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Abstract: In 2015, Guyana, a small South American country, experienced a major economic turning point after ExxonMobil identified
substantial commercial oil reserves in its waters. By 2020, Guyana had started producing and exporting oil commercially, shifting its
economy toward oil exports. A key factor shaping Guyana’s economic future is the global price of oil, since it directly impacts the country’s
export income and government revenue from oil. Subsequently, the effect of oil prices on the real exchange rate now becomes an important
issue for Guyana due to the potential to affect the country’s economic stability and competitiveness.
Therefore, the relevant research question is: (i) to what degree have oil prices impacted Guyana’s real effective exchange rate?
This study created a decomposition technique called AlphaFold-Decomposition, hereinafter referred to as AlphaFold-D, based on the
AlphaFold methodology. Drawing inspiration from AlphaFold’s ability to model complex folding patterns with high accuracy, the subse-
quent methodology provides a more accurate means of decomposing time series into its underlying intrinsic modes than empirical mode
decomposition. As such, this methodology is characterized by the integration of AlphaFold’s attention mechanisms, multi-stage refinement
processes, and noise reduction techniques.
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1. Introduction

Guyana, a South American nation, made a significant eco-
nomic breakthrough in 2015 when ExxonMobil discovered com-
mercial crude oil reserves within its territory. The country began
commercial production and exports in 2020, marking its transition
to an oil-exporting economy. Since then, the Government of the
Cooperative Republic of Guyana (GoG) has been receiving oil rev-
enues. While Guyana’s current production stands at 582,000 barrels
per day (bpd) as of 2024, its proven reserves exceed 13 billion bar-
rels of oil equivalent (boe), with production expected to rise steadily
in the coming years.

An important factor for Guyana’s economic outlook is global
oil prices, as they directly determine export earnings and government
oil revenues.

The effect of oil prices on the real exchange rate is important for
an oil-exporting country like Guyana because it directly influences
the country’s economic stability and competitiveness. For instance,
if oil prices rise, the influx of foreign currency from oil exports is
likely to increase. This in turn may facilitate an appreciation of the
domestic currency in real terms. If an appreciation does occur, it may
make non-oil exports (such as agriculture or manufacturing goods)
more expensive and less competitive in global markets, potentially
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harming other sectors of the economy – a phenomenon referred to
as the Dutch disease.

Conversely, if oil prices fall, there is likely to be a decline in
export revenues. This may be accompanied by depreciation pres-
sure on the real exchange rate. If this occurs, it may increase the cost
of imports (such as machinery, food, and fuel), contribute to infla-
tion, and reduce purchasing power. Since Guyana is a relatively new
oil producer with a growing dependence on petroleum revenues, oil
price volatility should be of great importance to the country as oil
prices could lead to significant swings in the real exchange rate.

While the oil price-exchange rate nexus has continued to be
studied by many countries, Guyana, being a developing country,
faces a dearth of research on this topic. A few studies, such as Bulkan
[1], Roopnarine [2], and Leonard [3], have done research on Guyana
and its oil industry. However, there is a lack of empirical research on
the oil price-exchange rate nexus for Guyana. Therefore, this study’s
objective is to analyze the impact of oil prices on the real effective
exchange rate (REER) of Guyana. The relevant research question is:
(i) to what degree have oil prices impacted Guyana’s real effective
exchange rate?

This study introduces a new decomposition technique named
AlphaFold-Decomposition (which can be referred to as AlphaFold-
D), derived from AlphaFold, a methodology pioneered by Jumper
et al. [4]. AlphaFold-Decomposition (AlphaFold-D) is a proposed
time-series decomposition methodology inspired by AlphaFold’s
neural network architecture. Its goal is to address the limitations
of traditional empirical mode decomposition (EMD) and provide
a more accurate way to decompose time-series data into intrinsic
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modes. AlphaFold-D achieves this through innovative steps inte-
grating attention mechanisms, multi-stage refinement, and noise
reduction.

After decomposing the time series, the dependence between
variables is analyzed using the artificial neural network (ANN)
causality test proposed by Charles [5] to identify causal relation-
ships. This method is based on the premise that if variable X causes
variable Y, incorporating information about X should enhance the
accuracy of predictions for Y. In this test, a simple three-layer feed-
forward neural network is used to predict Y. If including X in the
neural network significantly improves the predictive accuracy for Y,
it is concluded that X has predictive causality with Y. Conversely, if
X does not enhance the predictive accuracy for Y, then X is deemed
not to have predictive causality with Y.

The results involved the decomposition of time series, includ-
ing Brent oil prices, WTI oil prices, and Guyana’s REER index.
This allowed for the application of the ANN causality test to exam-
ine causality between these variables. The test found causality from
WTI oil prices to Guyana’s REER index at IMF4 and IMF5, which
represent high-frequency fluctuations, indicating that the WTI oil
prices influenced the REER index in the short run. However, no
causality was detected from the WTI prices to the REER index at
IMF1 to IMF3, suggesting that oil prices do not have a long-term
impact on the REER index. Similar results were found for Brent oil
prices relative to the REER.

This study makes the following contributions to the litera-
ture. It is the first to quantitatively measure the impact of oil
prices on Guyana’s real exchange rate using nonlinear and machine
learning models, offering an innovative approach to understanding
the dynamics of oil price fluctuations. Machine learning models,
particularly in this case, excel at identifying complex, nonlinear rela-
tionships that traditional econometric models may overlook. This
capability is crucial when studying oil prices, which often exhibit
sudden price spikes, crashes, and volatility clusters.

The study also contributes to the literature with the develop-
ment of the AlphaFold-D methodology, which addresses several
key limitations found in traditional decomposition techniques like
EMD. By overcoming issues such as mode mixing, sensitivity to
noise, boundary effects, and difficulties in handling non-stationary
time series, AlphaFold-D provides a more accurate and reliable
approach to time-series analysis, especially for complex data with
abrupt changes.

The rest of this study is structured as follows. Section 2
provides a literature review. Section 3 explores the data and method-
ology. Section 4 presents the results of the analysis. Section 5 offers
a discussion. Section 6 concludes this study.

2. Literature Review

The relationship between exchange rates and oil prices has
been investigated in the literature.

2.1. Theoretical transmission channels between oil
prices and exchange rates

Several transmission channels explain the relationship between
oil prices and exchange rates, primarily demonstrating how oil price
movements influence currency values. One key mechanism is the
supply-demand channel, where rising oil prices lead to inflationary
pressures. In oil-importing nations, higher oil prices increase pro-
duction costs and consumer prices, driving inflation. Conversely,
oil-exporting countries may experience higher revenues, which
may stimulate domestic demand, leading to demand-pull inflation.

Once inflation occurs, it will subsequently cause real exchange rate
appreciation [6].

The impact of oil prices on exchange rates, transmitted through
the inflation channel, can be explained as follows. As a globally
traded commodity, increases in crude oil prices directly raise pro-
duction and transportation costs, thereby driving up domestic price
levels. At the same time, exchange rate fluctuations further inten-
sify inflationary pressures; when a currency depreciates, it raises the
cost of imported goods and increases input expenses for domestic
firms reliant on foreign materials. This dual effect, referred to as
exchange rate pass-through, can amplify the transmission of global
commodity price shocks into domestic inflation, posing persistent
challenges for central banks striving to maintain price stability [7].

The Dutch disease theory can also explain the relationship
between oil prices and the real exchange rate. Dutch disease is a
process in which a boom in the natural resources sector results in a
shrinking non-resource tradable sector. This situation often causes
an increase in resource and non-tradable sectors due to specializa-
tion that makes the economy more vulnerable to resource-specific
shocks. Therefore, a boom in the oil sector can cause a rise in oil
rents [8–11].

