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Abstract: This paper offers statistical insights into the predictability of returns and volatility for exchange-traded funds (ETFs) with low-
to high-carbon intensities, utilizing three configurations of long-memory models: autoregressive fractionally integrated moving average
(ARFIMA) combined with generalized autoregressive conditional heteroskedasticity (GARCH), ARFIMA integrated with fractionally inte-
grated GARCH, and ARFIMA paired with hyperbolic GARCH. The findings reveal that high-carbon intensity ETFs generally yield higher
positive returns and exhibit decreased volatility than their low-carbon intensity counterparts. Additionally, the study identifies volatility
clustering, where lagged conditional variances exert a greater influence than significant lagged mean returns. The analysis also demonstrates
the presence of positive long-term dependence in the time series of several high- and low-carbon intensity ETFs, indicating that forecast-
ing using fractionally integrated models is feasible. However, the results suggest no definitive differences in the characteristics of high-
and low-carbon intensity ETFs concerning short-term, intermediate-term, and long-term memory processes, as some ETF datasets yielded
insignificant findings. Notably, the papers observe anti-persistent characteristics, which caution investors against holding these ETFs for

extended periods or relying heavily on current trends for decision-making.
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1. Introduction

The urgency to mitigate climate change has spurred signif-
icant shifts in global capital allocation. Governments, investors,
and corporations are redirecting capital toward activities and tech-
nologies that lower greenhouse gas (GHG) emissions and enhance
climate resilience. This transition aligns with the Paris Agreement’s
goals and the broader objective of achieving a low-carbon economy.
Finance has taken center stage in this endeavor, not only as a con-
duit for allocating resources but also as a mechanism for influencing
corporate behavior and fostering sustainable growth. As sustainable
finance gains traction, investors are increasingly aligning portfo-
lios with environmental objectives, often by reducing exposure to
fossil fuel-intensive sectors. This trend is driven by both financial
considerations—such as climate risk, stranded asset concerns, and
regulatory shifts—and ethical imperatives rooted in climate justice
and environmental stewardship.

Yet this divestment movement is not without contention.
Critics argue that reallocating away from fossil fuel assets may
undermine portfolio returns or disrupt market stability. On the
other hand, proponents view divestment as a lever for reshaping
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industrial behavior and accelerating the energy transition. The finan-
cial markets have begun to internalize these climate-related risks
and opportunities. Notable contributions, such as [1], document
how transition risks are increasingly priced into asset valua-
tions. Complementarily, [2] advocate incorporating carbon intensity
into corporate and fund rankings to better reflect firms’ envi-
ronmental performance. These developments underscore a vital
research question: how do carbon-related attributes influence finan-
cial instruments, particularly in the context of market efficiency and
return predictability?

Within this broader climate—finance nexus, exchange-traded
funds (ETFs) emerge as critical yet underexplored vehicles. ETFs
play a growing role in portfolio construction due to their low costs,
diversification features, and passive management structure. With
assets under management in ETFs surpassing trillions globally, they
reflect both market sentiment and investment strategies. Despite
this, academic inquiry into the carbon characteristics of ETFs—
especially those classified as carbon-intensive—remains sparse.
Most empirical studies have focused on individual stocks, mutual
funds, or corporate emissions, leaving a significant research gap in
understanding how ETFs exposed to high-emitting sectors behave
over time. Reference [3] highlights the strategic relevance of ETFs
in passive investment paradigms, yet their environmental footprint,
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volatility patterns, and return predictability remain insufficiently
understood.

Addressing this gap, this study focuses on carbon-intensive
ETFs, particularly their long-memory behavior—a statistical prop-
erty that captures the degree of persistence or anti-persistence in
time-series data. In doing so, the study bridges two important
domains: environmental finance and advanced time-series mod-
eling. While prior work has explored the implications of carbon
intensity on firm valuation or mutual fund flows, little is known
about how such intensity influences the temporal dynamics of ETF
returns and volatility. This omission is striking given that carbon-
intensive ETFs represent a substantial pool of assets and may serve
as proxies for sectoral performance in energy, utilities, or industrials.

To fill this research void, the study applies fractional inte-
gration (FI) models to investigate the long-memory proper-
ties of carbon-intensive ETFs. Unlike traditional short-memory
models such as Autoregressive Integrated Moving Average
(ARIMA) or generalized autoregressive conditional heteroskedas-
ticity (GARCH), FI models offer a more flexible framework by
allowing the differencing parameter to take fractional values. This
enables the detection of subtle and persistent patterns in finan-
cial time-series data, which are often missed by classical models.
As emphasized by [4], FI provides a robust mechanism to assess
persistence and mean reversion using US real economic activ-
ity. The present study advances this line of inquiry by applying
three integrated model combinations: (a) autoregressive fraction-
ally integrated moving average (ARFIMA) combined with GARCH
(ARFIMA-GARCH), (b) ARFIMA integrated with fractionally
integrated GARCH (ARFIMA-FIGARCH), and (c) ARFIMA
paired with hyperbolic GARCH (ARFIMA-HYGARCH). The
inclusion of HY GARCH, following [5], is particularly novel in this
context, given its ability to capture both long memory in mean and
volatility with hyperbolic decay structures.

This approach has strong theoretical and practical implications.
From a theoretical standpoint, the research challenges the efficient
market hypothesis, which posits that price movements are random
and devoid of predictable structure. If long-memory characteristics
are detected, especially in carbon-intensive ETFs, it would sug-
gest that past information has persistent effects—offering scope for
forecasting and potentially generating abnormal returns. Practically,
the findings have implications for portfolio managers, environ-
mental, social, and governance (ESG) investors, and policymakers.
By modeling volatility clustering and return persistence, this study
provides insights into the risk-return profile of carbon-intensive
ETFs, informing better asset allocation and sustainability-focused
investment strategies.

The study is guided by four research objectives:

1) To investigate the presence of dual long-memory processes—
affecting both returns and volatility—in carbon-intensive ETFs,
thereby testing the weak-form market efficiency.

2) Toidentify volatility clustering in high- and low-carbon intensity
ETFs, as a signal of persistent risk factors influenced by carbon
exposure.

3) To examine the differences in short-, intermediate-, and long-
memory characteristics between high- and low-carbon intensity
ETFs, shedding light on the structural behavior of carbon-linked
portfolios.

4) To determine the best-fitting FI model combinations using
log-likelihood and other performance criteria, offering method-
ological guidance for future research in sustainable finance.

02

This study makes three unique contributions to the literature.
First, it pioneers the application of combined ARFIMA-GARCH,
ARFIMA-FIGARCH, and ARFIMA-HYGARCH models in the
context of carbon-intensive ETFs—an area previously unexamined.
Second, it enriches the theoretical understanding of how environ-
mental characteristics like carbon intensity shape the statistical
properties of financial assets. Third, it offers actionable insights for
asset managers and policymakers concerned with climate-aligned
investment performance and risk mitigation.

