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Abstract: Quantification of suspended load sediment is crucial for maintaining the ecosystem and quality of water/river bodies that serve as the
habitat for many living organisms. Because the influencing factors are nonlinearly related to the suspended load sediment, it is a challenge to
apply linear statistical models to predict accurately. To address such a problem, this study applied artificial intelligence (AI) methods to simulate
and predict suspended load sediment. The AI methods are robust and can handle adequately issues related to nonlinearity in modelling. In the
present study, four AI methods were developed to predict suspended sediment load (SSL) distribution. The methods include a backpropagation
neural network, group method of data handling, least squares support vector machine, and generalised regression neural network (GRNN).
In developing the respective models, drainage areas, river slopes, and length of rivers served as predictor variables while SSL was the
response variable. The models were evaluated using the metrics of root mean square error (RMSE), percentage RMSE, uncertainty at 95%,
RMSE observations standard deviation ratio, and Legates and McCabe index. According to the results, the GRNN model achieved higher
prediction accuracy than the other competing methods. The performance of the GRNN model can be attributed to its ability to calibrate and
generalise appropriately to the training and testing data set. Hence, in practice, the GRNN model is proposed for SSL prediction for the
study area which can be useful to policymakers and managers of water resources.
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1. Introduction

Globally, river quality and its management have become
increasingly complex. With higher demands for clean water for
domestic and industrial use, accurate prediction of suspended
sediment load (SSL) could help to improve river quality, water
monitoring design, river transportation research and management,
water-related decision-making, and regulatory formulation.

Increasing soil erosion as a result of the indiscriminate
clearing of vegetation around river catchments together with
higher stormwater runoff has impacted greatly SSL due to climate
change. Consequently, the majority of sediment load is carried in
suspension or dissolved in solution, with the minority moved near
the bed level (Alexandrov et al., 2009; Schenk & Bragg, 2014).
Although sediment plays an important role in the physical and
aquatic environments, it can carry microorganisms, pollutants,
and nutrients along the stream, and when in excess may pose
challenges to water resource management industries, especially for
low-income countries. However, the processes involved in causing
these changes and challenges are presently poorly understood.

As a result, the prediction of SSL has become a great challenge,
especially in developing countries in Africa where a limited
number of monitoring stations are available (Chapman et al., 2016).

It is therefore a challenge to understandwith certainty the spatial
variability of the actual quantity of sediment load produced in Africa
(Walling, 1977; Vanmaercke et al., 2014). In addition, the lack of
continent-wide compilation of sediment load data has also resulted
in little understanding of the spatial variability of sediment load in
Africa (Milliman & Farnsworth, 2013; Walling & Webb, 1985;
Walling & Webb, 1996). Moreover, a gathering of regional or
country-wide sediment load data could serve as a substitute to
supplement the existing small amount of data (Dunne, 1979).

To accurately predict SSL, various conventional methods
(e.g. multiple linear regression and principal component
regression) have been used in literature, but due to the nonlinear
nature of SSL data coupled with model development computational
complexities, model prediction accuracy has been poor (Alp &
Cigizoglu, 2007; Lafdani et al., 2013). For decades, artificial
intelligence (AI) methodologies have been utilised in the
prediction of SSL as they have successfully shown their capability
to find optimal mappings between input and output variables to
give good accuracy in many prediction problems (Babanezhad
et al., 2021; Lee et al., 2020; Nourani & Andalib, 2015).
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For example, Melesse et al. (2011) used an AI modelling
approach with an error backpropagation algorithm to develop
models to predict the SSL of river systems. Results showed that
backpropagation neural network (BPNN) is the best model to
predict SSL as compared to the conventional methods. Rezaei
et al. (2021) also developed AI models for SSL prediction.
Comparative results revealed that least squares support vector
machine (LSSVM) was superior to the other models in terms of
prediction. Mehri et al. (2021) developed the group method of
data handling (GMDH) model to predict SSL. Results showed
that the GMDH model predicted the sediment load accurately.
Wang et al. (2009) on the other hand developed feed-forward BP
and generalised regression neural network (GRNN) models in
comparison with the classical regression models to predict SSL.
Statistical results showed that the GRNN model was superior to
the other models in terms of prediction accuracy.

In literature, although these models (BPNN, GMDH, LSSVM,
and GRNN) have been employed in the prediction of SSL, from the
no-free-lunch theorem, a developed model cannot be used to solve
all real-world problems. Thus, SSL prediction is a site-specific
phenomenon (Mohamed & Shah, 2018). Moreover, accurate SSL
prediction usually depends on some key factors such as data
characteristics availability, geographical location of the catchment
area, and data quality, but does not only depend on the method
applied. Therefore, a developed model’s prediction of a particular
problem can vary from country to country (Adam et al., 2019;
Wolpert, 2002). Consequently, this study aims to develop AI models
to predict SSL and compare the models to determine the best one
suitable for prediction in the study area. The models developed were
the GMDH, LSSVM, BPNN, and GRNN. The reason is that these
methods (BPNN, GMDH, LSSVM, and GRNN) have been applied
successfully and evaluated in many fields, which also include SSL
prediction with promising results (Cigizoglu & Alp, 2006; Hazarika
et al., 2020; Kisi, 2012). Yet, the implementation of the applied AI
methods (BPNN, GMDH, LSSVM, and GRNN) in the Ghanaian
setup is to be thoroughly explored.

