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Abstract: Farming is crucial for various aspects of daily life, including food, the economy, environment, culture, and community. It provides
employment opportunities, generates income, and increases the export of agricultural products, particularly in rural areas. Sustainable farming
practices promote soil health, biodiversity, and ecosystem services and are essential in many parts of the world. Farming is deeply rooted in
cultures and traditions and is a way of life for many communities, passed down from generation to generation. Without farming, we would not
have the abundance and variety of food that we enjoy today. Advancements in technology, such as artificial intelligence, machine learning, and
the Internet of Things, have greatly impacted agriculture by producing vast amounts of digital data on crops, soil, and weather conditions.
However, managing and analyzing these data can be challenging for farmers, especially those in developing nations. To address this issue,
affordable digital farming solutions, including open-source software platforms, sensor networks, andmobile apps, are being developed to help
farmers optimize their resources, increase yields, and profits. Digital twin technology can play a crucial role in digital farming by providing
farmers with a virtual replica of their physical farm. It is a digital depiction of a real-world asset, such a farm or a particular crop field, that
gathers information from sensors, weather stations, and satellite pictures. This technology has arisen that has been hailed as revolutionary in a
number of fields, including manufacturing machines, construction, agriculture, healthcare, and the automotive and aerospace industries.
However, the technology is still in its early stages in agriculture, and it can be challenging to handle the interactions between different
farming-related digital twin components. Additionally, digital twinning can require significant investment in technology and
infrastructure, which may be a barrier for small-scale farmers.
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1. Introduction

Farming has been an integral part of India’s cultural heritage for
thousands of years. Agriculture is not just a source of livelihood for
the majority of the population, but it is also deeply intertwined with
their culture, traditions, and way of life. India is one of the world’s
largest agricultural producers, and the sector employs over 50% of
the country’s workforce.1 However, despite its importance, Indian
agriculture has been facing several challenges such as low
productivity, lack of access to modern technology, inadequate
infrastructure, and unpredictable weather conditions. To overcome
these challenges, the Indian government and private players are

now turning toward digital farming.2 As artificial intelligence has
increasingly been incorporated into many agricultural processes,
there has been significant modernization and technological
advancement in the agriculture sector recently [1, 2]. Digital
farming or precision farming is the use of advanced technology to
monitor, measure, and manage agricultural practices in a precise
and efficient manner. This includes the use of tools like sensors,
drones, GPS, and other data-driven technologies to optimize crop
yields, reduce wastage, and improve profitability [3]. Artificial
intelligence, machine learning, cloud computing, deep learning,
the Internet of Things (IoT), robotics, big data, remote sensing,
and other quick-moving technology breakthroughs are causing
significant changes in agricultural productivity through the
introduction of intelligent farming systems [4–6]. In India, digital
farming is gaining attraction as a way to address some of the

1https://www.fao.org/india/fao-in-india/india-at-a-glance/en/
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challenges facing the agriculture sector. With the widespread
availability of smartphones and Internet connectivity, farmers can
now access a range of digital tools and services that can help them
make informed decisions about crop management, pest control,
irrigation, and soil health.3 For example, there are now several
mobile apps that provide farmers with weather forecasts, market
prices, and information on crop diseases and pest management.
Other technologies such as precision irrigation systems and smart
tractors are also being developed to help farmers save water and
energy while improving crop yields. Farmers are able to determine
instantly whether there is a problem on the farm or if anything
might go wrong in the future. Therefore, farmers may simulate
potential preventive actions and assess their effects [7]. Digital
farming is not only beneficial to farmers but it also has the potential
to transform the entire agricultural value chain. By providing better
data and insights, digital farming can help reduce wastage, increase
efficiency and profitability, and ultimately, contribute to food
security for the growing population of India. By leveraging
advanced technologies, farmers can now access a range of tools and
services that can help them improve crop yields, reduce wastage,
and boost profitability [8]. This not only benefits farmers but also
contributes to the overall development of the agricultural value
chain, ultimately leading to food security and economic growth for
the country.

Digital twins have the potential to revolutionize the way
agriculture is managed, by providing farmers with real-time data
about crops, soil conditions, weather patterns, and other important
variables. However, there are several novel and new challenges that
need to be addressed to fully realize the potential of digital twins in
agriculture [9]. Some of the key challenges are data integration,
accuracy and reliability, scalability, data privacy and security, and
user adoption. Agriculture involves multiple data sources, including
data from sensors, satellites, weather stations, and historical records.
Integrating all of these data into a single digital twin platform can
be a significant challenge, especially when the data are
heterogeneous and come from different sources. The accuracy and
reliability of the data used to create digital twins are critical for
making informed decisions. However, sensors and other data
sources may have limitations in terms of accuracy, reliability, and
precision, which can affect the accuracy of the digital twin model
[10]. Agriculture involves large areas of land and multiple crops,
which can make it challenging to scale digital twin models.
Developing scalable digital twin models that can accurately
represent the variability across different fields is an important
challenge. Agriculture involves sensitive data, such as crop yield
data and soil data, which must be protected against unauthorized
access or misuse. Ensuring data privacy and security is critical for
the successful deployment of digital twins in agriculture [11].
Finally, user adoption is a key challenge in deploying digital twins
in agriculture. Farmers may be resistant to adopting new
technologies or may not have the technical skills needed to operate
digital twin platforms. Ensuring that digital twins are user-friendly
and easy to use is important for user adoption [12].

