rate.

The accuracy of the predictions performed by the real-time
approach was substantially lower than the relevant predictions of
the deep learning methods. This can be attributed to the fact that the
real-time approach was not aware of all the transactions that the cus-
tomer had historically performed, at least while the system had not
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calculated a representative fingerprint of the customer. We define
the representative sample of the customer as the one that does not
differ from the one obtained when all their transactions have been
processed. However, even after having calculated a representative
fingerprint of the customer, the results could not reach the accuracy
of the deep learning methods.

5.3. New directions

Despite the real-time approach’s modest initial performance, it
opens several promising avenues for advancing fraud detection sys-
tems. Building on the comparative insights of deep learning versus
streaming methods presented above, future work can focus on har-
nessing real-time capabilities to enhance fraud mitigation, improve
financial service responsiveness, and increase adaptability to emerg-
ing threats. Key directions include technical innovations to blend
and extend current models, addressing regulatory and ethical con-
siderations in live decision-making and pioneering application-level
features that engage and protect users. Below, we outline these new
directions and their potential benefits, challenges, and opportunities
for exploration.

5.3.1. Technical opportunities
Hybrid Model Integration: A clear path forward is combining

the high accuracy of deep learning with the immediacy of streaming
analytics. For example, a hybrid systemmight use an offline-trained
LSTM to provide a strong baseline for fraud scoring, while an
online clustering component (e.g., the BEReTiC system) adapts
to live data drift. This combination can mitigate the weaknesses
of each approach, as deep learning models supply well-learned
patterns, while real-time modules adjust to new fraud tactics on
the fly. Research into transfer learning or meta-learning for real-
time models (to pre-seed streaming detectors with knowledge from
deep models) is one promising area to address cold-start accuracy
drops. Overall, hybrid architectures could drastically improve fraud
mitigation speed (catching fraud in-flight) without sacrificing the
pattern-recognition prowess of deep networks.

Adaptive and Self-Learning Systems: A strength of real-time
analytics is adaptability, that is, the ability to update the model
as new data arrives, thus handling concept drifts in fraud pat-
terns [29]. Future systems could leverage online learning algorithms
and reinforcement learning to continuously adjust fraud decision
policies. For instance, the BEReTiC can detect trends as new trans-
actions stream in, thereby reflecting current customer behavior. The
BEReTiC approach, being a semi-supervised clustering and classifi-
cation adapter, is potentially more interpretable (clusters of behavior
or “fingerprints” can be visualized) than a complex deep neural
net, which is a bonus for explaining fraud decisions. Future work
can build on this by integrating explainable AI techniques (like
rule extraction or prototype examples for clusters) directly into the
streaming pipeline.

5.3.2. Application-level innovations
Despite the fact that fraud detection through real-time data

stream processing cannot be relied on, as BEReTiC’s clustering
module continuously groups streaming data points into evolving
clusters, it is effectively performing dynamic segmentation of finan-
cial behaviors (e.g., spending patterns). If a new pattern of behavior
appears (e.g., a surge in a previously rare transaction type or a sud-
den shift in spending habits), the algorithm will form a new cluster
to represent it. The system inherently flags such events as concept
evolutions – essentially alerting that a new behavioral pattern or
trend has emerged. This mechanism allows BEReTiC to “sense”

trends in real time: a cluster that did not exist an hour ago but consis-
tently appears now is a strong signal of an emerging trend. Notably,
BEReTiC is designed to work on raw data streams (e.g., transaction
logs) without offline cleansing, enabling instant detection of anoma-
lies or novelties. In contrast, traditional methods might only catch
these shifts in a later batch analysis (if at all), by which time the
trend could be well underway. By maintaining up-to-date clusters,
the system effectively produces a constantly revised segmentation
of customers or transactions, mirroring the latest patterns in the data
stream.

5.4. Summary and discussion of metrics

To improve clarity, Tables 1, 2, and 3 present a consolidated
summary of the results for each methodology. While no publicly
available implementation of existing systems was compatible with
the provided proprietary dataset for direct benchmarking, the goal
of this study was to explore the relative merits of two fundamen-
tally different fraud detection paradigms, that is, batch-trained deep
learning versus real-time clustering on streaming data. The pre-
sented results are therefore meant to offer a baseline for future
comparative work and hybrid designs, rather than to claim direct
superiority over existing solutions.

Existing literature suggests that deep learning systems, espe-
cially when combined with techniques like oversampling or GAN-
based augmentation, can achieve high sensitivity in imbalanced
fraud detection contexts [7, 9, 30]. However, they often require
significant preprocessing and are unsuitable for real-time envi-
ronments. On the other hand, real-time, unsupervised clustering
methods typically prioritize responsiveness and adaptability over
accuracy. Our results confirm this trend and highlight a key trade-
off: while deep learning achieves higher accuracy in classification,
the BEReTiC-based real-time system demonstrates faster fraud
response and reduced false alarm rates when working with raw data
streams.