With the world gearing towards digital technology, AI has
become one of the main focal technologies to achieve this. However,
in most developing countries like Ghana, the consciousness of using
such technologies to foster quick decision-making and increase
productivity is still at the infant stage. Undoubtedly, the forthcoming
AI has practically impacted substantially all aspects of our life,
society, employment, and firms (Makridakis, 2017). Therefore,
this study fills a research gap by way of creating awareness and
communicating the significance of using AI as a computational tool
to solve problems in SSL prediction. This study which is worth a
scientific investigation in the Ghanaian setting can also provide
reliable guidance to researchers and policymakers. Therefore, the
main contributions of this study are to:

• Develop SSL AI prediction models: BPNN, GMDH, LSSVM, and
GRNN and

• Compare and evaluate the developed models to determine the best
model that suits SSL prediction for the study area.

Thus, the presented study has provided a comprehensive assessment
of the developed AI models for improving SSL prediction accuracy.

2. Materials

Using the study area topographicmap, the coastal river drainage
areas were delineated and digitised in a geographical information
system environment. A digital planimeter was then used to

compute the coverage areas enclosed by the catchments of the
rivers for validation purposes. Relying on the river flow existing
data of the main rivers Butre, Ankobra, and Pra in the study area
(southwestern Ghana), the discharge values were estimated for
each river (Boye et al., 2019). Applying the logical method
(Booth et al., 2002; Kim et al., 2003; Thompson, 2006), peak
discharge was estimated from runoff rates of rainfall at maximum
stormwater (Packman & Kidd, 1980). The logical method was
employed due to its easiness in estimating the discharge values for
small drainage basins, wide usage for computing peak discharge,
and its efficiency in working with limited rainfall and drainage
data (Cleveland et al., 2011; Montalto et al., 2007). Equation (1)
shows the discharge of the peak flood.

Qw ¼ 277� 10�3IAC (1)

WhereQw is the instantaneous water discharge (m3/s), I is the rainfall
intensity (mm/h), A is the catchment area (km2), and C (constant) is
the region’s runoff coefficient. By considering the duration of a
whole storm in the area of study, a calculation of volumes of
runoff was made. The independent variables used to develop the
model were obtained from a topographic map of the study area.
Thus, the independent variables comprise catchment areas, length
of longest rivers, and river slopes. From Equation (2), the
coefficient of sediment rating (α) and index (m) were deduced from
the analyses of data collected from 21 sediment loads monitored at
various stations (Akrasi, 2011). These constants were substituted
into the sediment rating regression relation (Equation (2)) (Nittrouer
& Viparelli, 2014; Walling, 1977) to estimate the SSL (Q) in the
catchment area. The SSL served as the dependent variable to develop
the model.

Q ¼ αQm
w (2)

2.1. Study area

The coast of the Western Region of Ghana was used for this
study (Figure 1). The study area is located from longitudes 3°07 0

to 1°40 0 West and latitudes 4°40 0 to 5°10 0 North. It covers a land
area of 23,921 km2 constituting 10% of the size of the country
(Boye, 2015).

The region’s coastline measures about 192 km out of the total of
540 km length of Ghana’s coastline. It is characterised by a broad
continental shelf with a maximum width of about 80 km around
Cape Three Points (Boye et al., 2018). The eastern part of the
area is bounded by rocky coast while the western section contains
uninterrupted soft beaches that extend to about 100 km. The
western section comprises sandy beaches which are seldomly
crossed by lagoons and other wetlands. Pra, Tano, Bia, and
Ankobra rivers are the four main rivers that drain through the
region. Fluvial sediment from these rivers nourishes the shores,
thus stabilising the beach from the sturdy west-east alongshore
drift (Boateng, 2012). Most parts of the region are underlain by
Pre-Cambrian rocks, that is, the Birimian and Tarkwaian series
(Keates, 2021). These rocks contain precious minerals such as
manganese, diamonds, and gold, which are mined in the country.
In Ghana, the western region records the maximum rainfall with
an average value ranging from 1250 to 2000 mm/year which
nourishes the land to support the production of several crops. The
western region is the largest producer of rubber, coconut, and cocoa.
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3. Model Development

3.1. Backpropagation neural network

The BPNN is a proposed method of ANN by Rumelhart et al.
(1986), and it has been used in many fields to solve problems. The
BPNN architecture comprises input, hidden, and output layers
arranged in a feed-forward manner (Figure 2). In Figure 2,
consider the BPNN architecture to have m nodes in the input, g
nodes in the hidden, and n nodes in the output layers. Let yk and
xidenote

netj ¼
Xm
i¼1

wijxi þ bj
� �

for j ¼ 1; 2 . . . :; g (3)

the expected output and input data of units k and i, respectively. wij

and bj are the weights and thresholds from the input layer to the hid-
den layer, respectively, while wjk and bk are those from the hidden
layer to the output layer, respectively. The learning rate and the
incentive function are η and f xð Þ, respectively. The BPNN algorithm
is described as follows. Firstly, the data received from the external

environment by the input layer enter the network through the hidden
layer nodes. The data are then multiplied by their respective weights
and add them all together with a constant bias b. The computation
process in the hidden layer node j is as shown in Equation (3) (Gupta
et al., 2011; Zhang et al., 2021).

In this study, the Gaussian transfer function (Equation (4))
(Gundogdu et al., 2016) which was used in the hidden layer
screens the added signals received from the neurons with a bias
constant input value of one.

f xð Þ ¼ exp � x � µð Þ2
2σ2

� �
(4)

Where µ and σ2 are centre and dispersion parameters, respectively.
The output results of the hidden layer unit j neurons are given as in
Equation (5).

netj ¼ f
Xm
i¼1

wijxi þ bj
� � !

