
Received: 28 February 2023 | Revised: 11 July 2023 | Accepted: 3 August 2023 | Published online: 13 September 2023

RESEARCH ARTICLE

COVID-19 Mortality Risk Prediction Using
Small Dataset of Chest X-ray Images

Akeem Olowolayemo1,* , Wafaa Khazaal Shams2, Abubakar Yagoub Ibrahim Omer1, Yasin Mohammed1 and

Raashid Salih Batha1

1Department of Computer Science, International Islamic University Malaysia, Malaysia
2Ministry of Higher Education and Research, Iraq

Abstract:COVID-19 outbreak ravaged thewhole world starting from the early part of 2020. The rapid spread of the pandemic accounts for the
major reason the world was thrown into panic mode and pervasive confusion. However, COVID-19’s greatest strength is its virility, but its
severity on an individual is mostly ambiguous, which is dependent on the particular individual. This, combined with the increasingly limited
capacity of the global healthcare infrastructure, warrants some mechanism that can predict the prognosis of an individual to better determine if
the patient would require hospital resources or be better treated as an outpatient. The lack of such a mechanism leads to suboptimal utilization
of valuable hospital resources leading to unnecessary loss of life. However, often at the onset of a pandemic such as it was experienced during
the outbreak of COVID-19, ample and appropriately labeled dataset to build accurate deep learningmodels to assist in this respect was limited.
In this vein, frantic efforts were made to acquire dataset to train deep learning models for the stated objectives, unfortunately only a small
dataset from a single source was available at the time of the study. Consequently, deep learning models based on the ResNet-18 architecture
were trained on a small dataset of chest X-rays of patients infected with COVID-19 to predict mortality risk. The models exhibit considerable
accuracy with high sensitivity. The appropriateness of the techniques proposed in this study for predictive modeling may be particularly suited
when only small datasets are available especially at the onset of similar pandemics. From existing literature, models with low complexity such
as ResNet perform better with small dataset. Hence, this study utilized ResNet-18 as the baseline to evaluate the performance of other popular
models on small datasets. The performance of the baseline models based on ResNet-18 with an accuracy of 0.89 compared favorably with
those of the several other models including AlexNet, MobileNetV3, EfficientNetV2, SwinTransformer, and ConvNeXt using the same
datasets and similar parameters.
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1. Introduction

Originating in late 2019, COVID-19 has since ravaged the globe.
The spread is unprecedented due to globalization. The combination of
its fast spread and potency of its infections make it an especially
effective disease, however, with a relatively low mortality rate.
COVID-19’s virility in particular has tested the limits of the global
healthcare infrastructure due to the sheer number of people being
infected in a short span, putting the global healthcare systems under
intense pressure. The consequences of this can be seen best in
China where a stadium had to be transformed into a specialty
hospital [1], or more recently in the case of India where the army
set up temporary hospitals in various parts of the country [2].

A significant aspect to consider is the variation in severity for
the infected patients where symptoms can range from mild to severe.
This means that not everyone requires hospitalization and while

certain co-morbidities factors, such as age and diabetes, for
instance, have been isolated as high risk, other factors have not
been clearly identified as been predisposed to severity or
mortality. Therefore, it is not known for certain whether a
particular individual needs hospitalization, or if they can just
recuperate at home. If this could be determined early on, limited
healthcare resources can be prioritized effectively for those
classified as predisposed to mortality. This is the most relevant
aim of this study.

These two facets of the pandemic, specifically limited
capacity of the healthcare system and the undetermined need for
hospitalization, have presented the need for some prioritization
mechanism to determine which patients require hospitalization.
However, due to the aforementioned ambiguity in severity, there
is a lack of such mechanism, which has led to a rather morbid
result. Certain patients are hospitalized, utilizing valuable
resources when they do not need it, while others have
no options, dying due to the lack of resources. This has
subsequently forced the hands of doctors to make rather
poignant yet necessary decisions when it comes to who gets to
use such resources.
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From the foregoing, it is believed that a potential solution
can be found through the classification of chest X-rays (or CXRs)
of the patients early on, to predict the need for hospitalization
based on potential mortality risk. Radiologists commonly use
CXRs to determine lung abnormalities in both emergency and
non-emergency scenarios through visual analysis. This is no
different when it comes to COVID-19 where pneumonia is the
most common manifestation. CXRs have been shown to
detect such lung abnormalities with adequate sensitivity and
specificity [3].

This problem of suboptimal hospitalization has presented the
domain of deep learning an opportunity to stretch its wings. Deep
learning models can detect the underlying patterns in images that
may not be perceptible to the human eye. A model that can
predict the probable mortality risk of a COVID-19 patient
utilizing CXRs may be an invaluable asset to the healthcare
providers globally by serving as an appropriate prioritization
mechanism. Consequently, it may assist to prevent unnecessary
loss of life by optimal allocation of medical resources.

The uncertain need for hospitalization of patients infected with
COVID-19, combined with the increasingly limited capacity of the
healthcare system, can lead to suboptimal hospitalization, which
deprives deserving patients of emergency care, resulting in
unnecessary loss of life. Consequently, this research aims to
understand how deep learning and computer vision techniques can
be employed specifically in the domain of X-rays analysis for
COVID-19 patients’ potential mortality classification. The only
reliable dataset on COVID-19-related X-ray is utilized for the
source of. The data utilized for the research were obtained from
and were subsequently transformed into a viable format
appropriate for the deep learning model developed for the
classification approach, to train and tune the deep learning model
for the prediction of mortality risk. The performance of the
resulting deep learning models was evaluated to understand its
strengths and weaknesses to further improve its solution efficacy.
This is crucial in order to achieve an optimal predictive model.