The implications of this study resonate beyond the immedi-
ate scope of fraud detection and intersect with broader advances
in real-time financial analytics. For instance, Manoharan et al. [13]
directly address the challenges of machine learning-based fraud
detection in high-throughput transactional systems, highlighting the
practical feasibility of real-time deployments. Similarly, ECOD
[27] introduces a parameter-free and interpretable outlier detec-
tion technique based on empirical cumulative distributions, offering
scalability and transparency – two properties vital in financial
domains. The SGN framework [15] enhances detector accuracy by
learning scoring distributions and could complement fraud detection
by refining anomaly decision boundaries. Furthermore, the anomaly
rule detection approach by Gan et al. [16] provides a mechanism
for identifying sequential irregularities in symbolic form, aligning
with time-evolving fraud scenarios while ensuring human inter-
pretability. Beyond fraud-specific applications, adjacent works such
as [17] apply real-time deep reinforcement learning and multimodal
LSTM architectures, respectively, for dynamic portfolio selection
and stock prediction. These methods share key objectives with
fraud detection: timely decision-making, cost-sensitive optimiza-
tion, and adaptation to non-stationary data streams. Taken together,
these contributions underscore the growing convergence of anomaly
detection, real-time learning, and financial decision-making and
suggest a fertile landscape for future cross-domain innovations.

The practical deployment of the proposed method in large-
scale financial systems also merits consideration. In such environ-
ments, transaction volumes can reach thousands per second, neces-
sitating solutions with low inference latency and high throughput.
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Table 1
Classification accuracy by label

Label Deep learning (LSTM) Deep learning (MLP) Real-time clustering
Total funds range 92% 78% 66%
Age range 86% 81% 53%
Children 82% 64% 57%
Occupation category 79% 71% 62%
Customer type 79% 64% 51%
Education level 75% 67% 63%
Gender 73% 72% 44%
Marital status 72% 64% 48%
City 59% 47% 51%

Table 2
Fraud detection performance

Metric Deep learning Real-time clustering
Injected fraudulent transactions 1000 1000
Detected fraudulent transactions 788 619
False positives 1340 574
Misclassification rate 0.007% 0.003%

Table 3
Methodology trade-offs

Feature Deep learning Real-time clustering
Accuracy High Moderate
Latency High (batch processing) Low (real-time capable)
Preprocessing required Yes No
Adaptability to new patterns Limited (requires retraining) High (adaptive clustering)
Resource intensity High Low to moderate

The modular structure of our real-time framework enables deploy-
ment alongside existing stream processing infrastructures (e.g.,
Apache Flink or Spark Streaming [31]), allowing scalable inges-
tion and scoring of transactions in near real time. Furthermore,
because the clustering and classification components are online and
adaptive, they can continuously learn from new data without costly
retraining cycles, which is an important consideration in environ-
ments affected by concept drift. Overall, the proposed system aligns
well with the architectural constraints of modern financial insti-
tutions, supporting timely fraud detection without compromising
performance or interpretability.

6. Conclusion

This paper explored two advanced methodologies for detect-
ing credit card fraud: deep learning neural networks and real-time
data stream analysis using patented techniques. Both methods were
applied to a large dataset of credit card transactions, and the
results provide insights into the effectiveness of each approach in
real-world fraud detection.

The deep learning models, particularly the LSTM networks,
demonstrated high accuracy across various classifications, with the
most notable results being the prediction of customer “total funds
range” at 92% accuracy. This confirms the strength of deep learning
in analyzing time series data and identifying suspicious patterns in
large, structured datasets. The ability to classify transactions based

on customer behavior profiles allowed deep learning models to
detect injected fraudulent transactions with a notable success rate,
achieving detection for 788 out of 1000 fraudulent cases. However,
it should be noted that this approach also yielded a certain num-
ber of false positives, which reflects the challenges of accurately
identifying fraud in highly imbalanced datasets.

In contrast, the real-time analysis approach, while offering
advantages in processing streaming data and detecting fraud as
transactions occurred, displayed lower predictive accuracy com-
pared to deep learning. This was primarily due to the cold-start issue,
where the system lacked sufficient historical data to make accurate
predictions early in the transaction lifecycle. Despite this, the ability
to detect fraud in real time and adjust to evolving transaction patterns
highlights the practicality of this method in dynamic environments,
such as online credit card transactions.

The comparison between these two approaches reveals impor-
tant trade-offs. Deep learning excels in high-accuracy classification
when sufficient historical data is available, but it may not be suitable
for real-time applications where immediate fraud detection is crit-
ical. On the other hand, real-time clustering techniques are highly
adaptable and allow for rapid identification of suspicious transac-
tions, albeit at the cost of lower initial accuracy. Future research
might focus on integrating both methodologies to combine the high
accuracy of deep learning with the real-time adaptability of cluster-
ing, potentially leading to an optimal solution for credit card fraud
detection.
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The hybrid nature of the proposed future work of integra-
tion (i.e., the juxtaposition of deep learning-based detection with
real-time data stream models) offers a valuable synthesis of predic-
tive power and operational feasibility. While deep neural networks
excel at capturing complex patterns in transactional behavior, their
computational cost and need for retraining limit their applica-
bility in real-time, high-volume environments. Conversely, the
real-time stream-based framework emphasizes adaptability, low
latency, and continuous learning from unlabeled data. By leverag-
ing the strengths of both paradigms, this hybrid strategy enables
comprehensive evaluation under practical constraints: deep learning
models serve as high-accuracy offline benchmarks, while real-time
stream learners are suited for production deployment. This dual
approach ensures that performance is not pursued at the expense of
responsiveness or scalability, and it opens the door to layered sys-
tems where batch-trained models periodically inform or calibrate
online models in a continual learning loop.
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