If the Corden and Neary [12] model is applied, an increase in
foreign currency inflows from oil exports expands the oil sector.
This triggers a resource movement effect, where factors of produc-
tion (labor and capital) shift from the non-booming tradable sector
(e.g., agriculture or manufacturing) to the booming tradable sector
(oil and related industries). As workers and businesses benefit from
higher incomes and commercial opportunities in the expanding oil
sector, a spending effect emerges. The rise in domestic consumption
drives up local prices, leading to inflation. Since domestic prices
increase faster than foreign prices, this results in an appreciation of
the real exchange rate.

Another important mechanism is the terms of trade channel,
which suggests that oil price fluctuations alter real exchange rates by
affecting trade balances and purchasing power parity. These changes
are driven by arbitrage forces in international markets [6].

Another mechanism involves the application of the balance of
payments theory. This shows how oil price shifts redistribute wealth
between oil-importing and oil-exporting nations. Oil-exporting
countries typically see currency appreciation due to increased rev-
enues, while oil-importing nations often face currency depreciation
as their trade balances deteriorate [13–15].

It is also possible for the nominal exchange rate to impact inter-
nationaloil prices, especially sinceoil prices areusuallydenominated
in USD. When the USD appreciates against other major currencies,
it effectively increases the price of oil for non-US buyers, reducing
their purchasing power. This phenomenon can be explained through
the law of one price: as dollar-denominated oil becomesmore expen-
sive in local currency terms, demand from foreign markets tends to
decline, potentially exerting downward pressure on global oil prices.
The same principle works in reverse – a weaker USD makes oil rel-
atively cheaper for international buyers, which may stimulate global
demand and support higher oil prices [6].

2.2. Empirical relationship between oil prices and
exchange rates

One strand of the literature explores the relationship between
oil prices and exchange rates, focusing on specific countries. For
instance, Yildirim and Arifli [16] investigate the impact of oil price
shockson the exchange rate of a small oil-exporting economy, specif-
ically Azerbaijan. Using a vector autoregressive (VAR) model and
monthly data spanning from 2006 to 2018, their findings reveal that
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the Azerbaijani economy is negatively affected by declines in oil
prices. More precisely, a negative oil price shock leads to currency
depreciation, rising inflation, and a decline in economic activity.

Another example is Albulescu and Ajmi [6], who analyze
changes in the causal relationship between international oil prices
and the REER of the US dollar. Their study concludes that oil prices
Granger-cause movements in the US dollar exchange rate.

Thus, one group of studies employs Granger causality analyses
and focuses on the short-term responses of oil prices (or exchange
rates) to shocks in exchange rates (or oil prices), utilizing VAR
models to examine these dynamics.

Another group of studies focuses on the long-term relationship
between these variables, employing cointegration-based models
such as the Vector Error Correction Mechanism (VECM). Some
studies concentrate specifically on the relationship between oil
prices and exchange rates, while others extend their analysis to
include other macroeconomic variables like inflation and Gross
Domestic Product (GDP). For instance, Musa and Maijama’a [17]
investigate the causal linkages among domestic oil prices, exchange
rates, and inflation in Nigeria for the period 1985 to 2019 using a
VECM model. The Johansen cointegration test revealed evidence
of cointegration among the variables. Their findings indicate uni-
directional causality running from domestic oil prices to exchange
rates and from inflation to exchange rates, along with evidence of
long-run causality.

Another group of studies explores the oil price-exchange rate
nexus through the lens of volatility modeling, such as Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) models.
For example, Lakshmanasamy [18] examined the causality between
crude oil prices, exchange rates, and the BSE Sensex, along with
their volatilities, in India. Using daily data spanning 14 years from
January 2006 to March 2019, they applied a GARCH model to ana-
lyze the relationships. The GARCH estimates found that the BSE
Sensex is influenced by volatility in crude oil prices and exchange
rates. Additionally, Granger causality tests revealed unidirectional
causality from crude oil prices to the BSE Sensex and from crude
oil prices to the Indian exchange rate.

However, the studies based on VAR, VECM, and GARCH
models are based on linear models such as the aforementioned mod-
els are linear. VAR, VECM, and GARCH models are linear models
and are based on the assumption of linearity and normality. When
the linearity and normality assumptions do not hold, it can result in
model misspecification, biased parameter estimates, and unreliable
forecasts. This can lead to incorrect inferences about the relation-
ships between variables, potentially undermining the validity of the
study’s conclusions.

Another group of studies employs nonlinear methodologies
(such as copulas and decomposition methods) to explore the
co-movement and dependence structure between variables. For
instance, Yamaka [19] examined the relationship between oil prices
and the exchange rates of five countries: the United States, India,
China, Japan, and Korea. Using monthly data from January 2007 to
December 2020, they applied a copula-based approach to capture
structural changes and measure the dependencies between oil prices
and exchange rates. Their findings revealed the presence of regime-
switching dynamics, highlighting how the co-movement patterns
between oil prices and exchange rates vary across different states or
regimes.

An example where a decomposition methodology was used
to examine the nexus among the exchange rate and oil prices can
be seen in Duan et al. [20]. Using wavelet analysis on data span-
ning 2008 to 2019, their study uncovered evidence of bidirectional
causality between these two variables.

This study can contribute to the literature in three key areas.
First, this study can quantitatively measure the impact of oil prices
on Guyana’s real exchange rate using nonlinear and machine learn-
ing models to capture complex, nonlinear patterns. There seems to
be a dearth of studies on the relationship between oil prices and
the exchange rate of Guyana. Second, this study can introduce a
methodology, AlphaFold-D, which addresses limitations in tradi-
tional decomposition methods like mode mixing, noise sensitivity,
and boundary effects. Third, this study can empirically apply a
three-layer feedforward neural network to test the predictive causal-
ity between variables, which is an improvement beyond the linear
Granger causality test.

2.3. Oil prices transmission effect on other
economic variables

Some authors note that oil prices have transmission on other
economic variables. Hamilton [21], for example, examines the
transmission mechanism via which shocks to the price of oil impact
actual economic activity, concentrating on the US economy from
1948 to 1980. His empirical research challenges the notion that these
shocks were only reflections of larger macroeconomic conditions by
focusing on the causative role that rising oil prices play in starting
economic recessions.

According to Hamilton, the transmission mechanism mainly
operates via three interrelated channels:

1) Higher input prices for businesses: Production costs increase
when oil prices spike, especially in energy-intensive industries
like chemicals, manufacturing, and transportation. Decreases in
output and income are directly caused by these higher expenses
since they lower profit margins and may result in reductions in
employment and production.

2) Disruption to investment and consumption: The demand
for non-energy goods declines when customers’ disposable
income declines due to rising energy and transportation costs.
Businesses postpone or abandon investment initiatives at the
same time because of increased uncertainty, increased operat-
ing expenses, and decreased profitability. Aggregate demand is
weakened by the simultaneous drop in private investment and
consumer spending.

3) Monetary policy response: Central banks may tighten mone-
tary policy (by raising interest rates) in reaction to inflationary
pressures brought on by oil. This further reduces demand by
making borrowing more expensive.

Hamilton’s methodology centers on autoregressive distributed
lag (ARDL) specifications and Granger causality tests. The model
includes real oil prices and real GDP growth. Real GDP growth
and real oil prices are included in the model. He adds other con-
trols like money supply growth, interest rates, inflation, and other
leading indicators to account for the potential that oil prices are
endogenous or just connected with other macroeconomic variables.
To determine whether comparable links existed during a time when
oil markets were less volatile and more strictly regulated, he focuses
especially on the years 1948–1972, which preceded the significant
oil shocks of the 1970s. The paper’s main conclusions show a statis-
tically significant correlation between rising oil prices and ensuing
output drops, usually with a three to four-quarter lag. He finds lit-
tle evidence to support the idea that past macroeconomic conditions
influence oil prices. Rather, it seems that the shocks to the oil price
are mostly exogenous, resulting from sector-specific or geopolitical
developments.
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The ARDL model was appropriate for analysis in the 1980s
when Hamilton did the research. However, it is nowwell known that
the ARDLmodel assumes linearity and normality in the data, which
are often violated in real economic data. Consequently, relying on
ARDL-based estimates can lead to misleading inferences.