It is hoped that with a prospective mortality classification model
based on deep learning, unnecessary loss of life can be prevented by
optimally prioritizing for patients in the face of medical resource
scarcities, as well as lowering the number of COVID-19 patients’
hospitalization. Consequently this lead to prevent further exposure
by decreasing number of people in hospitals, reduces peak
infection incidence, protection of the well-being of the medical
staff, and delays occurrence of the said peak as well as reduces
the cumulative number of infections during the pandemic.

Since COVID-19 outbreak and its impacts were unprecedented,
acquiring appropriate dataset to build predictive modeling was
extremely challenging at the onset of the COVID-19. Medical and
health practitioners were more focused on combating the

onslaught of the pandemic than structuring useful data coupled
with the fact that a global structure for handling datasets for
studies was not sufficient in place. In our frantic search, we
eventually got an extremely mingre dataset collected for several
purposes but which was possible to extract the CXR images and
other features that were suited for the intended predictive models.
Consequently, techniques that may possible better on small
datasets were the main focus of our search for the predictive
solutions. From previous studies, models with low complexities
have been found to performance better in situations where only
small datasets were available. In Brigato and Iocchi [4], ResNet
models, a set of decent models, have been shown to be suitable
for predictive modeling where a small dataset is available. When
there are only minimal datasets available, such as during the start
of similar pandemics, the methodologies for predictive modeling
suggested in this study may be especially well suited. According
to the research currently available, models with modest
complexity, like ResNet-18, perform better with small datasets.
Hence, in this study, ResNet-18 has been used as a baseline to
compare the effectiveness of other widely used models on tiny
datasets.

The rest of this paper is organized as follows. The next section
highlights the related work in the areas closely related to the
prediction of mortality to guide the allocation of healthcare
resources, this is followed by the methodology section, which
described the formulation of the algorithm, preparation of the
data, and overall strategy to ensure considerable performance. The
subsequent section is focused on performance and discussion of
results, while the conclusion section wrapped up the study.

2. Related Work

Previous studies such as Wang et al. [5] acknowledge the high
infection rate of COVID-19 and the undesirable effects that it causes
with regard to restricted healthcare facilities and avoidable casualties.
This study is motivated primarily to provide quick diagnosis for
patients with COVID-19 symptoms that show worse prognosis for
early prevention before the onset of severe symptoms. In that
vein, the study proposes an automatic convolutional neural
networks (CNNs) model for COVID-19 diagnostic and analysis of
prognostic by routinely utilized computed tomography (or CT).
The choice of CT due to the fact that in contrasts to RT-PCR
tests, CT is much more sensitive, even for patients who are
asymptomatic and can be acquired quickly without additional
costs involved. The model demonstrated considerable
performance, able to distinguish COVID-19 from other
pneumonia with area under the receiver operating characteristic
(ROC) curve (AUC) of 0.87 and 0.88, respectively, and viral
pneumonia with AUC 0.86. More importantly, the deep learning

Figure 1
ResNet-18 architecture
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system succeeded in stratifying patients into high-risk and low-risk
groups based on hospital stay duration.

Kulkarni et al. [6], on the other hand, chose an opposing view
compared to Wang et al. [5] opted not to use CT scans but rather
CXRs. However, similar to the earlier-mentioned paper, the study
acknowledged that mechanical ventilators were scarce and there is
a crucial requirement to utilize them optimally by adequately
rationing them. Consequently, this paper proposes a deep
learning model to predict the need for mechanical ventilation
using CXR images in hospitalized patients with COVID-19.
They argued that it was more practical to utilize X-rays rather
than CT scans due to being more widely used, easily available,
and less likely to be affected by machine contamination. The
performance of the model was considerable. The accuracy was
90.06%, and sensitivity was 86.34%, while specificity was
84.38%. The performance results were compared with the
evaluation of two respiratory and intensive care specialists. This
is to decide whether there is a need for mechanical ventilation or
not. The model was found to outperform the specialists’
predictions with an increased accuracy between 7.24%
and 13.25%.

Luz et al. [7], like Santa Cruz et al. [8], highlight a potential
hitch when it comes to models trained on X-ray with regard to
COVID-19: accessibility and availability. The paper showed that
many models have been developed with encouraging results but
are not computationally prudent and efficient. In response to this
problem, the paper proposes a method to provide a more efficient
and effective model for identification of COVID-19 using CXRs.
This is done via a set of EfficientNet CNN models combined with
a hierarchical classifier. The research demonstrated encouraging
performance, with an accuracy of 93.9% and parameters 5–30
times fewer compared to several existing architectures that were
tested.

Another related study was conducted by Santa Cruz et al. [8],
however as an exploratory study. In the study, the focus was on an
important issue when it comes to models built to aid medical
practitioners in clinical use, specifically bias induced by lack of
quality control and lack of bias assessment of public COVID-19
datasets. The study acknowledges the existence of several
machine learning models proposed to aid in the diagnosis and
prognosis of COVID-19. It equally recognizes the short period in
which this was done and the inherent availability of unnoticed
limitations due to bias that inhibits the models from performing
well on unseen or new testsets. The paper cautions on the
inappropriate or misuse of these models and directs to new
appropriate datasets that were becoming available to researchers.
It also highlights best practices for modelers when it comes to
choosing datasets.