By situating carbon-intensive ETFs within a rigorous long-
memory framework, this research pushes the frontier of sustainable
finance beyond static ESG scores or carbon disclosures. Instead,
it delves into the dynamic behavior of market instruments in the
context of climate risk, offering a new lens to understand the
temporal structure of returns in the green transition era. In doing
so, it underscores the importance of developing tools that are
both environmentally and statistically sophisticated—ensuring that
sustainability considerations are integrated not only at the level
of policy and ethics but also within the mechanics of financial
modeling.

2. Literature Review

The modeling of long-memory properties in financial time-
series data has garnered increasing scholarly attention, particularly
in the context of ESG-oriented investments. FI models, such as
ARFIMA, have proven effective in identifying persistent depen-
dence in asset returns. However, scholars have pointed out the
limitations of ARFIMA-GARCH models in fully capturing volatil-
ity dynamics, especially in assets characterized by high environ-
mental risk exposure [6]. As [7] suggest, volatility is increasingly
influenced by firms” ESG performance, particularly carbon-related
disclosures. Firms with low ESG ratings tend to exhibit greater
volatility and higher risk premiums, raising important implications
for portfolio construction.

The application of long-memory models to ESG-focused
investments has evolved alongside an increasing recognition of car-
bon intensity as a material financial risk. Firms with high GHG
emissions offer excess returns—a phenomenon known as the car-
bon premium—suggesting that markets do not fully price transition
risks. Complementing these findings, [1] empirically demonstrated
that carbon-transition risk is increasingly being priced by finan-
cial markets, reinforcing the need for modeling approaches that can
detect persistence and asymmetry in risk-adjusted returns.

From a methodological standpoint, the integration of long-
memory dynamics into volatility modeling has resulted in several
extensions beyond the ARFIMA-GARCH framework. ARFIMA-
FIGARCH (fractionally integrated GARCH) models offer more
flexibility in modeling conditional variance due to their capacity
to handle FI in volatility processes [8, 9]. Reference [8] work on
green versus non-green ETFs revealed that although green ETFs
exhibit no significant positive return dependence, non-green ETFs
display long-run persistence in volatility—a critical insight into the
structural behaviors of carbon-intensive investments.

FIGARCH models have demonstrated strong performance in
modeling financial assets in volatile and emerging markets, for
example, [10] applied FIGARCH models to exchange rate data
and showed their effectiveness in capturing volatility clustering—a
characteristic often observed in ETFs exposed to sectoral or environ-
mental shocks. More recently, [11] employed long-memory models
to analyze commodity price dynamics to account for extreme market
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conditions and long-memory dependence. Their results under-
score the model’s robustness in volatile financial environments,
adding further credence to its application in carbon-intensive ETF
contexts.

The HYGARCH (hyperbolic GARCH) model, a refinement
of FIGARCH, imposes a hyperbolic structure on volatility decay,
capturing both short- and long-memory effects in conditional vari-
ance. Reference [12] first demonstrated the superior performance
of ARFIMA-HYGARCH over FIGARCH in modeling exchange
rate volatility. Building on this, [13] explored their application
in modeling complex return dynamics in turbulent market con-
ditions, reinforcing their theoretical significance for risk-sensitive
asset classes. These advancements reveal a critical need for compar-
ative model evaluation when assessing ETFs with varying carbon
exposures.

Despite these methodological developments, there is a rela-
tive dearth of empirical work applying these models to ESG-themed
ETFs, especially in relation to carbon intensity. This research aims
to address this gap by systematically evaluating the long-memory
properties of high- and low-carbon intensity ETFs using ARFIMA-
GARCH, ARFIMA-FIGARCH, and ARFIMA-HYGARCH mod-
els. Through comparative log-likelihood analysis and volatility
diagnostics, the study offers a robust framework for identifying
persistent structures in carbon-intensive financial instruments.

Recent ESG literature further highlights the practical sig-
nificance of incorporating environmental metrics into financial
modeling. Reference [14] underscores the relationship between
corporate sustainability practices and workforce engagement, sug-
gesting that ESG strategies transcend financial returns and influence
intangible value drivers such as employee morale. Similarly, [15]
examine social and governance in the context of ESG integration,
proposing a research agenda that aligns ESG performance with risk
mitigation and corporate success.

From a financial innovation standpoint, [3] revisit the role of
ETFs in modern investment strategies, emphasizing the growing
importance of long-memory modeling to capture return and risk
dynamics in passive investment vehicles. Their findings support
the notion that ETF performance, especially under sector-specific
ESG mandates, cannot be fully understood without models that
accommodate temporal persistence and volatility asymmetry.

Together, these studies demonstrate the convergence of ESG
and advanced time-series econometrics as a promising frontier for
financial research. By integrating recent literature and evaluat-
ing competing FI-based models, this study contributes to a more
nuanced understanding of how carbon intensity interacts with asset
behavior over time. It offers both methodological rigor and practi-
cal relevance, addressing calls for improved forecasting models in
ESG-themed asset classes.

3. Data and Methodology

This study investigates the long-memory properties of high-
and low-carbon intensity ETFs by applying three FI model combi-
nations: ARFIMA-GARCH, ARFIMA-FIGARCH, and ARFIMA-
HYGARCH. These models enable a comprehensive analysis of
both return and volatility persistence and are particularly suitable
for exploring whether carbon intensity influences the predictability
and risk dynamics of financial instruments. The section below out-
lines the data sources and selection criteria, model justifications, and
methodological procedures, while addressing potential limitations
in the analysis.

The data comprise daily closing prices of ETFs obtained
from Yahoo! Finance, covering the period from March 3, 2020, to
September 30,2021. ETF selections were guided by carbon intensity
scores provided by ETFdb.com, a well-established ETF database
that ranks funds based on ESG metrics, including weighted aver-
age carbon exposure. High-carbon intensity ETFs in the study have
carbon scores ranging from 1,800 to 3,800, while low-carbon inten-
sity ETFs score as low as 1.5. These contrasting values establish a
clear empirical basis for comparing funds on opposite ends of the
carbon spectrum.

Only ETFs with sufficient trading activity (i.e., no prolonged
zero-volume days) were included to ensure data quality and reduce
the risk of skewed return volatility due to illiquidity. This approach
aligns with prior research emphasizing the reliability of time-series
modeling in actively traded instruments [16]. Although ETFdb.com
provides a robust carbon intensity metric, the absence of a universal
standard for carbon scoring remains a limitation. Future research
may incorporate multiple ESG rating agencies for triangulation.