2.4. Oil prices have multiple components that affect
other variables

Notably, some authors have realized that oil prices may have
multiple components that can affect other variables. In fact, Kilian
[22] recognized this. It is noteworthy that Kilian [22] recognized
this complexity in their research. Using an Structural Vector Autore-
gression (SVAR) model, they examine the macroeconomic effects
of various oil price shocks on the US economy. Their study spans
January 1973 to October 2006, which includes multiple oil market
volatility events and a range of macroeconomic circumstances.

Oil prices have historically been regarded as exogenous in
empirical research when examining their effects on macroeconomic
aggregates like inflation or US GDP. Kilian [22] contested this
notion by highlighting the fact that several structural shocks, includ-
ing disruptions in oil supply (such as geopolitical events), global
aggregate demand shocks (connected to the global business cycle),
and oil-specific (precautionary) demand shocks (reflecting shifts in
market expectations regarding future oil availability), endogenously
determine oil prices.

The authors used an SVARmodel with economic identification
restrictions. Due to these restrictions, changes in the price of oil were
divided into three structural innovations:

1) Shocks to the oil supply, which are thought to have an immediate
impact on world oil production.

2) Aggregate demand shocks, which are determined by a real
activity index based on dry cargo shipping rates and represent
worldwide economic activity.

3) Demand shocks unique to oil that reflect shifts in market expec-
tations or precautionary demand unrelated to supply or output at
the moment.

Kilian [22] evaluates the effects of each structural oil price
shock on the real Gross Domestic Product (GDP) and the Con-
sumer Price Index (CPI), two US macroeconomic aggregates, using
impulse response functions:

1) Real GDP temporarily and statistically significantly declines as
a result of oil supply shocks, particularly during the first two
years. They don’t really affect the pricing level, though.

2) Because there is a greater demand for American goods abroad,
aggregate demand shocks – which reflect global economic
expansion – first marginally increase US GDP. However, as time
goes on, the inflationary consequences of rising oil prices take
over, delaying the recession and causing the CPI to rise steadily.

3) Particularlyovera three-yearhorizon,oil-specificdemandshocks
are linked to a substantial, long-lasting increase in consumer
prices and a steady, statistically significant decline in real GDP.

Despite being a popular tool in macroeconomic analysis, the
SVAR model has some significant drawbacks. It is based on the
assumptions of linearity and normalcy, which frequently do not
hold true for real economic data. The assumption of normalcy is
often violated by skewness, large tails, or structural discontinuities
in financial or commodity price data, such as oil prices, and by the
nonlinearity of economic linkages. Due to this, SVAR-based infer-
ence may be misleading, as variance decompositions and impulse

response functions may not adequately represent the system’s
actual dynamics. These limitations can be overcome by employing
decomposition-based techniques likewavelet transforms, EMD, and
the proposed AlphaFold-D, which divide complex time series into
easier-to-analyze components.

3. Data and Methodology

The primary variables of interest in this study are Guyana’s
Real Effective Exchange Rate (REER), Brent oil prices, and West
Texas Intermediate (WTI) oil prices. Data for Guyana’s REER
was sourced from the Economic Commission for Latin America
and the Caribbean online database (ECLAC (Economic Com-
mission for Latin America and the Caribbean. (2025). CEPAL
STAT. Retrieved from: https://statistics.cepal.org/portal/databank/
index.html?lang=en&indicator_id=1901). This data was available
at the monthly frequency over the January 2013 to September 2024
period, producing 141 observations.

Data pertaining to Brent oil prices and WTI oil prices were
obtained from the US Energy Information Administration (USEIA)
online database [23]. The same time period was selected to match
the REER data.

3.1. Methodology-pretesting

Before any analysis is conducted, some pretesting is performed.
The pretests are conducted to determine if there are structural breaks
in the data and whether the data is normally distributed. These tests
are necessary because if the data is not normally distributed or if there
are structural breaks, traditional models based on the assumptions
of linearity and normality may not produce accurate parameters.

Additionally, tests are performed for stationarity. This is
because if the data is non-stationary and structural breaks are found,
the non-stationarity could be attributed to the presence of struc-
tural breaks. Likewise, the structural breaks could be responsible for
the non-stationarity. Therefore, tests for stationarity with structural
breaks are also conducted.

3.2. Empirical mode decomposition methodology

EMD is a widely used technique for analyzing nonlinear and
non-stationary time-series data [24–26]. The core idea behind EMD
is to decompose a time series into a set of intrinsic mode func-
tions (IMFs) that capture the underlying oscillatory modes present
in the data. The EMD process starts by identifying the local extrema
(peaks and troughs) of the original time series. These extrema are
then utilized to construct upper and lower envelopes through inter-
polation. The mean of these envelopes is computed, and the original
time series is subtracted from this mean to derive the first IMF. This
procedure is repeated iteratively, using the residue from the previous
step as the new input, until a specified stopping criterion is reached.

One of themain advantages of EMD is its data-driven approach,
enablingittoadaptivelyextractIMFswithouttheneedforapredefined
basis function [27]. This adaptabilitymakes EMDparticularly effec-
tive in capturing complex patterns across various datasets, including
financial and economic signals. However, EMD also has its draw-
backs. A significant concern is mode mixing, where the resulting
IMFs may contain oscillatory modes of different frequencies, which
can lead to inaccuracies in the decomposition. Additionally, EMD
is sensitive to noise, and the presence of outliers can greatly affect
the quality of the resulting IMFs. Furthermore, the method struggles
with non-stationary signals that exhibit abrupt changes [28].

Pdf_Fol io:404

https://statistics.cepal.org/portal/databank/index.html?lang=en&indicator_id=1901
https://statistics.cepal.org/portal/databank/index.html?lang=en&indicator_id=1901


FinTech and Sustainable Innovation Vol. 00 Iss. 00 2025

Due to these limitations, an improvement to EMD is being
sought.

3.3. Methodology: AlphaFold

AlphaFold is a methodology developed by Jumper et al. [4]
to make accurate predictions. The method involves employing
advanced neural network architectures, particularly deep learning
techniques. Jumper et al. [4] applied their novel methodology to pre-
dict protein structures and sought to determine the three-dimensional
structures of proteins from their amino acid sequences, addressing
one of biology’s most significant challenges. The methodology is
built upon a neural network that utilizes the attention mechanism,
allowing it to effectively process and learn from sequence data.
AlphaFold integrates a series of complex architectures, including
convolutional neural networks (CNNs) and attention-based models,
enabling the model to capture long-range interactions and intricate
patterns within the protein sequence. Through analyzing the spatial
relationships and interactions between amino acids, Jumper et al. [4]
used AlphaFold to generate highly accurate structural predictions
that significantly outperform traditional methods.

However, the AlphaFold methodology created by Jumper et al.
[4] was designed to make predictions, not to decompose time
series. As such, elements from the AlphaFold methodology can be
extracted to develop a method for time-series decomposition that is
stronger than the EMD.

3.4. AlphaFold-D methodology

The AlphaFold-Decomposition (hereinafter referred to as
AlphaFold-D) is proposed as a time-series decompositionmethodol-
ogy designed to overcome the limitations associated with traditional
EMD. It is inspired by the neural network architecture of AlphaFold.
The main goal of AlphaFold-D is to provide a more accurate means
of decomposing time-series data into its underlying intrinsic modes
than the EMD. As such, this methodology is characterized by the
integration ofAlphaFold’s attentionmechanisms,multi-stage refine-
ment processes, and noise reduction techniques. Therefore, it should
be better able to handle complex time-series data.