; for j ¼ 1; 2 . . . :; g (5)

The output results of the output layer unit k neurons are given as in
Equation (6).

outk ¼
Xg
j¼1

wjknetj þ bk
� �

for k ¼ 1; 2; . . . ; n (6)

The mean square deviation (MSE) between the network and the
expected outputs is known as the loss function (Equation (7)).

E ¼ 1
2

Xn
k¼1

yk � outkð Þ2 (7)

The forecasted results from the network are compared with the true
observed target value to estimate the error by using Equation (7).
Errors that do not meet the minimum error threshold are reverted
to the network for the connection weights and biases updation of

Figure 1
Ghana western coast

Figure 2
BPNN architecture
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the individual neurons using the generalised delta learning rule. The
process is repeated till a minimum threshold of the error is obtained
based on the loss function criterion (Toker & Kaçıranlar, 2013).

For each neuron in the output layer, Equations (8) and (9) are
used to update the network weights based on the delta rule (Zurada,
1994).

wjk ¼ wjk þrwjk (8)

wij ¼ wij þrwij (9)

The chain derivation rule (Equations (10)–(13)) is used to update the
values of each parameter as shown as follows:

rwjk ¼ �η
@E
@wjk

¼ �η
@E

@outk

� �
@outk
@wjk

 !
¼ ηeknetj (10)

rwij ¼ �η
@E
@wij

¼ �η
@E

@outk

� �
@outk
@wj

 !
@outj
@wij

 !

¼ η
Xn
k¼1

ekwjk
@

@x

Xm
i¼1

wijxi þ bj
� � !

xi (11)

wjk ¼ wjk þ ηeknetj (12)

wij ¼ wij þ η
Xn
k¼1

ekwjk

� � @

@x

Xm
i¼1

wijxi þ bi
� � !

xi (13)

Where @
@x :ð Þ is the derivative of the excitation function into the output

layer which emanates from the input layer. Equations (14) and (15)
are used to update the network thresholds in units k and j.

bk ¼ bk þrbk (14)

bj ¼ bj þrbj (15)

Where r is the gradient vector. The chain derivative rule is used to
compute the updated values of each threshold parameter as follows:

rbk ¼ �η
@E
@bk

¼ �η
@E

@outk

� �
@outk
@bk

� �
¼ ηek (16)

rbj ¼ �η
@E
@bj

¼ �η
@E
@netj

 !
@bk
@bj

 !

¼ η
Xn
k¼1

ekwjk

� � @

@x

Xm
i¼1

wijxi þ bj
� � !

(17)

bk ¼ bk þ ηek (18)

bj ¼ b
j
þ η

Xn
k¼1

ekwjk

� � @

@x

Xm
i¼1

wijxi þ bj
� � !

(19)

Studies have shown that the scaled conjugate gradient algorithm was
the preferred algorithm for training the BPNN. The reason being that
the automatic algorithm does not require fine tuning of the
parameters, and it is faster as well (Møller, 1993).

3.2. Group method of data handling

The GMDH is a feed-forward network formed to search for the
optimum solution of a complex nonlinear problems based on the
fundamentals of heuristic self-organisation systems. GMDH is an
algorithm to find a linear parameter complex polynomial function.
By external criteria, the algorithm performs selection of the best
solution. GMDH can be described as subset components
formulation of the function in Equation (20) (Nguyen et al., 2019;
Stefenon et al., 2020).

ĥ Að Þ ¼ b0 þ
Xm
u¼1

bufuð Þ (20)

Where A ¼ a1a2 . . . anð Þ is the input vector, B ¼ b0b1 . . . buð Þ is the
coefficients vector (weights), ĥ is the each iteration prediction, fu are
the elementary functions that depend on diverse subsets as inputs,
and m is the number of function components.

For the best solution to be obtained, GMDH uses many subsets
of the base function (Equation (20)) components. The least squares
method was used to estimate the coefficients of the models. As a
regression technique, the use of the least squares was to
approximate the system solution by minimising the residual sum
of squares produced during the process. Gradually, the GMDH
upsurges the partial components number and looks for a perfect
complexity structure shown by a minimum value of an external
criterion.

Prior to the development of the model, the external information
was partitioned into training and testing sets according to a definite
percentage. The data were trained to estimate the model coefficients,
and the test set was used to check the model soundness. The neuron
was assessed and verified by an external criterion and those with the
worst prediction were rejected. In the next layer, reorganisation,
training, testing, and selection processes were performed again
until the prediction error of the neuron stops decreasing. Figure 3
shows the GMDH structure where the asterisk neurons were
removed because of poor prediction (Armaghani et al., 2020;
Rayegani & Onwubolu, 2014).

Consider the use of a sediment load data set. The relationships
between the lags are learned by the algorithm and the path to follow is
selected automatically by GMDH. In the GMDH neural network, the
input and output variables mapping depict a nonlinear function as
shown in Equation (21). Consider the input pair variables au and av,

Figure 3
GMDH network architecture
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Equation (22) represents the regression method employed to solve for
the vector of coefficients.

