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Abstract: Recently, transfer learning technique has proved to be powerful in enhancing development of deep learning methods for sickle cell
disease (SCD) detection as a complement to the clinical method where a hemoglobin electrophoresis machine is used. This is evidenced by a
number of models and algorithms with ≥90% prediction accuracy. From literature, most of the proposed methods are trained and tested on
pre-trained deep learning models like VGG16, VGG19, ResNet, Inception_V3 and ReNet. However, training and testing of these methods are
limited on one model and separate dataset which may lead to biased results due to implementation in variation of these models which affects
results produced. To this end, there exists a need to evaluate the SCDmodels using the same dataset. Thus, in this research study, we carried out
a comparative investigation and evaluated predominate pre-trained models used to detect SCD using the same dataset to ascertain which one
has the best accuracy. We used secondary dataset obtained from an online dataset. In our study, we have discovered that Inception V3 yielded
the highest accuracy of 97.3% followed by VGG19 at 97.0%, VGG16 at 91%, ResNet50 at 82% and ReNet at 67%, and the CNN-scratch
model achieved 81% accuracy. Results from our study will aid researchers and industry practitioners to make decision on the best deep
learning model to use while detecting SCD.
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1. Introduction

Blood is an important fluid in human body with the red blood
cell (RBC) being the prime components which contains the
hemoglobin responsible for gaseous exchange. The normal shape
of a RBC is biconcave, its size is between 6.8 and 7.8 μm in
diameter and between 2 and 2.5 μm in thickness (Walker et al.,
1990); however, due to certain disorders such as sickle cell, this
shape can be deformed into an ovalocytes (C shape), thus
resulting into sickle cell anemia (SCA) (Breakey et al., 2017).
This abnormal shape makes it difficult for sickle cells to move
through the bloodstream, hence decreasing the oxygen flow
(Alzubaidi et al., 2020). Sickle cell anemia is a blood disorder
characterized by structurally abnormal hemoglobin which deforms
the RBCs into an ovalocyte (Breakey et al., 2017; Rakshit &

Bhowmik, 2013). Today, millions of people around the globe
have inherited the sickle cell mutation and those carriers of the
trait have more than 300,000 children born each year with SCA
(Hernandez et al., 2021). In Africa, 75% of the annual global
SCA births occur in sub-Saharan Africa where there are currently
no institutional newborn screening programs, resulting in children
going undetected and dying at a very young age (Hernandez
et al., 2021). This current statistic reveals that burden of sickle
cell diseases (SCDs) has increased recently as compared to
previous years where over 220,000 children were born with sickle
cell anemia worldwide (Green et al., 2016), and these statistics are
expected to increase by 50% by 2050 if no intervention is put in
place (Chy & Rahaman, 2018). 50% of the children living with
sickle cells in low-income countries are anticipated to die due to
lack of diagnosis and treatment (Yang et al., 2013).

These rapidly increasing statistics have attracted a global
concern to advocate for early diagnosis of SCA in high-burden
countries. In recent years, several techniques for diagnosing
SCA have been used (Alzubaidi et al., 2020). The manual
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technique for examining the blood smear has heavily relied on a
pathologist’s skills. It is a comprehensive and tiresome task.
On the other hand, application of Artificial Intelligence
specifically deep learning techniques is among the recent alternative
technologies to provide faster, cheap and more accurate diagnosis of
SCA (Kumar et al., 2022) as compared to the clinical hemoglobin
electrophoresis machine which is too expensive to be enrolled in
every hospital (Vicent et al., 2022). As a result, a number of
models and algorithms for SCD detection have been developed.
For example, many researchers have utilized pre-trained and fine-
tuned the model to detect SCA, such as VGG16, VGG19,
ResNet, Inception_V3 and ReNet. However, from literature,
all these models are trained and tested on separate and
individual datasets whereby each study claims having the best
accuracy in detecting SCA; thus, there exist a need to evaluate
these models on same dataset. In this research study, we carried
out a comparative investigation on predominate deep learning
techniques used to detect SCD to evaluate their accuracy on the
same dataset.