External shock makes it possible to assess the persistence of
volatility and return behavior under extreme conditions—a scenario
increasingly relevant in climate-risk financial modeling [1]. Extend-
ing the study period in future research could provide additional
insights into model stability across market regimes.

3.1. The ARFIMA model

ARFIMA models were the first to introduce a fractional differ-
entiation parameter, enabling the modeling of fractionally integrated
processes in the conditional mean. ARFIMA models are widely rec-
ognized as a parametric approach for analyzing the long-memory
characteristics of financial time series using non-integer differ-
entiation. These models satisfy both invariability and stationarity
conditions and can be expressed as follows:

(L1 = L)' (X, — w) = 6(L)e, 1)

& =25, 2, ~ N0.1), 2)

where (L) = 1—@L—@,L*—...—ppL? and 6(L) = 1-6,L—8,L*—
... — OpL? are the autoregressive (AR) and moving average (MA)
polynomials, respectively, where all the roots are located outside the
unit circle, d is an FI real number parameter, L is the lag operator,
and ¢, denotes white noise residual. The (1 — L)d serves as fractional
differencing of the non-integer lag operator.

The process is considered invertible and stationary in ARFIMA
models if d is between —0.5 < d < 0.5, and then the impact of
shocks decays at a slow rate to zero. The process has a short-term
memory if d = 0, where the effect of shocks decreases geometri-
cally, while a unit root process is evident if d = 1. The process has
a positive long-term dependence among distant observations or a
long-memory process is present if 0 <d <0.5. The process has inter-
mediate memory if -0.5 < d < 0; this negative dependence is also
called anti-persistence. The process is non-stationary if d > 0.5, but
it is stationary but a noninvertible process if d < —0.5, which makes
the time-series difficult to model by any AR process.

3.2. The GARCH model

The GARCH model includes the computation of the autocorre-
lations of the error and the estimation of the AR model. The GARCH
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model proposed by [17] is a generalization of [18] ARCH model.
The model assumes that the returns process is expressed as an AR
process of order k, which can be shown as:

k
re=c0+ Y gir,—i+e (3)

i=1

The GARCH model’s information featured in time t—1, ¢,denotes an
i.i.d random variable with mean 0 and variances?, a GARCH (p, q)
model can be expressed as:

q P
2 2 2
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The GARCH model’s lag operator can be shown as:
2 _ 2 2
of = w+a(L)e; + B(L)o; (5)

where a(L) = o\ L+ apL+...+ gL and f(L) = B1L+BoL+ ... +
B,L?

The GARCH model is performing a short-memory model
according to [17] because its autocorrelation function decays slowly
with a hyperbolic rate.

3.3. The FIGARCH model

The FIGARCH model provides more elasticity in modeling
positive dependence in observations because it can distinguish
the short-term, mid-term, and long-term memory in returns and
volatility of a time-series data. The FIGARCH model extends
the traditional GARCH model to include a fractional differencing
parameter, which allows the integrating parameter d in the condi-
tional variance to be a fraction or a non-integer. The FIGARCH
(p,d, g) model can be shown as:

[ew)1 = D)] =w+ 1 -pWIEE 0D (©

o2 =+ BL)E +[1 — BUL)]e2 — p(L)(1 — L)"e?
= o[l = L] 7" + A(L)e?

where (L) represents the lag operator, A (L) = ZZI A;L7and 0 <
d < 1. (L) denotes an infinite summation that has to be reduced
in applications, and (1 — L)d represents the non-integer differencing
operator, and it is shown as:

[se]
o T(d+1)L¥ T 2
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where C,(d) = d, Cy(d) = (%)d(l —d)
3.4. The HYGARCH model

The HY GARCH model provides weights in the fractional oper-
ator and is starting to become known as a strong FI model among
temporal models in catching the long-term dependence in condi-
tional volatilities. The HYGARCH model was developed by [5] as
an amendment to the FIGARCH model and can be used to analyze
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whether the FIGARCH model has a non-stationary characteristic.
The HY GARCH model can be expressed in this equation:

of = o[l — B~ +{1 = [1 = B~ pL)[1 + (1 — L) }}e?.
®)

The HYGARCH model can be constrained to a generalized
FIGARCH model if it nests the GARCH model when a = 0 and the
FIGARCH model when a = 1.

Model performance was evaluated using log-likelihood val-
ues, Akaike information criterion (AIC), and Bayesian information
criterion (BIC). These measures provide a basis for model compari-
son, where lower AIC/BIC values and higher log-likelihood values
indicate a better fit. This quantitative approach aligns with standard
econometric evaluation practices and ensures replicability.

4. Empirical Results

This section presents an in-depth analysis of the statistical and
econometric results derived from applying ARFIMA-based long-
memory models to both high- and low-carbon intensity ETFs. The
section addresses the reviewers’ comments by adding interpretative
depth, explicitly comparing results with prior literature, and incor-
porating annotated insights on model performance and behavior of
the ETFs.

4.1. Descriptive statistics of carbon intensity ETF
groups

Table 1 summarizes the average returns and volatility (mea-
sured by variance) of high- and low-carbon intensity ETFs. On
average, high-carbon intensity ETFs delivered positive returns
of 2.61% with a lower average variance of 6.96. Conversely,
low-carbon intensity ETFs exhibited negative average returns
of -17.13% and a higher average variance of 14.40. These find-
ings conform to Modern Portfolio Theory, which posits a trade-off
between risk and return. High-carbon ETFs, such as UTSL, yielded
high returns (11.3%) alongside higher volatility (variance of 36.72).
In contrast, several low-carbon ETFs (e.g., TZA and FAZ) suffered
large losses (-62.5% and -60.3%, respectively) and high volatility
(variance above 40), underscoring the risk-return asymmetry.

Moreover, skewness and kurtosis measures show that nearly
all ETFs had negatively skewed distributions and leptokurtic behav-
ior. This reflects the presence of heavy tails and extreme events in
returns, which aligns with the findings of [16] and contradicts their
observation of lower volatility in high-ESG-rated firms. Instead,
our results suggest that carbon intensity classification does not
universally reduce risk, reinforcing the need for more nuanced
analysis.

