Received: 14 April 2023 | Revised: 15 May 2023 | Accepted: 26 May 2023 | Published online: 14 June 2023

Artificial Intelligence and Applications
2023, Vol. 00(00) 1-8
DOI: 10.47852/bonviewAIA3202962

)

BON VIEW PUBLISHING

RESEARCH ARTICLE

Playing Blackjack Using Computer
Vision

Anas Akkar! ® , Samuel Cregan!, Justin Cassens', Maame Araba Vander-Pallen' and Tauheed Khan Mohd"*

!Department of Math Computer Science, Augustana College, USA

Abstract: The field of computer vision (CV) is rapidly evolving, with a focus on analyzing, manipulating, and understanding images at a
sophisticated level. The primary objective of this discipline is to interpret the visual input from cameras and utilize this knowledge to manage
computer or robotic systems or to generate more informative and visually appealing images. The potential applications of CV are wide-ranging
and include video surveillance, biometrics, automotive, photography, movie production, web search, medicine, augmented reality gaming,
novel user interfaces, and many others. This paper outlines how CV technology will be utilized to achieve a winning outcome in the game of
Blackjack. The game of Blackjack has long captivated the attention of enthusiasts and players worldwide. One area of particular interest is the
development of a winning strategy that maximizes the player’s chances of success. With the advent of sophisticated computer algorithms and
machine learning techniques, there is enormous potential for research in this area. This paper explores the game-winning strategies for
Blackjack, with a particular focus on utilizing advanced analytical methods to identify optimal plays. By analyzing large data sets and
leveraging the power of predictive modeling, we aim to create a robust and reliable framework for achieving consistent success in this
popular casino game. We believe that this research avenue holds enormous promise for unlocking new insights into the game of
Blackjack and developing a more comprehensive understanding of its intricacies.

Keywords: OpenCV, Blackjack, computer vision, strategy, gaming

1. Introduction

Wouldn’t it be very convenient to use your phone while playing
Blackjack online and instantly know whether to hit, stand, or double?
Wouldn’t it also be convenient to use your phone during a Chess
game and instantly know what your best move is? You could use
the internet or simulations to help yourself in these situations.
However, what if we could use our smartphone camera and have
it detect the best next move for either Chess or Blackjack. That
would be a more optimal solution and it is possible using OpenCV.
OpenCV (Open Source Computer Vision Library) is a computer
vision (CV) and machine leaming software library built to give a
structure for CV applications [1]. We can use this library to detect
and recognize faces, identify objects, classify human actions in
videos, track camera movements, track moving objects, extract 3D
models of objects, produce 3D point clouds from stereo cameras,
stitch images together to produce a high resolution image of an
entire scene, find similar images from an image database, remove
red eyes from images taken using flash, follow eye movements,
and recognize scenery. OpenCV has provided many Application
Programming Interface and was made compatible with mostly
every device. It has C++, Python, Java, and MATLAB interfaces
and supports Windows, Linux, Android, and Mac OS.

Accurately identifying objects opens the door for many
possibilities for a computer program, and developers can use this
technology to work on projects of interest to them. A shared

*Corresponding author: Tauheed Khan Mohd, Department of Math Computer
Science, Augustana College, USA. Email: tauheedkhanmohd@augustana.edu

interest of this group of programmers is an interest in card games.
From poker classes to family game nights, there is a background
in cards and an appreciation for the impact that a card game can
have on strengthening relationships. For this reason, the general
objective of this project is to develop a program that can assist in
card game playing and learning [2].

For any project of a significant size such as this, it is necessary to
break it into smaller chunks of work to be done. A basic flowchart of
our project’s goals is shown below in Chart I. This outlines the order
of the steps that must be completed in order to complete the project.
Table I provides specific information about each objective. As with
any software project, the development team must be agile and
quickly adapt to changing demands and goals, so these objectives
are structured as general guidelines that are subject to change.
However, these objectives provide a good outline for what the
project will entail [3].

2. Related Work

OpenCV began as a research project at Intel in 1998 and has
been publicly available since 2000 (Opencv, 2020). It provides
programmers with tools to use CV to develop further programs.
These tools are a “mix of low-level image-processing functions
and high-level algorithms such as face detection, pedestrian
detection, feature matching, and tracking” [4]. Using these basic
tools, programmers can expand and develop their own code to
complete tasks that are of specific interest to them.

Currently, there are a few different methods that OpenCV can
use for object recognition. These include but are not limited to:

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/

licenses/by/4.0/).

01

https://orcid.org/0009-0006-7585-5865
https://orcid.org/0000-0002-7989-6908
mailto:tauheedkhanmohd@augustana.edu
https://doi.org/10.47852/bonviewAIA3202962
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Artificial Intelligence and Applications Vol. 00

Iss. 00 2023

template matching, color-based matching, and shape-based
recognition [5]. Template matching is the most basic strategy and
employs already known templates of objects and compares them
with objects seen by OpenCV [6]. Color-based matching is also a
fairly simple method; it uses colors on the RGB scale to allow a
program to identify an object based on color criteria. Shape-based
recognition goes hand in hand with template matching and uses
known shapes for comparison to identify an object in question.
Recognition is also broken down into the type of image a
program is identifying. Active recognition refers to a program
detecting an object in a live image, while passive recognition
means that the program is assessing objects in a still image [7].