2. Common Deep Network Architectures

In the previous section, we listed some of the deep networks that
have been widely applied to diagnose sickle cells; in this section, we
present a detail review of these networks.

2.1. VGG

The Visual Geometry Group (VGG) is a convolutional neural
network (CNN) developed by VGG from University of Oxford
(Simonyan & Zisserman, 2014). They developed several models
including the VGG16 which is their first model released in 2013
(Garcia-Garcia et al., 2017). The model was named VGG16 due
to the fact that it is composed of 16 weight layers. The model
becomes popular after its submission to the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) in 2013. The model
achieved 92.7% accuracy. The success for VGG16 paved way for
VGG19 which was released in 2014 (Shaha & Pawar, 2018). The
model comprises of 19 layers including 16 convolution layers and
3 fully connected layers.

2.2. ResNet

ResNet also known as Residual is well known for its depth (152
layers), and the model won the ILSVRC-2016 with 96.4% test
accuracy (He et al., 2016). The model was introduced by
Microsoft in 2015. In order to solve complex problem, there are
additional layers stacked in deep neural network which improves
accuracy and performance. The reason behind additional layers in
ResNet is that these layers progressively learn more complex
features for example during image processing, the first layer may
detect the edge, the second layer detects the texture, and the
next layer detects the object. This improves the performance
accuracy of the model. During model training, the model depth
may be reduced; hence, models such as ResNet-50 have been
introduced.

2.3. Inception

Inception also known as GoogleNet was invented by Szegedy
et al. (2015). Compared to VGG, Inception achieved 93.3% accuracy
and it won the 2014 ILSVRC challenge of Top-5 test accuracy
(Garcia-Garcia et al., 2017). It is composed of 22 layers and a

building block known as “inception module.” The modules in
inception consist of Network in Network layer, a large-sized
convolution layer, small-sized convolution layer and pooling
layer, thus creating a provision for stacking CNN in multiple
ways. The computation of these layers is parallel in nature with a
1 × 1 convolution operation which reduces dimensionality.

2.4. ReNet

Graves et al. (2007) proposed a Multi-dimensional Recurrent
Neural Network (MDRNN) architecture to extend the Recurrent
Neural Network (RNN). In MDRNN, each dimension replaces a
single recurrent connection in RNN with d connection where d is
the number of spatio-temporal data dimensions. It is upon this
setup that (Visin et al., 2015) built ReNet architecture where
sequence RNN replaces the multidimensional RNN. In ReNet, the
number of RNNs increases linearly at each layer based on the
number of input dimensions.

2.5. CNN-Scratch

Besides pre-trained models, in this study, we developed a CNN
from scratch using the following CNN layers discussed below;

Convolutional layer: this is the core building block used in
CNN. This layer consists of a number of filters commonly known
as kernels used for extracting bio-markers (features) from the
input image. To improve feature extraction accuracy, Rectified
Linear Unit (ReLu) was used to activate neuron (nodes) through
which data and computation flow.

Pooling layer: To avoid pixelated and blurry-looking output
images, we applied downsampling to decrease the size of the feature
matrix obtained after passing the input image through the convolution
layer. This was achieved by passing a filter over the results of the
convolution layer selecting one number out of each group of values.

Fully connected layer: also known as linear layer applies a
linear transformation to the input vector via a weight matrix.
Thus, all possible layer-to-layer connections are present; hence,
every input vector influences every output vector.