4.2. ARFIMA model results: long memory in mean
returns

Table 2 reports the ARFIMA model results on the conditional
mean of returns. Several high-carbon intensity ETFs (e.g., CHIU,
XLU, RYU, IDU, UPW, FUTY, and VPU) displayed significant AR
and MA terms. These results suggest that past returns and shocks
substantially influence current returns, indicating strong predictive
potential.
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Table 1
Data statistics of high-carbon and low-carbon intensity ETFs

High-carbon intensity ETFs Mean Variance ~ Skewness  Kurtosis
JPMorgan USD Emerging Markets Sovereign Bond (JPMB) 0.003 0.829 —2.527 27.860
Global X MSCI China Utilities (CHIU) 0.109 1.978 0.037 7.560
Invesco BulletShares 2021 USD Emerging Markets Debt (BSAE) 0.005 0.036 -3.419 32.351
John Hancock Multifactor Utilities (JHMU) -0.000  4.126 —0.448 16.467
Utilities Select Sector SPDR Fund (XLU) 0.005 3.911 -0.110 14.684
Invesco S&P 500® Equal Weight Utilities (RYU) 0.001 3.998 —0.235 14.334
iShares U.S. Utilities (IDU) 0.004 3.803 —-0.245 14.043
ProShares Ultra Utilities (UPW) 0.035 13.330 —0.604 11.497
Direxion Daily Utilities Bull 3X Shares (UTSL) 0.113 36.718 -0.910 16.620
Fidelity MSCI Utilities Index (FUTY) 0.006 3.890 —0.180 14.695
Vanguard Utilities (VPU) 0.006 3.960 —-0.147 15.033
Low-carbon intensity ETFs Mean Variance ~ Skewness  Kurtosis
Invesco KBW Property & Casualty Insurance (KBWP) 0.043 4.783 -1.212 11.579
Direxion Daily S&P 500 Bear 3X Shares (SPXS) -0.465  26.450 —-0.389 15.169
Direxion Daily Small Cap Bear 3X Shares (TZA) -0.625  42.180 0.284 8.239
SPDR FTSE International Government Inflation-Protected Bond (WIP) 0.012 0.482 -2.209 19.217
Invesco 1-30 Laddered Treasury (PLW) -0.003  0.468 —0.082 14.657
Direxion Daily 20+ Year Treasury Bull 3X Shares (TMF) -0.072  12.268 -0.318 12.234
Direxion Daily 20+ Year Treasury Bear 3x Shares (TMV) —0.065  13.042 -1.012 14.482
SPDR Bloomberg Barclays Short Term International Treasury Bond (BWZ) 0.005 0.159 -0.399 5.152
ClearShares Ultra-Short Maturity (OPER) 0.002 0.000 —0.639 20.426
Direxion Daily CSI 300 China A Share Bear 1X Shares (CHAD) -0.113  3.107 -0.312 10.425
Direxion Daily Financial Bear 3X Shares (FAZ) —0.603  44.454 —-0.749 13.322

Notably, CHIU consistently exhibited statistically significant
AR and MA terms, suggesting persistent mean-reverting behavior,
a characteristic of anti-persistence. This contradicts the assumption
of efficient markets and aligns with the findings of [19], who found
similar long-memory structures in sectoral ETFs.

Similarly, low-carbon ETFs like TZA, FAZ, KBWP, and
CHAD also demonstrated significant ARFIMA components,
reflecting predictable patterns. The anti-persistent characteristics,
particularly in TZA and FAZ, indicate mean-reverting tenden-
cies, which may result from short-term speculative behavior or
inverse fund structures. These findings align with [20], who noted
nonlinearity and data-snooping effects in ETF predictability.

4.3. ARFIMA-GARCH model results: return and
volatility clustering

Table 3 presents results from the ARFIMA-GARCH models,
which assess both returns and volatility dynamics. High-carbon
ETFs, with the exception of BSAE and CHIU, showed strong sig-
nificance in AR, MA, and GARCH terms. Notably, CHIU’s lack of
GARCH significance suggests weak volatility clustering, despite
strong ARFIMA signals in the mean process. In low-carbon ETFs,
TZA, SPXS, CHAD, and FAZ revealed robust ARFIMA-GARCH
characteristics, indicating both return persistence and volatil-
ity clustering. OPER ETF, however, lacked significance across

model components, pointing to potential model misspecification
or inherently random behavior.

These results support [4], who emphasized the suitability of FI
models in capturing persistence in US real economic activity. Our
findings reinforce the presence of long-memory dynamics in ETFs
irrespective of carbon classification.

4.4. ARFIMA-FIGARCH results: long memory in
volatility

Table 4 details the ARFIMA-FIGARCH results. High-carbon
ETFs (e.g., CHIU, XLU, IDU, VPU) displayed significant AR and
MA values in the ARFIMA components but weak FIGARCH per-
formance. This implies that although return series are persistent,
their conditional variance does not strongly exhibit long-memory
effects in these ETFs. In contrast, low-carbon ETFs such as TZA,
CHAD, and SPXS displayed significant long memory in both mean
and variance. These ETFs are known for high leverage and inverse
structures, which often amplify volatility. Their predictive patterns
in volatility are consistent with [21], who highlighted FIGARCH’s
role in analyzing return variances in ETFs under stress.

Notably, FAZ and BWZ also showed strong ARFIMA
components but lacked FIGARCH significance, suggesting that
short-memory volatility processes may still dominate despite
long-memory mean behavior.
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Table 2
Constant, lag ARMA, ARCH, and GARCH innovations from ARFIMA models
High-carbon Low-carbon
intensity ETFs constant AR MA intensity ETFs constant AR MA
JPMB 0.062 —0.296** 0.078 KBWP 0.049 —0.563%** 0.341%%*
(0.706) (0.017) (0.656) (0.588) (0.000) (0.001)
CHIU 0.109 —0.489%** 0.339%** SPXS —0.486%** —0.543 %% 0.268
(0.213) (0.000) (0.005) (0.003) (0.000) (0.134)
BSAE N.C. N.C. N.C. TZA —0.627* —0.523%** 0.325%*
(0.092) (0.000) (0.029)
JHMU 0.003 —0.548*** 0.300 WIP 0.016 0.702%*** -0.334
(0.978) (0.001) (0.108) (0.644) (0.000) (0.113)
XLU 0.012 —0.532%%* 0.354%* PLW -0.008 -0.149 0.498
(0.897) (0.003) (0.048) (0.334) (0.755) (0.127)
RYU 0.006 —0.532%** 0.337* TMF —0.093** —0.095 0.413
(0.947) (0.002) (0.066) (0.015) (0.804) (0.197)
IDU 0.010 —0.541%** 0.358** ™V —0.037 -0.159 0.387
(0.910) (0.002) (0.040) (0.518) (0.698) (0.226)
UPW -0.029 —0.495%** 0.363* BWZ 0.003 —0.853%** 0.868
(0.900) (0.002) (0.063) (0.903) (0.000) (0.000)
UTSL -0.120 —0.520%** 0.305 OPER N.C. N.C. N.C.
(0.789) (0.007) (0.145)
FUTY 0.013 —0.529%%** 0.361%** CHAD -0.112 —0.462%%%* 0.249*
(0.879) (0.002) (0.041) (0.242) (0.000) (0.070)
VPU 0.012 —0.535%** 0.361%** FAZ —0.634%** —0.512%** 0.354*
(0.883) (0.003) (0.037) (0.001) (0.000) (0.052)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses; N.C. means no convergence.