Overcoming these challenges will require collaboration among
stakeholders, including farmers, technology providers, and
policymakers, to develop and implement standardized, cost-
effective, and secure digital twinning solutions that can be easily
integrated into existing farming systems [13]. Digital twinning has
the potential to be very effective for farmers by providing real-time
data on soil health, weather conditions, crop growth, and other
factors that affect crop yields. This can enable farmers to make

informed decisions about when to plant, irrigate, fertilize, and
harvest their crops, leading to increased efficiency and productivity
[14]. The concept of digital twins was developed to address these
problems. By combining complex system analytic techniques,
decision-making, and technological integration, digital twins are
virtual reality simulations of real-world physical systems [15, 16]. The
adoption of digital twinning in digital farming has the potential to
revolutionize the way agriculture is practiced in India. By creating a
virtual replica of the farm, farmers can now simulate and test various
scenarios before implementing them in the real world. This not only
helps in optimizing crop yields but also in reducing resource wastage
and improving efficiency [17, 18]. With the advancements in
technology and the increasing availability of digital tools and services,
the future of digital farming in India looks promising, and it is
essential for farmers to adapt to these new techniques to ensure
sustainable and profitable agriculture in the years to come.

In summary, this review article aims to explore the potential of
digital twins in transforming the agriculture sector in India. It delves
into the applications and challenges associated with digital twins in
agriculture, highlighting the need for collaboration and adoption of
these transformative technologies. By providing a comprehensive
review of the current state and future prospects, this article aims to
contribute to the growing body of knowledge on digital twins in
agriculture and its implications for the agricultural value chain in
India. An extensive literature review has been done to identify the
key applications and challenges associated with the adoption of
digital twins in agriculture. Main aim is to provide readers with
valuable insights into the various aspects of digital twins, including
their impact on decision-making, resource optimization, and crop
management. By analyzing and synthesizing existing literature,
authors have highlighted the importance of digital twins in
addressing the specific needs and challenges of the agriculture
industry in India.

Moreover, this review also sheds light on the necessity of
collaboration among stakeholders, including farmers, technology
providers, and policymakers, to facilitate the successful integration
of digital twinning solutions into existing farming systems.
Authors emphasize the importance of developing standardized,
cost-effective, and secure digital twin platforms to ensure
widespread adoption and benefits across the agricultural value chain.

By presenting a comprehensive overview of the current state and
future prospects of digital twins in agriculture, authors aim to contribute
to the growing body of knowledge in this domain. Through this review,
authors seek to inspire further research and innovations in the field,
ultimately supporting sustainable and profitable agriculture in India
while addressing food security challenges.

2. Literature Review

Digital twins refer to a digital simulation of a physical process or
system that combines artificial intelligence and physical feedback
data so that farmers can automatically make the necessary
adjustments as needed based on the feedback from the physical
data and present the simulation of physical attributes in virtual
reality in real time [19–21]. The customization of complicated
systems is one of the goals of digital twins [22]. Because local
system idiosyncrasies are frequently too complicated to be
accounted for in a general model, digital twins can be employed
to do so. Customized digital twins represent the many scenarios
that the system may face, such as system health, operational
efficacy, and profitability [23], while simulating the distinctive
characteristics of each system instance and deployment. They
provide a range of automated processes, including data collecting3https://www.ibef.org/blogs/digital-agriculture-the-future-of-indian-agriculture
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from sensors, simulations, actuator control, and report preparation.
Operations become more efficient and streamlined as a result,
requiring little to no attention, time, or human knowledge. As a
result, they can run constantly with the fewest possible instances
of human error [24]. Data fusion is another essential component
of digital twins. They can assess potential action outcomes using
data generated by multiple data sources from viewing the physical
twins from various perspectives, intelligently integrating and
enhancing information collected from various sources and
processing it, which would otherwise not be possible using human
senses (e.g., data from sensors, satellites, or information provided
by other proprietors). They may employ human-centric
intelligence to put controls in place for factors that were
previously neglected, such as human–machine interaction for safer
workplaces [25]. Continuous operation along with information
give a complete picture of the system’s past, present, and ability
to forecast future states [26]. They exhibit dynamic behavior, such
as depiction and simulation of past, present, and future behavioral
data of actual items, and go beyond the scope of static product
designs [13, 16, 17]. This will make it possible for farmers and
other interested parties to respond quickly in the event of a
departure from the norm. Since they view systems from several
perspectives, they are also able to quantify the overall impact of
the uncertainties involved. The stakeholders can then receive this
information in a customized manner based on their level of
knowledge [27]. There are frequently inbuilt permission-level
controls in digital twins. Different users may prefer different
report formats and control mechanisms. Consequently, permitting
various levels of data openness and accessibility based on the
significance of the operations being carried out and the sensitivity
of the data being handled [28]. At the start of the century,
Michael Grieves proposed that a virtual system of digital
simulation could be made of a physical system containing the
information of it. It is connected through the entire lifecycle of the
physical system [13]. On these lines, NASA created a simulation
of the spaceship which was of ultra-high fidelity to allow
mirroring of the actual and accurate conditions of the original
spaceship in a mission from the Earth [29]. Grieves [30] proposed
that digital twins’ system should have a framework that includes
the “physical space”, the “virtual space,” and connection of
information flow between the two spaces. Mayani et al. [31] felt
that digital twins are a bridge between the physical and digital
worlds. Poddar [32] and Sharma et al. [33] considered it a virtual

simulated model of a physical entity. Although somewhat
different from each other, none of these definitions has ever
departed from the basic framework of the digital twins. A digital
twin system is made up of both software and hardware parts
(Figure 1 [34]), with middleware acting as the data handling
component.