One such project using OpenCV was a project conducted in
2013 on traffic sign recognition [8]. A group of graduate students
aimed to use CV to detect and analyze a road sign from a camera
located in a moving vehicle. Software such as this has been
implemented for speed limit signs in particular in high-end
vehicles as early as 2009 [§] but had not been refined to account
for all sorts of traffic signs, variable weather conditions, lighting,
and other challenges. The strategy for recognition used for this
project was most likely very similar to a card identifying project;
there are a finite number of traffic signs that the software could
“match” an identified traffic sign to, just as there are a finite
number of cards that can be matched. This project likely had the
additional challenge of tracking a road sign in a moving vehicle,
which may impair the clarity of the picture that the camera is able
to capture. This is just one example of a CV-based project that
has been explored.

One group of developers used CV to identify playing cards on a
table for a poker game. They were able to identify the cards and count
chips on a table with up to 94% accuracy [9]. The group outlined a
series of steps in their work. First, they needed to “extract” the card
from the playing surface. This was done by the contrast of the playing
card to the table that it rested on. Additionally, they did work on
identifying chips using a similar strategy of color-based
recognition. Next, the group used “template matching” to identify
the cards. Since a deck of playing cards has a finite number of
possibilities, the program can use the known possibilities to
identify the card that it sees. This project ended at this level
however, leaving much room for future work to be done on the
topic in terms of developing algorithms for specific card
games [10].

Advancements in CV have led the way for further development
of artificial intelligence (AI) and machine learning technology. CV
bridges the gap between code and reality, allowing programs to have
“human-like recognition ability” [11]. Just as machine learning is the
latest buzzword and next big thing in the software world, CV is the
next big step for machine learning. In the previously
cited article, researchers outlined how the medical field can
implement CV to allow machine learning programs to help with
surgery. In reference to the benefit that CV provided to the project,
they state: “Without sight, Al was operating blindly, and its
procedural understanding was inflexible and limited” [11].
Effective CV can drastically improve machine learning programs
and allow them to not only learn much quicker but to be used in
greater applications as well. This sets the limits of what CV can
do for Al extremely high; there are many possibilities that have
yet to be discovered.

Guennouni et al. [12] give an overview of the cascade object
identification technique and how the cascade classifier uses
Haar-like feature selection. The paper then presents the results of
a performance comparison between a normal platform and an

02

embedded device using an OpenCV-based solution for multiple
object detection.

Jalled and Voronkov [13] use this paper to create an OpenCV-
Python program that uses the Haar cascade technique to detect
objects and faces. Unmanned aerial vehicles (UAVs) are now
utilized to detect and attack infiltrating ground targets. The
fundamental disadvantage of this sort of UAV is that the item is
not always accurately detected, resulting in the object colliding
with the UAV. The project’s goal is to prevent UAV collisions and
damage. The Viola—Jones algorithm is used in UAV surveillance to
recognize and track individuals. The train function is used to train the
algorithm, which uses the cascade object detector function and
vision. The key benefit of this code is that it takes less time to
process. The Python code was tested using a video and image
database, and the results were verified.

Druzhkov et al. [14] consider the object detection issue, which
is one of the most hotly debated subjects in CV right now. The issue
can be summarized as follows: “where the instances of a specific
object class are in the image?”” The main goal of this paper was to
create a high-performance, open-source implementation of two
state-of-the-art object recognition and general machine learning
algorithms: discriminatively trained component-based models and
gradient boosting trees, respectively. Real-world applications were
used to test the accuracy of the implemented algorithms. One of
the most prominent open source CV libraries has incorporated the
implementation.

Chandan et al. [15] demonstrate how the single-shot detector
(SSD) algorithm detects objects in real-time circumstances. They
present a real-time study of the ecosystem that may help any
business achieve exceptional results by enabling security, order,
and utility. They then show how the model may be used in
closed-circuit television, drones, and other surveillance equipment
to identify attacks in settings where guns are prohibited, such as
schools, government offices, and hospitals.

Saxena et al. [16] address the use of a Haar cascade classifier.
The case study of a face detection and item detection, such as watch
detection and pen detection, is the major topic of this paper. The
designed system’s purpose is to make life easier and more
convenient and enhance the mundane aspects of our life. It is an
effort to build one’s own Haar classifier using OpenCV.

Jakubovi¢ and Velagic [17] use brute-force matchers to solve a
challenge of feature matching and object recognition in two photos.
For feature recognition and descriptor extraction, the suggested
system included many concurrent algorithms, including ORB
(Oriented FAST and Rotated BRIEF), BRISK (Binary Robust
Invariant Scalable Keypoints), SIFT (Scale Invariant Feature
Transform), and SURF (Scale Invariant Feature Transform)
(Speeded-Up Robust Features).