In Cheng et al. [9], the authors used longitudinal CXR with
clinical data to predicate the mortality of COVID-19 patient. By
applying longitudinal transformer-based network, the accuracy
was 0.732. Another study shows the effect of using logistic
regression model with CXR and clinical variables to predict the
hospital length of stay achieving an AUC of 0.87 while
prediction accuracy is 0.78 for those requiring the use of oxygen
supplementation [10]. Combination between chest radiograph
images with clinical variables improves the predication of severe
COVID-19. This is also indicated in the study by Munera et al.
[11], using training CNNs for chest radiograph images and
clinical variables that identified by random forest method. The

results were 0.92 accuracy for patient admission and 0.81 for
hospital mortality. This study was done on 2552 patients.

Previous study done by Islam et al. [12], had applied a deep
learning based approach using Densenet-121 to effectively detect
COVID-19 patients. Also the (CheXNet)model was utilized to
weight the information regarding radiology image. The model was
trained and tested on COVIDx dataset containing 13,800 chest
radiography images of a total of 13,725 patients. By considering
both two-class and three-class classifications ,that was able to
achieved an accuracy of 96.49% and 93.71% respectively. Wang
et al. [13], proposed Vision Transformer (VIT)–based model called
PneuNet. The multi-head attention was applied on channel patches
rather than feature patches to overcome the difficulty that lies in
accurately identifying and classifying pathological features of
COVID-19. Patients with mild symptoms do not show a marked
difference in lung texture compared to those COVID-19 negative.
Consequently, traditional CNNs do not perform considerably well
in the classification of CXR images for the diagnosis of
pneumonia. The proposed PneuNet was applied on a combined
CXR dataset and reached 95.13%accuracy.

The study by Brigato and Iocchi [4] demonstrated that given
small data, employing low complexity models in some setups can
advance the state of the art. For instance, it showed that low-
complexity CNNs outperform state-of-the-art architectures on
problems with few training samples and without data
augmentation. This study consequently adopted ResNet-18 as the
baseline to evaluate the performance of the rest of the popular
models in providing suitable model for mortality prediction.

This study presents an attempt to determine COVID-19 patients’
mortality risk utilizing the available small dataset of CXR images at
the onset of the pandemic. The study is completely different from
the aforementioned studies as well as other existing studies on
application of image classification to COVID-19 X-ray images
[13–17] in two folds. Firstly, it focuses specifically on mortality
risk prediction rather than COVID-19 positive identification in
patients or the general disease identification. Secondly, most
groundbreaking existing studies were often trained on massive
datasets; this study focuses on utilizing small dataset to achieve
predictive modeling in a critical period at the onset of COVID-19
pandemic.

3. Materials and Methods

Altogether, the methodology for this study consists of cleaning
of the dataset, imputation of the missing values, augmentation of the
images to achieve a sizeable dataset, creation of the data pipeline,
transformation of the images, training and generation of the
models, as well as evaluation. CNNs are set of models specifically
utilized for the classification of image datasets, identification and
recognition of still or moving objects, segmentation of objects
in images, as well as general computer vision applications.
Therefore, a model that is based on CNNs called residual
networks (or ResNets) [11] is utilized for this study shown in
Figure 1. ResNet-18 is selected as the baseline model and
architecture of choice due to its appropriateness and performance
on small dataset. The architecture is as shown in the figure below.
The number 18 indicates the number of layers that the architecture
possesses. ResNet-18 was chosen because it has the benefit of
rapid convergence. The steps in the ResNet-18 models are
discussed in the next subsections.
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3.1. Convolutional layer

ResNet-18 CNNs as the baseline algorithms were applied on
COVID-19 CXRs images present in the only available dataset
found at the early stage of the pandemic [13]. The performance of
the models was then compared with that of several popular CNN
models discussed in the results and concluding sections. The
processes to make the dataset appropriate for classification by
ResNet-18 models are discussed under dataset subsection. The
preprocessed COVID-19 CXR images initially are passed through
a 7 × 7, 64-channel convolutional layer, responsible for feature
extraction. Then, a process of convolution operations is carried
out with a mask (or a kernel or a filter) of a predetermined size
moved across the images of the CXRs resulting in a feature map.
The process of the convolution of the mask across the images is
defined as:

G i; j½ � ¼ CXR �Kð Þ i; jð Þ ¼
Xk

u¼�k

Xk

v¼�k

K u; v½ � �CXR iþ u; jþ vð Þ

(1)

where K is the kernel or mask or filter in convolution operation
across the X-ray images, CXR.

The process comprises multiple convolutional layers stacked
together in a series, which can be observed in the modules, where
the output from one layer is fed as the input into the successive
layer. The purpose of this process is to extract higher-level
features. The hyper-parameters considered include the kernel
dimensions and stride. Stride is the total steps required for the
kernels. In this case, the kernel dimensions are 7 × 7 and operate
on a stride value of 2.