Digital twins are primarily enabled by IoT sensors, which begin
information transmission between physical items and their digital
representations. Additionally, the hardware includes routers, edge
servers, IoT gateways, and other network hardware. Actuators are
devices that convert digital data into mechanical motions. In fact,
the analytics engine is a crucial part of digital twins because it
turns straightforward observations into useful business data. It
frequently draws strength from model-based machine learning
[35]. A digital twin also has to have dashboards for real-time
monitoring, modeling tools, and numerical simulations. The
middleware for information management is yet another crucial
component. The system is built around a storage system that
gathers data from many sources. In an ideal world, the
middleware infrastructure would also be able to handle
networking, data aggregation, processing, quality control, data
visualization, data modeling and regulation, and many more tasks
[36]. These solutions include universal IoT platforms and
industrial platforms because they typically come with built-in
support for digital twins [34]. The communication bridge between
both spaces is crucial for efficient data interchange. The physical
space is made up of physical items like sensors and actuators,
while the virtual space is made up of “multiphysical, multi-scale,
probabilistic simulation models of a complex model” [37, 38].
Digital twins are used in a variety of industries to meet a variety
of user needs [39]. Researchers have enhanced the original three-
part digital twin structure in order to make its uses more common
in new contexts. The original three-component structure now
includes “digital twins data fusion” and “service system” modules,
and the connections between the spaces have also been
strengthened [40]. Parrott and Warshaw4 also suggested a six-
component structure with five enabling components and a six-step
procedure. Here, “sensors” and “actuators” serve as enabling
elements, with “act,” “create,” and “communicate” serving as the
processes. In contrast, “data” and “analytics” serve as enabling

Figure 1
Components of digital twins system

4https://www2.deloitte.com/content/www/us/en/insights/focus/industry-4-0/digital-
twin-technology-smartfactory.html
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elements, with “aggregate,” “analyze,” and “insight” serving as the
processes in the virtual space. The term “integration” creates a link
between the two spaces. The Product Life Cycle (PLC) can be
designed using a digital twin, which permits fast and efficient
evaluation of design decisions on the goods’ function and quality
without the need for costly physical prototypes [13, 20]. A
physical thing can be realized using the designed digital twin as a
foundation. If there are deviations, it can be changed. During use,
a physical object’s present and past states are tracked using
sensors and AutoID devices. Actuators can also be used to
remotely operate an object. The physical thing is finally disposed
of in the disposal stage, while the conceptual object might not be
disposed of for a while due to traceability, adherence, and training
reasons. In Figure 2, this procedure is depicted.

IoT is a crucial technology for enabling interaction between real-
world and digital twin things. The IoT allows real items to interact,
perceive, communicate, and share knowledge and information with
their digital siblings, or “twins,” as was previously stated [13, 17,
41, 42].5 As seen in Figure 3 [43], the Internet acts as a hub for
digital twins that are used to store data and maintain communication.
These digital twins connect relevant data that are updated regularly
from various sources. Different definitions of digital twins have been
made from both the PLC and IoT perspectives. The mirroring of
physical items throughout their lifecycles, including the emulation of
object activity, is highlighted using the PLC perspective. “A Digital
Twin is a comprehensive physical and functional description of a
component, product, or system, which includes more or less all
information which could be useful in all—the current and
subsequent—lifecycle phases,” Boschert and Rosen stated [16]. A
digital depiction of actual physical items employing sensors is
highlighted from the IoT perspective. Using the IoT approach,
Knibbe described digital twins in 2019 as “computational
representations of both living and non-living things and processes.”
Through the use of data integration, artificial intelligence, and
machine learning, they can be utilized to characterize, evaluate, and
simulate the present and future states of and interventions in these
objects. Using data integration, artificial intelligence, and machine
learning, a digital twin is a dynamic representation of a real-world
object that replicates its states and behavior throughout its lifecycle

and can be used to monitor, analyze, and simulate the current and
future states of and interventions on these objects.6 Digital twins
provide real-time assessment and management by reflecting the
characteristics and capabilities of physical things. It presents a virtual
“mirror space model” of a physical object that allows us to track
deep, multiscale, and probabilistic dynamic state assessment, predict
operational life, and assess task completion rate through the use of
high-performance computations, sophisticated sensor feedback data,
logical data analysis, and more [44]. Digital twins can be used in a
variety of fields, including agriculture, construction, healthcare, the
automotive and aerospace industries, manufacturing equipment, and
other areas, in addition to being integrated with artificial intelligence.

Digital twins can be classified into six distinct types, although
during usage, these features and types can overlap and may not be
independent of each other. They are as follows.

2.1. Imaginary digital twins

They are conceptual twins of objects that are non-existent in real-
life and outline the data needed to form the physical twins. Theymight
consist of functional and resource prerequisites, three-dimensional
models, and discarding and recycling details [13, 17]. They can

Figure 2
Role of digital twins during the Product Life Cycle (PLC)

Figure 3
Digital twins in the Internet of Things (IoT)

5https://www.linksmart.in-jet.dk/hydra_papers/Vision_and_Challenges_for_Realising_
the_Internet_of_Things.pdf 6https://towardsdatascience.com/non-technicalintro-to-digital-twins-d7401b01486
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simulate the behavior of designed, non-existent objects. These digital
twins are purely conceptual and are not based on any existing physical
entity. They are useful for conceptualizing new designs and ideas but
do not offer the benefits of data analysis that other types of digital twins
can provide. It can be used for brainstorming and ideation and has no
limitations based on existing physical entities. But, it does not offer the
benefits of data analysis and cannot be used for predictive or
prescriptive maintenance [13].