ĥ Að Þ ¼ b0 þ
Xn
u¼1

buauð Þ þ
Xn
u¼1

Xn
v¼1

buvauavð Þ

þ
Xn
u¼1

Xn
v¼1

Xn
t¼1

buvtauavatð Þ þ :: (21)

G au; avð Þ ¼ b0 þ b1a1 þ b2av þ b3a2u þ b4a2v þ bauav (22)

Equation (23) represents the regularity external criterion, where hu is
the actual target values. The least wt of the layer is noted, and when
wt is not reducing anymore as compared with the preceding layer’s
value, the network forecast error is said to be nondecreasing and the
result of the preceding layer is produced.

wt ¼
Pp
u¼1

ĥ� hu
� 	

2

Pp
u¼1

h2u

(23)

Where p is the number of testing data set. The vector of coefficients is
estimated by the least squares error method as shown in Equation (24).

least square error ¼

ĥ Að Þ ¼ G au; avð Þ
error ¼ Pn

u¼1
hu � ĥ
� 	

2

d

dĥt
error ¼ 0; t ¼ 1; 2; 3; 4; 5:

8>>>><
>>>>:

(24)

To facilitate the analysis, the computation of the vector of
coefficients was done using matrix form as shown in Equation (25).

ĥ ¼ ATAð Þ�1ATh (25)

Where Equation (26) depicts the input data set.

A ¼

1 au1 av1 au1av1 a2u1 a2v1
1 au2 av2 au2av2 a2u2 a2v2
1 au3 av3 au3av3 a2u3 a2v3
..
. ..

. ..
. ..

. ..
. ..

.

1 aun avn aun a2un a2vn

2
666664

3
777775 (26)

3.3. Least squares support vector machine

LSSVM is an iteration of the improved standard SVM. It is one
of the algorithms that gives important results of statistical learning
theory. Using the least squares loss function (LSLF), LSSVM
generates optimisation problem and it is based on equality
constraints. The LSLF entails linear equation solution and it is
considered to be simple compared to that in the ε-intensive loss func-
tion of the novel SVMs (Suykens et al., 2002). In general, LSSVM is
employed for classification, regression problems, and optimal con-
trol (Kaytez et al., 2015; van Gestel et al., 2004).

This section is introducing the least squares support vector
regression (LSSVR) briefly. The LSSVR method is used to
approximate an incomprehensible function by relying on a
training data set xi; yi½ �li¼1: The regression is formulated as feature
space representation shown in Equation (27).

y ¼ f xð Þ ¼ wTφ xð Þ þ b (27)

Where x 2 Rn for a positive integer n, y 2 R, w is the weight vector
of the same dimension as the feature space, b is a bias, and
φ :ð Þ : Rn ! Rnh is a nonlinear mapping to the high dimensional fea-
ture space. The minimisation of the error together with the regular-
isation is given as in Equations (28) and (29).

Minimise J wbeð Þ ¼ 1
2
wTwþ δ

2

Xl
i¼1

e2i (28)

Subject to yi ¼ wTφ xið Þ þ bþ ei; i ¼ 1; 2; . . . ; l (29)

Where e ¼ e1e2 . . . elð Þ 2 Rl, δ is the regularised parameter balancing
the trade-off between the margin and the error.

The Lagrangian function (Lg) of the optimisation problem for
Equations (28) and (29) is given as in Equation (30) (de Kruif &
de Vries, 2003; Yang et al., 2014).

Lg w b e;βð Þ ¼ J w b eð Þ þ
Xl
i¼1

βi yi � wTφ xið Þ � b� eið Þ (30)

Where the Lagrangemultipliers which can either be negative or positive
in the formulation of LSSVM are β ¼ β1β2 . . . βlð Þ 2 R. The Lagran-
gian optimality conditions are shown in Equations (31)–(34).

@Lg
@w

¼ 0 ) w ¼
Xl
i¼1

βiφ xið Þ (31)

@Lg
@b

¼ 0 ) �
Xl
i¼1

βi ¼ 0 (32)

@Lg
@ei

¼ 0 ) βi ¼ δei (33)

@Lg
@βi

¼ 0 ) wTφ xið Þ þ bþ ei � yi ¼ 0 for i ¼ 1; 2; :::; l (34)

The linear system (Equation (35)) represents the Lagrangian optimal
conditions.

0 eT

e Ωþ I
δ

� �
b
β

� �
¼ 0

Y

� �
(35)

Where I 2 Rl�l is an identity matrix. Y ¼ y1 y2 . . . ylð ÞT ,
β¼ β1 β2 ... βlð ÞT , Ω ¼ Ωij

� � ¼ k xi; xj
� �

k xi; xj
� � ¼ φ xið Þ;φ xj

� �
 �
.

The output (Equations (36) and (37)) of the approximator is
computed for new input values of x with β and b as

ŷ xð Þ ¼ w;φ xð Þh i þ b (36)

¼
Xl
i¼1

βiφ xið Þ;φ xð Þ
* +

þ b

¼
Xl
i¼1

βi φ xið Þ;φ xð Þh i þ b

¼
Xl
i¼1

βiK xi; xð Þ þ b (37)

Artificial Intelligence and Applications Vol. 2 Iss. 2 2024

159



3.4. Generalised regression neural network

GRNN is a variant of radial basis function network which uses
a kernel regression network and it is used to solve linear or
nonlinear approximation problems. The network computes the
most probable output that minimises the mean squared error
(MSE) value. The GRNN does not require an iterative training
procedure as in backpropagation method, but each layer is
passed through forward computation. The method has excellent
performance in learning speed and robust function
approximation ability. The reason is the method provides rapid
convergence to the optimum regression surface by using a
probability distribution. (He et al., 2021; Kisi et al., 2006; Wang
& Peng, 2018). GRNN comprises input, hidden, summation, and
output layers (Figure 4). External information is passed directly
to the hidden layer without weighting through the input layer.
The output of the ith neuron in the hidden layer is computed as
in Equation (38) (Hou et al., 2022).

hi Xð Þ ¼ exp � X � cik k
2r2

� �
for 1 � i � p (38)

Where X ¼ x1 x2 . . . xnð Þ is the independent variable of the
actual sediment load data set, r is the radius of the RBF and it deter-
mines the generalisation capability of the GRNN by controlling the
degree of smoothness, ci is the training input vector, and the number
of training set is p.