Markus et al. [18] provide a method for detecting visual
objects that is based on an ensemble of optimal decision trees
grouped in a cascade of rejectors. The trees employ pixel
intensity comparisons in their internal nodes, allowing them to
analyze picture areas quickly. A face detection issue is used for
experimental analysis. The findings obtained are encouraging
and show that the procedure has practical relevance. They also
examine its noise sensitivity and demonstrate how to accomplish
quick rotation invariant object recognition.

Ditrih et al. [19] present an approach for continuous finding and
recognition of cards from the game set using CV technologies. Their
approach of detecting cards in photographs is divided into three
stages: fragmenting cards from the picture, separating highlights
from card pictures using level and vertical lines, and card

Artificial Intelligence and Applications Vol. 00

Iss. 00 2023

inclusion order with the use of a vector machine. To provide
consistent treatment, a small number of highlights are deleted
from a small selection of pixels.

Mehmood et al. [20] intend to direct execution exploration of
deep learning-based calculation, for example, SSD, in loT-based
implanted gadgets for intelligent home apparatuses control
[21]. We have created a clever home computerization framework
based on object discovery calculation in light of model view
regulator engineering sent on Cloud of Things such as Amazon
Web Service cloud for customers to review their houses from a
distance. For communication with connected IoT devices, the
message lining telemetry transport (MQTT) protocol is used. We
introduced the concept of a circulating intermediary to assist a
large number of distributers and endorsers in load-adjusting.

Sharma et al. [22] addressed topics ranging from
how artificial awareness and Al computations aid in object
recognition to how OpenCV is a very useful tool for newcomers
who want to find out how continuous article differentiating proof
and following should be achievable. It also demonstrates the
flexibility of a global positioning framework to a moving
camera, which is suitable for vehicle safety applications. Image
distinguishing proof employs techniques such as article placement,
acknowledgement, and division. The use of artificial consciousness
and Al accelerates the processing of information while maintaining
the standard of the outcome. As an example, by applying Al, we can
surely do difficult tasks.

Culjak et al. [1] show and quickly make a reader familiar with
the guts and bolts of OpenCV (Open Source PC Vision) without
going through the large instructional guides and books. OpenCV
is an open source toolkit for image and video analysis that was
first presented by Intel more than a decade ago. Since then, a
number of developers have contributed to the most recent library
enhancements.

3. Proposed Methodology

Today, CV is widely used everywhere, “both in academia and
industry” [23]. It can reach consumers in many contexts via
webcams, camera phones, or even gaming sensors. It also is one
of many recent technological advances that have helped to pave
the way forward for fully autonomous vehicles. In our project, we
are trying to develop a program that can identify game cards and
help playing and learning. OpenCV Python can help us explore
solutions to these requirements in a high-level language. We are
also looking forward to developing an environment that links
Python, OpenCV, depth camera libraries (OpenNI, SensorKinect),
and general-purpose scientific libraries (NumPy, SciPy). The main
card game that we are trying to implement our program on is
Blackjack.

Blackjack is played with a standard deck of 52 cards. Every card
has a value equal to its number, with face cards worth 10 and Aces
can be worth 1 or 11. The goal is to get the sum of your cards as close
to 21 as possible without going over. Players are dealt two cards
initially, and the dealer is dealt two cards. The player’s cards are
both visible. One of the dealer’s cards is visible, and one is
hidden. The player must decide to hit, stand, or double down.
If the player hits, they are dealt another card. If the sum of their
cards ever goes above 21, the player is bust and loses the game.
If the player stands, it is then the dealer’s turn. The dealer reveals
their hidden card and will take hits until the dealer’s hand is 17 or
greater. The dealer always hits if their total is below 17, and
always stays if their total is 17 and up. If the dealer goes above
21, the player wins. Also, whoever has the hand closest to 21

Figure 1
Blackjack basic strategy for hard totals (https://www.
blackjackapprenticeship.com/blackjack-strategy-charts/).
Blackjack strategy card

HARD TOTALS

DEALER UPCARD

S

I|ln|ln|ln|lv|n|n
I|ln|lolv|lv|n|lw
wlnlulvlv|lv|s
vlvlulnlvlu|la
vinlunlvnlvlv|o
I|IT|X|(I|XI |~
I|T(X|X|X ||
I|T(T|T|T|n|o
I|IT(T|T|T||>

[it

KEY S Stand
Double if allowed, otherwise hit

without going over is the winner. The rule for doubling down is
as follows: Players are allowed to double down only on their first
turn and only if their first two cards are summing to 9, 10, or 11.
If a player doubles down on their first turn, their wager is
doubled, and they receive a hit card. Play then resumes as normal.
In the short time we have, it would be extremely difficult to
implement an algorithm that counts cards and is the most likely to
win. Consequently, instead, we are going to implement a strategy
called “basic strategy” that consists basically of playing like the
dealer, with occasional changes and doubling down depending on
the situation. The details of the basic strategy are shown in
Figure 1 [24].

The “basic strategy” is separated based on whether or not the
player’s hand is “hard” or “soft.” A “soft” hand is a hand that
uses the Ace as an 11. So, for example, an Ace+ 6 is a “soft”
17 hand. The strategies of play become different if a player’s
hand is “hard” or “soft.” For this project, we will not need to
make this distinction; we consider all totals to be “hard”
totals [25].