The activation function chosen is the rectified linear activation
function (ReLU). Images are intrinsically non-linear hence, the need
for ReLU to transform into non-linearity at every convolutional
layer. This improves model performance, and the model also
converges quicker in comparison to common non-linear functions
[12]. The ReLU is as seen in Figure 2 subsequently:

ReLU xð Þ ¼ max 0; xð Þ (2)

3.2. Pooling layer

After the initial convolution, the resultant feature map tensor of
the CXR encounters a 3 × 3 max pooling operation. The important
function of the pooling layer is subsampling, to reduce the
dimensions of the feature maps obtained from the convolutional
layer. This is necessary to decrease the parameters of the network,
and consequently, the computation required. Common pooling

operations include max, average, and min pooling for extracting
maximum, average, and minimum values, respectively, from the
image segments matching the kernel or filter, at every stage. In
similar fashion to the convolutional layer, the pooling layer
equally considers parameters such as the layer dimensions and the
stride. In the first max-pooling operation, a dimension of 3 × 3
and a stride of 2 were chosen.

3.3. Residual connections

The layers in the ResNet-18 model display unconventionality
when compared to traditional CNN architecture as residual
connections. This is due to poorer performance of deeper plain
networks vanishing or exploding gradients. Residual connections
are used to learn functions that reference the input, rather than the
alternative which do not reference the input. These functions are
called residual functions.

Figure 3 [18] depicts a residual block. H xð Þ represents the
anticipated output from the block, and x is the input value. The afore-
mentioned residual function is defined in terms of x as

F xð Þ ¼ H xð Þ � x (3)

Due to this, the desired output is redefined as

H xð Þ ¼ F xð Þ þ x (4)

The operation which results in F xð Þ þ x (which is equal to xð Þ)
at the output is performed via the residual connection acting as a
shortcut connection and element-wise addition. In this particular
example consisting of two layers, the residual function is obtained by

Fðx; fWigÞ ¼ W2 σðW1xÞ (5)

where denotes the activation function, ReLU.
The intuition for redefining the outputH xð Þ with respect to x is

to make it easier for the multiple non-linear layers to optimize the
referenced residual mapping (H xð Þ � x) than the unreferenced
H xð Þ directly. In rare situations when the optimal output results in
an identity mapping, that is, the output equals the input, x, the
residual F xð Þ naturally moves to 0. This is much easier than fitting
the non-linear layers directly into the identity mapping.

There are two types of residual connections:

1) The identity shortcut is utilized when the dimensions of the
input and output are the same. It is represented by

Figure 3
Residual building block

Figure 2
The ReLU graph
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Figure 4
PA view and AP view

Figure 5
Sample demonstrating X-ray variety

Figure 6
Missing values visualization
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y ¼ F x; Wif gð Þ þ x (6)

2) The projection shortcut is utilized in situation where the
dimensions of both the input and the output are different as
a result of change in the number of channels between
layers. In this case, a linear transformation is employed to
ensure dimension parity. This has the side effect of
introducing more parameters, represented by Ws.

y ¼ F x; Wif gð Þ þ Ws x (7)

3.4. Modules 1-4

After max pooling, the CXR tensor passes through four distinct
modules connected in series. Generally, CNNs consist of repeating
modules comprising the convolutional layer, the ReLU, and the
pooling layers before reaching the fully connected layer. Each
module consists of four convolutional layers of dimensions 3 × 3
and the same number of channels, ReLU activation functions, and
accompanying residual connections. The channels of the
convolutional layers of each module increase with 64 channels in
the first module, 128 channels in the second module, 256
channels in the third module, and 512 channels in the fourth
module. Since the number of channels changes between modules,
the projection shortcut mentioned in Equation 7 is utilized. All the
layers mentioned operate on a stride value of 2.

3.5. Fully connected layer

The CXR feature map tensor encounters the global average
pooling operation after passing through the last module before it
reaches the fully connected layer consisting of 1000 neurons. The
fully connected layer appears at the end of the network and is
responsible for the actual classification. It is representative of the
traditional neural network architecture where all the neurons of
one layer are connected to all the neurons of the next, forming a
dense network. The tensor of feature maps is obtained from the
layers before it is converted into a vector by a process referred to
as flattening since the fully connected layers cannot operate on the
CXR tensors directly. This is also why the layer is known as
the flattening layer. Utilizing the features extracted from the
CXR, the fully connected layer classifies the patient as potentially
surviving or not surviving. Before the classification occurs, the
softmax operation needs to be performed. It ensures that
the output class probabilities add up to 1 and is defined as

Softmax xið Þ ¼ exp xið ÞP
j exp xj

� � (8)

Each neuron’s output in the layer with fully connected neurons is
derived by

f x;w;bð Þ ¼ xTw þ b (9)

This describes artificial neural networks in general. Here, x is
the tensor of feature maps obtained from the CXR, w stands for
the weight associatedwith the specific neuron, and b is the bias value.

3.6. Dataset

This study is focused on determining a COVID-19 patient’s
mortality risk based on a CXR. At the early part of the onset of
COVID-19, it was challenging to locate a public COVID-19 CXR
dataset with labels indicating mortality. Only one public dataset was
found to have labels. Later dataset [19] was utilized in the extension
of this study on large dataset [20]. The required dataset was
collected from the initial small dataset found from a GitHub
repository of radiography images of pneumonia patients made
available in Wang et al. [13] consisting of 950 radiography images,
out of which 584 are of X-rays and CT scans of COVID-19 patients,
respectively. This repository not only had X-rays but also CT scans
of COVID-19 patients along with patients that are infected with
other viral pathogens such as SARS, MERS, influenza, herpes, etc.
Since the focus of this project was only on X-rays of COVID-19
patients, the data were filtered to obtain a subset that contained X-
rays for only those patients that are infected with COVID-19.
Similarly, the dataset also contained X-rays in different views,
namely anteroposterior (AP) view, posteroanterior (PA) view, and
lateral (L) view. Only X-rays in the AP and PA views were
extracted for this study. The AP and PA views are shown in
Figure 4. After carrying out the above filtration, the number
of images extracted from the dataset dropped to 478 out of the
950 images.