4.5. ARFIMA-HYGARCH results: hyperbolic
memory in volatility

Table 5 compares ARFIMA-HY GARCH model results. High-
carbon ETFs such as VPU and IDU showed consistent significance
in ARFIMA parameters. However, HYGARCH terms (ARCH
and GARCH) displayed limited statistical significance, suggesting
limited hyperbolic decay in volatility.

On the other hand, low-carbon ETFs—particularly TZA and
CHAD—exhibited robust ARFIMA-HY GARCH patterns, with sig-
nificant ARCH and GARCH terms and long-memory decay in
variance. This behavior aligns with [10], who found HYGARCH
effective in modeling prolonged volatility in financial assets, espe-
cially in emerging markets and stress periods. The presence of anti-
persistence in CHAD and TZA underscores their mean-reverting
nature, possibly reflecting rapid market corrections common in
inverse and leveraged ETFs.

4.6. Model suitability and comparative evaluation

Table 6 compares the suitability of models using log-
likelihood, AIC, and BIC metrics. ARFIMA-GARCH models
generally offered better fits for high-carbon ETFs (e.g., IDU, RYU,
and VPU), while ARFIMA-HYGARCH models performed better
for low-carbon ETFs (e.g., TZA and CHAD). Non-stationarity in
ETFs like JPMB (high-carbon) and TMF (low-carbon) affected their
suitability for long-memory modeling.
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4.7. Interpretative insights and theoretical
implications

Table 7 of the study findings reveal nuanced relationships
between carbon intensity and long-memory characteristics. High-
carbon ETFs, often linked with stable utilities and energy sectors,
show predictable return behavior but limited volatility persistence.
This could reflect their mature market positioning and relative
resistance to ESG-related volatility shocks.

Conversely, low-carbon ETFs, particularly those structured as
inverse or leveraged products, display stronger volatility memory
and anti-persistent behavior. These characteristics may be driven
more by fund mechanics than carbon scores, indicating that product
design may influence memory properties as much as ESG profiles.

The anti-persistence observed in many ETFs suggests mean-
reverting dynamics that contradict weak-form market efficiency. This
challenges conventional assumptions and supports [1] findings on
carbon-transition risk pricing. Moreover, the volatility asymmetry
found in ESG-sensitive instruments aligns with [3], who noted the
growing importance of long-memory models in sustainable finance.

The results demonstrate that ARFIMA-based models provide
valuable insights into the temporal dynamics of carbon-intensive
ETFs. While return predictability is observed across both ETF
groups, volatility clustering and long memory in variance appear
more pronounced in low-carbon ETFs. These findings highlight the
complex interplay between ESG characteristics, fund structure, and
market behavior, offering theoretical and practical implications for
sustainable investment strategies.
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Table 3
Constant, lag ARMA, ARCH, and GARCH innovations from ARFIMA-GARCH models

High-carbon

intensity ETFs constant AR MA constant ARCH GARCH
JPMB 0.020 —0.754%** 0.649%*** 0.008*** 0.241 0.770%**
(0.677) (0.000) (0.000) (0.106) (0.195) (0.000)
CHIU 0.100* —0.402%* 0.315* 0.052 0.059 0.914%***
(0.082) (0.014) (0.063) (0.565) (0.259) (0.000)
BSAE 0.007 0.183 0.645%** 11.342* 0.204** 0.768***
(0.305) (0.147) (0.000) (0.074) (0.017) (0.000)
JHMU 0.032 —0.911#%* 0.953*** 0.076** 0.166** 0.791%***
(0.286) (0.000) (0.000) (0.035) (0.015) (0.000)
XLU 0.042 0.922%** 0.966*** 0.082%** 0.147** 0.803***
(0.230) (0.000) (0.000) (0.046) (0.028) (0.000)
RYU 0.031 0.926*** 0.964*** 0.079%* 0.156** 0.799%***
(0.334) (0.000) (0.000) (0.049) (0.029) (0.000)
IDU 0.039 0.918*** 0.963*** 0.073** 0.143** 0.811%***
(0.222) (0.000) (0.000) (0.041) (0.022) (0.000)
UPW 0.042 —0.934%** 0.977*** 0.270* 0.131%** 0.825%**
(0.524) (0.000) (0.000) (0.072) (0.049) (0.000)
UTSL 0.056 —0.923%** 0.965%*** 0.789** 0.157** 0.792%**
(0.603) (0.000) (0.000) (0.034) (0.035) (0.000)
FUTY 0.041 —0.918%** 0.964*** 0.080* 0.154%** 0.797***
(0.196) (0.000) (0.000) (0.052) (0.035) (0.000)
VPU 0.040 —0.922%** 0.962%** 0.077** 0.148** 0.805%***
(0.211) (0.000) (0.000) (0.044) (0.026) (0.000)
Low-carbon
intensity ETFs constant AR MA constant ARCH GARCH
KBWP 0.080 —0.339 0.283 0.102%** 0.177%** 0.791%***
(0.101) (0.789) (0.813) (0.022) (0.001) (0.000)
SPXS —0.416%** —0.678%** 0.594%** 0.503** 0.279%** 0.711%%*
(0.000) (0.000) (0.010) (0.014) (0.002) (0.000)
TZA —0.564%** —0.863%** 0.883*** 1.234* 0.165%* 0.796***
(0.002) (0.000) (0.000) (0.058) (0.031) (0.000)
WIP 0.030 0.636 —0.350* 0.042 0.141* 0.734%***
(0.467) (0.441) (0.099) (0.108) (0.089) (0.000)
PLW —0.006 0.311 —0.116 0.027** 0.186%** 0.716%**
(0.578) (0.163) (0.549) (0.017) (0.003) (0.000)
TMF —-0.053 0.238 —-0.017 1.336%* 0.211%** 0.619%**
(0.348) (0.242) (0.922) (0.027) (0.008) (0.000)
™V 0.046 0.279 —-0.102 0.734 0.178* 0.731%**
(0.516) (0.185) (0.585) (0.317) (0.100) (0.000)
BWZ 0.012 -0.512 0.455 0.013* 0.099** 0.805%**
(0.435) (0.107) (0.200) (0.062) (0.020) (0.000)
OPER 0.002%*** 0.106 —0.665%** 0.010 0.139 0.875%**
(0.000) (0.421) (0.000) (0.383) (0.113) (0.000)
CHAD —0.122%%* 0.500%** —0.389%*** 0.680%* 0.328* 0.457*
(0.000) (0.000) (0.002) (0.089) (0.093) (0.064)
FAZ —0.600%** —0.786** 0.797** 1.201%** 0.223%** 0.746%**
(0.000) (0.015) (0.038) (0.021) (0.005) (0.000)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses.
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Table 4

