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Abstract: Ransomware attacks on Android devices have been increasing in recent years, posing a significant threat to users’ data and
privacy. In the finance sector, ransomware increasingly targets banking applications that impact their financial operations. This research
presents a comprehensive evaluation of four popular machine learning algorithms – K-nearest neighbors (KNN), neural networks (NN),
random forest (RF), and support vector machines (SVM) – in classifying Android ransomware. In this work, we utilize an open-source
ransomware dataset available on Kaggle that comprises 10 types of ransomware and benign instances of Android applications, extracting
relevant features for analysis. The performance of each classifier is assessed using various evaluation metrics, including accuracy, precision,
recall, and F1-score. The experimental work shows that the RF classifier achieves the highest accuracy of 96.22%, followed by SVM
with an accuracy of 83.51%, NN at 81.91%, and finally KNN at 70.49%. Furthermore, the research explores the strengths and limitations
of each algorithm, providing insights into their suitability for real-world ransomware detection scenarios. The findings contribute to the
development of robust and efficient security mechanisms for safeguarding Android devices against the evolving threat of ransomware.
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1. Introduction

The rapid proliferation of mobile devices, particularly those
powered by the Android operating system, has profoundly reshaped
the digital landscape. As of July 2023, Android commands a stag-
gering 70.8% market share among mobile operating systems [1].
Developed by Google, Android is an open-source, Linux-based
mobile platform that supports a wide array of technologies, includ-
ingWi-Fi, short message service (SMS), Bluetooth, accelerometers,
cameras, global positioning systems, voice over LTE (VoLTE),
and more. The latest iteration, Android 13, was released in 2022.
Ransomware has emerged as one of the most insidious and disrup-
tive threats targeting mobile devices, particularly those running the
Android operating system and applications. Unlike traditional mal-
ware, which aims to steal data or compromise systems, ransomware
takes a more direct and aggressive approach. Its primary objective is
to hold users’ data hostage by encrypting files, documents, photos,
and other sensitive and valuable information stored on their devices.

A ransomware attack typically begins when an unsuspecting
user unknowingly downloads and installs a malicious application
masquerading as legitimate software. These malicious apps can be
found on third-party app stores and websites or even disguised as
updates to popular applications. Once installed, the ransomware
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quietly runs in the background, mapping the device’s storage and
identifying valuable data to encrypt.

After encrypting the targeted files, the ransomware displays a
ransom note, demanding payment, often in the form of cryptocur-
rencies like Bitcoin, to obtain the decryption key [2]. The encrypted
data remains inaccessible without the decryption key, rendering the
device and data useless formost practical purposes. The ransom note
typically includes a countdown timer, adding urgency and pressure
on the victim to pay up before the deadline expires.

Android devices and applications are particularly vulnerable to
ransomware attacks due to the open nature of the Android ecosys-
tem [1]. While the official Google Play Store has security measures
in place, users often sideload applications from untrusted sources,
inadvertently opening the door to malicious software. Addition-
ally, older Android versions with unpatched vulnerabilities can
provide entry points for ransomware to exploit. Their target also
includes banking applications that pose a significant threat to the
financial technology (FinTech) sector. For instance, in 2021, the
Reserve Bank of New Zealand became a victim of a ransomware
attack that exploited the vulnerability in Accellion File Transfer
(FTA), a third-party file-sharing service. The attack was linked to
the Clop ransomware group that led to the disclosure of sensitive
financial data including Australian banking partners. Adversaries
particularlyexploit thevulnerabilitieswithinmobilebankingapplica-
tions such as outdated authentication modules, insecure Application
program interfaces (APIs), and social engineering. Since the bank-
ing sector relies onAndroidmobile applications for service delivery,
ensuring security is critical to prevent such high-cost cyber threats.
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The consequences of a successful ransomware attack can be
harmful to both individuals and businesses. Personal data, including
irreplaceable photos and videos, financial records, and confidential
information, may be permanently lost if the ransom is not paid or
the attackers fail to provide a working decryption key. Furthermore,
the financial losses can be substantial, as ransomware groups often
demand exorbitant ransom payments, sometimes reaching thou-
sands or even millions of dollars [2]. According to [3], a Middle
Eastern fintech company bears a direct financial loss of exceeding
$2.5 million that comes with long-term reputational damage. Other
incidents reported in [4] record a loss of up to $3million per incident
due to vulnerabilities exploited by cybercriminals.

To address the above mentioned problem and combat Android
ransomware requires a multifaceted approach, including user educa-
tion, robust security measures, and advanced detection techniques.
Users should be cautious when downloading applications from
untrusted sources and keep their devices updated with the lat-
est security patches. Additionally, regularly making backups of
important data can reduce the impact of data loss.

Researchers and security experts are also exploring various
machine learning (ML) and artificial intelligence (AI) techniques to
detect and prevent ransomware attacks proactively [5]. By analyz-
ing patterns in network traffic, system behavior, and file activity,
these advanced methods can potentially identify ransomware before
it can encrypt data. Ultimately, the fight against Android ran-
somware is an ongoing battle, as cybercriminals continuously
evolve their tactics and develop new ransomware strains. Staying
vigilant, implementing robust security measures, and leveraging
edge-cutting detection techniques are crucial steps in protecting
individuals and organizations from the devastating consequences of
these attacks.

Research shows that signature-based detection is effective at
stopping known, commonly used ransomware, but it cannot iden-
tify new types of ransomware. The common use of unique versions
of malware for each attack campaign by ransomware groups also
makes signature-based detection ineffective. Traditional signature-
based detection uses hash signature samples, and because zero-day
attacks are not recorded in antivirus software databases, detect-
ing ransomware by using an anomaly-based detection method is
more effective. Therefore, there is an urgent need to explore and
analyze the potential of ML techniques in detecting and mitigat-
ing Android ransomware threats. This study aims to analyze the
effectiveness of ML models in detecting Android ransomware. The
research questions are discussed in the next subsection.

This research work aims to evaluate the efficacy of ML tech-
niques in classifying Android ransomware. Specifically, it focuses
on KNN, support vector machine (SVM), neural network (NN),
and random forest (RF) classification algorithms. These algorithms
leverage features extracted from network traffic data to distin-
guish between benign and malicious activities associated with
ransomware. The principal contributions of this study are as follows:

1) First, we use a real-world dataset with 10 known Android ran-
somware samples, which ensures that the findings of the study
accurately reflect the actual behavior of Android ransomware,
hence making it more applicable to real-world scenarios.

2) Second, the study completes a comprehensive analysis of the
performance of the different ML classifiers – KNN, SVM, NN,
and RF – in detecting Android ransomware, providing insights
into their strengths and limitations.

The detailed experimental evaluation shows the effective-
ness of the ML algorithms. Also, the limitations and possible
improvements are discussed in detail.

While the ML techniques have shown promising results in
androidmalware detection and classification, they remain limited by
several shortcomings that include relying on static features, which
are vulnerable to evasion through code obfuscation and behavioral
variation in ransomware types.

The rest of the paper is organized as follows: In Section 1,
we present the introduction and contribution. Section 2 includes
the background, motivation, and taxonomy of ransomware. In
Section 3, we explain the recent advancements and report on the
recent work in ransomware detection and classification. Section 4
explains the methodology, and in Section 5, we report the evalua-
tion metrics and results. Finally, Section 6 concludes this research
and future research direction.

2. Related Work

Ransomware is a type of malware that prevents its victims
from accessing their systems by locking the device’s lock screen
or by encrypting the user’s files. This type of malware normally
prevents access to the system until the requested ransom is paid.
In other cases, even after the victims have paid the ransom as
requested by the attacker, they may not receive their stolen data
or access to their system. According to a report by TrendMicro,
almost one in five companies that are affected by ransomware do
not get their data back or get a decryption key. Another report
by Kaspersky in 2021 found that 17% of the people who paid
the ransom did not receive their stolen data. Ransomware attacks
have been successful mainly due to their pseudonymous ransom
payment method. The attackers usually conceal their identity by
asking for ransoms in the form of cryptocurrency like Bitcoin to
restore access to data and files.