Now, in order to be able to implement this strategy, we need our
computer to be able to identify the cards. An existing technique
mentioned in the Literature Review that can help us identify
which of the 52 cards are we looking at is “template matching”
[26]. Template matching is a method for identifying a template
image in a larger image and OpenCV already has a function that
serves this purpose.

The way OpenCV allows this function is by simply sliding the
template image over the input image and comparing them. Several
comparison methods are implemented in OpenCV [27].

We need two primary components:

» Source image (I): The image in which we expect to find a match to
the template image

» Template image (T): The image which will be compared to the
source image.

Our goal is to detect the highest matching area. To identify the
matching area, we have to compare the template image against the
source image by sliding it. By sliding, we mean moving the patch
one pixel at a time. At each location, a standard is calculated so it
represents how “good” or “bad” the match at that location is. For
each location of T over I, you store the standard value in a result
matrix R. We are to use the OpenCV function matchTemplate() to

03

https://www.blackjackapprenticeship.com/blackjack-strategy-charts/
https://www.blackjackapprenticeship.com/blackjack-strategy-charts/

Artificial Intelligence and Applications Vol. 00

Iss. 00 2023

Figure 2
The matching methods available in OpenCV (https://medium.com/analytics-vidhya/opencv-object-detection-using-template-
matching-methods-63ac15d74742). Template matching methods

a. method=CV_TM_SQDIFF

o

method=CV_TM_SQDIFF_NORMED

o

. method=CV_TM_CCORR

d. method=CV_TM_CCORR_NORMED

e. method=CV_TM_CCOEFF

where

ROuy) =) (T(,y) = 1x + %,y +y))?

X'y’

(xy) = e TOOY) L4 Xy +y)
) =
\/Zx/,y, T4y Ty 1+ 3y + /)2

Riuy) =) (T, y) - 1x +x,y +y)

Xy’

Zx’,y/(T(X/a y)-1lx+x,y +y’)

R(X>U) = 2 2
Vv OO Ty I+ %y +)

ROuy) =Y (T/0¢,y) - 1x + %,y +y)

Xy’

T'(x,y) =T,y) =1/(w-h)- 3. 0. T(x",y")
Ux+x,y+y) =1x+x,y+y’)—1/(w-h) - 3, Ix +x",y +y")

—

method=CV_TM_CCOEFF_NORMED

search for matches between an image and an input image. It
implements template matching in the function matchTemplate().
The available methods are 6 shown in Figure 2 below [28].

The procedure followed while coding will be as follows:

* Declare some global variables, such as the image, template and
result matrices, as well as the match method.

* Load the source image and template

* Perform the template matching operation.

* Normalize the results

* Localize the minimum and maximum values in the result matrix R
by using minMaxLoc() function.

* For the first two methods in Figure 2, the best matches are the

lowest values. For all the others, higher values represent better

matches.

Display the source image and the result matrix.

* Determine whether there is a match between the two compared
images.

4. Framework

At its core level, our program takes an input of a real-world
environment, turns this into data, and outputs information to the
user. Using the OpenCV library [29], the program can view the
real-world environment through a camera and can manipulate
what it finds to compute data to be useful to the user. A
visualization of the actions the program performs is shown in
Figure 3.

04

R(x,y) = Zx"y’(T/(X/»U/) Tx+xy+y'))
, \/Zx’,g’Tl(x/)yl)l' Zx’,g'I/(x+xl)y +y’)2

Figure 3
Visual depiction of program flow. Program flow chart

A. Input frame B.Isolate and
from real detect each
world card from the

environment background

D. Perform

algorithmic

functions on
detected cards

E. Output
information to
the user

C. Identify
each card

4.1. Input frame from real-world environment

This is the raw input that the program takes. This will be a frame
that comes from the video feed that the user will define once the
desired cards are focused in the frame. The program will allow
the user to move the camera and focus the desired cards, and wait
for a user “button press” to evaluate the desired frame. At this
point, the program only sees exactly what the camera sees.

4.2. Isolate and detect each card from the
background

Once the user has sent the program the desired frame to
evaluate, the program will begin to decipher what it is given in
the image. The first step the program takes is to isolate each card
from the background noise in the frame. The program does this
by color detection on the hue, lightness, and saturation scale. It
isolates the color white on the frame, assuming that the cards will

https://medium.com/analytics-vidhya/opencv-object-detection-using-template-matching-methods-63ac15d74742
https://medium.com/analytics-vidhya/opencv-object-detection-using-template-matching-methods-63ac15d74742

Artificial Intelligence and Applications Vol. 00

Iss. 00

2023

be white. Then, the program identifies the borders of the detected
white space to create shapes of every border it detects. Using the
information from these borders, then program then runs a series of
tests to determine whether the border detected is a card or not.
These checks are based around the shape, area, and length of the
sides of the detected shape. The program then creates new images
of only each individual card detected and stores them into an array.