The developed model contains a total of three blocks. In the first
block, we applied three convolution layers each having 32 filters, 3× 3
in size and aReLu function. This is followed bymax pooling layer with
64 filters, 3× 3 in size and a pool size of (2, 2) for downsampling. The
third block is similar to the second block, only that 128 filters are used
in the third block. To cater for overfitting,we utilized dropout technique
with a threshold of 0.2 at each block. To generalize results, the
threshold value was adjusted to 0.5. Finally, we applied a dense
layer to minimize the vector height from 64 to 2 elements. The
output of the developed model is a binary classification; that is, an
image is either classified as sickle or non-sickle cell (normal).

3. Literature Review

In this section, we discuss various deep learning techniques,
which have been efficiently used in detection of SCD and other
diseases. Deep learning methods like deep CNNs (Xu et al., 2017)
and RNNs (Breakey et al., 2017) have been used to detect SCD.
Das et al. (2019) provide a detailed methodological review
about deep learning technique and tools used to detect SCD.
Vicent et al. (2022) developed an algorithm to detect presence of
sickle cells in overlapping RBCs. In their method, canny edge and
double threshold machine learning techniques were used to separate
overlapping cells of digital blood smears. From the results, the
algorithm achieved 98.18% accuracy automation detection of
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overlapping RBCs for sickle cell diagnosis. In Kiruthika et al. (2022),
authors automated detection of sickle cells by image splitting, to
achieve their objective, watershed segmentation techniques was
applied on RBCs to extract parameters used for sickle cells
analysis. Begum et al. (2018) proposed a method for classifying
sickle cells using image processing techniques; in this study,
authors used Otsu thresholding to segment microscopic images of
RBCs, whereas Naïve Bayes, random forest support vector machine
and logistic regression were used for model training and testing.
Alzubaidi et al. (2020) applied deep learning techniques to detect
SCA from microscopic RBC images. The model achieved 99.98%
classification accuracy. Despite the accuracy achieved by these
methods in detecting sickle cells, training and testing of these
methods are limited on one model and separate dataset which may
lead to biased results due to implementation in variation of these
models which affects results produced.

Furthermore, deep learning techniques have been widely
applied in medical imaging; for example, Nahid et al. (2020)
applied multichannel CNN to detect radiographs for pneumonia
diagnosis. In their work, VGG16 and VGG19 pre-trained models
were used to train their model. In a study by Daoud et al. (2020)
deep learning techniques were applied to classify ultrasound
breast tumor images to detect breast cancer. The model achieved
96.1% detection accurate. This clearly implies the model could
possibly detect breast cancer by image processing using
ultrasound images. Yang et al. (2021) proposed a method that
utilizes peripheral blood images to diagnose acute leukemia. In
their method, color clustering, mathematical morphology and image
segmentation were performed, whereas CNNs were used to classify
the cells. The model achieved 85.8% classification accuracy and
94% diagnosis accuracy (Yang et al., 2021). Kasani et al. (2020)
applied VGG19 and NASNetLarge in their proposed method for
classifying leukemic B-lymphoblast cells and B-lymphoid precursor
cells; the model diagnosis accuracy was 96.58%.

Besides, transfer learning methods have registered success in
medical image classification; for example recently, Alshazly
et al. (2021) utilized transfer learning to train a model for
COVID-19 diagnosis using chest CT images, and the model
achieved 92.9% accuracy on COVID-19-CT dataset. A model for
classifying clostridioides difficile bacteria cytotoxicity was trained
using transfer learning and achieved 93.5% accuracy on 369 images
(El-Khatib et al., 2020). Models used in all these studies are based on

deep learning techniques where majority apply CNNs. However, all
the models were trained and tested on separate dataset and each
model claims to have the best accuracy. In this research study, we
evaluate commonly used deep learning models used to detect
sickle cell on the same dataset.