The AlphaFold-D Methodology proceeds via the following
steps.

Step 1: Data Preprocessing Layer

Step 1 involves creating a data preprocessing layer. This step
entails the application of convolutional filters to suppress random
noise while retaining significant patterns within the time-series data.
The convolutional filtering is applied using a Gaussian window to
smooth out the random noise. This is represented by:

d (n) = K∑
k=−K 𝜔 (k) . d(n − k) (1)

where d(n) is the original time series at point n, d (n) is the smoothed
version of the original time series at point n, K is the half-width of
the Gaussian window, and 𝜔 (k) is the Gaussian window (or kernel)
that is centered around zero (0) and applied over the range (−K, K).

Note, the Gaussian window 𝜔 (k) is given by:
𝜔 (k) = 1√2𝜋𝜎2 exp (− k2

2𝜎2 ) (2)

where 𝜎 is the standard deviation of the Gaussian window, which
controls the spread or width of the window and determines the
degree of smoothing.

Note, the application of the convolutional filter is to enhance
the clarity of the original signal or time series d(n) and generate a
more accurate decomposition process than EMD. Additionally, this
step includes the application of wavelet transforms to analyze and
reconstruct the signal with localized frequency analysis, allowing
for primary frequency bands to be identified.

The wavelet transform can be expressed as:

W𝜓 (s, 𝜏) = ∫∞
−∞ y (t) 𝜓 ∗ ( t − 𝜏

s
) dt (3)

whereW𝜓 (s, 𝜏) refers to the wavelet coefficients, y (t) is the original
time series, s is the scaling parameter, 𝜏 is the translation parameter,
and 𝜓 is the mother wavelet.

The wavelet transform is particularly effective as it allows
for localized frequency analysis, enabling the identification of pri-
mary frequency bands. Establishing these bands is necessary as
they form a baseline for subsequent processing stages, ensuring that
the decomposition captures the essential characteristics of the data
without being influenced by noise or irrelevant fluctuations.

Step 2: Attention-Based Mode Isolation Layer

Following the preprocessing phase, Step 2 introduces the
attention-based mode isolation layer. The step in this model code
doesn’t directly follow AlphaFold’s exact approach but rather takes
inspiration from the general concept of multi-head attention, which
is used in AlphaFold and is commonly used in transformers.

In AlphaFold, multi-head attention is used to allow the model
to focus on different parts of the protein sequence and learn complex
relationships in the spatial and temporal structure of amino acids.
This model applies a similar idea to using adaptive multi-head filters
with different cutoff frequencies, where each “head” isolates unique
frequency components. Therefore, this model involves the creative
application of attention concepts to time-series decomposition.

A simplified attention mechanism, which may be applied to
frequency decomposition, may be given by:

Modei (t) = N∑
k=1𝛼i,k (t) . Fk(t) (4)

where Modei (t) is the i-th isolated mode at time t; N is the total
number of attention heads; 𝛼i,k (t) is the adaptive attention weight
for the i-th mode, k-th frequency, and time t; and Fk(t) is the k-th
frequency filtered version of the input signal.

The filters effectively isolate different modes in the data, which
reduces the likelihood of mode mixing, which is a common problem
that is encountered in traditional EMD.

Note, the traditional attention mechanism found in transformer
models is expressed as follows:

Attention (Q, K, V) = softmax (QKT

√dk )V (5)

where Q, K, and V represent the query, key, and value matrices. dk
is the dimensionality of the keys.

Standard attention mechanisms in transformers seek to com-
pute attention scores between elements within sequences. This is
typically performed through a query-key-value framework, involv-
ing calculating weights based on similarities between queries and
keys.

Step 3: Recursive Prediction Layer for Boundary Correction

Step 3 involves the implementation of a recursive prediction
layer focused on boundary correction. One of the notable challenges
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in traditional EMD techniques is the end effect. This end effect is
where data boundaries can affect the decomposition and the cor-
responding IMFs. To address this, the recursive prediction layer
performs boundary correction by extrapolating values at the
beginning and end of each mode to ensure smooth transitions. This
is expressed by:

ŷ (t) = {Extrapolation (y (t)), t ∈ boundary region
Smoothing (y (t)), t ∉ boundary region (6)

where y (t) is the mode or signal at time step t and ŷ (t) is the
smoothed signal after boundary correction.

Step 4: Frequency-Specific Layer

In Step 4, the methodology includes a frequency-specific
layer aimed at enhancing the accuracy of mode detection. In this
step, there is an application of a frequency-specific layer func-
tion to enhance mode differentiation by filtering each mode with
a frequency-specific band, with each band-pass filter focused on a
distinct frequency range. This comes from the idea that neurons in a
transformer can be used to extract different features from the input
data. Thus, the frequency-specific layer extracts distinct frequency
bands from the signal.

The frequency-specific filtering process is given by:

yi (t) = Fi
band−pass

(x (t) ; f low, i, f high, i) (7)

where x (t) represents the original time series, Fi
band−pass

is the
band-pass on the i-th frequency band, and f low, i and f high, i are the
corresponding frequency cutoffs for the i-th filter.

Step 5: Adaptive Sifting and Decomposition Process

Step 5 introduces an adaptive sifting and decomposition pro-
cess designed to enhance the reliability of the decomposition
results. This step replaces the subjective stopping criteria typi-
cally employed in EMD with a learned stopping criterion that is
data-driven.

So if x (t) is the original time series that is being considered for
decomposition, the sifting process can be expressed as:

IMFi (t) = Si f ting (x (t) , i) (8)

where Si f ting is the adaptive sifting process and i is the i-th IMF.

Step 6: Dynamic Adjustment for Short Data Segments

In cases where the time series is short, the traditional EMD
tends to struggle due to the need for a sufficient number of extrema.
To overcome this problem, Step 6 is applied only to short time
series (where there are fewer than 30 observations) and lengthens the
dataset. For simplicity, an autoregressive moving average (ARMA)
(1,1) process can be used. The order of the AR p process is 1, and
the order of the MA q process is 1.

Notably, the AlphaFold-D method is employed in this study to
examine the intertemporal relationships between the key variables
under consideration.

Decomposition-based approaches are particularly suited to
analyzing such interdependencies because they allow for the simul-
taneous modeling of the variables’ past values, capturing the
feedback effects and causal relationships without the need for an
exhaustive list of all possible external factors. The approach does
not claim to provide a comprehensive model of all oil price deter-
minants but rather focuses on the key drivers that are most relevant
to the study’s objectives.

3.4.1. Justification of AlphaFold-D
Jumper et al. [4] created AlphaFold, a methodology that learns

long-range spatial dependencies to predict the three-dimensional
structure of proteins from amino acid sequences. CNNs, attention-
based models, and iterative refinement procedures are all used to
accomplish this. Despite being initially designed for biological data,
these same components provide strong tools for deciphering time-
series data patterns, which also necessitate the discovery of complex
relationships and multi-scale dynamics across time.

The proposed AlphaFold-D methodology selectively repur-
poses the attention-based architecture and refinement processes for
time-series decomposition. This helps to overcome important EMD
drawbacks such asmodemixing, sensitivity to noise, and inadequate
boundary handling. For instance, AlphaFold-D’s attention-based
mode isolation layer uses the multi-head attention mechanism
from AlphaFold to concentrate on various spatial relationships.
Through adaptively weighting various filtered representations, it is
re-designed to isolate frequency components within the time series
and minimize mode mixing. Similarly, the proposed AlphaFold-D’s
boundary correction reduces the end effects that frequently dis-
tort empirical mode functions in conventional EMD by utilizing a
recursive prediction layer that was inspired by AlphaFold’s iterative
updates.

Additionally, AlphaFold-D improves EMD by using other
methods like adaptive sifting with data-driven stopping criteria and
frequency-specific filtering to increase mode separation.