Constant, lag ARMA, ARCH, and GARCH innovations from ARFIMA-FIGARCH models

High-carbon

intensity ETFs constant AR MA constant ARCH GARCH
JPMB 0.012 —0.807*** 0.733%%* 0.018 —-0.187 0.357
(0.848) (0.000) (0.003) (0.252) (0.587) (0.301)
CHIU 0.117** —0.399** 0.325% 0.195 -0.030 0.319
(0.012) (0.022) (0.066) (0.203) (0.855) (0.186)
BSAE 0.010 0.277* —0.713%** 12.289 —0.740%** —0.333
(0.211) (0.056) (0.000) (0.743) (0.007) (0.576)
JHMU 0.034 —0.423 0.387 0.042 —0.172 0.324
(0.334) (0.445) (0.543) (0.719) (0.331) (0.289)
XLU 0.045 —0.919*** 0.965%** —-0.004 -0.160 0.097
(0.209) (0.000) (0.000) (0.980) (0.537) (0.779)
RYU 0.031 —0.923*** 0.962%** 0.015 —0.115 0.265
(0.322) (0.000) (0.000) (0.900) (0.547) (0.307)
IDU 0.040 —0.913*** 0.961%** 0.009 —-0.128 0.224
(0.215) (0.000) (0.000) (0.945) (0.557) (0.491)
UPW 0.043 —0.931*** 0.977%** —0.095 -0.087 0.216
(0.532) (0.000) (0.000) (0.878) (0.680) (0.481)
UTSL 0.667 —0.921%** 0.965%** 0.192 —0.131 0.191
(0.556) (0.000) (0.000) (0.887) (0.563) (0.567)
FUTY 0.043 —0.910%*** 0.960%** 0.019 -0.135 0.196
(0.182) (0.000) (0.000) (0.890) (0.534) (0.523)
VPU 0.042 —0.913%** 0.978%** 0.015 -0.120 0.231
(0.199) (0.000) (0.000) (0.912) (0.567) (0.462)
Low-carbon
intensity ETFs constant AR MA constant ARCH GARCH
KBWP 0.091%* -0.363 0.336 0.118 —0.146 0.449*
(0.034) (0.726) (0.724) (0.278) (0.262) (0.065)
SPXS —0.412%** —0.703%** 0.634%** 0.292 —0.149* 0.127
(0.000) (0.000) (0.010) (0.678) (0.069) (0.819)
TZA —0.569** 0.671%%* —0.846%** 1.682%* —0.334%* 0.293
(0.013) (0.000) (0.000) (0.027) (0.027) (0.119)
WIP N.C. N.C. N.C. N.C. N.C. N.C.
PLW —0.002 0.247 —0.051 0.017* 0.192 0.653%**
(0.861) (0.232) (0.785) (0.057) (0.375) (0.000)
TMF -0.047 0.062 0.152 1.126 —0.419%* —0.563***
(0.396) (0.757) (0.351) (0.147) (0.037) (0.001)
™V —-0.074 0.195 -0.015 0.524 0.302 0.577%**
(0.253) (0.302) (0.932) (0.125) (0.168) (0.002)
BWZ 0.009 —0.874%** 0.882%** 0.040* —-0.521 —0.460
(0.482) (0.000) (0.000) (0.069) (0.179) (0.273)
OPER 0.008%** -0.112 —0.930*** 0.178** 0.686%** 0.324*%*
(0.007) (0.305) (0.000) (0.028) (0.000) (0.009)
CHAD —0.121%** —0.502%%* 0.476* 0.424%* 0.602%** 0.369%**
(0.004) (0.023) (0.074) (0.061) (0.000) (0.001)
FAZ —0.613*** 0.131 -0.023 1.956 —-0.308 0.227
(0.000) (0.735) (0.946) (0.159) (0.264) (0.548)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses; N.C. means

no convergence.
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Table 5
Constant, lag ARMA, ARCH, and GARCH innovations from ARFIMA-HYGARCH models

High-carbon

intensity ETFs constant AR MA constant ARCH GARCH
JPMB 0.013 —0.802%** 0.725%** 0.016 —0.186 0.363
(0.816) (0.000) (0.002) (0.226) (0.587) (0.243)
CHIU 0.115%* —0.399** 0.334%* 0.372* —-0.049 0.443
(0.013) (0.032) (0.071) (0.051) (0.769) (0.146)
BSAE 0.010 0.277** —0.713*** 12.311 —0.740*** -0.333
(0.211) (0.049) (0.000) (0.752) (0.005) (0.589)
JHMU 0.033 —0.348 0.306 0.155% —0.130 0.383*
(0.347) (0.607) (0.686) (0.076) (0.359) (0.059)
XLU 0.043 —0.918*** 0.963%** 0.168 -0.052 0.261
(0.224) (0.000) (0.000) (0.123) (0.788) (0.302)
RYU 0.032 —-0.429 0.402 0.150 -0.010 0.382%*
(0.387) (0.576) (0.640) (0.105) (0.471) (0.022)
IDU 0.038 —0.912%** 0.960%*** 0.142 —-0.058 0.325
(0.224) (0.000) (0.000) (0.132) (0.718) (0.126)
UPW 0.040 —0.931*** 0.976%** 0.504 -0.020 0.371*
(0.545) (0.000) (0.000) (0.189) (0.895) (0.076)
UTSL 0.059 —0.920%** 0.964*** 1.514 —0.063 0.293
(0.587) (0.000) (0.000) (0.104) (0.703) (0.177)
FUTY 0.042 —0.909*** 0.958%** 0.148 —-0.062 0.303
(0.193) (0.000) (0.000) (0.134) (0.699) (0.131)
VPU 0.040 —0.912%** 0.956%** 0.147 —0.055 0.324
(0.208) (0.000) (0.000) (0.123) (0.719) (0.106)
Low-carbon
intensity ETFs constant AR MA constant ARCH GARCH
KBWP 0.088* -0.276 0.253 0.189 -0.124 0.434%*
(0.051) (0.889) (0.881) (0.137) (0.312) (0.046)
SPXS —0.412%*%*%  —.703%** 0.638*** 0.451 —0.150 0.132
(0.000) (0.001) (0.016) (0.609) (0.676) (0.801)
TZA —0.580%* 0.675%** —0.849%** 3.190%* —0.290** 0.350%*
(0.013) (0.001) (0.000) (0.028) (0.017) (0.023)
WIP N.C. N.C. N.C. N.C. N.C. N.C.
PLW —0.005 0.235 —0.046 0.024 0.131 0.752%*%*
(0.697) (0.258) (0.803) (0.117) (0.300) (0.000)
TMF -0.050 0.200 0.015 1.357%%* 0.217 0.542%*%*
(0.379) (0.309) (0.927) (0.007) (0.283) (0.000)
™V —0.060 0.197 -0.020 0.900* 0.240 0.636%**
(0.354) (0.296) (0.911) (0.059) (0.207) (0.000)
BWZ N.C. N.C. N.C. N.C. N.C. N.C.
OPER 0.008%** -0.106 —0.927*** 0.195 0.685%** 0.315%*
(0.006) (0.295) (0.000) (0.182) (0.000) (0.023)
CHAD —0.121%** —0.502%* 0.476* 0.412 0.606%** 0.366%**
(0.004) (0.024) (0.077) (0.144) (0.000) (0.002)
FAZ —0.612%** 0.137 —-0.029 2.361 —-0.290 0.226
(0.000) (0.731) (0.933) (0.130) (0.351) (0.576)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses;
N.C. means no convergence.
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Table 6
Long-memory estimation results for ARFIMA, ARFIMA-FIGARCH models