Ransomware blocks access to the device or encrypts the files/-
data in the device. The attacker then asks for ransom money to
decrypt the files/data or unlock the device. The attacker, not the
computer owner, holds the decryption key, rendering the files
inaccessible unless the threat actor decrypts them. In a typical ran-
somware attack, the attacker demands a ransom, often in the form
of cryptocurrency, to decrypt the files. This ransom can range from
hundreds to millions of dollars, depending on the target. Some ran-
somware attacks also involve a time limit, after which the files are
deleted, adding pressure on the victims to pay quickly. In other
instances, the attacker steals copies of the data and threatens to
release them if the ransom is not paid. These attacks usually tar-
get companies and government organizations that maintain secret
information. Despite the devastating effects of ransomware, there
is no guarantee that paying the ransom will result in the files being
decrypted. Shulmistra found that evenwith the decryption key, some
companies struggle to recover their data due to the strong encryption
algorithm employed by the attackers [2].

Ransomware attacks start as a breach in a computer file or net-
work, which is caused by a successful penetration through any of the
attack vectors. For instance, a user might click on a malicious link
they received via email or text message, which in turn downloads
ransomware onto their device, giving the attackers access to either
their network or device [6]. The phishing technique plays a vital
role in sending and luring users to click and download the files sent
through these emails. Once the attackers have access to the user’s
device or network, it takes them a short time to deploy their ran-
somware, which then automatically encrypts all the user’s files or
locks the user out of their device.

In 2021, the critical infrastructure observed an increase in ran-
somware attacks globally that include countries such as the USA,
Australia, and the UK. The Federal Bureau of Investigation, the
Cybersecurity and Infrastructure Security Agency, and the National
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Figure 1
Ransomware infection stages

Security Agency observed incidents involving ransomware against
14 of the 16 US critical infrastructure sectors. The Australian Cyber
Security Centre observed continued ransomware targeting of Aus-
tralian essential entities of infrastructure, including those in the
healthcare and medical, financial services and markets, higher edu-
cation and research, and energy sectors. The UK’s National Cyber
Security Centre (NCSC-UK) recognizes ransomware as the biggest
cyber threat facing the UK.

Ransomware infections can be generalized in their attack
phases as in Figure 1, which include the following phases:

1) Delivery: This is the initial stage in which the attackers/cyber-
criminals find the best way to deliver the ransomware to their
desired victim’s device (mobile devices, PCs, IoT, MIoT, etc.).
This can be done through phishing emails, malicious applica-
tions, drive-by downloads, exploiting system or target device
vulnerabilities, SMS or multimedia messaging service (MMS),
and social engineering [7].

2) Command andControl: Once the ransomware is transferred from
the attacker’s machine to the target computer, to persist the con-
nection, the ransomware makes a connection to the attacker’s
machine through a Command & Control (C&C) server that can
be used for further exploitation such as lateral movement in the
network.

3) Extortion: Once the ransomware has performed its malicious
action, it progresses to the final stage of infection, initiated by
displaying a ransom note. This ransom note often includes the
ransom payment method, the ransom amount to be paid, and
an account for the ransom to be paid to. The payment method
attackers prefer is Bitcoin due to the pseudonymous nature of
cryptocurrency.

2.1. Taxonomy of ransomware

Ransomware comes in various forms, each with its own char-
acteristics and methods of operation. Ransomware however can be
classified in four main ways, including the targets, infections, com-
munication, and the type of malicious action that the ransomware
performs. These four categories can further be broken down into
specifics.

2.1.1. Targets
Targets of ransomware can be of two types. A target of a ran-

somware attack could either be a victim or a target platform as
analyzed by Oz et al. [2].

2.1.2. Victims
Victims of ransomware attacks can be categorized into two

groups. They include individuals or organizations. Individual end-
users were the initial targets of ransomware attacks. In 1989, when
the first ransomware was discovered, researchers reported that it
was sent via floppy disks to individuals who attended the AIDS

conference [8]. The presence of many end-users makes ransomware
a lucrative business for attackers as they can reach many people on
the internet, some of whom are not conversant with the ransomware
business model.

Organizations have also been targets of ransomware attacks,
given the profits the attackers could receive if they success-
fully receive a ransom payment [7]. Organizations include hos-
pitals, schools, governments, businesses, and nongovernmental
organizations.

2.1.3. Platforms
While personal computers (PCs) have historically been pri-

mary targets for ransomware attacks due to their widespread use in
both personal and business contexts, the landscape of ransomware
targeting has evolved to encompass a broader range of devices and
systems. PCs continue to be significant targets for ransomware oper-
ators, given the vast amount of sensitive data stored on these devices
and their interconnectivity within networks. However, other plat-
forms such as servers, mobile devices, IoT devices, and even cloud
infrastructure have increasingly become targets for ransomware
attacks. While PCs remain prominent targets, it’s essential to recog-
nize that ransomware threats are not limited to one type of device or
system.

The Internet of Things (IoT) is the interconnected network of
sensors, networks, actuators, and software that store and exchange
data. The IoT makes indirect communication between individu-
als and smart devices possible, leaving it a target for ransomware
attacks. By 2013, IoT had evolved, and it was being used in smart
homes and buildings [7]. Although ransomware attacks in IoT
environments are not very common now, they can be targeted by
ransomware attacks. The timely, critical, and irreversible nature
of ransomware attacks can have amplified effects when IoT is
involved, especially in the case of critical infrastructure. IoT devices
widen the attack surface for ransomware deployment, potentially
leading to cascading consequences. Ransomware operators have tar-
geted critical infrastructures or high-profile targets that likely rely on
Operational Technology (OT) and Industrial Control Systems (ICS).
The OT includes hardware and software and is used in ICS set-
tings for monitoring and control purposes [9]. Attacks involving OT
systems can be dangerous and have cascading effects down the sup-
ply chain, pressuring victim organizations to comply with ransom
demands. Furthermore, ransomware for IoT devices would likely be
conceptually different from ransomware targeting traditional oper-
ating systems. Many IoT devices use embedded operating systems,
and the types of information a threat actor would look to encrypt or
use for extortion purposes will likely be more limited.

With the proliferation of smartphones and tablets, mobile
devices have become an integral part of everyday life, handling
sensitive personal and professional information. As such, they
have increasingly become targets for ransomware attacks. Like
traditional computing systems, mobile devices are vulnerable to
ransomware attacks due to their connectivity, storage capabili-
ties, and reliance on software applications. The interconnected
nature of mobile devices through networks and sensors makes
them susceptible to exploitation by threat actors seeking to deploy
ransomware [10].

2.2. Infection vectors

Razaulla et al. [11] categorize ransomware by their infection
vectors. There are five main ways in which ransomware can be
delivered to the victim. They include malicious or phishing emails,

Pdf_Fol io:3 03



FinTech and Sustainable Innovation Vol. 00 Iss. 00 2025

SMS or MMS, malicious applications, drive-by downloads, and
software vulnerabilities.

A malicious application is an application (app) that disguises
itself as a legitimate application. These apps represent a common
attack vector in the spread of ransomware in general. Users unknow-
ingly download and install these apps from unofficial sources,
providing attackers with an entry point for ransomware deployment.
Ransomware may exploit vulnerabilities in SMS and messaging
platforms to deliver malicious payloads. This involves the use of
specially crafted messages or links that, when opened, initiate the
ransomware installation process on the device.