2.2. Monitoring digital twins

They are digital counterparts of the actual states and behaviors
of real-life physical objects. They are connected real time (or almost
real time) to their physical twins and can be used to monitor
situations, actions, and external environments [45].

They can be of two types:
1) Descriptive – They give an understanding of the past and present

occurrences concerning the connected real-life physical object
and

2) Diagnostic – They explain the reasons for the past and present
occurrences by linking the real-life physical object with
appropriate information.

Real-time monitoring allows for quick identification and resolution
of issues, optimizing production and reducing downtime. However, its
limitations lie in providing monitoring and analysis only, without the
capability to offer predictive or prescriptive insights [45].

2.3. Predictive digital twins

They give a digital forecast of the future states and behavior of
real-life objects dynamically using real-time (or almost real-time)
information about the physical twin and then employing predictive
analytical methods, like statistical predictions, simulations, and
machine learning methods. They are used in a variety of industries,
including manufacturing and healthcare. Predictive insights allow
for proactive maintenance and optimization, and this can help
reduce downtime and increase efficiency. But this requires
significant historical data for accurate predictions and this may not
account for unforeseen events or changes in the environment [46].

2.4. Prescriptive digital twins

They utilize output from monitoring and predictive digital
twins as an input to intelligently suggest and prescribe remedial
and precautionary measures to attain favorable results based
on optimization algorithms and expert heuristics. They are
commonly used in healthcare and transportation. They can
provide actionable insights to improve performance. This allows
for proactive maintenance and optimization. But this requires
significant historical data for accurate predictions and
recommendations and may not account for unforeseen events or
changes in the environment [46].

2.5. Autonomous digital twins

They can work autonomously without human intervention
and fully control the behavior of real-life objects. They can
self-learn, self-diagnose, and self-adapt to users’ choices. They
can operate autonomously, reducing the need for human
intervention and optimize performance and reduce downtime.
This requires significant historical data and complex algorithms
for accurate decision-making and may not account for
unforeseen events or changes in the environment.7

2.6. Recollection digital twins

They maintain complete historical data and form the digital
memory of the real-life physical objects, which are not existent
any longer in real-life. They can be significant in reducing the
environmental impact of disposal, optimizing the next generation
objects, and product tracing over quality and safety issues. This
can capture and store data about a physical entity for future
analysis and can be used to optimize performance and reduce
downtime. But this is limited to historical data, cannot provide
real-time insights, and also requires sensors and other
technologies to capture data [13].

Overall, each type of digital twin has its own advantages and
disadvantages. The choice of which type to use will depend on
the specific needs and goals of the organization or industry. In
general, the more advanced types of digital twins, such as
prescriptive and autonomous digital twins, require more data and
complex algorithms but offer greater benefits in terms of proactive
maintenance and optimization.

3. Methodology

3.1. Literature search

We conducted an extensive search across various academic
databases, including IEEE Xplore, ScienceDirect, PubMed, and
Google Scholar, using keywords such as “Digital Twin,”
“Agriculture,” “Precision Farming,” “IoT in Agriculture,” and
related terms. The search was limited to publications from the past
decade to ensure the inclusion of recent developments in the field.

3.2. Inclusion criteria

In the initial phase, we screened the retrieved literature based on
relevance to the topic. Only peer-reviewed journal articles,
conference papers, and reputable research reports were considered
for inclusion in the review. We focused on publications that
explicitly discussed the application of digital twin technology in
agricultural practices, encompassing aspects related to crop
management, resource optimization, predictive analytics, and
decision-making.

3.3. Exclusion criteria

Publications that were not directly related to digital twin
technology in agriculture, duplicate studies, and non-English
articles were excluded from the review.

3.4. Data extraction

From the selected articles, we extracted key information, such
as the authors, publication year, research objectives, methodologies,
findings, and limitations. We organized the data in a systematic
manner to facilitate a comprehensive analysis.

3.5. Synthesis and analysis

The extracted data were thoroughly analyzed to identify
patterns, trends, and recurring themes related to the applications
and challenges of digital twins in agriculture. We compared and
contrasted different studies to gain insights into the current state
of the field and the potential future directions.

7https://hbr.org/2014/11/how-smartconnected-products-are-transforming-competition
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3.6. Critical assessment

To ensure the credibility and reliability of the selected literature,
we critically assessed the methodology, data sources, and sample
size of each study. This step helped in evaluating the quality of
the evidence presented in the literature.

3.7. Identification of gaps

Through the analysis, we identified gaps and limitations in the
existing literature, particularly in areas where the application of digital
twin technology in agriculture requires further exploration and research.

3.8. Conclusion and implications

Based on the findings from the literature analysis, we draw
meaningful conclusions and discuss the implications of digital
twin technology in transforming agriculture. We also highlight the
potential benefits and challenges associated with the adoption of
this technology in the agricultural sector.

By employing this approach, we aimed to provide a
comprehensive and well-informed review of digital twin
technology in agriculture, contributing to the existing body of
knowledge and guiding future research efforts in this emerging field.