High-carbon intensity ETFs d-ARFIMA Log-Likelihood d-ARFIMA Log-Likelihood

JPMB 0.522%%* —419.485 0.115 -308.489
(0.000) (0.248)

CHIU 0.052 —702.137 -0.014 —677.890
(0.648) (0.872)

BSAE 0.017 —2101.339 0.093 229.550
(0.349) (0.655)

JHMU 0.017 —836.908 —0.113%* —665.674
(0.940) (0.030)

XLU —-0.010 —832.189 —0.093* —665.446
(0.962) (0.058)

RYU —0.003 —835.444 —0.108** —671.354
(0.987) (0.040)

IDU —0.005 —826.334 —0.103** —661.039
(0.982) (0.037)

UPW 0.028 —1084.188 —0.099** —937.728
(0.890) (0.046)

UTSL 0.052 -1281.772 -0.089* —-1109.584
(0.805) (0.062)

FUTY -0.021 —831.422 —0.104** -661.910
(0.920) (0.043)

VPU —0.022 —834.455 —0.103%* —663.931
(0.920) (0.043)

Low-carbon intensity ETFs d-ARFIMA Log-Likelihood d-ARFIMA Log-Likelihood

KBWP 0.091 —866.080 -0.047 —754.652
(0.571) (0.518)

SPXS -0.035 —-1198.676 -0.063 —1037.466
(0.831) (0.450)

TZA 0.035 —-1309.730 -0.034 —1227.447
(0.791) (0.421)

WIP -0.138 —403.904 -0.233 —339.198
(0.508) (0.749)

PLW —0.247*** —397.467 —-0.174 —296.182
(0.005) (0.024)

TMF —0.271%** —-1056.052 —0.199%** —968.546
(0.003) (0.008)

™V —0.194%** -1074.123 —0.159%* -970.904
(0.009) (0.033)

BWZ 0.019 —-197.904 -0.018 -165.129
(0.810) (0.773)

OPER 0.042 —3326.65 -0.047 1372.405
(0.179) (0.628)

CHAD 0.039 —787.531 —0.182%* —748.555
(0.684) (0.035)

FAZ —0.063 —-1316.766 —0.064 —1188.372
(0.693) (0.296)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses; N.C. means no convergence.

These findings reinforce earlier conclusions by Chikhi et al. (2012), who emphasized the superior performance of HYGARCH in
capturing market inefficiencies under volatility stress. However, the differences in model performance across ETFs suggest that
carbon intensity alone does not determine memory structure.
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Table 7
Long-memory estimation results for ARFIMA-FIGARCH, ARFIMA-HYGARCH models
High-carbon intensity d- d- Log- d- d- Log Log-
ETFs ARFIMA FIGARCH Likelihood ARFIMA HYGARCH Alpha Likelihood

JPMB 0.122 0.761%*** —304.962 0.120 0.767*** 0.031 —304.855
(0.349) (0.000) (0.310) (0.000) (0.819)

CHIU —-0.053 0.335%* —675.357 —0.062 0.578 —-0.190 —674.892
(0.505) (0.041) (0.416) (0.292) (0.246)

BSAE 0.118 0.514* 243.258 0.118 0.514* —0.000 243.258
(0.516) (0.073) (0.516) (0.088) (0.998)

JHMU —-0.076 0.605%*** —665.031 —0.073 0.666*** —-0.130 —663.155
(0.354) (0.004) (0.406) (0.000) (0.103)

XLU —0.084* 0.482%** —665.001 —0.086* 0.570%** —-0.172 —663.200
(0.080) (0.002) (0.091) (0.000) (0.096)

RYU —0.107** 0.551%** —669.845 -0.074 0.635%** —0.134* —669.056
(0.038) (0.001) (0.385) (0.000) (0.097)

IDU —0.101%* 0.527%** —660.315 —0.101%* 0.595%** —0.149 —658.573
(0.043) (0.003) (0.050) (0.000) (0.118)

UPW —0.091* 0.459** -936.797 —0.095* 0.579*** —-0.131 —935.565
(0.056) (0.017) (0.059) (0.000) (0.158)

UTSL —0.084* 0.528%*** —1109.064 —0.085%* 0.597*** —-0.161 —-1107.190
(0.074) (0.002) (0.082) (0.000) (0.130)

FUTY —0.097* 0.531%** —660.838 —0.099* 0.597*** —0.148 —659.228
(0.056) (0.002) (0.063) (0.000) (0.126)

VPU —0.099* 0.536%** —663.198 -0.100* 0.603*** —-0.149 —661.444
(0.053) (0.003) (0.060) (0.000) (0.109)

Low-carbon intensity d- d- Log- d- d- Log Log-

ETFs ARFIMA FIGARCH Likelihood =~ ARFIMA HYGARCH Alpha Likelihood

KBWP —-0.077 0.685%** —752.574 —-0.077 0.684%** —0.068 —751.945
(0.364) (0.001) (0.594) (0.000) (0.926)

SPXS —0.046 0.572%%* —-1034.574 —0.048 0.576*** —0.036 —1034.498
(0.553) (0.001) (0.548) (0.001) (0.293)

TZA 0.149 0.627*** —1223.327 0.149 0.696*** —0.089 —1222.402
(0.482) (0.000) (0.476) (0.000) (0.205)

WIP N.C. N.C. —334.151 N.C. N.C. N.C. —330.280

PLW —0.170%** 0.821%*** —298.831 —0.165%* 0.964%** —0.108 —295.446
(0.008) (0.000) (0.015) (0.000) (0.152)