The availability of vulnerabilities within the different exist-
ing operating systems, networks, and software poses a risk of
cyber criminals exploiting these vulnerabilities to gain access to a
device and deploy ransomware. Cybercriminals have leveraged both
known and zero-day vulnerabilities to gain unauthorized access to
systems/devices, enabling the installation and execution of mali-
cious code including ransomware [11]. A zero-day vulnerability
is a vulnerability in a device or system that security experts have
had zero days to patch. Drive-by downloads and malicious scripts
on compromised websites explain vulnerabilities in the device’s
browser or operating system, facilitating unauthorized access and
ransomware installation on the device. This type of infection also
leverages email attachments or malicious links sent to victims via
email or SMS. Once the user clicks on the hostile link or file, the
ransomware gets access to the system.

2.3. Motivation behind cyberattacks

There are different motivations behind cyberattacks as
discussed in this section.

2.3.1. Financial gains
Cyberattacks are driven by various motivations, and under-

standing them is vital in understanding the threat landscape. The
primary motivation of a malicious actor is financial gain, and they
use different techniques to steal and extort money from unsuspect-
ing victims. Most cybercriminals gain access to victims’ devices
through malware and gain unauthorized access to their digital bank
accounts, steal security credentials to financial platforms, and trans-
fer funds or use phishing techniques to swindle money. Although
different motivations drive threat actors, their main goal is usually
to make a profit.

2.3.2. Sabotage and disruption
Some cybercriminals are aiming to disrupt critical operations,

services, and infrastructure. These criminals often disrupt the nor-
mal functioning of devices or networks for ideological or political
reasons, which can lead to significant inconvenience, loss of repu-
tation, and significant financial loss. Some use their hacking skills
to sabotage large organizations to promote a campaign or warn an
organization of its system’s vulnerabilities [12].

2.3.3. Cyber espionage
Organizations, states, and corporate competitors can engage

in this form of cyberattack to gain a competitive edge over
others. Conducted for commercial, strategic, or political gains, espi-
onage involves collecting sensitive data, intellectual property, trade
secrets, or government secrets. States can engage cybercriminals
in cyber espionage to gather intelligence, promote their national
interests, or engage in geopolitical maneuvers [12].

2.3.4. Personal vendetta
Individuals who have access to sensitive data or critical sys-

tems can use them to carry out cyberattacks out of personal
grievances, to the detriment of an individual, organization, or entity.
This form of attack often comes from inside employees, partners,
vendors, or contractors and is one of the biggest cybersecurity
threats to organizations.

2.3.5. Recognition and notoriety
Some malicious actors engage in cybercrime because of the

promise of fame and recognition. These cybercriminals are moti-
vated by the sense of achievement that comes with hacking into
major systems, networks, or devices. They get recognized among
fellow threat actors, and they act as individuals or in groups. Threat
actors are generally competitive and are motivated by the challenges
that their actions create.

3. Literature Review

Mobile ransomware detection is critical in safeguarding the
security of mobile devices. The increased use of mobile devices has
led to a surge in malware attacks, especially on Android phones.
Android remains one of the most used mobile OS, with a market
share of 72.2% as ofMay 2021, followed by iOSwith amarket share
of 26.77%. Android has become the most-targeted mobile platform
for malware, including ransomware.

Although mobile devices have many built-in security mea-
sures, their flaws and design weaknesses make them prone to
malware attacks. Awareness of mobile vulnerabilities and modes
of attack is vital for effective malware detection and security flaws
analysis. The most prominent detection methods are ML-based,
signature-based, and behavioral-based, which are explained below.

Senanayake et al. [13] believe that ML-based detection meth-
ods have proven effective in detecting mobile ransomware attacks
because they can derive a classifier from limited training examples.
Several studies have focused on ML-based detection and classifi-
cation methods on Android devices. Several other notable mobile
malware detection methods are an alternative to ML. As discussed
by Sihag et al. [14], signature-based detection methods are used
to analyze the behaviors of applications to generate the signature,
which is then linked to the signature database to detect mali-
cious activities. The researchers propose a signature-based malware
detection solution that uses dynamic analysis to evaluate appli-
cation behavior. The system filtered system logs generated from
260 applications on Google Play and matched them with the sig-
natures. The system identified application behaviors that indicated
data leakage, jailbreak attempts, and access to critical permissions.
The signature-based approach was effective in providing valuable
insights into mobile applications that cause mobile security and data
breaches [15]. Although behavior-based malware detection is a dif-
ferent method of detecting mobile malware, Vanjire and Lakshmi
[16] propose a behavior-based malware detection model that uses
ML. They used the decision tree (DT), Naive Bayes (NB), and KNN
algorithms to identify malicious behavior in mobile devices, with
NB giving the highest accuracy of 97.37%. Behavior-based detec-
tion aims to identify previously unknown threats to mobile security,
but it relies heavily onML to flag unusual network activity as poten-
tially malicious or benign. Aslan and Samet [17] discuss that data
mining techniques such as n-gram are used to derive features from
application behaviors. However, creating an effective detection sys-
tem is challenging due to themany extracted features and difficulties
in defining behavior. The researchers also discuss heuristic-based

Pdf_Fol io:404



FinTech and Sustainable Innovation Vol. 00 Iss. 00 2025

malware detection, which also uses ML techniques, among other
methods. Essentially, it entails using predetermined algorithms and
rules to detect malicious behavior. However, it cannot detect com-
plex malware and is prone to generating false positives [17]. As
this research focuses on ML for ransomware detection, only studies
using ML techniques are explored further in the following section.

3.1. Static analysis

Static analysis with ML is the most widely used technique
for detecting Android ransomware. Jannat et al. [18] conducted
a static analysis by using data from both benign and malicious
Android applications. The MalGenom dataset containing 360 mali-
cious Android applications and Kaggle datasets with over 4000
applications were used in this study. Some of the ML algorithms
tested include RF, SVM, and NB. The RF classifier gave the best
score, followed closely by DT. This study contended that static anal-
ysis is not as accurate as dynamic analysis. Elayan andMustafa [19]
also conducted a study to investigate the effectiveness of traditional
ML classifiers using static analysis. The study utilized the CICAn-
dMal2017 dataset, which consists of 347 benign samples and 365
malware samples of Android applications. This dataset provided
real and realistic samples for static analysis, focusing on permissions
and API calls as features indicative of malware behavior. SVM,
KNN, DT, RF, and NB classifiers were evaluated for their perfor-
mance in detecting Android malware. The RF classifier achieved
the highest accuracy of 97.8% among the tested classifiers. The ML
classifiers based on static features showed promising results, with
RF performing well.

3.2. Dynamic analysis

Bhatia and Kaushal [20] propose a dynamic analysis approach
for detecting malware in Android applications, utilizing system
call traces collected during runtime interactions. Using datasets
comprising 50 benign and 50 malicious Android applications,
sourced from the Google Play Store and the Android Malware
Genome Project, respectively, the study evaluates the efficacy
of two ML algorithms: J48 DT and RF. Results indicate that
both algorithms achieve high accuracy levels, with the J48 DT
algorithm reaching 85% accuracy and the RF algorithm achiev-
ing 88% accuracy. Evaluation metrics including true positive and
true negative rates, confusion matrices, and various other metrics
provide insights into the algorithms’ performance in classify-
ing applications. The dataset utilization and thorough analysis of
results underscore the effectiveness of the proposed dynamic anal-
ysis approach for Android malware detection, demonstrating its
potential for real-world application in enhancing mobile security.