4.3. Identify each card

The next step in the program is to identify and categorize each
card that is detected. This is done using the strategy of template
matching (citation here). Template matching is a CV strategy that
identifies things that are seen by the computer by comparing them
to already known images that are already given to the program.
In this programs case, the program has every card already loaded
in as a reference. For every card that is detected, the program will
compare with the existing images in its database to determine the
best match.

OpenCV template matching works by individually matching
each pixel on one image to the other. The code will then provide
a number of how well the imported image matches with each one
of the cards in the programs database. Then, it takes the highest
number as the best match.

4.4. Perform algorithmic functions of detected
cards

The algorithm written in this program is specific to Blackjack. Once
the user has scanned both the players cards and the dealers cards, this
information is sent to the algorithm to determine what the users
smartest move is. The inputs for the algorithm are the players two
cards and the dealers one visible card. The output is the players action
in string form. The algorithm is written based off of mathematically
determined Blackjack odds, which are shown in Figure 1.

4.5. Output information to the user

After the algorithm determines what the user should do, the
program will display this information to the user on the screen.
For Blackjack, the two options that a player has are to “hit” or
“stand.” There is a special case where the user can double down
when they are dealt two cards of the same value. In this case, the
program will treat both of the players hands as if they were
separate hands and perform all of the previously mentioned
steps again.

In summary, the framework of Blackjack is also known as
Twenty-One, which is a popular card game played in casinos and
online gambling websites. The game is played with a standard
deck of 52 cards, and the objective of the game is to beat the
dealer by having a hand with a total value closer to 21 than the
dealer’s hand, without exceeding 21.

The game starts with the dealer shuffling the deck of cards and
then dealing two cards to each player, including themselves. The
dealer’s first card is dealt face down, while the second card is
dealt face up.

Each player then takes turns to make their move, starting from
the player on the dealer’s left. The player has several options to
choose from, including:

1. Hit: Take another card from the dealer to try and get closer to 21.

2. Stand: Keep the current hand and end their turn.

3. Double: Double their original bet and take one more card from the
dealer.

4. Split: If the player has two cards of the same rank, they can split
them into two separate hands, with each hand having its own bet.
The player can then play each hand separately.

5. Surrender: Some casinos allow players to surrender their hand and
forfeit half of their bet.

The value of the cards in Blackjack is as follows:

» Cards 2-10 are worth their face value.

 Face cards (Jacks, Queens, and Kings) are worth 10 points each.

* An Ace can be worth 1 or 11 points, depending on which value
would be more beneficial for the player’s hand.

Ifthe player’s hand exceeds 21 points, they are said to “bust” and lose
the game. If the player chooses to stand, the dealer then reveals their
face-down card and continues to draw cards until they have a total of
at least 17 points. If the dealer busts, all remaining players win. If the
dealer does not bust, the hands of each remaining player are
compared to the dealer’s hand, and whoever has the hand closest
to 21 without exceeding it wins.

Overall, the game of Blackjack is a fun and exciting game that
requires both luck and skill. With a basic understanding of the rules
and strategies of the game, players can increase their chances of
winning and have a great time at the table.

5. Methods

When it comes to taking data, we focused only on the accuracy
of the identification of cards. Our algorithm for move feedback is
independent of this identification and relies solely on logic, so we
did not feel it needed to be included. With this in mind, our
strategy for taking data was to go through every card and test the
accuracy of our program. We had every card placed in
approximately the same location with similar lighting to try and
simulate more consistency. The particular variables we measured
were the accuracy of the suit recognition as well as the card value
recognition. The percentage of successes has been displayed in
Figure 4.

There are a few main causes of failed identifications which we
noticed while testing. The lesser of these issues was poor lighting.
Our identification methods implement the RGB scale to isolate a
range of colors representing white which then allows for
recognition of a card object. However, if the lighting is too dark,
then the shaded part of the card will not be recognized and cause
issues. If the lighting is too bright, then the card will have glares

Figure 4
Results from card identification. Percentage of cards identified
correctly

Percentage of Cards Identified Correctly
100
90
80
70
60
50
40
30
20
10

0

Percent Correct

Suit Number Both
Card Attribute

05

Artificial Intelligence and Applications Vol. 00

Iss. 00

2023

when trying to compare to the baseline images which leads to poor
comparisons.

Additionally, cards with less detail struggled to identify correctly.
If'this was the only problem to occur in a trial, while the card as a whole
did not get identified correctly a majority of the time, the suit still
tended to be correctly identified. This is because our program takes
in the cards from the camera feed, isolates them, and for each looks
for comparisons to the baseline images. However, for cards with
less detail like a two of hearts, the heart will be a major identifier
for that card and will be found many more times in a card such as
the ten of hearts. This in turn will lead to higher matches even
though it is with the wrong card. This is a bug we are still not
positive how to reduce the occurrence of.

Lastly, an issue we have had is with our camera gaining proper
focus on the cards. When the focus is good, the cards identify correctly
a majority of the time, even with the previous two issues occurring.
This is because the poor focus leads to a blurred image and so the
value portion of the card is more easily mistaken by our program.
Also, ifthe focus is poor, then the suits also had a lower rate of success.