3.5. ANN causality test

To determine a causal relationship between the variables,
causality testing was applied. The causal relationship between vari-
ables is often determined through the use of the Granger causality
test. However, the Granger causality test is based on the assumption
of linearity. In fact, in the Granger causality test, a linear regres-
sion is specified between a dependent variable Y and an independent
variable X. The variable X is found to have a causal impact on vari-
able Y if the information from X improves the predictive accuracy
of Y more than a regression with Y alone. Thus, variable X is said
to be Granger-cause Y if X improves the predictive accuracy of Y
in a linear regression.

It is well known that many time series are not linear. Therefore,
the application of the Granger causality test would be limited to a
linear predictive accuracy test. As such, the test is constrained by
the assumption of linearity.

The linearity constraint is overcome in this study by using
the ANN causality test proposed by Charles [5] to determine the
causality between the variables.

Applying the same logic used in the Granger causality test, a
causal relationship should exist between variables X and Y if, in a
regression with Y as the dependent variable and X as the indepen-
dent variable, including X in the regression improves the predictive
accuracy of Y compared to a univariate regression of Y. However,
rather than applying a linear regression, a three-layer feedforward
neural network is used for the regression, as neural networks can
model nonlinear relationships. Therefore, if the inclusion of the
variable X in the three-layer feedforward neural network improves
the prediction of Y, then X is said to have predictive accuracy
and a causal relationship with Y. Conversely, if the inclusion of
the variable X in the three-layer feedforward neural network does
not improve the prediction of Y, then X is said to lack predictive
accuracy and a causal relationship with Y.

Since the Charles [5] causality test involves the application of
a neural network, it requires training the data to learn patterns. As
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such, the model is trained on the training set and validated against
the test set. This training and validation process results in the gener-
ation of a mean squared error (MSE). The MSE generated from the
regression of Y = f (X, Yt–1) is called MSE 1.

This MSE 1 is compared to the MSE of a univariate model
(Y = f (Yt–1)).

Causality is determined when the MSE 1 is less than the
MSE 2. Moreover, a ratio can be calculated as MSE 1/ MSE 2.
If MSE 1

MSE 2
< 1, then causality exists from variable X to variable. If

MSE 1
MSE 2

> 1, then no causality exists from variable X to variable Y.
The next step of the Charles [5] ANN causality test involves

statistically testing to see if the ratio MSE 1
MSE 2

is statistically
significantly less than 1.

The corresponding null and alternative hypotheses are as
follows:

1) H0: MSE 1/ MSE 2 < 1 (this means that there is predictive
causality from variable X to Y).

2) H1: MSE 1/ MSE 2 > 1 (this means that there is no predictive
causality from variable X to Y).

Essentially, the null hypothesis investigates if MSE 1 < MSE
2. As such, the corresponding alternative hypothesis investigates if
MSE 1 > MSE 2.

Therefore, the null hypothesis should be rejected in favor of the
alternate hypothesis if the value of MSE 1/MSE 2 is significantly
different from the hypothesized value of less than 1.

The corresponding test statistic is as follows:

(MSE1
MSE2

)
SE (9)

where SE is the standard error or σxy√n ;𝜎xy is the covariance of the variables X and Y.
The decision rule for this right-tailed test1 is based on compar-

ing the test statistic to a critical value of 1
SE
. If the test statistic does

not exceed the critical value, then the null hypothesis should not be
rejected. Conversely, if the test statistic exceeds the critical value,
the null hypothesis should be rejected in favor of the alternative
hypothesis.

The non-rejection of the null hypothesis implies that MSE 1 is
less than MSE 2, indicating that variable X has predictive causality
over variable Y. On the other hand, rejecting the null hypothesis
suggests that MSE 1 is greater than MSE 2, implying that variable
X does not exhibit predictive causality with respect to Y.

The code for the AlphaFold-D methodology and the ANN
causality test is made available on Github at https://github.com/
doncharles005/AlphaFoldDandtheexchangerate.

3.6. Combination of the methodologies

This study follows an approach used by Jiang & Yoon [29].
Jiang & Yoon [29] used the wavelet transform methodology to
decompose oil prices and stock prices, then used a linear causality
test to investigate the relationship between the variables. Instead,
this study used the proposed AlphaFold-D methodology to decom-
pose the time series. Then it uses the ANN causality test to
investigate the relationship between the variables.

1The test is right tailed because the rejection region is on the right.

Notably, the traditional elasticity-based approach can be
applied. For example, a linear regression can be applied. The model
can be of the form

Yt = 𝛼0 + 𝛽tXt + 𝜀t (10)

where Yt is the dependent variable and can be oil prices, Xt can
be the matrix of the independent variables, 𝛼0 is the vector with
the constants that are estimated, 𝛽t is the vector with the estimated
parameters, and 𝜀t is the error term.

However, the approach in Equation (10) is a linear-based
approach, which has the limitations of linear regression. A key
limitation of linear regression is that it is not designed to handle
time-varying, non-stationary data, where the mean and variance of
the series change over time. This is a significant issue for oil prices,
which often exhibit large fluctuations.

Decomposition-based methods, such as wavelet transform,
EMD, and the proposed AlphaFold-D, overcome this limitation by
decomposing the time series into subcomponents like IMFs. Each
IMF is designed to capture specific oscillations in the data with-
out requiring stationarity. This decomposition effectively isolates
short-term fluctuations caused by geopolitical events.

Linear regression requires a predefined set of independent vari-
ables, meaning any relevant exogenous variables must be explicitly
included in the model. If important factors are omitted or mis-
specified, the results can be biased or incomplete, leading to large
standard errors, serial correlation, and other statistical issues.

Decomposition-based methodologies, such as wavelet trans-
form, Fourier transform, EMD, and the proposed AlphaFold-D, are
data-driven and do not require the researcher to specify a functional
form or predefined relationships between variables. Instead, these
methods allow the data itself to guide the decomposition process,
making them more effective in capturing complex patterns that may
notbe immediately apparent orpredictable through linearmodeling.2

This study applies a nonlinear and decomposition-based
approach, similar to Reboredo andRivera-Castro [30], Jiang&Yoon
[29], and Zhang et al. [31]. In these approaches, a decomposition
method is used to break a time series into multiple subcomponents
(such aswavelets or IMFs), and a dependencemethod is then applied
to analyze the relationships between the subcomponents of each
variable.

4. Results

Before any inferential analysis is applied, some pretests are
performed.3 First, the Jarque-Bera test for normality is performed.
The null hypothesis of the Jarque-Bera test is that the data follows a
normal distribution. Specifically, it tests whether the skewness and
kurtosis of the data are consistent with those expected in a normal
distribution. The results are displayed in Table 1.

4.1. Normality pretest results

The probability of the Jarque-Bera test statistic for the REER
index was 0.0000. This would lead to the rejection of the null

2Notably, time-frequency studies such as Bouri et al. [32] and Soni et al. [33]
use wavelet transforms to decompose time series for analysis and use them
with correlation. While this is acceptable, the author does not use wavelet trans-
forms because they produce wavelet decompositions of different lengths, which
is a problem already overcome by EMD. In EMD, all the IMFs are of the
same length. Second, correlation is a method of estimating the linear association
between variables, but it is not causality.

3The pretests are performed in EViews.
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Table 1
Descriptive statistics results

REER WTI BRENT
Mean 101.1879 67.60163 72.40723
Median 100.5000 65.17000 71.23000
Maximum 108.3000 114.8400 122.7100
Minimum 97.30000 16.55000 18.38000
Std. Dev. 2.331660 21.44394 23.39106
Skewness 1.382459 0.222009 0.212192
Kurtosis 4.454210 2.174091 2.205801
Jarque-Bera 57.33703 5.165753 4.763761
Probability 0.000000 0.075556 0.092377
Sum 14267.50 9531.830 10209.42
Sum Sq. Dev. 761.1295 64377.97 76599.81
Observations 141 141 141

hypothesis that the REER index was normally distributed at the 10%
significance level.