4. Research Methodology

4.1. Dataset acquisition

We used secondary dataset obtained from an online dataset for
digitized thin blood films of SCD detection; these images were
collected by Manescu et al. (2023). These images were collected
using a custom-built brightfield microscope fitted with a 100X/
1.4NA objective lens, a color camera and a motorized x–y sample
positioning stage. To improve image quality, z-stacks were
projected onto a single (xy) plane using a Wavelet-based
Extended Depth of Field algorithm. The prepared images were
then exposed to a hemoglobin electrophoresis to obtain hemoglobin
phenotype and test patient for SCD. This dataset was collected with
support from UK Research Council and College of Medicine of the
University of Ibadan, Nigeria. This dataset is publicly available:
https://doi.org/10.5522/04/12407567

4.2. Ethical consideration

We did not consider ethical approval since the collection
process of the secondary dataset used in this study met
international ethics obtained from ethics committee at the Institute
for Advanced Medical Research and Training (IAMRAT) of
College of Medicine, University of Ibadan.

4.3. Data pre-processing

The blood films had variation (noise), and these variations are as
a result of unwanted cells like white blood cells, uncontrolled light
intensity, and mechanical shifts of the microscope used in taking the
photos. Therefore, enhancement neural network as shown in Figure 1
was applied to standardize images and improve their quality in
terms of spatial and spectral features, hence transforming them
to look closely similar to those taken using benchtop microscope.
As discussed earlier, dropout technique with a threshold of 0.2

Figure 1
Model development activities
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at each block was used to eliminate overfitting. During data cleaning,
a total of 678 images were dropped by the filter due
to weak pixels; hence, they could not be standardized. The
remaining 4322 images were divided into two subsets, that is,
3000 images for model training and 1322 for testing.

4.4. Image segmentation

The cleaned blood films were exposed to a segmentation neural
network with two layers, convolutional layer, and pooling layer, as
shown in Figure 1 to extract sickle cell screening features. In each
layer, we used a total of 32 filters, each with 3× 3 dimensions. The
convolutional layer receives the cleaned image from enhancement
neural network as input to perform semantic segmentation of the
blood cells. The segmentation network determines the number of
normal and sickle cells within each image. The newly formed
image was subjected to the pooling layer with a pool size of (2× 2)
and stride of 2 pixels which reduced the number of trainable
parameters while maintaining the image quality (composition). To
achieve this, we reduced the image size to 64× 64 pixels by
focusing on larger areas of the input parameter.

4.5. Classification

To classify RBC slide films into sickle and normal cells,
we used CNN-based transfer learning method with different
pre-trained models including; VGG16, VGG19, Inception
V3, ResNet50 and ReNet. Furthermore, we also applied
classification by CNN-scratch method, this was done in five
steps as follows:

(1) Data loading and normalization: we first defined the
transformation to apply to the training and testing dataset; in
this case, we used 3D transformation. The images were then
converted from its original format into a tensor that was used
with the torch library to normalize the data. We fine-tuned the
images by splitting it into batches to enhance constant
learning and enhance the model.

(2) Defining filters to use: A total of 32, 64 and 128 filters were used
in the 1st, 2rd and 3rd block, respectively to smoothen, sharpen
and enhance the dataset.

(3) Loss function and optimizer definition: Cross-entropy Loss from

of 3,000 images using varying epochs; that is, the epochs
scale was shifted to improve model accuracy on training
dataset.

PyTorch was used to calculate the loss during training. This was
done through combining the log softmax and negative log
likelihood. The softmax was used to scale the classification
numbers into probability for each outcome, and the negative
log likelihood was used in tandem with softmax to calculate
the loss based on the range of its function and PyTorch’s
optimizer was used for optimizing.

(4) Model training: The model was then trained on a total

(5) Model testing: Step 4 was reported on testing dataset to assess
model accuracy. Model performance for the different
proposed pre-trained models and training from scratch method
was evaluated and compared using four performance metrics,
including precision, recall, accuracy and F1 score, as shown
in equations (1–4).