3.3. Hybrid analysis

Essentially, hybrid analysis provides a more robust malware
detection capability by integrating the strengths of both static
and dynamic approaches. Ding et al. [21] introduce a hybrid
approach for malware classification and detection to improve both
static and dynamic analysis. In the detection layer, static features
such as permissions and intent are utilized, and through feature
selection and algorithm comparison, the optimal static detection
algorithm (RF) and feature selection method (chi-square test) are
identified, achieving a final detection rate of 95.04%. Despite
a marginal loss in detection rate, the experiment revealed the
presence of numerous irrelevant and redundant features in the orig-
inal dataset. Subsequently, in the dynamic analysis layer, network

traffic images generated during dynamic execution are classified
using Res7LSTM, demonstrating superior abilities in malware
detection and subclassification, notably in the Android malware
category and family classification. The integration of static detec-
tion with dynamic network traffic analysis effectively addresses
the challenge of accurately identifying low-trust benign samples
while enhancing malware detection capabilities. Another work
proposed Android malware detection by integrating static and
dynamic techniques. Leveraging datasets from the malware genome
project, the Drebin project, and the CICMalDroid dataset, the
study extracts comprehensive features for analysis. Static analysis
involves attributes like manifest permissions, API call signatures,
and intent filters, while dynamic analysis delves into behavior
analysis using the CopperDroid framework. The research evalu-
ates various ML and deep learning algorithms, identifying gradient
boosting as the most accurate and efficient model for malware
detection, achieving approximately 99% detection accuracy.

3.4. Machine learning for ransomware detection
and classification

ML plays a critical role in detecting and mitigating Android
ransomware. ML enables computers to learn from the data and
make a decision or prediction based on that data. In contrast to
following fixed rules, the ML algorithms analyze the patterns in
data to improve their performance over time. According to Feng
et al. [22], ML techniques have become mainstream in the detection
of malicious applications in the Android ecosystem. The detection
and analysis techniques are further categorized into three: static,
dynamic, and hybrid analysis. Static analysis entails the analysis
of a specific application without executing it, and in Android, it
implies the analysis of the application package (APK) file. Con-
trary to static analysis, dynamic analysis involves the execution of
an Android application in a sandboxed environment to monitor its
behavior and detect malicious activities. Although this technique
needs more computational power, it can help detect unknown mal-
ware [18]. As such, the hybrid type of analysis supports both static
and dynamic analysis to fill the gap and address their shortcomings.

Mobile security solutions use ML and algorithms to analyze
operating system behavior and detect ransomware. Detecting mal-
ware using ML entails two critical stages: analyzing Android APKs
to identify the appropriate set of features and then using machine
and deep learning to identify malicious APKs. The ML techniques
mainly detect and identify whether the application falls into ran-
somware or a benign file [23]. It utilizes feature engineering to track
ransomware patterns. The features used to train models to detect
ransomware include file system activities, system call sequences,
network traffic patterns, and API calls. These researchers demon-
strate that ML relies heavily on data to identify patterns and make
accurate predictions.

Different studies have tested the accuracy of ML in detecting
ransomware. Narudin et al. [24] conducted a test using ML classi-
fiers to detect mobile malware using samples from the MalGenome
project, comprising 1260 Android malware samples from 49 differ-
ent families. They selected the top 20 free applications on Google
Play for the normal dataset. The study established that the RF for the
Genome malware dataset demonstrated a 99.99% malware detec-
tion rate. The study also found that ML classifiers can detect even
the latest malware. Liu et al. [25] provide a comprehensive review
of ML-based approaches for detecting mobile malware and explain
more aspects of ML methods. These include sample acquisition,
data reprocessing, feature selection, feature type, ML method, and
dataset division, among other aspects. The researchers emphasize
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the importance of the sample acquisition aspect of ML because
accurate predictions require good data samples. They also recog-
nize MalGenome as one of the most widely used mobile malware
datasets in ML. However, it quickly becomes outdated as malware
evolves and is being substituted by more robust sample libraries
such as AndroZoo. The work presented in [26] and [27] provides a
comprehensive review ofML approaches for ransomware detection.

Usha et al. [28] specify that there has been a significant increase
in the use of ML approaches to identify and mitigate ransomware
attacks. This ransomware detection technique uses algorithms to
enable computer systems to learn patterns and extract meaningful
data from datasets. The study improves on previous studies that used
various ML algorithms such as KNN, RF, and Bayesian Network,
among others, by using the behavior of the ransomware files from
the ISOT Ransomware Detection dataset to train and test the model.
The study analyzes four ML algorithms, that is, K-nearest neighbor
(KNN), RF, DT, and Gaussian NB. The results of the study indicate
that RF is more accurate than the other algorithms and effectively
differentiates between benign and infected files using the provided
training and validation data.

This study makes several significant contributions to the field
of Android ransomware detection research. While previous stud-
ies such as Noorbehbahani et al. [24] utilized the CICAndMal2017
dataset, our research employs the more recent Android Ransomware
Detection dataset, providing insights into classifier performance on
contemporary ransomware samples. Unlike Albin et al. [1], who
explored DT, SVM, KNN, feedforward neural network, tubular
attention network, and an ensemble model, our study specifically
focuses on a systematic comparison of RF, KNN, SVM, and
NN classifiers. Furthermore, our research employs a streamlined
methodology by conducting a focused experiment using feature
selection techniques to optimize the dataset before training the mod-
els, rather than comparing performance with and without feature
selection as done in previous work. This targeted approach allows
for a more direct comparison between the four selected classifiers
under optimized conditions, enabling a clearer assessment of their
relative strengths and weaknesses in detecting modern Android ran-
somware. By providing this comprehensive comparative analysis of
classifier performance on a newer dataset with optimized features,
our study enhances the understanding of ML-based ransomware
detection capabilities and offers practical insights for selecting
the most effective classification techniques for real-world mobile
security applications.

4. Research Methodology

This section explores the essential methodology employed in
this research work. We will define the research problem, set out the

research questions, describe the data collection, and detail the data
preprocessing steps before feeding the data into an ML classifier for
further processing. The whole data analysis process is depicted in
Figure 2. We also explain the selectedML algorithm and explain the
metrics used for evaluation.

4.1. Data preprocessing

This study utilized the Android Ransomware Detection dataset
created by Subhadeep Chakraborty and made available by a user
named Cyber Cop on Kaggle1. The dataset comprises over 203,000
records encompassing Android ransomware and benign network
traffic. These records were collected by monitoring the network
activity of Android devices. The dataset comprises 85 attributes,
each of which is described in detail in Appendix 1. The ransomware
instances in the dataset are distinguished by the specific ransomware
strain indicated in the Label attribute. There are ten identified
ransomware variants present in the dataset.

These variants include SVpeng, PornDroid, Koler, Ranso-
mOB, Charger, Simplocker, WannaLocker, Jisut, Lockerpin, and
Pletor. The distribution of these ransomware variants is presented in
Table 1.

Table 1
The distribution of ransomware variants in the dataset

Ransomware variant Number of records
Svpeng 54161
PornDroid 46082
Koler 44555
RansomOB 39859
Charger 39551
Simplocker 36340
Wannalocker 32701
Jisut 25672
Lockerpin 25307
Pletor 4715

4.1.1. Feature selection
Feature selection is a data preprocessing technique that aims

to select a subset of features most relevant to the target variable.
This first step involves selecting the best features in the dataset to

1https://www.kaggle.com/datasets/subhajournal/android-ransomware-detection?
resource=download

Figure 2
Dataset analysis process
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be used for the analysis process. This involved dropping some of
the columns from the dataset that were not helpful in the analy-
sis. First, the “Flow ID” column was dropped from the dataset as it
was redundant. The attributes that constituted the “Flow ID” column
were “Source internet protocol Internet Protocol (IP),” “Destination
IP,” “Source IP Port,” “Destination IP Port,” and “Protocol,” which
were already present as individual variables in the dataset, providing
sufficient information to capture the flow characteristics. Conse-
quently, the destination IP address was dropped from the dataset
because the destination IP address is often used to identify the tar-
get of an attack, and in many cases, the same IP address can be used
for benign and malicious traffic [90] source port, destination port,
and protocol are more useful in identifying ransomware traffic [29,
30]. Lastly, the unnamed column was dropped as it was a number-
ing column used to assign a unique identifier to the data to maintain
organization and reference. This column however lacks meaning-
ful information for analysis and is primarily used for administrative
purposes.