The summation layer comprises simple summation, Ss, and
weighted summation, Sw. The Ss computes the arithmetic sum of
the hidden layer output as given in Equation (39).

Ss ¼
Xp
i¼1

hi xð Þ (39)

The jth weighted summation (Equation (40)) calculates the hidden
layer outputs weighted sum.

Swj ¼
Xp
i¼1

yihi xð Þ (40)

Where yi is the interconnection weight in the ith desired response.
Finally, the output of the jth output neuron for GRNN model (Equa-
tion (41)) is computed as a weighted average of the desired response.

ŷj ¼
Swj
Ss

(41)

3.5. Model building framework

This section presents a flowchart showing the model
development, evaluation, and implementation to predict the SSL.
The input and output variables were first selected and data
partitioning was performed. To have homogeneity, the data were
scaled into a specific interval using the normalisation process. The
network was then trained and the optimum model was obtained
based on a termination criterion. The optimum trained model was
however tested and the respective performance metrics were
computed based on the observed and predicted SSL. A detailed
presentation of the computational process presented in Figure 5 is
given in the subsequent sections.

3.5.1. Data specification and variables selection
In developing the various AI models, 47-sample data set was

used. These data were obtained with the help of a sediment rating
curve by extracting drainage areas, river slopes, and length of
rivers from the topographic maps provided by the Survey and
Mapping Division of Lands Commission, Ghana. The extracted
features served as the independent variables while SSL served as
the dependent variable. From the 47-sample data set, 33
(approximately 70%) of the training set were used to develop the
AI prediction models and the remaining 14 data points
(approximately 30%) served as the unseen data for the validation
of the trained models. The partitioning of data was carried out
using the widely used hold-out cross-validation approach.

3.5.2. Normalisation of data
Data normalisation was performed to minimise the impact of

larger input values on the smaller ones during the model process.
This helps to put the training set into a common range which
improves the convergence speed of the AI during training.
Equation (42) was used to carry out the normalisation (Mueller &
Hemond, 2013).

dN ¼ dmn þ
dmx � dmnð Þ uo � umnð Þ

umx � umnð Þ (42)

Where dN denotes the normalised data, uois the observed SSL, umn

and umx represent minimum and maximum values, respectively, of
the observed SSLwith dmx and dmn ranged from -1 to 1, respectively.

Figure 4
GRNN architecture

Input Hidden Summation Output
Layer Layer Layer

X1

1h w11 1y 1ŷ

X2 2h w12 2y 2ŷ

Xn mh wnm w1n ˆ jy

ny
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3.5.3. Network training
In modelling using ANN, data sets are trained to produce the

desired output for a given input. Similarly, in this study, ANN
was trained to find the functional relationship between the
independent variables (drainage areas, river slopes, and length of
rivers) serving as the input and the dependent variable (SSL)
as the output. To perform the network training, the 47 data sets
were put into a specific range and partitioned thereafter into
33 training and 14 testing subsets. The training set was used as
parameterisation (adjustment of weight) to minimise the error
function, while the testing set was used for model validation.
In the network training, the Levenberg–Marquardt backpropagation
algorithm was employed to train the BPNN. During this phase,
the network was allowed to train until no additional effective
enhancement happened. After training the network, the unseen
testing data were used to give a general independent assessment
of the performance of the BPNN. In determining the optimum
BPNN model, the MSE of the model was monitored at each stage
of training and testing. In addition, the correlation coefficient (R)
and coefficient of determination (R2) were used to judge the

performance of the ANN model. After several trials, the model
with the highest R and R2 values with the lowest MSE was
selected as the best model (Nandy et al., 2012).

The GMDH is a feed-forward multilayer network of quadratic
neurons that are used to map the input–output variables’ functional
relationship. Thus, the key idea of the GMDH is to find a mapping ĝ
as an approximation of the actual function g for the difference
between the actual output y and the predicted output ŷ to be small
as possible. The technique has a faster learning speed, converges
to the optimal nonlinear or linear regression surface, and has good
approximation capability. This phenomenon is achieved because
the GMDH relies on optimisation technique that determines the opti-
mal structure automatically by a layer-by-layer pruning process
based on the mean square error criterion (MSE). The GMDH net-
work automatically stops adding layers the moment the MSE of
the proceeding layer exceeds the preceding layer. In this case, the
network selects the lowest MSE component in the highest layer as
its final model outcome (Srinivasan, 2008).

The LSSVM which is a variant of SVM adopts equality
constraints. The LSSVM technique is to fit a functional model
y xð Þ on the training data sets such that the function could be used
to infer the target y for a new input data point x later. The training
process involves two linear systems with an identical positive defi-
nite coefficient matrix, followed by the application of the conjugate
gradient method. Thus, the underlying optimisation problem follows
a system of a linear equation and this improves the training efficiency
for large-scale learning tasks (Liu et al., 2013; Xia, 2018).

The GRNN is based on a standard statistical technique known
as kernel regression. Considering the training, the output for the input
is computed in two steps. Firstly, the hidden layer produces a set of
weights associated with the closeness of the input vector to the
training patterns. Here, the weighted sum is one and it represents
the contribution of every training pattern to the final result.
Secondly, the output layer computes the output as the sum of the
product of the weights and the targets. The GRNN technique
approximates any arbitrary function between the input and output
vectors, drawing the function estimate directly from the training
data. That is, as the training set increases in number, the estimated
error approaches zero with only mild restrictions on the function
(Cigizoglu & Alp, 2006).