However, evenmost of the X-rays in the dataset extracted at this
point had the survival labels missing. The remaining dataset was
found to be very imbalanced, with a disproportionately high
number of people that survived COVID-19 as compared to those
that did not survive as shown in Figure 5. Therefore, two-class
balancing techniques were applied and tested, namely class weight
adjustment and weighted random resampling. To verify the
efficacy of the imputed data along with the proposed class
balancing techniques, three sets of different models were trained
and evaluated for both the original and unimputed data, consisting
of a model with no class balancing, a model with class weight
adjustment, and a model with weighted random resampling.

3.6.1. Dataset and CXRS
The images in the dataset have been gathered from several

different sources such as research publications and online
radiography image databases. Consequently, the images are not
always of the same dimensions or quality. Some X-ray images
also contain annotations while others have a slight tint of blue or red.

This variety in data becomes useful as it enables the trained
model to generalize well. However, the size of the dataset also is
a crucial determining factor when it comes to generalizability.
Therefore, although the variety of X-rays helps generalizability,
the number of images and hence variations in the dataset are limited.

The first important consideration in preprocessing images used
to train a CNNs, is that must all be the same size. For this study, all of
the X-rays were cropped and resized to 224 × 224 because that
resolution was the standard for image classification. The images
were additionally normalized in similar fashion to how numerical
data are normalized. The goal is to place 0 in the middle of a
range of data. Tensors are used to depict images, typically
representing three-dimensional arrays of numbers for the three-
color channels (RGB) for each color image pixel. Subsequently,
image normalization is carried for each of the channels, resulting
in three separate normalizations.

The usual approach is to normalize images using ImageNet’s
mean and standard deviation. ImageNet is a database of millions
of images used to train pre-trained models like ResNet-18.
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In order to increase the number of image samples to avoid overfitting
and possibly improve results, the training set’s images were further
augmented. Augmentation is accomplished by employing image
transformation to change specific aspects of the current images
and then training with the newly created images. In this instance,
zoom, warp, brightness correction or adjustment, and rotation are
among the image modifications that were attempted.

The attribute “survival” served as the primary focus of the data
because the article’s goal was to determine mortality risk. The
“mortality” column, which must have values that are the opposite of
those in the “survival” column, would be derived using this feature.
However, the “survival” column had many of its values missing
which made the X-rays associated with them unusable and also
decreased the amount of data that were available for training to 169.

3.7. Imputing missing labels using a random forest
classifier

One of the ways of overcoming the problem of missing values,
showing in Figure 6, is through imputation. According to Aslani and
Jacob [14], random forest-based imputation is the best method to
accurately impute missing values in a column. Consequently, a
random forest classifier (RFC) model is trained on the other features
of the dataset to predict the missing values for the survival column,
set as the target variable. The trained model can then be used to
impute the missing values in the column and hence resolve the issue.
Features for the RFC model to predict the “survival” column
include information such as the patient’s age, intubation status, and
whether the patient is in ICU or had been to the ICU. ICU
history (went_icu), oxygen assistance (need_supplemental_O2), and
intubation status (intubation_present, extubated) were found to be
good predictors of the “survival” label and hence used as features for
the RFC model. The continuous variable age was binned into specific
age groups so that it acts as a categorical variable instead.Moreover, it is
well-known that the mortality risk from COVID-19 is different for
different age groups, and hence it made sense to use age categories
for predicting the survival label instead of a continuous value. The
categories for the ages are: 0–30, 31–40, 41–50, 51–60, 61–70,
71–80, and 81–100. Therefore, to ensure that the performance
metrics of the trained model were accurate, k-fold cross-validation
was used. The number of splits for the k-fold cross-validation was
chosen to be 5. After the RFC model was trained with the labeled
data (accuracy ∼92.5%), it was then used to impute the missing
survival labels in the metadata.

The accuracy reached by the RFC model was only due to the
highly indicative features, namely features that describe the
patient’s ICU history, oxygen assistance, and intubation status.
These features already indicate that the patient is in a critical state
and hence it is not surprising that these can be used to determine
the survivability of the patient very well. However, since these
features are only available after the patient enters the critical
stage, such a model is not viable to be used for prognosis, unlike
our model which just uses X-rays that are available before the
patient reaches the critical state. Therefore, the high accuracy of
the RFC model does not conflict with our methodology of using
CXRs to predict mortality instead as the latter can be used for
prognosis which is one of the objectives of our paper.

3.8. Class balancing

Two techniques were employed for class balancing and
evaluated against the baseline for efficacy, viz: class weight
adjustment and weighted random resampling.

3.8.1. Class weight adjustment
In this study, the weight for each instance of a class is changed

to balance the total weight of either class. In the case of binary
classification, the weights to be assigned to each class are found
by getting the reciprocals of the number of positive and negative
cases in the training set. The lower weight is assigned to the
majority class and the higher weight is assigned to the majority
class by passing them as an argument to the loss function.
However, different scaling of weights of the classes can
sometimes affect the behavior of certain loss functions. Since the
reciprocal of the number of instances is being used, the resultant
number may be very small in one case and very large in the other.
To avoid this, the weights may be multiplied by half of the total
number of cases in the training set. This normalizes the weights
so that the weight scale is more similar in magnitude to the
original values.