Accuracy ¼ Tp þTn

Tp þTn þ Fp þ Fn
(1)

Precision ¼ Tp

Tp þ Fp
(2)

Recall ¼ Tp

Tp þ Fn
(3)

F1� score ¼ 2
Precision � Recall
PrecisionþRecall

� �
(4)

The proposed models were trained on a total of 3000 images
including 1730 images of sickle cells and 1270 images of
non-sickle cells. We used cross-entropy function and PyTorch’s
optimizer to reduce the dimensions of the extracted features.
Training was done in the form of batch processing using a
batch of 100 and 36 epochs. To test the proposed model, we
used a total of 1322 images. Both model training and testing
were done using Python library for training, running on a
standard laptop with 32 GB RAM, 3.1GHz processor speed

Where:
Tp is true-positive value, Tn is true-negative value, Fp is false-

positive value, Fn is false-negative value.

with a GPU.

5. Results and Discussion

The curves in Figures (2–13) and Tables 1 and 2 represent
model performance on both training and testing dataset for
VGG16, VGG19, ResNet50, Inception V3, CNN-scratch as
shown below.

Table 1 presents the performance metrics on testing dataset for
each of the proposedmodels for detecting sickle cells. As observed in
Table 1, Inception version achieved the highest performance with
100%. The model loss on training and testing dataset was 0.0016
and 0.4721, respectively. VGG19 achieved 99% accuracy with
0.97 recall, F1-score of 0.98, and the model loss was 0.082.
Among other pre-trained models, VGG19 achieved better results
with 97% accuracy, followed by ResNet50 with 82% accuracy,
and ReNet had the worst performance on training dataset with
69% accuracy and 0.66 training loss. 0.98, and the model loss
was 0.082. Among other pre-trained models, VGG19 achieved
better results with 97% accuracy, followed by ResNet50 with
82% accuracy and ReNet had the worst performance on training
dataset with 67% accuracy and 0.66 training loss. CNN-scratch

Figure 2
VGG16 model accuracy
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Figure 5
VGG19 model loss

Figure 6
ResNet50 accuracy

Figure 7
ResNet50 model loss

Figure 8
Inception V3 model accuracy

Figure 3
VGG16 model loss

Figure 4
VGG19 model accuracy
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model, that is, training from scratch, achieves 81% precision, 81%
recall, 81% F1-score, 81% accuracy and 0.39 training loss which
is better than ReNet and slightly less than the pre-trained models.
This results can be attributed to the less dataset used to train the
model due to the fact that training from scratch needs a large
dataset compared to the pre-trained models.

Table 2 presents model performance for the above-mentioned
pre-trained models and the proposed model (CNN-scratch). For the
training dataset, Inception V3 and VGG19 yield a similar
performance with 97% accuracy, 97% precision, 97% recall, 97%
F1-score, and the testing loss was 0.14, followed by VGG16 with
91% accuracy, 91% precision and 91% recall. The F1-score for

Figure 9
Inception V3 model loss

Figure 10
Scratch model accuracy

Figure 11
Scratch model loss

Figure 12
ReNet model accuracy

Figure 13
ReNet model loss

Table 1
Model performance on training dataset

Models Precision Recall F1-score Accuracy Training loss

VGG16 0.99 0.97 0.98 0.99 0.082
VGG19 0.97 0.97 0.97 0.97 0.14
ResNet50 0.82 0.82 0.82 0.82 0.37
Inception v3 1.00 1.00 1.00 1.00 0.0016
Scratch 0.81 0.81 0.81 0.81 0.39
ReNet 0.67 0.67 0.67 0.67 0.66
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VGG16 was 91%, whereas the model has a 0.29 testing loss as
observed in Table 2 and Figure 3. ResNet50 yielded better results
with 75% accuracy and 75% recall, 75% precision and 75%
F1-score as compared to ReNet which had poor performance with 68%
accuracy and 0.65 testing loss. CNN-scratch achieved similar results
81% for all performance metrics used as observed in Tables 1 and 2.