3.5.4. Model performance evaluation
This study used root mean square error (RMSE), percentage

RMSE (PRMSE), uncertainty at 95%, RMSE observations
standard deviation ratio (RSR), and Legates and McCabe’s (ELM)
(Legates & McCabe, 2013; Tian et al., 2016; Willmott &
Matsuura, 2005) statistical indices to determine the efficiency of
the developed models for sediments load prediction.

i. Root mean square error
The RMSE (Equation (43)) is a dimensioned measure of

average model metric. The metric expresses average model
prediction error in the units of the variable of interest.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPτ
j¼1

Oj � Pj
� �

2

τ

vuuut
(43)

Where τ is the test observations size, and O and P are the test obser-
vation and prediction values, respectively.

Figure 5
Flowchart of AI methods for SSL prediction
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ii. Percentage root mean square error
The PRMSE (Equation (44)) which is capable of evaluating the

precision of a models’ predictive performance is a scale-independent
measure.

PRMSE ¼ RMSE
xm

� 100 (44)

iii. Uncertainty at 95%
U95 (Equation (45)), the uncertainty at 95% confidence level, is

a statistical analysis indicator that reveals more information about the
developed model prediction deviations from the actual observations.

U95 ¼ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2d þ RMSEð Þ2

q
(45)

Where Sd is the standard deviation between the prediction and the
observation values, 1.96 is the coverage factor corresponding to
95% confidence level, and RMSE is the root mean square error.

iv. RMSE observations standard deviation ratio
The RSR (Equation (46)) which depends largely on the RMSE

varies from an optimal value of 0 to a large positive value. The
smaller the RMSE value, the least RSR value becomes. Hence,
the better the predictive power of the developed model.

RSR ¼ RMSE
Sd

¼

Pτ
i¼j

oj � pj
� �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPτ
i¼j

oj � om
� �

2

s (46)

Where Sd is the standard deviation of the test observations, τ is the
test observations size, andO andP are test observation and prediction
values, respectively. Om is the mean of the observation values.

v. Legates and McCabe
The ELM (Equation (47)) reveals the correlation between

the predictions and the observed values. Closer the ELM value to
1 is an indication of the developed model having strong
predictive power.

ELM ¼ 1�

Pτ
i¼j

Abs pj � oj
� �

Pτ
i¼j

Abs oj � om
� � (47)

Where O and P are test observation and prediction values,
respectively, Om is the mean of the observation values, and τ is
the test observations size.

Figure 6
Topographic map of the study area
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4. Numerical Application

4.1. Data used

Topographic maps from Survey and Mapping Division of
Lands Commission, Ghana, West Africa and sediment rating
curve were used to extract the data for the analysis (Figure 6).
Drainage areas, river slopes, and length of rivers served as
independent variables while SSL served as the dependent variable.
Table 1 shows the statistical summary results of the data used to
develop the SSL prediction models.

4.2. Optimum model developed

The BPNN optimum trained model had a model structure
comprising three inputs, eight hidden neurons, and one output,
that is, [3-8-1]. For the GRNN, the optimum model that produced
the best performance had a smoothing parameter of 2.6 with three
inputs and one output. In training the LSSVM, the best values for
regularisation parameter (gamma) and the width of the kernel
function (sigma) were 34177922.666 and 30.2519838598,
respectively. The optimum GMDH model consisted of two layers
and single neuron. In the GMDH training process, two input
variables (drainage areas and river slopes) were automatically
selected and seen to be very relevant in SSL prediction. This
showcases the feature extraction capability of the GMDH model.
The final GMDH model for SSL prediction is shown in
Equation (48).

X4 ¼ �1:73313143729� 0:00170794657055X2 þ 1:1237213778X1

� 3:49331727402� 10�05X1X2 þ 1:76142505781� 10�07X2
2

þ 0:00102950304895X1
2

FinalGMDH Model ¼ 1:02012760202þ 1:00280017581X4

� 0:154325304254X1 � 0:00558111412937X1X4

þ 0:00102456552567X4
2 þ 0:00644401995933X1

2

(48)

4.3. Developed model efficiency assessment

In developing the models (BPNN, GMDH, LSSVM, and
GRNN), the data set acquired was partitioned into 70% training
set (32 data points) and the remaining 30% as testing set (13 data

points). The training set was used to fit the models and the testing
set served as an independent data to authenticate the forecasting
strength of the developed models. To predict the SSL, model
assessment was performed for the competing methods BPNN,
GMDH, LSSVM, and GRNN to find not only how the best
method fits the data set well, but how it will work in future
applications. This was accomplished by using the five test-case
performance indices RMSE, PRMSE, U95, RSR, and ELM as
shown in Table 2.

The ELM is a model efficiency criterion used to determine the
correlation between the prediction and the observed values. The
ELM ideal value is 1 and it is an indication that the model is
having a strong predictive strength. From Table 2, the GRNN
model had the best ELM value of 0.9637. This means that 96.37%
of the total variability in the SSL predicted was explained by the
independent variables (drainage areas, length of rivers, river
slopes) used to develop the model. In other words, the GRNN
model ELM value of 96.37% shows clearly that the GRNN model
predictions are closely related to the observed SSL. This close
association can additionally be viewed in Figures 7 and 8.
Consequently, the GRNN model does not only fit the observed
data very well, but it has a strong predictive power as well.