4. Results

4.1. Application of digital twins in agriculture

Agriculture is an extremely complicated and dynamic industry.
It is reliant on various facets and quirks of Mother Nature, including
the weather, the soil, the climate, and diseases. For farms to meet the
demands of society and consumers for food safety, they must be
effective and quick to adjust to changes in market conditions. To
remain competitive in the market, they must also adhere to quality
and environmental norms, placing a heavy load on agriculture in
terms of hopes and expectations for the future of a nation’s
economy [47, 48]. In order to reinforce agricultural knowledge,
agricultural digital twins use a variety of production models,
system rules, and feedback data collects to represent many parts
of the agricultural production process as physical objects in
physical space [9]. With the help of these, they create dynamic
virtual models that are multidimensional and multiscale and are
based on agricultural entities, rendering diverse agricultural
production processes in virtual reality (Figure 4 [43]).

Through the association of data and learning from it, digital twins
adjust to the initial conditions in each particular physical twin.
With the help of the data interaction that takes place between the
virtual model and the physical process, the dynamic virtual
models continuously interact and optimize on their own to
improve their integrity and obtain exact control over these entities.
Quantitative prediction and decision feedback are carried out
based on these actual agricultural entities as well as requirements.
With the introduction of digital twins in agriculture, the physical
agricultural entity and the digital virtual reality will be connected,
perceived, and controlled (Figure 5). In the long run, this digital
transformation and integration will increase agriculture’s
sustainability and profitability [38].

By giving farmers a digital representation of their actual farm,
digital twin technology can be a key component of digital farming.
Using information from sensors, weather stations, and satellite
photos, a digital twin is a digital depiction of a physical asset, such
as a farm or a particular crop area [12]. It has its roots in the field of
engineering and manufacturing. It involves creating a digital replica
of a physical object or system, which can be used to simulate and
test various scenarios and optimize performance. The use of digital
twinning in agriculture is a more recent development, but it has
quickly gained popularity due to its potential to revolutionize
farming practices [49]. The integration of digital twinning and digital
farming has led to the development of smart farming, which
involves the use of digital technologies such as sensors, IoT devices,
and big data analytics to optimize farming practices and increase
yields. Smart farming enables farmers to monitor and manage
various aspects of their operations, such as soil health, crop growth,
and livestock health, in real time [50]. Digital farming and digital
twinning are two technologies that have emerged in response to the
increasing demand for sustainable and efficient agricultural practices.
The integration of these technologies has led to the development of
smart farming, which has the potential to revolutionize agriculture
and increase food production tomeet the growing demand for food [10].

While digital twins have a wider range of applications in other
fields, including enhancing human–machine interaction safety [25],
building cost and energy proficiency assessments [9, 51], and
providing insights into complex multidisciplinary systems [52],
agronomy has not yet reached the point where they can
demonstrate the same values. Digital twin applications in
agriculture [52], animal husbandry [53], and apiculture [23] have
not yet reached the stage of evaluation. However, the following
are some uses for digital twins.

Figure 4
Virtual control of agriculture by digital twin

Figure 5
Characteristics of digital twins that can benefit agricultural

applications
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In order to monitor the impact and rotation of potatoes during
harvest, Kampker et al. [54] created a plastic “potato digital twin”
in their place. The digital twin of the potato is planted online and
harvested identically to actual ones in their study. It features
sensors that monitor several aspects of the harvesting process,
including blows, shocks, rotation speed, etc. The sensing data are
used to modify the harvester machine’s settings. Thus, crop damage
is reduced. It is then connected to a cloud platform to calculate
potato crop returns and price [54]. Digital twins were used by Linz
et al. [55] to construct field robots for crop treatment and
phenotyping inside vineyards. They used real-time information to
imitate the robots’ autonomous behavior in a virtual 3D
environment and then mirrored it to control the actual robot. They
were able to cut down on the number of tests needed to evaluate
crop treatment results or phenotypes, shorten development lead
times, and measure sensor behavior more accurately [55]. By
building digital twins of the Alphonso, Totapuri, and Kesar mango
kinds, Pattanaik and Jenamani [56] were able to perfectly replicate
the cooling and eminence of mangoes for trade based on airflow
rate and temperature. To research how crop quality and
environmental factors interact and to manage crops, Evers et al. are
developing a digital twin system of greenhouse tomato plants. The
system will be improved using real-time sensor data fed from actual
greenhouses.8 A digital twin system comprised of a single-view leaf
reconstruction approach of plant growth using ResNet deep
learning was proposed by Li et al. [57]. In order to improve animal
welfare, Jo et al. [58] developed a smart digital twin pig farm
system employing their previously introduced digital twin stands
called “Prefix,” “Ditto,” and “Watson” and conducted a feasibility
study on it. One sustainable IoT-based model and a model for
using digital twins in vertical farming were proposed by Monteiro
et al. It focuses on monitoring and regulating the environment
using light and misting [59]. A farm management simulation tool
called AgROS was created by Tsolakis et al. [60] to enable field
testing of autonomous agricultural robots or unmanned ground
vehicles using static object layout characteristics like real fields and
trees. To assist in decision-making, Alves et al. developed an
intelligent IoT-based prototype of a digital twins’ farm system
using data from sensors that measure soil moisture, humidity, and
air temperature as well as data from weather stations, irrigation
systems, and other sensory equipment. They emphasize that farmers
can use a digital twin to make better decisions and lessen their
impact on the environment and natural resources [50]. A
mechanism comprising numerous agents was put forth by Skobelev
et al. [61, 62] for creating digital twins of plants. “A computer
model that imitates its life cycle and synchronises with the living
plant using examinations by agronomists and data on
environmental conditions (weather, soil, etc.)” is how they
described a plant’s digital twin [61, 62]. There are less reports on
digital twins for farming than there are for other industries,
according to Sreedevi and Santosh Kumar [63]. They also
suggested that digital twins could help hydroponic farming by
forecasting potential problems. It can also manage nutrients, soil
pH, illnesses, and weeds, as well as optimize the entire farming
system [63]. AgScan3D+, an autonomous dynamic crown
monitoring system developed by Moghadam et al. [64], creates
digital twins of 15,000 trees and is employed in mango,
macadamia, avocado, and vine orchards. In order to predict illness
and crop loss, a spinning 3D camera creates a model for each tree,

monitors its health, structure, pressure, fruit quality, and other
indications, and gives real-time decision support.