3.8.2. Weighted random resampling
In weighted random resampling, weights of each class in the

training set are calculated in the same way as the class weight
adjustment method, but instead of being assigned to a loss
function, the weights are then used to create a new weighted
sampler. This sampler is used during training to fetch samples
from the training set, and based on the weights given for each
class, the sampler would try to pass the same number of samples
for each class in a batch, every time a new batch of samples is
required during training. This means that in many cases, there
may be multiple instances of the same image in the batch, usually
of the minority class. The sampler does this to balance the number
of instances from each class in the batch when there is a lack of
sufficient unique samples from one or both classes. However, the
images may not be exactly identical, as image augmentation is
also applied to the images in the batch to create more variations in
the data.

3.9. Preparing the data pipeline and applying
image transformations

The images used to train a CNNmust all be the same size. In the
case of this paper, all of the X-rays were cropped and resized to 224×
224 because that resolution was the industry standard for image
classification. Furthermore, to train a CNNs model with a single
image at a time is considerably time-consuming. In the alternate,
training can be executed using a batch of images at each epoch,
utilizing GPUs to quicken the processing. The DataBlock API of
FastAI can be utilized to resize, normalize, enhance, and batch the
images.

3.10. Model generation and evaluation

To demonstrate the performance improvements of our chosen
techniques of imputation and class balancing, three models were
trained on the original data and another three models were trained
on the imputed data, consisting of a model with no class
balancing, a model with class weight adjustment, and a model
with weighted random resampling. Additionally, a stratified k-fold
cross-validation method with a 5-fold split was employed for the
training. In other words, the data were divided and evaluated five
times, while maintaining the ratio of the target classes in each
split, and each time, a different split of the data was utilized as the
validation set, consequently training and evaluating the model on
all dataset at the end of the five iterations. Due to the limited
quantity of training data in this study, testing the methods on the
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entire dataset and obtaining the average performancemetrics allowed
for a more accurate depiction of the effectiveness of the suggested
techniques.

As for the architecture, an 18-layer pre-trained ResNet-18 model
was adopted, which has already been trained to classify, with
preassigned weights for each layer. However, the last layer was
deleted and replaced with a new layer assigned with random
weights because the pre-trained models are specific to the
classification task that it was initially created to carry out. This
allows the model to be used for the specific tasks relevant to this
research. In addition, the Adam optimizer was employed to
determine the learning rate, while the cross-entropy loss function
was chosen. After creating the model, learning rate finder was
utilized to find the optimal learning rate. The model last layer froze
at 5 epochs even though with suitable fine-tuning. The model was
afterwards trained for an additional 30 epochs after all layers are

unfrozen utilizing the learning rate finder as usual to determine
optimal learning. The complete algorithm for model generation is
shown in Figure 7. The model was run for five times for each of
these three models, storing the accuracy and classifications with
each run. A cumulative confusion matrix was created after the
models had been assessed by averaging the accuracy ratings for all
of the partitions to determine the performance metrics, namely true
positive rate (TPR), true negative rate (TNR), false positive rate
(FPR), and false negative rate (FNR) of each of the models on the
overall data. Figure 7 shows model generation algorithm.

4. Evaluation

This section describes the performance metrics and evaluation
for the study. The performance metrics are computed at the
completion of each new model for the cross-validation models.

Figure 7
Model generation algorithm
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Consequently, there are five series of performancemetrics for each of
the five cross-validation models, available after model training. To
obtain overall performance metrics, averages of the performance
scores were computed across the five groups, namely balanced
accuracy, precision, recall, F1-score, and AUC-ROC score. In
addition, the confusion matrices for all of the models on the
validation set were added to create a cumulative confusion matrix.
The TPR, TNR, FPR, and FNR for the entire models were equally
computed from the confusion matrix.

4.1. Results and discussion

The results consist of six different models trained with various
class balancing techniques in an attempt to improve performance.
Table 1 summarizes the performance results from all six models.
The balanced accuracy, precision, recall, and ROC AUC scores
shown are the average of the scores retrieved during the k-fold
cross-validation done on each of the models. On the other hand,
the TPR, TNR, FPR, and FNR are from the cumulative confusion
matrix summed over all of the 5 folds.

From the results, the baseline model which was trained on the
original dataset had the best performance in terms of the balanced
accuracy and F1-score, and all of the other models that tried to

improve the performance did not yield any better result in terms
of these metrics. However, the original model did not have the
lowest FNR. The class weight-adjusted model trained on the
original data had the lowest FNR, and consequently, the highest
recall score among the models tested. In other words, the class
weight-adjusted model was least prone to classifying a patient
with mortality risk as not having mortality risk. Besides this, the
model with random resampling technique applied to the original
data had the lowest FPR and highest precision; however, this
came at the cost of the lower recall and higher FNR rate. The
imputed models, on the other hand, did not perform well in any
significant area.

The reason for the models being unable to improve over the
baseline may lie in the small size of data that results in the model
encountering a lot of unseen data in the validation stage. All these
techniques used here for balancing classes do not introduce real
variations into the data. Without enough variations in the data, the
likelihood of the validation set having unseen data increases
greatly. Besides that, the model also fails to generalize real-world
data and hence performs poorly when it encounters data that have
patterns that it has not encountered before. The imputed dataset
despite having more images is not free from this issue. Four
hundred seventy-eight images are still small compared to the

Figure 8
Train vs valid loss for original data with (a) no class balancing, (b) resampling, and (c) class weight adjustment
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number of variations that may be seen in CXRs. On top of that, the
imputation could also have been inaccurate, causing the model to get
confused as the training sample represents the data incorrectly.