4.1.2. Feature engineering
Nargesian et al. [31] define feature engineering as the prac-

tice of construction of suitable features from a given set of features
that leads to predictive performance. First, the “Timestamp” column
was converted to a UTC zone and then split into three individ-
ual variables: “Month,” “Day,” and “HourMinute.” The “Minute”
and “Hour” columns were combined to make one column. This
extraction of individual components allowed for a more granular
representation of the temporal aspects of the data. Once the individ-
ual variables were derived, the original “Timestamp” column was
no longer needed and was dropped from the dataset. The “Year” col-
umn was dropped as the data was acquired within a short period,
and the year component would not provide any additional insight
for the intended analysis. The “Minute” and “Hour” columns were
combined to make one column to provide a coarser temporal reso-
lution, which will give insight into identifying patterns at an hourly
level rather than minute-by-minute variation.

Finally, for the non-numerical variables that are represented as
integers, we performed one-hot encoding and integer encoding to
convert them into numerical representations. Among the variables
that needed to be converted were source IP, protocol, source port,
destination port, and label. For source IP, source port, destination
ports, and label integer encoding were performed. In the case of
the protocol, one-hot encoding was performed due to the number
of ports available in the dataset. The dataset contained only three
protocols, which included User Datagram Protocol (UDP), Trans-
mission Control Protocol (TCP), and Hop-by-Hop IPv6 extension
header (Hop-by-Hop IPv6 extension header (HOPOPT) ports.

The timestamp splitting that is dividing the time-based data into
more granular intervals helps capture the behavioral patterns. How-
ever, these features often lead to an increase in dimensionality of
the dataset and make detection hard for resource constraint devices.
Fortunately, the dimensionality reduction such principal component
analysis (PCA) can help maintain high accuracy.

4.1.3. Data normalization
Normalization is the process of mapping a range of values that

a numerical characteristic can assume to a standard range of val-
ues to either [−1,1] or [0,1]. The success of ML algorithms depends
on the data quality; therefore, it is important to normalize the data.
Data normalization helps in bringing features to a similar scale, pre-
vents certain features with larger numerical ranges from dominating
the learning process, and ensures a fair contribution of each feature

to the model’s performance. This study applied a general Z-score
normalization technique using the Standard Scaler class from the
scikit-learn library. The Z-score normalization, also known as stan-
dardization, transforms the data, where each feature has a mean of
zero and a standard deviation of one [32]. By utilizing the Stan-
dard Scaler class, the dataset’s features were scaled individually.
The process involved subtracting the mean value of each feature
and dividing it by the standard deviation. This ensures all features
are centered around 0 with a unit standard deviation. Formula 5.1
denotes the equation of Z-score normalization, where μ is the mean
and 𝜎 is the standard deviation [33].

We choose Z-score normalization to ensure fair scaling across
features. In contrast to the min-max normalization that scales the
features to [0,1] range, the Z-score transforms the features to have
a mean of 0 and standard deviation of 1 while preserving their orig-
inal distribution. From our exploratory analysis, we discovered a
non-uniform distribution in critical features like packet sizes, times-
tamps, and connection durations, which were important to preserve.
This made the Z-score a better choice as these critical features
are important in the classification of ransomware. The classifiers
explored in this study are sensitive to data scaling and, if provided
with compressed data, would result in misleading results. Another
reason is the non-uniform distribution of features such as timestamp
that may contain outliers; the min-max is sensitive to these types
of outliers and can distort meaningful variance between benign and
ransomware behavior.

4.2. Machine learning algorithms

4.2.1. Random forest
The RF model in this study was created using the Random-

ForestClassifier from scikit-learn. To find the best features for this
model, an experiment was run using scikit-learn’s Gridsearch () with
the given number of trees between one and 150 and the maximum
depth from one to 30. Through the experiment, the best number
of trees was 140, and the maximum depth was 30. The Gridsearch
method also performed 10-fold cross-validation and used the aver-
age score as a more accurate estimate of the model’s ability to
classify the data. These values were then used to train the model
before testing its accuracy with the test data.

4.2.2. K-nearest neighbors
This study used Scikit-Learn’s Gridsearch to find the best com-

bination of k and the best distance metric. The best number of
neighbors is one, and the best distance is Euclidean, according to
the results from Gridsearch. The range of values given to the Grid-
search for k was one to 20, and the distance metrics were Euclidean,
Manhattan, and Chebyshev. The model was then trained using the
training data and tested with the test data.

4.2.3. SVM
GridSearch was employed to fine-tune the SVM model. The

function was given kernels: linear, polynomial, sigmoid, and radial
basis function (RBF), while C and Gamma were 0.01, 0.1, 1, and
10 for both parameters. The best combination of hyperparameters,
namely, an RBF kernel, gamma set at 0.1, and a regularization
parameter C equal to 1000, was identified through the GridSearch
process. Gridsearch also performed a 10-fold cross-validation
to find the optimal model to be trained. This optimized SVM
model was then trained on the provided training data, effectively
learning the underlying data relationships for robust classification.
Its classification was then evaluated using the test data.
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4.2.4. Neural network
Like other algorithms in this study, we ran an experiment

using scikit-learn’s Gridsearch to find the best parameters for the
best model with activation functions: identity, logistic, tanh, and
ReLu; solver: lbfgs, sgd, and adam; and the learning rate: constant,
Invisalign, and adaptive as the parameters. A constant learning rate,
Adam solver, and activation of tanh gave the best model. The model
was then trained on the training data and tested on the test data using
the evaluation metrics discussed in the following section.

5. Performance Evaluation

In this section, wewill evaluate the performance of the fourML
classifiers: SVM, KNN, NN, and RF. This section discusses their
performance individually and their results. The following section
will compare the performance of these classifiers together given the
evaluation metrics. The study will also shed light on the limitations
of this study. This chapter discusses the results of the study in detail.
An overview of the ML classifiers will be given and the perfor-
mance of each classifier together with the classification report. The
details of the performance will be discussed, and the four models
will also be compared in terms of their overall accuracy, preci-
sion, recall, and F1-score. We choose the above mentioned models
because of their efficiency and effectiveness in use cases where ran-
somware reveals localized feature similarity to previously known
samples. The NN selection is due to the ability to model high non-
linear relationships and intricate feature interactions that are very
common in recent ransomware variants. Furthermore, RF is used
to deal with heterogeneous feature sets and its robustness against
overfitting. The SVM model provides high performance on high-
dimensional datasets and finds an optimal boundary that is important
when classifying ransomware behavior from benign.

5.1. Evaluation metrics

Here in this section, we give an overview of the five evalua-
tion metrics used in this study, including accuracy, precision, recall,
cross-validation, and F1-score.

5.1.1. Cross-validation
Cross-validation is a data resampling technique used to evalu-

ate the performance of ML algorithms by splitting the dataset into
training and testing. It helps to assess how the model performs on
unseen data and reduce the possibility of overfitting [34]. This study
used a 10-fold cross-validationmethod that involves partitioning the
original data (train set) into a set of subsets or folds of 10. The model
is then trained on all but one of the folds, which will be used as a
test set. The process of training is then repeated until each of the
folds has served as a test set once. The model’s performance is then
averaged over all iterations to provide a more accurate estimate of
its ability to generalize unseen data.

5.1.2. Accuracy
Accuracy is a commonmetric used to evaluate the performance

of a classification model. It measures the percentage of correctly
predicted instances out of the total number of instances. A high
accuracy is indicative of the model being able to make accurate
predictions. Accuracy can be calculated using the formula given as
follows:

Accuracy = TP + TN
TP + FP + TN + FN

where TP represents the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN is the
number of false negatives [35].