Digital twins could ensure the natural capital of agricultural
landscapes. Satellite data have a lot of potential because it could
replace widely spread sensors that could give evidence. From an
agricultural perspective, digital twins would enable the monitoring
of functions such as river catchment, pollination, water table, and
carbon. If they changed, it would be clear whether our actions or
inaction caused the change. All of these use scenarios can already
be partially satisfied if the proper sensors, models, and interfaces
are invested in. However, because they rely on common models
for crops, animals, agroecosystems, and other things, these would
not quite suit our definition of a digital twin. In order to transform
into a fully functional digital twin of the twinning entity, these
models should develop and adapt [65].

To adapt digital twinning in farming, farmers can follow some
steps such as identifying the problem, selecting the right technology,
implementing the technology, and analyzing the data and continuous
improvement. Farmers should identify the problem they want to
solve or the opportunity they want to pursue using digital
twinning technology. This could be optimizing crop yields,
reducing waste, improving livestock management, or enhancing
resource management [53]. Once the problem has been identified,
farmers should research and select the digital twinning technology
that best suits their needs and budget. This could involve selecting
sensors, drones, weather stations, or other technologies that can
provide the necessary data. Once the technology has been
selected, farmers should implement it by installing the necessary
hardware and software, collecting and managing data, and
integrating it into their existing farming systems.9 Once the
technology has been implemented, farmers should analyze the
data collected by the technology to gain insights into crop yields,
weather conditions, soil health, and other factors that affect
farming. This analysis can help farmers make informed decisions
about when to plant, irrigate, fertilize, and harvest their crops. As
farmers gain experience with digital twinning technology, they
should continuously improve their use of the technology by
refining their data analysis techniques, integrating additional
technologies, and collaborating with other stakeholders in the
farming ecosystem. In conclusion, digital twinning is an effective
technology that farmers can use to optimize their farming
practices and increase efficiency and productivity [66]. Here are
some potential future aspects of digital twin farming and how they
could help farmers economically.

4.1.1. Precision agriculture
Digital twin farming can enable precision agriculture by

providing farmers with detailed insights into the health and growth
of their crops. With this technology, farmers can use sensors and
other data collection tools to monitor soil moisture, nutrient levels,
and other key indicators. This information can then be used to
make data-driven decisions about when to water, fertilize, or
harvest crops, which can help farmers save money by reducing
waste and increasing yields [61, 62].

4.1.2. Predictive analytics
Digital twin farming can also help farmers predict potential

issues before they become major problems. By analyzing
historical data and real-time sensor data, digital twins can identify
trends and patterns that may indicate issues such as pest
infestations, crop diseases, or soil deficiencies. This early warning

8https://www.npec.nl/news/wur-is-working-on-digital-twins-for-tomatoes-food-and-
farming/ 9https://repositorio.cepal.org/handle/11362/46817
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system can help farmers take proactive measures to prevent losses,
which can help them save money and increase profitability [67].

4.1.3. Climate-smart farming
With the increasing threat of climate change, farmers need to

adopt more sustainable and climate-smart practices. Digital twin
farming can help by providing farmers with real-time data on
weather patterns, soil conditions, and other environmental factors.
With this information, farmers can adjust their practices to
mitigate the impact of climate change and ensure their crops are
resilient to extreme weather events. This can help farmers reduce
risks and maintain their profitability over the long term [68].

4.1.4. Autonomous farming
Digital twin farming can also enable autonomous farming by

leveraging the power of machine learning and artificial
intelligence. With autonomous farming, farmers can use robots
and other automated tools to plant, harvest, and maintain crops.
This can help farmers save time and money on labor costs, while
also reducing the risk of human error. Additionally, autonomous
farming can help farmers achieve higher levels of precision and
efficiency, which can help them increase yields and profitability [69].

4.2. Challenges and limitations

The use of digital twin technology has been hailed as
groundbreaking in numerous industrial fields. Its promise in
agriculture is currently far from being realized. The more complex
systems that digital twins aim to digitize are one of the key reasons
why there are not more implementations. The majority of
agronomical systems are complex living systems made up of
intricate and dynamic agricultural practices, which makes it
challenging to establish a foundation [10]. Beyond the current
capabilities of digital twins’ dynamic behavior, the process dynamics
demand skills. This issue is still present in the healthcare industry
[70]. In such a dynamic process, it is difficult to obtain a seamless
access to object information while maintaining sufficient data
integrity. Furthermore, it can be challenging to meet real-time
synchronization requirements in remote locations due to a lack of
funding [11]. The fact that farming requires numerous interrelated
objects, such as involvements such as seeds, fertilizers, and
pesticides; materials involving objects concerned with agricultural
production and resources like fields, machinery, and manpower; and
different forms of agricultural output such as harvests, adds to the
dynamism and complexity mentioned above. Managing the
relationships between several digital twins used in farming that have
varying granularity levels is difficult [20].