The RMSE, PRMSE, U95, and RSR indices show the models’
bias in the prediction of the SSL. The smaller these indices values are,
the better the acceptable accuracy of the developed model. From
Table 2, RMSE, PRMSE, U95, and RSR values for the GRNN
method are 2.6779, 9.3594, 7.1446, and 0.0327, respectively. This
is an indication that the GRNN method fitted the data very well
than the other competing methods based on their index’s values.

From Table 2, the intercomparison among the methods
employed was also perceptible. The GRNN method had the best
RMSE value of 2.6779 followed by LSSVM, BPNN, and GMDH
with 3.1522, 4.5127, and 7.2736 values, respectively. The
performances of the methods in descending order for PRMSE are
GRNN, LSSVM, BPNN, and GMDH with values 9.3594,
11.0171, 15.7721, and 25.4217 respectively. In the case of U95,
GRNN method had the least value of 7.1446 followed by
LSSVM, BPNN, and GMDH with values 8.8422, 12.3461, and
20.2807, respectively. For RSR, the best method in a descending
order is GRNN, LSSVM, BPNN, and GMDH with values 0.0327,
0.0385, 0.0551, and 0.0888, respectively.

The reason for the accurate forecasting ability of the GRNN
model is based on the reliability of its feed-forward additional
summation layer in selecting the best output which is used for the
weighted average computation for the desired response (Chen
et al., 2019; Jian et al., 2019).

To determine further the accuracy of the four ANN methods
(BPNN, GMDH, LSSVM, and GRNN), the line graph (Figure 9)
was employed. The line graph is very useful when assessing the
performance of many methods as it graphically summarises the
methods into a single plot and allowing methods comparison with
the observed data set. The methods performances are expressed in

Table 1
Summary of data set

Statistics Min Max Mean SD

Drainage areas (km2) 0.8860 873.0910 56.1632 151.8754
River slopes (m/km) 4.0105 129.3718 29.5497 26.5039
Length of rivers (m) 124.0000 3808.7000 929.4156 994.2973
Suspended sediment load (mg/L) 0.4368 12665.8140 327.5531 1885.3659

Table 2
Summary test results of statistical indicators

Model RMSE PRMSE U95 RSR ELM

BPNN 4.5127 15.7721 12.3461 0.0551 0.9485
GMDH 7.2736 25.4217 20.2807 0.0888 0.9418
LSSVM 3.1522 11.0171 8.8422 0.0385 0.9476
GRNN 2.6779 9.3594 7.1446 0.0327 0.9637
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terms of their standard deviations from the 45° diagonal line. Thus,
the standard deviation is proportional to the method’s distance from
the 45° diagonal line.

From Figure 9, clearly the simulation point of the GRNNmodel
is closer to the observed 45° diagonal line than any of the other
methods used. This implies that there are similarities in the
GRNN model predictions and the observed data set in terms of its

obtained lowest standard deviation (least distance from the 45°
diagonal line). This shows that the GRNN method had quality in
simulating the test data well than any of the other methods studied.

4.4. Validation of results with literature

It is of great importance to validate the present study’s results
with the established research results in the literature. In that regard, a
review of literature from 2019 to 2023 (5 years) has been made, with
two papers reviewed each year (Table 3). As per the data set range,
the absolute error metrics might vary from one case study to another.
Consequently, the coefficient of determination value (R2) was
selected for validation. For example, Latif et al. (2023) developed
an AI model to predict sediment load. The maximum R2 value
realised from the developed models ranges from 0.79 to 0.91. In
Keshtegar et al. (2023), the prediction of sediment yields using a
data-driven model achieved an R2= 0.72, RMSE= 0.51, and
MAPE= 11.99%. Furthermore, several AI models which include
ANN-GA, SEA/Balance, ITD-EPR, WATEM/SEDEM, ElasticNet
LR, MLP, EGB, LSTM, RS, SVM-RBF, SVM-NPK, RF, MM-
ANNs, FNN-PSOGSA, FNN-PSO, FNN, ANFIS, WM5, WANN,
LSTM, and M5T have also been developed. Based on the
revealed prediction accuracy from the literature and in
comparison, with this study, the GRNN was able to obtain
comparable predictability performance as evident in Table 2.

Figure 8
AI models prediction errors

Figure 7
AI developed models prediction

Figure 9
Models performance assessment
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4.5. Research implications

Although rivers have natural sediment transports that vary with
time, many significant threats to these rivers arise primarily from
human activities such as climate change, pollution, landscape
changes, and urbanisation; of which the excess of such
phenomenon causes river channels to become unstable and flood
capacity decreased due to infilling. Therefore, it is imperative to
know the level of SSL because a higher level can cause flash
floods in the advent of rains causing extensive damage to property,
the social well-being of people, and human lives. As a result,
developing a model to predetermine the level of SSL is vital. The
GRNN model approach of predicting SSL can help governments
and policymakers to formulate appropriate measures to prevent
water/river pollution and this would reduce SSL levels. This would
lead to substantial improvements in water quality and maintain the
ecosystem that serves as the habitat for many living organisms.
This is achievable because the accurate SSL prediction is very
useful since it brings solutions to the devastating natural events

(flood hazards) occurring around the world which are partly caused
by SSL accumulation on river banks and cause these flash floods.