The training vs validation loss plot for each of the models gives
a clearer indication of overfitting occurring during training.

Figure 8 and Figure 9 combined the train vs valid loss plot from
all the 5 iterations of training during k-fold cross-validation for original
data and imputed data respectively. From the figures, it can be noticed
that in some cases, the validation loss keeps increasing at every
consequent epoch, instead of decreasing. In other words, as the

Table 1
Train vs validation performance for original data and imputed data

Model
Balanced
accuracy

ROC-AUC
Score Precision Recall

F1
score

True posi-
tive rate

True nega-
tive rate

False posi-
tive rate

False nega-
tive rate

Original (169 images) Train 0.92 0.99 0.69 0.99 0.80
Test 0.89 0.90 0.80 0.84 0.81 0.842 0.931 0.069 0.158

Imputed (478 images) Train 0.86 0.93 0.64 0.88 0.73
Test 0.74 0.78 0.60 0.60 0.58 0.608 0.864 0.136 0.392

Imputed + class
weight adjustment

Train 0.89 0.96 0.60 0.96 0.73
Test 0.76 0.83 0.54 0.67 0.59 0.67 0.85 0.15 0.33

Imputed + random
resampling

Train 0.82 0.89 0.82 0.82 0.82
Test 0.73 0.80 0.55 0.59 0.56 0.588 0.864 0.052 0.412

Original + random
resampling

Train 0.91 0.96 0.89 0.94 0.91
Test 0.83 0.91 0.81 0.71 0.75 0.711 0.954 0.046 0.289

Original + class
weight adjustment

Train 0.87 0.97 0.55 0.97 0.70
Test 0.88 0.92 0.69 0.90 0.76 0.895 0.863 0.137 0.105

Figure 9
Train vs valid loss for imputed data with (a) no class balancing, (b) resampling, and (c) class weight adjustment
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model learns the data in the training set and adjusts its weights, the
model’s accuracy and loss in the validation set keep getting worse
indicating a lack of correlation between what it is learning during
training and what it finds in the validation samples. This happens
very frequently in the case of the imputed dataset which is a further

indication of having a training set that does not provide an accurate
representation of CXR patterns for each of the classes, probably
due to mislabeling from inaccurate imputation.

Further analysis of the models was done using the ROC curve and
precision–recall (PR) curve. The AUC-ROC scores for each of the

Figure 10
ROC curves for original data with (a) no class balancing, (b) resampling, and (c) class weight adjustment

Table 2
Comparison of ResNet-18 classification performance with existing techniques on the small dataset

Model
Balanced
accuracy

ROC-AUC
score Precision Recall

F1
score

True positive
rate

True negative
rate

False positive
rate

False negative
rate

AlexNet [20] 0.76 0.54 0.78 0.96 0.86 0.96 0.12 0.88 0.04
MobileNetV3
[21]

0.79 0.56 0.79 1.00 0.88 1.00 0.12 0.88 0.00

EfficientNetV2
[22]

0.65 0.55 0.79 0.73 0.76 0.73 0.38 0.62 0.27

SwinTransformer
[23]

0.74 0.52 0.77 0.92 0.84 0.92 0.12 0.88 0.08

ConvNeXt [24] 0.76 0.50 0.76 1.00 0.87 1.00 0.00 1.00 0.00
ResNet-18 0.89 0.92 0.80 0.84 0.81 0.842 0.931 0.069 0.158
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models have been summarized. The ROC and PR curves for the model
show the average of the curves generated by the k-fold cross-validation.
Figure 10 and Figure 11 show the ROC curves for the original data and
imputed data respectively. While Figure 12 and Figure 13 show the PR
curve for the original data and imputed data respectively.

The class weight-adjusted model trained on the original data
achieves the best average AUC-ROC score of 0.92. The rest of
the models do not perform as well, with the model trained on
imputed data along with no class balancing performing the worst.

Similarly, the PR curves also show the same trend with the
baseline model and class weight-adjusted model on the original
data performing the best with an AUC-PR score of 0.79 and the
model trained on imputed data along with class weight adjustment
performing the worst with an AUC-PR score of just 0.49.

The proposed algorithms based on the ResNet-18 have been
compared with the performance of several popular CNN models,
including AlexNet [23], MobileNetV3 [24], EfficientNetV2 [25],
SwinTransformer [26], and ConvNeXt [27] as shown in Table 2.
The evaluation was conducted on the same dataset for image
classification task, and the models were compared based on several
evaluation metrics including model accuracy, ROC AUC, precision,
recall, F1 score, TPR, TNR, FPR, and FNR.

ResNet-18 was used as the baseline model for comparison, and
it achieved an accuracy of 0.89, a ROC-AUC of 0.92, a precision of

0.80, a recall of 0.84, and an F1 score of 0.81. The TPR and TNR
were 0.842 and 0.931, respectively, while the FPR and FNR were
0.069 and 0.158, respectively.

It is evident that MobileNetV3 has the highest accuracy (0.79)
and ROC-AUC score (0.56) among all other trainedmodels, which is
still considerably lower in performance compared to the baseline
ResNet-18 model. It also has a high precision of 0.79 and a
perfect recall of 1.0, indicating that it correctly identified all the
positive cases in the dataset. This is an important metric for
medical image classification tasks where false negatives can have
serious consequences.