The probability of the Jarque-Bera test statistic for Brent oil
prices was 0.0924. This would lead to the rejection of the null
hypothesis that Brent oil prices were normally distributed at the 10%
significance level.

The probability of the Jarque-Bera test statistic for WTI prices
was 0.0756. This would lead to the rejection of the null hypothesis
that WTI prices were normally distributed at the 10% significance
level.

Since the results suggest that Brent and WTI oil prices and
the REER index are not normally distributed, then models based
on the assumption of normality would produce inaccurate results.
This justifies the use of models that do not rely on the normality
assumption.

Next, structural break tests are applied to determine if the time
series is linear.

4.2. Structural breaks pretest results

The Sequential L + 1 breaks test is a methodology used to iden-
tify structural breaks in time-series data. It sequentially tests for the
presence of an additional break by comparing the test statistic at
each hypothesized number of breaks with a critical value. In this
right-tailed test, if the test statistic exceeds the critical value, the null
hypothesis of no further break is rejected, indicating the presence of
another structural break.

The Sequential L + 1 breaks test is applied to Brent oil prices,
WTI oil prices, and the REER index. The results are displayed in
Tables 2–4.

In Table 2, the Sequential L + 1 breaks test is applied to Brent
oil prices to determine the presence of structural breaks in the time
series. Under the null hypothesis of zero breaks, the test statistic was
93.87697, while the critical value was 8.58. Since the test statistic
was greater than the critical value, the null hypothesis was rejected
in favor of the alternative hypothesis. This test is continued for up to
four breaks. Under the null hypothesis of four breaks, the test statis-
tic was 0.000000, which was less than the critical value of 12.25.
Therefore, the null hypothesis of four breaks was not rejected in
favor of the alternative hypothesis of more than four breaks. This
suggests that Brent oil prices have four structural breaks.

In Table 3, the Sequential L + 1 breaks test is applied to WTI
oil prices to determine the presence of structural breaks in the time
series. The null hypothesis of two breaks generates a test statistic of

Table 2
Structural breaks test results for Brent oil prices

Sequential F-statistic determined breaks: 4
Scaled Critical

Break Test F-statistic F-statistic Value**
0 vs. 1 * 93.87697 93.87697 8.58
1 vs. 2 * 183.0320 183.0320 10.13
2 vs. 3 * 13.47193 13.47193 11.14
3 vs. 4 * 26.98559 26.98559 11.83
4 vs. 5 0.000000 0.000000 12.25
* Significant at the 0.05 level.
** Bai-Perron (Econometric Journal, 2003) critical values.
Break dates:

Sequential Repartition
1 2014M11 2014M12
2 2021M06 2017M11
3 2017M09 2019M08
4 2019M08 2021M06

Table 3
Structural breaks test results for WTI oil prices

Sequential F-statistic determined breaks: 2
Scaled Critical

Break Test F-statistic F-statistic Value**
0 vs. 1 * 84.25783 84.25783 8.58
1 vs. 2 * 225.9761 225.9761 10.13
2 vs. 3 7.860423 7.860423 11.14
* Significant at the 0.05 level.
** Bai-Perron (Econometric Journal, 2003) critical values.
Break dates:

Sequential Repartition
1 2014M11 2014M12
2 2021M06 2021M06

7.860423, which is less than the critical value of 11.14. This suggests
that WTI oil prices have two structural breaks.

In Table 4, the Sequential L + 1 breaks test is applied to the
REER index to determine the presence of structural breaks in the
time series. Under the null hypothesis of zero breaks, the test statis-
tic was 192.2454, while the critical value was 8.58. Since the test
statistic was greater than the critical value, the null hypothesis of
zero breaks was rejected in favor of the alternative hypothesis of

Table 4
Structural breaks test results for REER index

Sequential F-statistic determined breaks: 1
Scaled Critical

Break Test F-statistic F-statistic Value**
0 vs. 1 * 192.2454 192.2454 8.58
1 vs. 2 6.784403 6.784403 10.13
* Significant at the 0.05 level.
** Bai-Perron (Econometric Journal, 2003) critical values.
Break dates:

Sequential Repartition
1 2023M01 2023M01
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more than zero breaks. Under the null hypothesis of one break, the
test statistic was 6.784403, which was less than the critical value of
10.13. Thus, the null hypothesis of one break is not rejected in favor
of the alternative hypothesis. This suggests that the REER index has
one structural break.

Therefore, Brent and WTI oil prices, and Guyana’s REER
index are not linear. Subsequently, a linear model is not appropriate
for modeling these variables.

4.3. Stationarity pretest results

Table 5 shows the stationarity test results. The null hypothesis
for the Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP)
stationarity tests is that the time series contains at least one unit root.
For the variables Brent oil prices, WTI oil prices, and the REER
index, the null hypothesis of possessing a unit root was not rejected
at level at the 5% significance level.

However, at first difference, the null hypothesis of possessing
a unit root was rejected at the 10%, 5%, and 1% significance levels.
This suggests that the variables (Brent, WTI, and REER index) have
a unit root.

The Perron Stationarity with structural break test has a null
hypothesis that the time series is non-stationary (i.e., has at least
one unit root) and has a structural break. For the variables (Brent oil
prices, WTI prices) at level, the probability of the test statistic was
greater than the 10% significance level. This led to the conclusion
that the variables are non-stationary and contain at least one unit
root. However, for the REER index, at level, the probability of the
test statistic was less than 10%, 5%, and 1% significance levels. This
suggested the rejection of the null hypothesis of non-stationarity
with a structural break. Thus, it implies that the REER index may be
stationary (does not have a unit root) but exhibits a structural break
in its trend or mean.

The existence of non-stationarity in the variables, as well as
the presence of a unit root, justifies the use of a nonlinear model to
analyze the time series.

4.4. Results of the AlphaFold-D

The proposed AlphaFold-D methodology was used to decom-
pose each time series (Brent oil prices, WTI oil prices, and
Guyana’s REER index) into multiple IMFs.4 The author labeled the
frequencies as follows:

1) IMF5 represents the highest-frequency component. It is sup-
posed to capture very short-term fluctuations, which represent
oscillations in the range of 1–2 months in the monthly dataset.

Table 5
Stationarity test results

ADF PP
Stationarity
with break

Brent (level) 0.0969 0.1850 0.5820
Brent (1st difference) 0.0001 0.0001 0.01
WTI (level) 0.1387 0.2352 0.5612
WTI (1st difference) 0.0001 0.0001 0.01
REER (level) 0.1087 0.1264 0.01
REER (1st difference) 0.0000 0.0000 0.01

4The proposed AlphaFold-D methodology was run in MATLAB 2021a.

2) IMF4 represents a slightly lower-frequency fluctuation than
IMF5, generally reflecting short-term patterns that last around
2–4 months.

3) IMF3 represents medium-term patterns, in the range of
4–8 months. This is associated with seasonal effects or other
short-term trends.

4) IMF2 represents lower-frequency trends, capturing fluctuations
over a span of 8–12 months.

5) IMF1 represents the lowest-frequency IMF and captures long-
term trends that are in excess of 12 months. For this 34-month
time series, IMF1 is supposed to show a trend or cyclical
behavior, essentially representing any persistent long-term trend
present in the data.

The decomposed time series are presented in Figures 1–3.
The IMFs for Brent deconstructed using AlphaFold-D are dis-

played in Figure 1. A layered structure of dynamic behavior over
time horizons is seen in the breakdown of Brent oil prices. Mar-
ket microstructure noise and transient speculative movements are
captured by IMF5 (1–2 months). Market corrections and temporary
demand/supply mismatches are shown in MF4 (2–4 months). IMF3
(4–8 months) probably correlates with hedging activity, inventory
adjustment cycles, and sentiment in international business. The
effects of energy policy, strategic changes in output, or cycles of
monetary tightening that progressively affect oil prices over quarters
may be captured by IMF2 (8–12 months). Brent pricing’s structural
trend is seen by the IMF1 (>12 months).