5.1.3. Precision
Precision is another performance evaluation metric used for

classification purposes, which deals with an imbalanced dataset.
A high precision score indicates that the model has a low rate of
incorrectly predicting positive instances. Precision can be calculated
using the given formula, where TP represents the number of true
positives, TN is the number of true negatives, and FP is the number
of false positives [36].

Precision = TP
TP + FP

5.1.4. Recall
Recall measures the model’s ability to identify positive

instances correctly. It calculates the ratio of true positive predictions
to the total number of actual positive instances in the dataset. Recall
is particularly important in scenarios where identifying all positive
instances is critical, such as in medical diagnoses or fraud detection.
A high recall number mean the model can effectively capture the
most positive instances.

Recall = TP
TP + FN

5.1.5. F-1score
The F-1 score is the hormonic mean of precision and recall; it

balances amodel’s performance [36]. It is useful when there is a high
difference between negative and positive classes in the dataset. The
F1-score is important in this study as it is a ransomware detection
problem where it is important to identify all false positive and false
negative instances. F1-score can be calculated using the formula
given as follows:

F1 = Precision × recall
Precision + recall

5.2. Experiments and results

The following section will compare the performance of these
classifiers together given the evaluation metrics. The study will also
shed light on the limitations of this study. This chapter discusses the
experiment and results of the study in detail.

5.2.1. Random forest
The RF classifier outperformed the other models evaluated in

this study, attaining an overall accuracy of 96.22%, precision of
95.95%, and recall of 94.52%. Notably, the RF model’s configu-
ration, determined through grid search during the training phase,
comprised 140 DTs with a maximum depth of 30. This configu-
ration enabled the model to effectively capture intricate patterns
within the data while maintaining strong generalization capabilities,
a crucial factor in developing robust ransomware detection systems.
The classification report presented in Table 2 provides a detailed
assessment of the RF model’s performance across each class,
evaluated using precision, recall, and F1-score metrics. The clas-
sification report shows that the RF model exhibited exceptional
performance in identifying benign instances, achieving perfect
precision, recall, and an F1-score of 1.0000. This result is par-
ticularly significant, as accurate discrimination between benign
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and malicious instances is a fundamental requirement for effective
ransomware detection systems.

Table 2
Random forest classification report

Strain Precision Recall F1-score
Benign 1.0000 1.0000 1.0000
Charger 0.9450 0.9305 0.9377
Jisut 0.9464 0.9482 0.9473
Koler 0.9575 0.9665 0.9620
Lockerpin 0.9636 0.9287 0.9458
Pletor 0.9277 0.7799 0.8474
PornDroid 0.9558 0.9844 0.9699
RansomOB 0.9582 0.9507 0.9544
SVpeng 0.9504 0.9742 0.9622
Simplocker 0.9728 0.9584 0.9656
WannaLocker 0.9773 0.9755 0.9764

For the majority of ransomware classes, including Charger,
Jisut, Koler, Lockerpin, PornDroid, RansomBO, SVpeng, Sim-
plocker, and WannaLocker, the RF model demonstrated a strong
balance between precision and recall, with F1-scores ranging from
0.9377 to 0.9764. This consistent performance across diverse ran-
somware classes highlights the model’s robustness and adaptability
to varying ransomware characteristics. However, the RF model
exhibited relatively lower recall for the Pletor class, with a value of
0.7799, though maintaining a reasonable precision of 0.9277. This
discrepancy suggests that themodel may struggle to accurately iden-
tify certain instances of the Pletor ransomware, potentially due to
unique characteristics or limited representation within the training
data. Addressing this limitation through techniques such as data aug-
mentation or class-specific optimization could further enhance the
model’s performance for this class.

The superior performance of the RF model can be attributed to
its ability to leverage the strengths of multiple DTs, each capable of
capturing diverse patterns within the data. Furthermore, the model’s
configuration, optimized through grid search, played a crucial role in
striking a balance between complexity and generalization, enabling
the model to effectively distinguish between benign and malicious
instances while maintaining robustness across various ransomware
classes. Despite the promising results, there remains scope for fur-
ther improvement, particularly in addressing class imbalances or
fine-tuning the model’s hyperparameters for specific classes that
exhibited lower performance. Additionally, incorporating ensemble
techniques such as boosting or stacking could potentially enhance
the model’s overall accuracy and consistency across all classes. The
lightweight RF model with this accuracy can immediately evalu-
ate behavioral features in near real-time to flag a ransomware-like
activity or behavior. Further, due to its low computational over-
head, the RF model can be deployed directly on Android devices,
avoiding constant communication with external third-party service
providers, and can be scaled to up to millions of devices in near
real-time.

5.2.2. K-nearest neighbors
The KNN model exhibited the lowest overall accuracy of

70.49% among the four classifiers evaluated in this study. During
the training phase, grid search determined the optimal configura-
tion for the KNN model, which comprised a single neighbor and

the Euclidean distance metric. The model attained a precision of
71.16% and a recall of 70.49%. The classification report presented
in Table 3 provides a detailed analysis of the KNN model’s per-
formance across each ransomware class, evaluated using precision,
recall, and F1-score metrics.

As evidenced by the classification report, the KNN model
demonstrated a notable strength in identifying benign instances,
achieving a precision of 99.34%, a recall of 99.41%, and an impres-
sive F1-score of 99.37%. This result underscores the model’s ability
to discriminate between benign and malicious instances accurately,
a crucial factor in developing effective ransomware detection sys-
tems. The KNN model exhibited varying levels of performance
across different ransomware classes. For instance, the Charger class
demonstrated a relatively low precision of 0.5160 and a recall of
0.6909, resulting in an F1-score of 0.5907. Conversely, the KNN
model exhibited moderate to balanced performance for several
classes, including Jisut, Koler, Lockerpin, Pletor, PornDroid, and
WannaLocker, with F1-scores ranging from 0.6440 to 0.7652. These
results are comparable and consistent with the other classifiers in
this study.

Table 3
KNN classification report

Strain Precision Recall F1-score
Benign 0.9934 0.9941 0.9937
Charger 0.5160 0.6909 0.5907
Jisut 0.6607 0.7346 0.6957
Koler 0.7194 0.7725 0.7450
Lockerpin 0.6699 0.6321 0.6505
Pletor 0.6351 0.6352 0.6440
PornDroid 0.7839 0.7473 0.7652
RansomOB 0.6029 0.6313 0.6028
SVpeng 0.6857 0.6202 0.6513
Simplocker 0.6837 0.5416 0.6044
WannaLocker 0.7539 0.6797 0.7149

The performance of the KNN model can be attributed to
its ability to leverage the similarity between instances, making it
well-suited for scenarios where the underlying data distribution is
relatively consistent. However, the model’s reliance on distance
metrics and the number of neighbors may limit its performance in
scenarios with complex decision boundaries or high-dimensional
feature spaces, as demonstrated by the superior performance of deep
learning and ensemble methods in certain cases. Furthermore, it is
essential to consider the trade-offs between model complexity and
interpretability when selecting a suitable classifier for ransomware
detection.While more complexmodels, such as deep learning archi-
tectures, may offer higher accuracy, they often lack transparency
and interpretability, which can be crucial in security-critical applica-
tions. Overall, the KNNmodel demonstrates its potential as a viable
option for ransomware detection, particularly when simplicity and
interpretability are prioritized. However, further optimization and
careful consideration of the specific requirements and constraints
of the application domain are necessary to ensure the model’s
effectiveness and reliability. Additionally, incorporating insights
and techniques from other studies in the field may aid in improv-
ing the model’s performance and addressing specific limitations or
challenges.