6. Results

The idea of object recognition is one which has been explored
and expanded upon already in many ways as mentioned in the
Literature Review section. Our project on object recognition,
particularly the recognition of playing cards, is one which can be
further developed into applications to help teach people card
games while providing the numbers behind the logic. Applications
similar to this already exist in a 2-dimensional world on a
computer screen, but it has yet to make the jump to 3-dimensional
space. This is the way that our idea differs from these current
programs. We will expand them from a 2-dimensional computer
application and implement them in a 3-dimensional scenario. This
means that people in real-world situations could utilize the
application to complete the same task as the 2-dimensional
computer program allowing for immediate feedback, but through
offline means. Some may then think that there are already
physical objects which require no online service which can advise
you throughout different card games such as a chart with all the
possible blackjack combinations, telling you what the best play is
in any given scenario. This is also true. However, why have an
extra object to worry about keeping track of when you could just
have a phone application which weighs nothing and is part of an
object you would have with you anyways? Additionally, this
program eventually could have the ability to implement many
various algorithms to work for different games whereas a physical
object tends to be for just one game and only works for games
with limited possibilities. Games like Texas Hold’Em have too
many hand possibilities to fit onto one card or physical object,
especially when taking into account the community cards. In this
way, a flexible application is more useful than any physical object
or online program.

The possibilities and results of a game of Blackjack can vary
depending on various factors, such as the specific rules of the
game being played, the number of decks being used, the skill
level of the players, and the strategies employed by the players.
However, there are some general outcomes and possibilities that
apply to most games of Blackjack:

1. Winning with a Blackjack: If a player’s first two cards are an Ace

and a 10-point card (10, Jack, Queen, or King), they have a
“Blackjack” and win the game automatically, unless the dealer

06

also has a Blackjack. In this case, the game is a push (tie), and
the player’s bet is returned.

2. Winning by having a higher hand than the dealer: If the player’s
hand is closer to 21 than the dealer’s hand, without exceeding 21,
the player wins the game. The payout for winning is usually 1:1,
meaning the player wins an amount equal to their bet.

3. Losing by busting: If the player’s hand exceeds 21 points, they
“bust” and lose the game automatically, regardless of the
dealer’s hand.

4. Losing by having a lower hand than the dealer: If the player’s
hand is worth less than the dealer’s hand, the player loses the
game.

5. Push (tie): If the player’s hand has the same value as the dealer’s
hand, the game is a push (tie), and the player’s bet is returned.

6. Insurance: Some Blackjack games offer the player the option of
taking insurance if the dealer’s face-up card is an Ace. This is a
side bet that pays 2:1 if the dealer has a Blackjack, but the player
loses their main bet.

The possibilities of winning in Blackjack can be improved by
using basic strategy, which involves making decisions based on
the player’s hand and the dealer’s up card. However, even with
basic strategy, there is always an element of luck involved in
the game.

7. Future Work

The work done in this project really highlights the vast
potential for CV and OpenCV. Specifically, it shows how CV
could be used for various applications with card games. Once
solid code is developed to identify a playing card, any game
imaginable can be written into code to help aid or even teach card
games. For example, this project shows that the card game
algorithm written specifically for Blackjack is correct 100% of the
time when the playing cards are identified correctly. This goes to
show that any other game logic can be written into an algorithm
that will also be correct 100% of the time. Therefore, the only
work that needs to be done to improve an application of this kind
is on the CV side to improve the accuracy of identifying cards.
The research and data collected in this experiment show that even
with low budget equipment under variable light conditions,
OpenCV can be used to identify the suits of cards with up to 80%
accuracy and identify the number of the card correctly over 50%
of the time. While this may seem low, further checks can be
implemented to improve the code to get it closer to the 100%
accuracy mark [30].

Developing algorithms for specific card games only requires
knowledge of the card game and research on the rules of the
game. In this instance, we used well-known and mathematically
determined Blackjack odds for determining what the user’s correct
move should be (see Figure 1). This information was obtained by
research online. While luck obviously plays a part in the real-
world playing of card games, every card game has similar
information available, as its core card games are all based on
mathematical odds [31].

CV has much room for improvement, and as the field progresses
more and more methods will become available that can be used to
more accurately identify cards [32].

8. Discussion

In addition to the ideas we hope to implement into our program
with recognizing playing cards based on their rank and suit, there are

Artificial Intelligence and Applications Vol. 00

Iss. 00 2023

a few more ideas which we will not be able to implement, but believe
could be achieved with more time and through a similar strategy.

One of these additional ideas was that we thought about utilizing
the object recognition from an aerial view in an outdoor parking lot to
maintain count of available spots and even provide the location of
these spots so someone entering the lot could be given accurate
locations as to where they can park and directions to get there (if it
is a large lot). This could be implemented in a few ways, either by
identifying vehicles and keeping track of their locations relative to
the parking spaces or by identifying the parking spaces and
tracking whenever something is obstructing the spot. An issue with
the latter would be if say an animal or piece of garbage were
sensed and then an open spot would be marked as occupied. Thus,
the first implementation would seem the better choice, but that
would also bring different problems. There are many different
vehicle types from SUVs to trucks to motorcycles which all utilize
the same parking spaces. So this program would have to be able to
recognize all of them which seems a strenuous task on its own.