Another characteristic indicating the acceptance of digital twins
in agronomy is that the group must come to believe in the interaction
of the components of the digital twins in order for it to be accurate.
This key goal is to accurately represent a system’s internal operations
and to provide maintenance schedules and alternative administrative
methods [71]. It is difficult to acquire this faith since many
conclusions have an influence on living systems that is difficult to
reverse. Additionally, the less data culture slows down adoption in
agronomy, necessitates vast volumes of data to operate, and does
not provide the anticipated benefits in small-scale deployments
[22]. The integration of digital twins’ components and their real-
time updating can be difficult for a culture that is highly
transdisciplinary and less focused on IT [72]. Due to the variance
in the design of digital twins run by different customers, dynamic
integration of data gathered from many stakeholders and
subsequent data fusion into a single model in a virtual space is

another challenge. External investors need to have secure access
to digital twins, and the solution they use should enable them to
add historical and future data archives and resources, such as past
and satellite data inputs, weather forecast inputs, and analyses of
soil, water, and air conditions to the digital twins [73]. Although
they are not exhaustive, each of these datasets provides a variety
of signals. Loopholes will develop if there is a lack of information
or if the parameter is not carefully examined. For instance,
extrapolating these measures from other data is typically simple.
As a result, digital twins often contain a computer modeling
framework that fills in these gaps [74]. These systems must go
beyond simple models, like those used to forecast grass
development, and accurately reflect the relevant chemical,
physical, and biological processes taking place in the field.
Learning capability is a need, and the model must faithfully
represent the actual variety of grass species seen in the field [75].
Additionally, they need to make it simpler for the decision-maker
to access exceedingly complex information. It is not required to
have a complex digital twin. Since it would be difficult to
estimate the exact amount of digestible dry matter contained in a
field of grass, it is crucial that they are realistic enough [65].

In spite of many potential benefits for agriculture, there are also
some drawbacks to consider. Here are some of the main drawbacks.

4.2.1. Cost
Digital twin can require significant investment in technology

and infrastructure, such as sensors, data management systems, and
software. This can be a barrier for small-scale farmers who may
not have the financial resources to invest in this technology [76].

4.2.2. Data privacy and security
The use of digital twin technology involves collecting and

analyzing large amounts of data. These raise concerns around data
privacy and security, as farmers must ensure that their data are
protected from cyber threats and other unauthorized access.

4.2.3. Technical complexity
Digital twin technology can be complex, requiring specialized

skills and expertise to implement and manage. This can be a
challenge for farmers who may not have experience with these
technologies [77].

4.2.4. Environmental impact
While digital twinning can help farmers optimize their use of

resources, such as water and fertilizer, the technology itself may
have an environmental impact. For example, the use of sensors
and other electronic devices can create electronic waste, and the
energy required to power these devices can contribute to
greenhouse gas emissions [11].

4.2.5. Limited access to technology
In some cases, farmers may not have access to the necessary

technology infrastructure, such as reliable Internet connectivity or
electricity supply, to support the use of digital twin technology [78].

Regarding eco-friendliness, digital twin can be both beneficial
and detrimental to the environment. On one hand, digital twinning
can help farmers optimize their use of resources, reduce waste,
and adopt sustainable farming practices. This can contribute to
more eco-friendly agriculture. On the other hand, the technology
itself may have an environmental impact, as mentioned above.
Therefore, it is important to consider the overall environmental
impact of digital twinning in agriculture and work toward
minimizing any negative effects [79].
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4.3. A hypothetical suggested model for
improvement of digital twins in agricultural sector

The proposed model involves developing a digital twin model
for predicting crop yield and quality in agriculture. The model will
utilize data from various sources such as soil sensors, weather
forecasts, and historical yield data to generate accurate predictions
of crop yield and quality. This will enable farmers to optimize
their crop management practices and make informed decisions
regarding planting, fertilization, and irrigation.

The proposed digital twin model will differ from existing
methods in several ways. First, it will leverage advanced machine
learning algorithms to process and analyze large volumes of data
from various sources. This will enable the model to generate more
accurate predictions than traditional statistical models that rely on
simpler data processing techniques. Second, the proposed model
will incorporate real-time data from sensors and other sources to
continuously update its predictions. This will enable farmers to
make timely adjustments to their crop management practices based
on the latest information. Third, the model will be designed to be
highly scalable and customizable, allowing it to be adapted to a
wide range of crops and farming environments. This will make it a
valuable tool for farmers across different regions and climates. In
summary, the proposed problem of developing a digital twin model
for predicting crop yield and quality has the potential to
significantly improve agricultural productivity and sustainability.
The model’s ability to leverage advanced machine learning
algorithms, real-time data, and scalability will set it apart from
existing methods and make it a valuable tool for farmers worldwide.

Here is a proposed method section for the problem of
developing a digital twin model for predicting crop yield and
quality in agriculture. Our proposed method is illustrated through
a flow chart in Figure 6.

4.3.1. Data collection
The first step in developing the digital twin model is to collect

relevant data from various sources such as soil sensors, weather
forecasts, and historical yield data. These data will be used to
train and validate the model.

4.3.2. Data preprocessing
Once the data are collected, it needs to be preprocessed to

remove any inconsistencies and errors. This step involves data
cleaning, normalization, and feature engineering to extract
relevant features from the data.

4.3.3. Model development
In this step, we will develop a deep learning model that can

effectively predict crop yield and quality. The proposed model
will be based on a convolutional neural network (CNN)
architecture that has shown promising results in image
classification tasks. The model will take input data from various
sources and predict crop yield and quality based on that data.