Pdf_Fol io:9 09



FinTech and Sustainable Innovation Vol. 00 Iss. 00 2025

5.2.3. Neural network
The NN classifier achieved an overall accuracy of 81.91%,

with a precision of 82.74% and a recall of 81.49%. To identify
the optimal configuration for the multilayer perceptron model, grid
search was employed to tune the hyperparameters. The best con-
figuration was determined to be the Adam solver with a constant
learning rate and the Tanh activation function. The classification
report, summarized in Table 4, provides insights into the model’s
performance for each ransomware class and the benign class. As
shown by the classification report, the NN model exhibited remark-
able performance in identifying benign instances, achieving perfect
precision, recall, and an F1-score of 1.0000 in detecting benign
traffic. These results highlight how accurately the model classifies
the benign and ransomware instances – a critical requirement for
effective ransomware detection systems.

However, certain classes presented challenges for the model.
The Charger class demonstrated moderate precision (0.7002) and
recall (0.6977), with an F1-score of 0.6990, indicating room for
improvement in the model’s ability to identify instances of this par-
ticular ransomware strain consistently. Similarly, the RansomBO
class exhibited lower precision (0.6969) and recall (0.5891), result-
ing in an F1-score of 0.6385, suggesting potential limitations in the
model’s capacity to generalize to this class.

Table 4
Neural network classification report

Strain Precision Recall F1-score
Benign 1.0000 1.0000 1.0000
Charger 0.7002 0.6977 0.6990
Jisut 0.9056 0.8837 0.8945
Koler 0.8993 0.9222 0.9106
Lockerpin 0.8984 0.8581 0.8778
Pletor 0.8331 0.6405 0.7242
PornDroid 0.8939 0.9261 0.9097
RansomOB 0.6969 0.5891 0.6385
SVpeng 0.6728 0.7710 0.7185
Simplocker 0.7864 0.7668 0.7765
WannaLocker 0.8147 0.7988 0.8067

These results suggest that the NN model effectively captured
the distinguishing characteristics of these ransomware variants,
enabling accurate classification. However, certain classes presented
challenges for the model. The Charger class demonstrated mod-
erate precision (0.7002) and recall (0.6977), with an F1-score of
0.6990, indicating room for improvement in the model’s ability to
identify instances of this particular ransomware strain consistently.
Similarly, the RansomBO class exhibited lower precision (0.6969)
and recall (0.5891), resulting in an F1-score of 0.6385, suggesting
potential limitations in the model’s capacity to generalize to this
class. Notably, the Pletor class exhibited a significant discrepancy
between precision (0.8331) and recall (0.6405), leading to an F1-
score of 0.7242. This imbalance could be attributed to factors such as
class imbalance, overlapping feature representations, or the model’s
inability to capture the unique characteristics of this ransomware
variant effectively.

5.2.4. Support vector machine (SVM)
It is evident from the results that the SVM classifier achieved

an overall accuracy of 83.51%, with a precision of 83.43%, a recall

of 82.36%, and an F1-score of 82.81%. To obtain the best model
configuration, grid search was employed for hyperparameter tun-
ing. The optimal SVM model was developed using an RBF kernel,
a gamma value of 0.1, and a C value of 1000. These parameters
yielded the highest performance for the SVM classifier as shown in
Table 5.

Table 5
SVM classification report

Strain Precision Recall F1-score
Benign 0.9995 0.9970 0.9983
Charger 0.7810 0.8297 0.8046
Jisut 0.8476 0.8699 0.8586
Koler 0.8505 0.9144 0.8813
Lockerpin 0.8466 0.8388 0.8427
Pletor 0.8270 0.7200 0.7698
PornDroid 0.9002 0.8757 0.8878
RansomBO 0.7370 0.7530 0.7449
SVpeng 0.7835 0.7949 0.7891
Simplocker 0.7705 0.7949 0.7355
Wannalocker 0.8335 0.7630 0.7967

The SVM model exhibited exceptional prowess in correctly
identifying benign instances, attaining a precision of 0.9995, a recall
of 0.9970, and an F1-score of 0.9983 in identifying positive benign
cases of traffic. This performance highlights the model’s efficiency
in accurately discriminating between benign and malicious traffic,
a critical prerequisite for effective ransomware detection systems.
However, the SVM model demonstrated varying degrees of pro-
ficiency across different ransomware classes. For instance, while
the Charger class exhibited moderate precision (0.7810) and recall
(0.8297), resulting in an F1-score of 0.8046, the Jisut class dis-
played higher precision (0.8476) and recall (0.8699), culminating
in an F1-score of 0.8586, signifying the model’s aptitude in accu-
rately classifying instances of this ransomware strain. Notably, the
Koler class attained the highest recall (0.9144) among all ran-
somware classes, coupledwith a precision of 0.8505 and an F1-score
of 0.8813. This result underscores the SVM model’s efficacy in
identifying instances of the Koler ransomware variant.

While the Lockerpin class exhibited a balanced precision
(0.8466) and recall (0.8388), with an F1-score of 0.8427, the Ple-
tor class demonstrated a discrepancy between precision (0.8270)
and recall (0.7200), resulting in a lower F1-score of 0.7698. This
discrepancy suggests potential limitations in the model’s ability to
identify certain instances of the Pletor ransomware accurately.

In contrast, the RansomBO class exhibited the lowest precision
(0.7370) among all classes, coupled with a recall of 0.7530 and an
F1-score of 0.7449, highlighting potential challenges in accurately
classifying instances of this ransomware strain.

6. Conclusion and Future Work

The rising threat of Android ransomware has made it crucial to
develop effective detection and prevention mechanisms to protect
user data and prevent financial losses. This research work evaluates
the performance of various ML algorithms, including KNN, SVM,
RF, and NN, in detecting Android ransomware. By conducting a
comparative analysis of these classifiers, the research provides valu-
able insights into their strengths and weaknesses, enabling informed
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decision-making for selecting appropriate models. The research
involves feature engineering and dataset analysis, contributing to
a better understanding of Android ransomware characteristics. The
findings and methodologies employed can enhance Android secu-
rity, advance malware detection research, guide industry adoption
of effective ML models, and raise awareness about evolving ran-
somware threats. Ultimately, this work will help the researcher and
practitioner improve mobile device security, advance cybersecurity
research, and promote overall cybersecurity education.

In the future, we aim to explore ensemble and hybrid
approaches that combine ML with other network traffic analy-
sis techniques like deep packet inspection or flow analysis for
improved ransomware detection accuracy. The ensemble method
that includes stacking and boosting enhances the model’s perfor-
mance by combining the predictive strengths of multiple classifiers.
The diverse learning biases can be integrated (RF for feature robust-
ness and SVM for margin optimization) to address the problem
of false negatives when dealing with zero-day ransomware. This
helps the model to detect ransomware that deviates from well-
known patterns. Developing online learning strategies to handle
concept drift and adversarial network behavior would ensure the
models remain effective against evolving ransomware communica-
tion patterns. Leveraging explainable AI techniques could provide
insights into the network features and traffic patterns that charac-
terize ransomware behavior, aiding interpretability. Optimizing the
models for efficient deployment in network monitoring and security
appliances is crucial for real-time detection without impacting net-
work performance. Extending the research to analyze traffic from
other platforms or incorporating host-based features like system
calls or API monitoring could lead to more comprehensive detection
systems. Collaborating with industry partners to integrate the devel-
oped ML models into existing network security solutions would
address challenges related to deployment, scalability, and real-world
performance evaluation in diverse network environments.
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Appendix 1

Variable Name Variable Definition Variable Example
ID A unique identifier for each data record in the

dataset.
0

Flow ID A unique identifier for a specific network
flow (sequence of packets between two IP
addresses).

172.217.2.174 - 10.42.0.211-443-51023-6

Source IP The IP address of the sender in the network flow. 10.42.0.211
Source port The port number used by the sender in the

network flow.
51023

Destination IP The IP address of the receiver in the network
flow.