Another example of potential use would be in poker. Typically
in high level poker tournaments which are televised, the cards of each
player are known to the commentators and viewers. This is done by
having the players place their cards face down on the table which
contains cameras inside of it and then the information is told to
someone who inserts the data into the required system to have
it show up on the TV screen. With our program, the cards
could be automatically recognized and the correct information
input directly onto the screen without having to worry about any
middleman [33].

To expand even further with the poker and touch on a point made
in the Intellectual Merit section, this project could expand out to other
card games as well. For poker, the algorithm would be difficult in
terms of advice for future moves. But if it simply is used for
calculating odds, then this idea would work. All one would need is
to scan their own cards and then also the community cards as they
are provided throughout each hand, and if the cards are being
correctly identified, then odds of potential hands could be quickly
predicted. However, this in itself may not be entirely useful as it is
only giving you information on your own hand. If you also knew
an opponent’s cards, say in an all-in-and-call scenario where you
want to know what your outs are, then this program would be
capable of providing that live information for you.

Additionally, this type of program can expand from just playing
cards to other types of cards, potentially containing numbers and
letters. It could help children to learn how to recognize numbers
and letters with the addition of verbal speaking to the program.
If someone could grab a random card and scan it and immediately
get feedback as to what is on the particular card, then this could
help with learning at a young age.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

References

[1] Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M.
(2012). A brief introduction to OpenCV. In Proceedings of
the 35th International Convention MIPRO, IEEE, 1725-1730.

[2] Goyal, K., Agarwal, K., & Kumar, R. (2017). Face detection and
tracking: Using OpenCV. In 2017 International Conference of
Electronics, Communication and Aerospace Technology, IEEE,
1,474-478.

[3] Kadir, K., Kamaruddin, M. K., Nasir, H., Safie, S. 1., & Bakti,
Z. A. K. (2014). A comparative study between LBP and
Haar-like features for face detection using OpenCV. In 2014
4th International Conference on Engineering Technology
and Technopreneurship, IEEE, 335-339.

[4] Pulli, K., Baksheev, A., Kornyakov, K., & Eruhimov, V. (2012).
Real-time computer vision with OpenCV. Communications of the
ACM, 55(6), 61-69. https://doi.org/10.1145/2184319.2184337.

[5] Object Recognition: What is It and How Does It Work?
(2021). Retrieved from: https://cprimestudios.com/blog/object-
recognition-what-it-and-how-does-it-work.

[6] Gollapudi, S. (2019). Learn computer vision using OpenCV.
Springer.

[7] Dutta, A. (2019). Object detection and facial features
identification in python using OpenCV.

[8] Geronimo, D., Serrat, J., Lopez, A. M., & Baldrich, R. (2013).
Traffic sign recognition for computer vision project-based
learning. [EEE Transactions on Education, 56(3), 364-371.
https://doi.org/10.1109/TE.2013.2239997.

[9] Martins, P., Reis, L. P., & Teofilo, L. (2011). Poker vision:
Playing cards and chips identification based on image
processing. In Pattern Recognition and Image Analysis,
436-443. https://doi.org/10.1007/978-3-642-21257-4_54.

[10] Soo, S. (2014). Object detection using Haar-cascade classifier.
Institute of Computer Science, University of Tartu, 2(3), 1-12.

[11] Ward, T. M., Mascagni, P., Ban, Y., Rosman, G., Padoy, N.,
Meireles, O., & Hashimoto, D. A. (2021). Computer vision in
surgery. Surgery, 169(5), 1253-1256. https://doi.org/10.
1016/j.surg.2020.10.039. Retrieved from: https://www.
sciencedirect.com/science/article/pii/S0039606020307492.

[12] Guennouni, S., Ahaitouf, A., & Mansouri, A. (2014). Multiple
object detection using OpenCV on an embedded platform. In
2014 Third IEEE International Colloquium in Information
Science and Technology, IEEE, 374-377.

[13] Jalled, F., & Voronkov, 1. (2016). Object detection using image
processing. arXiv preprint:1611.07791.

[14] Druzhkov, P. N., Erukhimov, V. L., Zolotykh, N. Yu., Kozinov,
E. A, Kustikova, V. D, ..., & Polovinkin, A. N., (2011). New
object detection features in the OpenCV library. Pattern
Recognition and Image Analysis, 21(3), 384-386.

[15] Chandan, G., Jain, A., Jain, H., & Mohana (2018). Real time
object detection and tracking using deep learning and
OpenCV. In 2018 International Conference on Inventive
Research in Computing Applications, IEEE, 1305-1308.

[16] Saxena, M. R., Pathak, A., Singh, A. P., & Shukla, I. (2019).
Real-time object detection using machine learning and
OpenCV. International Journal of Intelligent Systems and
Applications, 11(1), 0974-225.