4.3.4. Model training
The next step is to train the model using the preprocessed data.

We will use a combination of supervised and unsupervised learning
techniques to train the model. The supervised learning will involve
using labeled data to train the model, while unsupervised learning
will be used to learn patterns and relationships in the data.

4.3.5. Model validation
After the model is trained, it needs to be validated using a

separate dataset to ensure that it can generalize to new data. We
will use k-fold cross-validation to evaluate the performance of
the model.

Figure 6
Proposed method for revolutionizing modern agriculture through digital twins

Artificial Intelligence and Applications Vol. 2 Iss. 4 2024

258



4.3.6. Model optimization
In this step, we will optimize the hyperparameters of the model

to improve its performance. We will use techniques such as grid
search and random search to find the best hyperparameters.

4.3.7. Real-time integration
Once the model is optimized, it needs to be integrated into a

real-time system that can provide farmers with up-to-date
predictions of crop yield and quality. This will involve setting up
a data pipeline that collects real-time data from various sources
and feeds it into the model.

4.3.8. Evaluation and comparison
Finally, we will evaluate and compare the performance of the

proposed digital twin model with existing methods. We will use
metrics such as accuracy, precision, recall, and F1-score to
evaluate the model’s performance.

The proposed methodology incorporates the latest ideas in deep
learning concepts such as CNNs and hyperparameter optimization
techniques to achieve the best results [80]. The use of CNNs
enables the model to effectively process and analyze complex data
from various sources, while hyperparameter optimization ensures
that the model is fine-tuned for optimal performance.
Additionally, the real-time integration of the model into a data
pipeline ensures that farmers have access to up-to-date
predictions, enabling them to make informed decisions about crop
management practices. Overall, the proposed methodology
provides a comprehensive approach for developing a digital twin
model for predicting crop yield and quality in agriculture.

5. Conclusion and Future Prospects

This article highlights the increasing significance of digital twin
technology in India’s agriculture sector. By utilizing advanced
technologies, farmers can access tools and services to enhance
crop yields, minimize wastage, and improve profitability,
contributing to the overall development of the agricultural value
chain. The potential of digital twins in agriculture is immense,
especially with the further growth of artificial intelligence
technology and virtualization in agriculture.

Digital twin technology in farming is playing an increasingly
important role in India’s agriculture sector. This not only benefits
farmers but also contributes to the overall development of the
agricultural value chain, ultimately leading to food security and
economic growth for the country. This technology holds a huge
amount of promise for the upcoming years to come with further
growth of artificial intelligence technology and virtualization of
agriculture. Some of the future scopes of digital twin technology
in daily life could include:

1) Healthcare: Digital twins could be used to create personalized
medical treatments for patients by modeling their anatomy,
physiology, and genetic makeup. This could lead to more
effective and efficient treatments and better patient outcomes.

2) Transportation: Digital twins could be used to simulate traffic
patterns and optimize traffic flow, leading to reduced
congestion and improved transportation efficiency. They could
also be used to model the behavior of autonomous vehicles
and optimize their performance.

3) Manufacturing: Digital twins could be used to optimize the
design and production processes of manufacturing plants,
leading to reduced waste and improved productivity.

4) Energy: Digital twins could be used to model energy systems and
optimize energy usage, leading to reduced energy consumption
and lower carbon emissions.

Digital twin technology will be more advanced and adopted into
different agricultural sectors. It can be used as a basis for the
complicated interactions of agronomical production processes to
obtain agricultural information. For instance, a digital twin plant
model can be created to simulate the expected life cycle of the plant
based on environmental factors in advance. This technology allows
for fully automated production and processing, which reduces
production costs. By modeling the animals and compiling data on
their living conditions, dietary needs, etc., it can be utilized to
create a virtual farm breeding environment. To enable smooth data
integration and operation, a standard interoperable digital twin
technology must be established. We also need to provide them
access to a great number of sensors and a huge amount of data to
help them construct the ideal digital twin model so they can quickly
analyze the data and understand the issues. To boost the
effectiveness of the models, we must also create a sizable database.
The development of digital twin models must be done in a way that
makes them applicable in all fields, regardless of the weather and
other factors. Therefore, we must provide the systems with a vast
volume of unfiltered data from numerous fields globally. In order to
solve the issues, it is also vital to gather data from the local
population and incorporate it into the database, as doing so will
improve the accuracy and effectiveness of digital twin models. To
create digital twins that are more precise in the agricultural and
other industries, scientists and engineers from all around the world
must collaborate. The adoption of digital twin technology,
particularly in agriculture, is still in its infancy; it may be inferred
from this. Integrating the various forms of data that are available to
effectively describe an agricultural system or object from start is a
difficult undertaking for academics. While some low-level tasks can
be completed without human assistance, most decision-making
tasks require physical intervention. Advanced uses of digital twins
for prescribing and predicting throughout the lifecycle have not yet
been fully explored and require more study. Building a fully
autonomous simulation without requiring human involvement is a
significant problem and a future research goal.

Overall, this article emphasizes thatwhile digital twin adoption in
agriculture is still in its early stages, it holds tremendous potential.
Further research is needed to explore advanced applications of
digital twins throughout the agricultural lifecycle and to build fully
autonomous simulations without human intervention. The potential
impact of this technology on agriculture and other sectors can be
transformative, promising a future of enhanced crop productivity,
environmental sustainability, eco-friendly agripreneurship, and
greener economic growth.
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