172.217.2.174

Destination Port The port number used by the receiver in the
network flow.

443

Protocol The network protocol used for communication
(e.g., TCP, UDP, ICMP).

6

Timestamp The time when the network flow was recorded. ######
Flow Duration The total time duration of the network flow in

microseconds.
151054

Total Fwd Packets The total number of packets sent by the sender
(forward direction) in the network flow.

6

Total Backward Packets The total number of packets sent by the receiver
(backward direction) in the network flow.

8

Total Length of Fwd packets The total length (in bytes) of all packets sent by
the sender (forward direction) in the network
flow.

1076

Total Length of Backward packets The total length (in bytes) of all packets sent
by the receiver (backward direction) in the
network flow.

4575

Fwd Packet Length Max The maximum length of a single packet sent by
the sender (forward direction) in the network
flow.

821

Fwd Packet Length Min The minimum length of a single packet sent by
the sender (forward direction) in the network
flow.

0

Fwd Packet Length Mean The average length of packets sent by the sender
(forward direction) in the network flow.

179.3333333

Fwd Packet Length Std The standard deviation of the length of packets
sent by the sender (forward direction) in the
network flow.

321.6219313

Bwd Packet Length Max The maximum length of a single packet sent
by the receiver (backward direction) in the
network flow.

1418

Bwd Packet Length Min The minimum length of a single packet sent
by the receiver (backward direction) in the
network flow.

0

Bwd Packet Length Mean The average length of packets sent by the
receiver (backward direction) in the network
flow.

571.875

Bwd Packet Length Std The standard deviation of the length of packets
sent by the receiver (backward direction) in the
network flow.

679.532284

(Continued)
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(Continued)
Flow Byte/s The average number of bytes per second

transmitted in the network flow.
37410.46248

Flow Packet/s The average number of packets per second
transmitted in the network flow.

92.6820872

Flow IAT Mean The average inter-arrival time (time between
consecutive packets) in the network flow.

11619.53846

Flow IAT Std The standard deviation of the inter-arrival time in
the network flow.

14541.15588

Flow IAT Max The maximum inter-arrival time in the network
flow.

49105

Flow IAT Min The minimum inter-arrival time in the network
flow.

24

Fwd IAT Total The total inter-arrival time of packets sent by the
sender (forward direction) in the network flow.

101887

Fwd IAT Mean The average inter-arrival time of packets sent by
the sender (forward direction) in the network
flow.

20377.4

Fwd IAT Std The standard deviation of the inter-arrival time of
packets sent by the sender (forward direction)
in the network flow.

12821.55074

Fwd IAT Max The maximum inter-arrival time of packets
sent by the sender (forward direction) in the
network flow.

30425

Fwd IAT Min The minimum inter-arrival time of packets
sent by the sender (forward direction) in the
network flow.

111

Bwd IAT Total The total inter-arrival time of packets sent by the
receiver (backward direction) in the network
flow.

128516

Bwd IAT Mean The average inter-arrival time of packets sent
by the receiver (backward direction) in the
network flow.

18359.42857

Bwd IAT Std The standard deviation of the inter-arrival time
of packets sent by the receiver (backward
direction) in the network flow.

24038.55786

Bwd IAT Max The maximum inter-arrival time of packets sent
by the receiver (backward direction) in the
network flow.

54822

Bwd IAT Min The minimum inter-arrival time of packets sent
by the receiver (backward direction) in the
network flow.

24

Fwd PSH Flags The number of packets with the PSH flag set
sent by the sender (forward direction) in the
network flow.

0

Bwd PSH Flags The number of packets with the PSH flag set
sent by the receiver (backward direction) in the
network flow.

0

Fwd URG Flags The number of packets with the URG flag set
sent by the sender (forward direction) in the
network flow.

0

Bwd URG Flags The number of packets with the URG flag set
sent by the receiver (backward direction) in the
network flow.

0

Fwd Header Length The total length of packet headers sent by the
sender (forward direction) in the network flow.

200

(Continued)
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(Continued)
Bwd Header length The total length of packet headers sent by the

receiver (backward direction) in the network
flow.

264

Fwd Packet/s The average number of packets per second
sent by the sender (forward direction) in the
network flow.

39.72089451

Bwd Packets/s The average number of packets per second sent
by the receiver (backward direction) in the
network flow.

52.96119269

Min Packet length The minimum length of a single packet in the
network flow.

0

Max Packet length The maximum length of a single packet in the
network flow.

1418

Packet Length Mean The average length of packets in the network
flow.

376.7333333

Packet Length std The standard deviation of the length of packets in
the network flow.

562.5149479

Packet Length Variance The variance of the length of packets in the
network flow.

316423.0667

FIN Flag Count The number of packets with the FIN flag set in
the network flow.

0

SYN Flag Count The number of packets with the SYN flag set in
the network flow.

0

RST Flag Count The number of packets with the RST flag set in
the network flow.

0

PSH Flag Count The number of packets with the PSH flag set in
the network flow.

1

ACK Flag Count The number of packets with the ACK flag set in
the network flow.

0

URG Flag Count The number of packets with the URG flag set in
the network flow.

0

CWE Flag Count The number of packets with the CWE flag set in
the network flow.

0

ECE Flag Count The number of packets with the ECE flag set in
the network flow.

0

Down/Up Ratio The ratio of the download (receiver) and upload
(sender) rates in the network flow.

1

Average Packet Size The average size of packets in the network flow. 403.6428571
Avg Fwd Segment Size The average size of segments sent by the sender

(forward direction) in the network flow.
179.3333333

Avg Bwd Segment Size The average size of segments sent by the receiver
(backward direction)

571.875

Fwd Header Length.1 A duplicate attribute for the total length of packet
headers sent by the sender (forward direction)
in the network flow.

200

Fwd Avg Bytes/Bulk The average number of bytes per bulk in the
forward direction in the network flow.

0

Fwd Avg Packets/Bulk The average number of packets per bulk in the
forward direction in the network flow.

0

Fwd Avg Bulk Rate The average rate of bulk data transmission in the
forward direction in the network flow.

0

Bwd Avg Bytes/Bulk The average number of bytes per bulk in the
backward direction in the network flow.

0

Bwd Avg Packets/Bulk The average number of packets per bulk in the
backward direction in the network flow.

0

Bwd Avg Bulk Rate The average rate of bulk data transmission in the
backward direction in the network flow.

0

Subflow Fwd Packets The total number of packets in the forward
direction subflow.

6

(Continued)
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(Continued)
Subflow Fwd Bytes The total number of bytes in the forward

direction subflow.
1076

Subflow Bwd Packets The total number of packets in the backward
direction subflow.

8

Subflow Bwd Bytes The total number of bytes in the backward
direction subflow.

4575

Init_Win_bytes_forward The initial window size in bytes for the forward
direction.

65535

Init_Win_bytes_backward The initial window size in bytes for the backward
direction

353

act_data_pkt_fwd The number of packets with at least one byte of
TCP data payload in the forward direction.

3

min_seg_size_forward The minimum segment size in the forward
direction.

32

Active Mean The average time a flow was active before
becoming idle.

0

Active Std The standard deviation of the time a flow was
active before becoming idle.

0

Active Max The maximum time a flow was active before
becoming idle.

0

Active Min The minimum time a flow was active before
becoming idle.

0

Idle Mean The average time a flow was idle. 0
Idle Std The standard deviation of the time a flow was

idle.
0

Idle Max The maximum time a flow was idle. 0
Idle Min The minimum time a flow was idle. 0
Label The class or category assigned to the net-

work flow indicates whether it is related to
ransomware or not.

Benign/ SVpeng/ PornDroid/ Koler/
RansomBO/ Charger/ Simplocker/
WannaLocker/ Jisut/ Lockerpin/ Pletor
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