5. Conclusions

In this study, four AI models BPNN, GMDH, LSSVM, and
GRNN have been developed for accurate SSL prediction based on
case study data obtained from Ghana. The statistical analysis results
showed that the developed AI models are good and can be used to
predict SSL based on their performance indicators. The BPNN
method had RMSE (4.5127), PRMSE (15.7721), U95 (12.3461),
RSR (0.0551), and ELM (0.9485). For the GMDH, 7.2736, 25.4217,
20.2807, 0.0888, and 0.9418 were produced correspondingly. On
the contrary, the LSSVM had 3.1522, 11.0171, 8.8422, 0.0385, and
0.9476 for RMSE, PRMSE, U95, RSR, and ELM. The respective
values obtained by the GRNN were 2.6779, 9.3594, 7.1446, 0.0327,
and 0.9637. However, the GRNN has proven to be the best method
suitable for predicting SSL based on its low RMSE, PRMSE and

Table 3
Validation of AI methods and results used over time

Authors Paper title Methods applied Validation results

Latif et al. (2023) Sediment load prediction in Johor River: Deep
learning versus machine learning models

LSTM, ANN, SVM R2 values range from 0.79 to 0.91

Keshtegar et al.
(2023)

Prediction of sediment yields using a data-driven RM5T RM5T (R2= 0.72), RM5T
(RMSE= 0.51), RM5T
(MAPE= 11.99%)

Yadav et al.
(2022)

Optimised scenario for estimating suspended
sediment yield using an artificial neural network
coupled with a genetic algorithm

ANN-GA ANN-GA (R2= 0.8710), ANN-GA
(RMSE= 0.0088)

Maltsev et al.
(2022)

Assessment of net erosion and suspended
sediments yield within river basins of the
agricultural belt of Russia

SEA/Balance,
WATEM/SEDEM

SEA/Balance (R2= 0.78), WATEM/
SEDEM (R2= 0.79)

Zhao et al.
(2021)

A decomposition and multi-objective evolutionary
optimisation model for suspended sediment load
prediction in rivers

ITD-EPR ITD-EPR (R2= 0.92), ITD-EPR
(WI= 0.93)

AlDahoul et al.
(2021)

Suspended sediment load prediction using long
short-term memory neural network

ElasticNet LR, MLP,
EGB, LSTM

ElasticNet LR (R2= 92.01), MLP
(R2= 96.56), EGB (R2= 96.71), LSTM
(R2= 0.9945)

Nhu et al. (2020) Monthly suspended sediment load prediction
using artificial intelligence: Testing of a new
random subspace method

RS, SVM-RBF,
SVM-NPK, RF

RS (NSE= 0.83), SVM-RBF
(NSE= 0.80), SVM-NPK
(NSE= 0.78), RF (NSE= 0.68)

Meshram et al.
(2020)

Application of artificial neural networks, support
vector machine, and multiple model-ANN to
sediment yield prediction

MM-ANNs MM-ANNs (R2= 0.921), MM-ANNs
(NSE= 0.74), MM-ANNs
(RAE = 0.360)

Meshram et al.
(2019)

New approach for sediment yield forecasting with
a two-phase feed-forward neuron network-
particle swarm optimisation model integrated
with the gravitational search algorithm

FNN-PSOGSA,
FNN-PSO, FNN,
ANFIS

FNN-PSOGSA (NSE= 0.612), FNN-PSO
(NSE= 0.500), FNN (NSE= 0.331),
ANFIS (NSE= 0.244), FNN-PSOGSA
(WI= 0.832), FNN-PSO (WI= 0.771),
FNN (WI= 0.692), ANFIS
(WI= 0.726)

Nourani et al.
(2019)

A wavelet-based data mining technique for
suspended sediment load modelling

WM5, WANN, M5T WM5 (NSE= 0.94), WANN
(NSE= 0.89), M5T (NSE= 0.77)

Note: RM5T, Radial M5 tree; ElasticNet LR, ElasticNet Linear Regression; MLP, multi-layer perceptron neural network; EGB, extreme gradient
boosting; LSTM, long short-term memory; ANN-GA, artificial neural network genetic algorithm; SEA/Balance, soil erosion-accumulation balance;
WATEM/SEDEM, water and tillage erosion model/sediment delivery model; ITD-EPR, intrinsic time-scale decomposition evolutionary polynomial
regression; RS, random subspace; SVM-NPK, support vector machine normalised polynomial kernel; SVM-RBF, support vector machine radial basis
function; MM-ANNs, multiple model artificial neural networks; FNN-PSOGSA, feed-forward neural network particle swarm optimisation
gravitational; FNN-PSO, feed-forward neural network particle swarm optimisation; FNN, feed-forward neural network, search algorithm; ANFIS,
adaptive neuro-fuzzy inference system; WM5, wavelet M5; WANN, wavelet artificial neural network; M5T, M5 tree; RF, random forest.
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U95achievedvalues, andhighELMvaluewhencomparedwith theother
contending methods.

The predictive power of the BPNN,GMDH, LSSVM, andGRNN
modelswas alsopresentedvisuallyusing a linegraph.This revealedhow
closely theGRNNmodelpredictionresultswere to theobservedSSLand
how its performance is comparable to the other models. Based on all the
statistical results, it is clear that the GRNNmethod has confirmed good
learning and generalisation power as compared with the other methods.
Therefore, the developed GRNNmethod can provide reliable guidance
to researchers and policymakers in Africa.

The study findings offer several avenues for future research to
extend and strengthen prediction-oriented model assessment and
comparison in SSL prediction. The possible challenges or
restrictions that could impede the model’s performance are data
quality and its associated characteristics. Hence, fine-tuning the
hyperparameters of the AI model using metaheuristic optimisation
algorithms must be considered for future analysis. This will help
overcome the manual setting of the hyperparameters in the
model development phase. In addition to that, environmental and
climatic factors should also be considered in the future when
developing SSL prediction models for different jurisdictions.
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