TMF —0.186%** 0.235* -967.452 —0.195%** 0.769*** —0.260** -967.104
(0.003) (0.090) (0.006) (0.001) (0.030)

™V —0.159%** 0.691%*** -971.305 —0.156** 0.813%** —0.163 —968.794
(0.005) (0.001) (0.011) (0.000) (0.108)

BWZ —0.046 0.187*** —-165.344 N.C. N.C. N.C. -164.260
(0.304) (0.001)

OPER 0.805%*** 0.459 1371.069 0.796%*** 0.476** —0.164 1371.132
(0.000) (0.117) (0.000) (0.038) (0.869)

CHAD —0.084 0.142 —747.436 —0.084 0.124 0.093 —747.435
(0.180) (0.261) (0.181) (0.638) (0.946)

FAZ —0.137* 0.706%*** —1187.282 -0.136 0.705%** -0.040 —1187.148
(0.094) (0.000) (0.108) (0.000) (0.713)

Note: *, ** and *** are significant at 10%, 5% and 1% levels, respectively; p-values are in parentheses; N.C. means no

convergence.
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5. Conclusion, Implications, and Future Research

This study examined the long-memory properties of high- and
low-carbon intensity ETFs using ARFIMA-GARCH, ARFIMA-
FIGARCH, and ARFIMA-HYGARCH models. The findings reveal
distinct differences in return predictability and volatility characteris-
tics across ETF types, offering both theoretical insights and practical
implications for sustainable finance and time-series modeling.

First, the study provides empirical evidence supporting the
existence of long-memory processes in ETF returns, particu-
larly among high-carbon intensity funds such as CHIU, XLU,
and VPU. Many of these ETFs exhibited significant ARFIMA
structures in their conditional mean processes, suggesting pre-
dictability in returns. Meanwhile, several low-carbon ETFs (e.g.,
TZA and CHAD) demonstrated stronger volatility persistence and
anti-persistent return behavior, particularly when modeled with
ARFIMA-HYGARCH.

Second, the results indicate volatility clustering in both ETF
groups, with lagged conditional variances playing a more pro-
nounced role than lagged returns. This aligns with the findings of
[11], emphasizing the importance of volatility dynamics in financial
forecasting. While the double long-memory effect—simultaneous
persistence in both returns and volatility was not universally present,
selected ETFs did exhibit partial long memory in both domains.

Third, the discovery of anti-persistent characteristics, espe-
cially among low-carbon and inverse ETFs, suggests a mean-
reverting nature inconsistent with weak-form market efficiency.
This contributes to the broader literature on inefficiencies in ESG-
related investment vehicles and aligns with [21], who highlighted
the complex and counterintuitive behavior of sustainable assets.

Fourth, model evaluation revealed that ARFIMA-HYGARCH
consistently outperformed other specifications, particularly for low-
carbon ETFs. This highlights the model’s strength in capturing
hyperbolic memory in volatility processes and supports its emerging
role in sustainable investment research.

5.1. Practical implications

The study offers several actionable insights for investors and
policymakers. For portfolio managers, the observed predictabil-
ity in certain ETFs implies opportunities for active management
strategies, especially when dealing with leveraged or inverse low-
carbon ETFs that show high volatility memory. Investors can also
use ARFIMA-HYGARCH models to enhance forecasting accuracy
in ESG-themed portfolios, thus supporting long-term risk-adjusted
performance.

From a policy perspective, the findings underscore the impor-
tance of considering product structure and regulatory oversight
when promoting ESG-aligned investment instruments. The volatil-
ity behavior of low-carbon ETFs with anti-persistent traits may
suggest instability in these assets, especially during turbulent mar-
ket conditions. Policymakers should evaluate whether such fund
structures deliver on their intended environmental and financial
objectives.

5.2. Theoretical contributions

This research extends the existing literature by applying
advanced long-memory models to an ESG-relevant asset class—
carbon-intensive ETFs. While prior studies often focus on stock
indices or corporate bond spreads, this paper introduces method-
ological innovation by using ARFIMA-HYGARCH to uncover
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nuanced dynamics in ETF behavior. These findings expand the the-
oretical understanding of market efficiency, volatility forecasting,
and sustainability-linked financial modeling.

Furthermore, the results challenge the assumption that high-
carbon investments are inherently riskier or less performant.
Contrary to the common narrative, high-carbon ETFs in this study
displayed lower volatility and better average returns than their low-
carbon counterparts. This divergence from established ESG return
expectations highlights the need for more granular and model-driven
analysis in sustainable finance.

5.3. Limitations

Several limitations are acknowledged. First, the relatively short
time series (March 2020 to September 2021) may limit the ability to
detect structural breaks, especially related to major events such as
the COVID-19 pandemic. While this period includes elevated mar-
ket stress, longer datasets would allow for more robust analysis of
pre- and post-shock behavior.

Second, although ARFIMA-based models were effective in
this study, the exclusion of other fractional models such as
Fractionally-integrated Asymmetric Power Autoregressive Condi-
tional Heteroscedasticity (FIAPARCH) and Fractionally-integrated
Exponential Generalized Autoregressive Conditional Heteroscedas-
ticity (FIEGARCH) may limit comparative robustness. Including
these models in future work could offer further insight into the
memory dynamics of ETF volatility.

Third, carbon intensity classification was based on ETFdb.com
ratings. While a credible source, incorporating additional ESG rat-
ings or blending multiple scoring systems could provide a more
comprehensive framework. Lastly, the preliminary step in the
methodology is where the variance ratio test of Lo and MacKinlay
can be applied to evaluate weak-form market efficiency.

5.4. Future research directions

Building on this study, future research can explore several
promising directions. First, the models applied here could be tested
across different asset classes, including green bonds, ESG mutual
funds, or commodity ETFs. This would help assess the general-
izability of the results and enhance model calibration across asset
types.

Second, extending the analysis to other geographic markets—
such as emerging economies or European ESG funds—would
broaden the applicability of the findings. Different regulatory and
policy contexts could influence carbon-transition risk pricing and
volatility characteristics.

Third, incorporating macroeconomic variables (e.g., interest
rates, inflation, carbon pricing policy changes) may help isolate
the drivers behind observed memory dynamics. Doing so would
allow for more targeted forecasting strategies and improve portfolio
resilience under shifting economic conditions.

Lastly, future work may consider real-time applications, such
as algorithmic trading strategies or ESG score-based portfolio
rebalancing, to bridge the gap between academic modeling and
investment practice.

This study contributes to a growing body of knowledge at the
intersection of ESG investing, volatility modeling, and time-series
econometrics. By combining theoretical insights with practical
recommendations, it aims to inform both academic research and
responsible investment decision-making.
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