Similar to analysis on Brent, the AlphaFold-D decomposition
of WTI oil prices reveals a multi-layered frequency structure that
reflects different market forces at work throughout time periods. See
Figure 2. Short-term volatility caused by speculative trading, inven-
tory surprises, and quick reactions to geopolitical events is captured
by IMF5 (1–2 months). IMF4 (2–4 months) accounts for tran-
sient shocks and short-term demand-supply mismatches. IMF3 (4–8
months) corresponds with production movements that are medium-
term. IMF2 (8–12 months) might be able to capture longer-lasting
macroeconomic effects. Lastly, the structural trend in WTI pricing,
including long-term trends, is reflected in IMF1 (>12 months).

Figure 3 shows the IMFs for the REER index decomposed
with AlphaFold-D. IMF5 (1–2 months) captures high-frequency
exchange rate volatility and immediate financial market reactions.
IMF4 (2–4 months) reflects short-run misalignments or market
corrections. IMF3 (4–8 months) indicates medium-term currency
pressures. IMF2 (8–12 months) may embody more persistent
real exchange rate adjustments. IMF1 (>12 months) captures the
long-term trend in the REER, reflecting deep structural factors.

After the time series have been decomposed, the ANN causal-
ity test is applied to determine the causal relationships between the
IMFs.

4.5. Results of the ANN causality test

The ANN causality test is applied from Brent oil prices to the
REER index. In other words, it tests whether Brent oil prices have
a causal impact on Guyana’s REER index. This test was applied to
both the full time series and the IMFs. The results of the test are
displayed in Table 6.

The ANN causality test found causality from Brent oil prices
to the REER index for the full series. This suggests that there is a
causal relationship between oil prices and the REER index. When
the decompositions were performed, causality was found in IMF4
and IMF5. Recall that, as specified by the author, IMF5 represents
very short-term fluctuations, which correspond to oscillations in the
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Figure 1
IMFs for Brent (decomposed with AlphaFold-D)

Figure 2
IMFs for WTI (decomposed with AlphaFold-D)
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Figure 3
IMFs for REER index (decomposed with AlphaFold-D)

Table 6
ANN causality test from Brent to REER

Brent to REER Test statistic Critical value Decision
IMF1 to IMF1 –4.89E–05 –9.78E–05 Reject the null. There is no causality
IMF2 to IMF2 –4.19E–05 –9.78E–05 Reject the null. There is no causality
IMF3 to IMF3 –5.56E–05 –9.78E–05 Reject the null. There is no causality
IMF4 to IMF4 1.09E+24 1.29E+24 Accept, there is causality
IMF5 to IMF5 3.17E+25 5.56E+25 Accept, there is causality
Full series (Brent to REER) 1.97E–09 2.18E–04 Accept, there is causality

range of 1–2 months in the monthly dataset. Additionally, IMF4
represents slightly lower-frequency fluctuations than IMF5, gener-
ally reflecting short-term patterns that last around 2–4 months. This
indicates that Brent oil prices typically have short-run effects on
Guyana’s REER.

The ANN causality test found no causality from Brent oil
prices to the REER index at IMF3, IMF2, and IMF1. Recall that the
author labeled IMF1 as the lowest-frequency component, captur-
ing long-term fluctuations exceeding 12 months. IMF2 represents a
low-frequency component in the span of 8–12 months, while IMF3
represents medium-term patterns in the range of 4–8 months. There-
fore, these results suggest that Brent oil prices had no effect on
the REER index over the long term. Thus, these results suggest
that a causal relationship exists in the short run but not in the long
run.

Next, the ANN causality test is applied from WTI oil prices
to the REER index. In other words, it tests whether WTI oil prices
have a causal impact on Guyana’s REER index.

As shown in Table 7, the ANN causality test identified a causal
relationship betweenWTI oil prices and the REER index for the full
series, indicating that oil prices influence Guyana’s REER. When

the data was decomposed, causality was detected at IMF4 and IMF5.
According to the classification used in this paper, IMF5 represents
very short-term fluctuations, corresponding to oscillations within
1–2 months in the monthly dataset. Similarly, IMF4 captures
slightly lower-frequency fluctuations, typically spanning 2–4
months. These findings suggest that WTI oil prices primarily affect
the REER index in the short run.

The ANN causality test did not find any causal relationship
between WTI oil prices and the REER index at IMF3, IMF2, and
IMF1. IMF1, as the lowest-frequency component, represents fluctu-
ations exceeding 12 months, while IMF2 covers 8–12 months, and
IMF3 represents medium-term variations lasting 4–8 months. This
indicates that WTI oil prices had no significant effect on the REER
index within these time frames.

Next, the ANN causality test is applied from the REER index to
the Brent oil prices, then from the REER index to WTI prices. This
was done to determine if there was a feedback causality between
Guyana’s REER index and the oil prices. The results of the test are
displayed in Table 8.

The ANN causality test found no causality from the REER
index to Brent oil prices or WTI oil prices for the full series, or any
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Table 7
ANN causality test from WTI to the REER

WTI to REER Test statistic Critical value Decision
IMF1 to IMF1 –7.62E–06 –1.05E–04 Reject the null. There is no causality
IMF2 to IMF2 8.58E+22 8.54E+22 Reject the null. There is no causality
IMF3 to IMF3 2.38E+27 3.56E+26 Reject the null. There is no causality
IMF4 to IMF4 8.48E+28 8.76E+28 Accept, there is causality
IMF5 to IMF5 2.71E+27 4.06E+27 Accept, there is causality
Full series (WTI to REER) 0.028495 0.033439 Accept, there is causality

Table 8
ANN causality test from REER to Brent and from REER to WTI

REER to Brent
Test statistic Critical value Decision

IMF1 to IMF1 –7.46E–06 –1.04E–04 Reject the null. There is no causality
IMF2 to IMF2 –2.05E–05 –9.78E–05 Reject the null. There is no causality
IMF3 to IMF3 –1.16E–05 –1.10E–04 Reject the null. There is no causality
IMF4 to IMF4 –9.63E–06 –1.09E–04 Reject the null. There is no causality
IMF5 to IMF5 –7.08E–06 –1.16E–04 Reject the null. There is no causality
Full series (REER to Brent) –1.01E–05 –1.11E–05 Reject the null. There is no causality
REER to WTI
IMF1 to IMF1 –7.61E–06 –1.07E–04 Reject the null. There is no causality
IMF2 to IMF2 –2.49E–05 –1.09E–04 Reject the null. There is no causality
IMF3 to IMF3 –1.30E–05 –1.17E–04 Reject the null. There is no causality
IMF4 to IMF4 –9.83E–06 –1.10E–04 Reject the null. There is no causality
IMF5 to IMF5 –7.26E–06 –2.13E+27 Reject the null. There is no causality
Full series (REER to WTI) –1.23E–05 –1.24E–05 Reject the null. There is no causality

of the decompositions. This suggests that there is no causation from
Guyana’s REER index to the oil prices.

5. Discussion

The ANN causality test results reveal that Brent oil prices have
a short-term causal effect on Guyana’s REER, specifically impact-
ing high-frequency fluctuations (IMF4 and IMF5, corresponding
to 1–4 months), but no significant long-term causality (IMF1-
IMF3, representing fluctuations beyond four months). This suggests
that oil price shocks lead to rapid but temporary adjustments in
the REER, consistent with the short-run spending effect described
in Dutch disease theory. When oil prices rise, increased foreign
currency inflows boost domestic demand, driving up prices of non-
tradable goods and causing a temporary REER appreciation. This
could squeeze competitiveness in non-oil tradable sectors, such as
agriculture and manufacturing, in the short run.