[17] Jakubovic, A., & Velagi¢, J. (2018). Image feature matching
and object detection using brute-force matchers. In 2018
International Symposium ELMAR, IEEE, 83-86.

[18] Markus, N., Frljak, M., Pandzic, 1. S., Ahlberg, J., & Forchheimer,
R. (2013). Object detection with pixel intensity comparisons
organized in decision trees. arXiv preprint:1305.4537.

07

https://doi.org/10.1145/2184319.2184337
https://cprimestudios.com/blog/object-recognition-what-it-and-how-does-it-work
https://cprimestudios.com/blog/object-recognition-what-it-and-how-does-it-work
https://doi.org/10.1109/TE.2013.2239997
https://doi.org/10.1007/978-3-642-21257-4_54
https://doi.org/10.1016/j.surg.2020.10.039
https://doi.org/10.1016/j.surg.2020.10.039
https://www.sciencedirect.com/science/article/pii/S0039606020307492
https://www.sciencedirect.com/science/article/pii/S0039606020307492

Artificial Intelligence and Applications Vol. 00

Iss. 00 2023

[19] Ditrih, H., Grgi¢, S., & Turkovi¢, L. (2021). Real-time
detection and recognition of cards in the game of set. In
2021 International Symposium ELMAR, IEEE, 161-164.

[20] Mehmood, F., Ullah, I., Ahmad, S., & Kim, D. (2019). Object
detection mechanism based on deep learning algorithm using
embedded IoT devices for smart home appliances control in
CoT. Journal of Ambient Intelligence and Humanized
Computing, 1-17.

[21] Le, N., Rathour, V. S., Yamazaki, K., Luu, K., & Savvides, M.
(2022). Deep reinforcement learning in computer vision: A
comprehensive survey. Artificial Intelligence Review, 55,
2733-28109.

[22] Sharma, A., Pathak, J., Prakash, M., & Singh, J. (2021).
Object detection using OpenCV and python. In 202!
3rd International Conference on Advances in Computing,
Communication Control and Networking, IEEE, 501-505.

[23] Minichino, J., & Howse, J. (2015). Learning OpenCV 3
computer vision with python: Unleash the power of
Computer Vision with python using OpenCV. Packt Publishing.

[24] Blackjack Strategy Charts — How to Play Perfect Blackjack
(2021). Retrieved from: https://www.blackjackapprenticeship.
com/blackjack-strategy-charts/.

[25] Baldwin, R. R., Cantey, W. E., Maisel, H., & McDermott,
J. P. (1956). The optimum strategy in blackjack. Journal of
the American Statistical Association, 51(275), 429-439.

08

[26] Brunelli, R. (2009). Template matching techniques in computer
vision: Theory and practice. John Wiley & Sons.

[27] Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal:
Software Tools for the Professional Programmer, 25(11), 120-123.

[28] Prasad, D. (2020). OpenCV object detection using template
matching methods. Retrieved from: https:/medium.com/
analytics-vidhya/opencv-object-detection-using-template-
matching-methods-63ac15d74742.

[29] OpenCV (2020). Retrieved from: https://opencv.org.

[30] Younis, A., Shixin, L., Jn, S., & Hai, Z. (2020). Real-time
object detection using pre-trained deep learning models
Mobilenet-SSD. In Proceedings of 2020 the 6th International
Conference on Computing and Data Engineering, 44-48.

[31] Othman, N. A., Salur, M. U., Karakose, M., & Aydin, I. (2018).
An embedded real-time object detection and measurement
of its size. In 2018 International Conference on Artificial
Intelligence and Data Processing, IEEE, 1-4.

[32] Khan, M., Chakraborty, S., Astya, R., & Khepra, S. (2019).
Face detection and recognition using OpenCV. In 2019
International Conference on Computing, Communication,
and Intelligent Systems, IEEE, 116-119.

[33] Leveille, C. (2014). Facial Tic detection using computer vision.

How to Cite: Akkar, A., Cregan, S., Cassens, J., Vander-Pallen, M. A., & Mohd, T. K.
(2023). Playing Blackjack Using Computer Vision. Artificial Intelligence and

Applications. https://doi.org/10.47852/bonviewAlA3202962

https://www.blackjackapprenticeship.com/blackjack-strategy-charts/
https://www.blackjackapprenticeship.com/blackjack-strategy-charts/
https://medium.com/analytics-vidhya/opencv-object-detection-using-template-matching-methods-63ac15d74742
https://medium.com/analytics-vidhya/opencv-object-detection-using-template-matching-methods-63ac15d74742
https://medium.com/analytics-vidhya/opencv-object-detection-using-template-matching-methods-63ac15d74742
https://opencv.org
https://doi.org/10.47852/bonviewAIA3202962

	Playing Blackjack Using Computer Vision
	1. Introduction
	2. Related Work
	3. Proposed Methodology
	4. Framework
	4.1. Input frame from real-world environment
	4.2. Isolate and detect each card from the background
	4.3. Identify each card
	4.4. Perform algorithmic functions of detected cards
	4.5. Output information to the user

	5. Methods
	6. Results
	7. Future Work
	8. Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