Comparing VGG models, VGG19 yielded fairly better results
compared to VGG16. The VGG19 architecture has three more
weight layers as compared to VGG16 which facilitates faster
training speed, fewer training samples per time and improved
accuracy, unlike VGG16 which requires more training time and a
bigger training dataset to increase accuracy. The two models were
trained using the same size of the dataset and for the same period
of time. Thus, increasing the dataset and training time for VGG16
can improve its performance. In both models, a total of 32 filters
were used, reducing filters would also increase performance in
both cases since the higher the number of filters the higher the
number of abstraction to the network which reduces its performance
in extracting features from the image.

ResNet50 and ReNet networks require much more dataset
than any other traditional deep learning models; thus, the poor
performance of the two networks is attributed to the size of the
dataset used in this study and can be improved by training the model
for a longer time using a bigger dataset. Inception v3 achieved a
better performance compared to other networks on both training and
testing dataset. This is due to it's inception blocks capable of
convolving same input tensor with multiple filters hence facilitating
easier and faster extraction of features in a shorter training time.

The concept of transfer learning has been widely applied in the
detection of sickle cells; for example, a study by de Haan et al. (2020)
utilized deep learning techniques in their framework for detecting
sickle cell using blood smears taken with smartphone microscope.
The framework achieved 98% accuracy; also, Vicent et al. (2022)
reported 98.18% accuracy automation detection of overlapping
RBCs for sickle cell diagnosis. Arishi et al. (2021) conducted a
review study on current and emerging techniques for SCD
detection and highlighted potential methods for early diagnosis
of SCD. In their findings, technologies such as coupling solubility
tests with portable devices, smartphone-based microscopic
classifications, image processing techniques, rapid immunoassays
and sensor-based platforms were sported out. Each of these
platforms utilizes deep learning transfer learning techniques.

However, these studies are either limited to one or few
pre-trained models or utilized training from scratch method; for
example, de Haan et al. (2020) utilized scratch method. In this
study, we have considered four different CNN pre-trained
models, ReNet and training from scratch method and evaluated
these models using the same dataset. Thus, accommodating for a
wider range of potential current deep learning techniques for
SCD detection.

6. Conclusion

Authors of this paper believe that this is the first of its kind to
conduct comparative study on performance of deep networks
used in detection of SCD on the same dataset. A number of models
and algorithm for SCD detection have been proposed; however, the
scope has been limited to one or two deep network(s). In this
study, we performed an experiment where a total of five deep
networks including VGG16, VGG19, Inception V3, RestNet and
ReNet were compared in term of training and testing performance.

We discussed some of the commonly used deep networks
for image processing; later, we reviewed some of the studies
where these networks have been applied in the field of medical
imaging. We then performed an experiment assessing the
performance of these networks in detecting sickle cells disease
using a same dataset. From results obtained, Inception V3
achieved the best performance in detecting SCD followed by
VGG16, VGG19 and ResNet50. Whereas ReNet had the least
performance amongst all pre-trained models. We also applied
scratch method, where 26 filters were used to train and test the
model. Model testing using scratch method achieved 81%
accuracy. The dataset used in this study was obtained from an
open online dataset for digital thin blood films of SCD detection.
In conclusion, deep networks have proved to be powerful in SCD
detection. This is evidenced by the emerging proposed methods
with higher training and testing accuracy but still remains a gap in
newborn sickle cell screening since currently there are no clinical
programs for newborn screening. Similarly, no study has been
carried out for application of deep learning to detect SCD in babies.

Although several deep learning techniques have been proposed as
potential solution to ease detection of sickle cells by image processing,
these methods rely on clinically prepared dataset; that is, the datasets
used for model training and testing are obtained using compound light
microscopes and clinically prepared. This limits the application of
these methods especially in developing countries, where a number
of rural-based health facilities do not have well-equipped science
laboratories. Therefore, future studies can assess the possibility of
applying deep learning techniques in detecting sickle cells using
images taken using mobile smartphone camera that do not require
clinical preparation stages.
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