The short-term causation between Brent oil prices and high-
frequency REER components (IMF4 and IMF5) in the instance of
Guyana implies that oil windfalls cause the real exchange rate to rise
immediately, most likely as a result of higher capital inflows and
expenditure. The pricing competitiveness of non-oil exports, such
as light manufacturing or agricultural, may be undermined by this
short-term appreciation, which would lower their profitability and
deter investment in these industries. The lack of long-term causality
(in IMF1 to IMF3) would suggest that Guyana has not yet encoun-
tered the more profound structural changes linked to chronic Dutch
disease. This can be the situation as a result of policy intervention.

The findings suggest that while Guyana experiences short-term
Dutch disease-like pressures – where oil-driven REER apprecia-
tion could temporarily weaken non-oil export competitiveness – the
absence of long-term causality indicates the economy may be mit-
igating the structural imbalances characteristic of Dutch disease.
This resilience likely stems from prudent fiscal policies, partic-
ularly the sterilization of oil revenues through sovereign wealth
mechanisms. In 2021, Guyana established the Natural Resource
Fund Act, which provides a framework for managing the coun-
try’s resource wealth effectively. The fund serves several important
purposes, namely: (i) insulating public spending from revenue
volatility; (ii) preventing the erosion of economic competitiveness;
and (iii) ensuring intergenerational equity in resource wealth distri-
bution. Therefore, it appears that the present institutional framework
is safeguarding and successfully containing the typical Dutch dis-
ease transmission channels, allowing Guyana to benefit from oil
revenues while maintaining macroeconomic stability.

Nevertheless, results do imply that the short-term REER
fluctuations from oil shocks warrant monitoring.

For instance, in April 2025, theUnited States imposed tariffs on
many countries. It also imposed tariffs onChina, which rose to 104%
on April 8, 2025. Subsequently, oil prices, both Brent and WTI, fell
sharply, with both oil prices dropping below US$60 per barrel on
April 8, 2025. However, when news emerged that the United States
would pause tariff implementation for three months for countries
that did not retaliate, WTI prices surged to US$62.63 per barrel on
April 9, 2025. Subsequently, when China retaliated by imposing an
84% tariff on US imports, the United States responded by raising its
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tariffs on Chinese goods to 145%, prompting another downturn in
WTI prices to US$58.86 per barrel. This recent price action reflects
the volatility of international oil prices.

If there are short-term fluctuations in oil prices, and their
impacts are felt within 1 to 4 months, it stands to reason that
Guyana could experience consecutive waves of REER apprecia-
tion and depreciation in rapid succession. This volatility would
be bad for the economy, as it can undermine investor confidence
and delay the implementation of investment projects. Moreover,
it introduces significant uncertainty into business planning across
all sectors. Exporters, in particular, face a shifting landscape, one
month struggling with an overvalued REER that makes their goods
more expensive in foreign markets, and the next contending with a
depreciated REER that increases the cost of imported inputs.

To mitigate the damaging effects of short-term oil price volatil-
ity on Guyana’s REER and broader economy, the Natural Resource
Fund Mechanism can be strengthened. The policy actions that can
be implemented are as follows.

1) Establishing a liquidity buffer for foreign exchange interven-
tion.Creating a dedicated liquidity buffer would allowGuyana’s
central bank to actively smooth excessive REER fluctuations
by intervening in foreign exchange markets during periods of
extreme volatility. This buffer, funded through oil revenues,
could be deployed to sell foreign currency when the REER
appreciates too rapidly (preventing Dutch disease symptoms)
or buy reserves when the REER depreciates sharply (avoiding
inflationary import costs). This approach would provide stability
without requiring full pegging.

2) Adopting a velocity rule for the Natural Resource Fund.
A velocity rule would adjust how the Natural Resource Fund
saves or spends oil revenues based on both the magnitude and
speed of oil price changes. Unlike static price-based rules, this
would account for how rapidly prices are rising or falling. This
is important given the modeling shows impacts manifest within
1–4 months. For example, if prices drop by more than 25%
within a month, the rule could automatically allow for more
withdrawals, whereas gradual changes in oil prices would trigger
smaller adjustments. This creates a shock absorber mechanism
that responds proportionally to the urgency of market conditions.

3) Developing a REER-Oil price dashboard. Another tool that
can be implemented is an integrated monitoring dashboard that
uses real-time oil price data and the REER data. Oil prices are
used as a leading and warning indicator of potential threats to
the REER. The dashboard could be designed to flag when Bren-
t/WTI movements exceed volatility thresholds, which in turn
alerts policymakers to prepare contingency measures.

The next section concludes this study.

6. Conclusion

Recall, this study research question was:

“To what degree have oil prices impacted Guyana’s real
effective exchange rate?”

This study used the proposed AlphaFold-D methodology to decom-
pose the following time series, namely, Brent oil prices, WTI oil
prices, andGuyana’s REER index. The IMFswere extracted, and the
ANN causality test was applied to determine the causality between
the variables. Causality was found fromBrent oil prices to the REER
index at IMF4 and IMF5. Since these IMFs represented the highest

frequencies, it is suggested that Brent oil prices had a causal impact
on Guyana’s real exchange rate in the short run.

TheANNcausality test found no causality fromBrent oil prices
to the REER index at IMF1 to IMF3. Similar results were found for
the relationship between WTI oil prices and the REER index. Since
these were the lower-frequency IMFs, it is suggested that the oil
prices did not have a long-run impact on Guyana’s REER. There-
fore, the long-run trend for Guyana’s REER remains unaffected by
Brent and WTI oil prices.

The contributions of this study are as follows. First, this study
makes a methodological contribution as it proposes the method-
ology, AlphaFold-D, to perform the decompositions. AlphaFold-D
can be used in place of EMD as it overcomes several limitations.
The methodological improvements are as follows.

1) Addressing mode mixing. EMD often produces IMFs that con-
tain oscillations of different frequencies within a single mode,
leading to inaccurate decompositions. The proposed AlphaFold-
D has an adaptive multi-head attention mechanism, which
applies frequency-specific filters, helping to isolate unique
frequency components and reduce mode mixing.

2) Addressing sensitivity to noise and outliers. EMD is highly
sensitive to noise, and outliers can distort IMFs. The pro-
posed AlphaFold-D includes a convolutional filtering layer with
a Gaussian window that smooths out noise and suppresses
random fluctuations, ensuring a clearer signal for accurate
decomposition.

3) Addressing boundary effects. EMD struggles with artifacts at
the beginning and end of the data, known as boundary effects,
which distort decomposition results. AlphaFold-D implements
a recursive prediction layer for boundary correction, extrapolat-
ing values at the boundaries to maintain smooth transitions and
reduce boundary-related distortions.

4) Addressing non-stationary time series. EMD has limitations
in handling non-stationary time series with abrupt changes.
AlphaFold-D’s frequency-specific filtering layers enhance local-
ized frequency analysis, providing flexibility to capture varying
frequencies and adapt to non-stationary characteristics in the
data.

5) Addressing the subjective stopping criteria. EMD typically
relies on subjective stopping criteria for sifting. The proposed
AlphaFold-D introduces an adaptive, data-driven stopping cri-
terion in its sifting and decomposition process, improving
reliability and consistency in the decomposition results.

Second, this studymakes an empirical contribution as it applies
the ANN causality test created by Charles [5] to assess the causality
between the variables.

Third, this study makes an empirical contribution as it investi-
gates the impact of oil prices on Guyana’s real exchange rate using
nonlinear and machine learning models, offering an innovative
approach to understanding the dynamics of oil price fluctuations.

Future research can apply the AlphaFold-D methodology to
analyze the economic impact of other economic variables.
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