AlexNet and ConvNeXt also performed reasonablywell with an
accuracy of 0.76 and 0.74, respectively. However, their ROC-AUC
scoreswere lower thanMobileNetV3, indicating that theymay not be
as effective in distinguishing between positive and negative cases.
EfficientNetV2 had the lowest accuracy of 0.65 and a relatively
low ROC-AUC score of 0.55. However, it had a high precision of
0.79, indicating that it correctly identified most of the positive
cases in the dataset. SwinTransformer had an accuracy of 0.74
and a relatively low ROC-AUC score of 0.52.

However, it had a high recall of 0.92, indicating that it correctly
identified most of the positive cases in the dataset. There are several
potential reasons why each model performs the way it does. ResNet-
18, as the baseline model, has a relatively simple architecture

Figure 11
ROC curves for imputed data with (a) no class balancing, (b) resampling, and (c) class weight adjustment
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compared to the other models. However, its success in achieving
high accuracy and ROC-AUC scores could be attributed to its use
of residual connections, which allow for better gradient flow and
avoid the vanishing gradient problem.

AlexNet, on the other hand, was one of the earliest CNNmodels
and has a relatively shallow architecture. This may explain its lower
performance compared to the other models. Additionally, its lower
precision score could be attributed to its tendency to classify some
images as positive when they are actually negative. MobileNetV3
is designed to be lightweight and efficient, making it a good
option for mobile devices or low-resource environments. Its
higher recall score suggests that it is better at identifying true
positives than ResNet-18. EfficientNetV2 is designed to be more
efficient than its predecessor, EfficientNetV1. However, its lower
accuracy and ROC AUC scores suggest that its smaller size
comes at the cost of performance. SwinTransformer is a newer
model that uses self-attention mechanisms to capture global
dependencies in the input image. However, its lower performance
compared to ResNet-18 suggests that further optimization may be

needed for it to reach its full potential. ConvNeXt uses grouped
convolutions to improve efficiency and reduce computational cost.
Its high recall score suggests that it is good at identifying true
positives, but its lower ROC-AUC score suggests that it may
struggle with distinguishing between positive and negative
examples.

Overall, each model has its own strengths and weaknesses
based on its architecture and design goals. Further optimization or
using larger variants of the datasets could potentially improve
their performance on the image classification task.

In conclusion, this study showed that ResNet-18 performed
well on the image classification task compared to the other CNN
models evaluated in this study. However, it is worth noting that
the other models could potentially perform better when larger
datasets are utilized. The main motivation for using small
dataset is due to the onset of COVID-19; data were scarce
where only small datasets were available. This study may be a
useful contribution in the case of early outbreak of similar
epidemic.

Figure 12
PR curves for original data with (a) no class balancing, (b) resampling, and (c) class weight adjustment
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5. Conclusion and Future Work

In this paper, we attempted to train deep learning models to
predict mortality risk in patients infected with COVID-19 using a
small dataset of CXRs images of COVID-19 patients collected
from a public GitHub repository. The collected dataset was
preprocessed, and two different class balancing techniques were
applied on the original and imputed data. The imputed data referred
to the use of a RFC model to impute missing labels. Furthermore, a
pre-trained ResNet-18 model was fine-tuned on each of the
preprocessed data using the FastAI library to produce models with
no class balancing, class weight adjustment, and weighted
resampling applied for both the original and imputed data. The
result showed that the baseline model achieved the best
performance in terms of accuracy, but the class weight-adjusted
model trained on the original data had the lowest FNR and highest
recall and ROC-AUC score. Due to limited data, in our
methodology, the CXRs were not discriminated based on the
patient’s duration of infection at the time of X-ray. Despite that, the
result from this research shows the possibility of reliably predicting
COVID-19 mortality from CXRs without discriminating based on
the patient’s duration of infection at the time of X-ray. The
performance of the proposed algorithms based on the ResNet-18
compared favorably with those of several popular CNN models,
including AlexNet, MobileNetV3, EfficientNetV2, SwinTransformer,
and ConvNeXt. This further demonstrates that ResNet-18 is more
suited for classification of this nature among the several CNN

models considered. This finding is in agreement with previously
published studies on low complexity CNNs performance on small
datasets such as in Brigato and Iocchi [4].

Of course, when large datasets are available as shown in
Olowolayemo et al. [20], experimenting with more pre-trained
models of various architectures, utilizing additional X-ray images of
COVID-19 cases as well as classifying the cases according to the
length of infection, potentially the model may be improved. In
modeling X-ray images, larger models frequently produce better
accuracy because they should have plenty of variations and patterns
to learn. This is not always the case, though. Furthermore, using
CXRs of COVID-19 patients taken early after the infection may be
more effective for training. It is believed that this should help to
determine patient’s condition more realistically and indicative of the
mortality risk since infection normally worsens with time. Lastly,
because of the limited dataset at the onset of COVID-19 pandemic,
especially containing a meager number of non-survival or mortality
cases, oversampling methods were attempted through a process of
image augmentation. This was done to increase size of the datasets,
especially for the minority class. While augmenting image is an
often utilized technique to increase images’ dataset by generating
more variations from the images, there is no guarantee that it may
adequately account for real-world variations necessary to train an
efficient model. It is believed that collection of more X-ray images
with considerably increased non-survival cases as well as fine-tuning
the models could possibly produce improved performance and
efficient results.

Figure 13
PR curves for original data with (a) no class balancing, (b) resampling, and (c) class weight adjustment
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