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Abstract: Early and reliable detection of bacterial, fungal, and viral infections in fruits and leaves is essential for improving crop productivity,
preventing disease spread, and supporting food security. Most existing approaches are domain-specific and struggle to generalize across diverse
plant organs or varying image qualities. To address this challenge, we propose a novel domain-independent classification framework that integrates
quality-metric features—Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM)—with an
adapted lightweight Convolutional Neural Network (CNN). This is the first approach that explores quality measures as features for addressing
challenges of classification of fruits and leaves infected by virus, fungus, and bacteria. The method first performs connected-component analysis on
K-means clusters generated from R, G, B, and Gray channels to isolate disease-relevant regions and extract quality-based features. These features
are fused with visual features extracted from the RGB images using a multimodal CNN architecture. Extensive experiments conducted on the
proposed fruit-leaf dataset and four external benchmark datasets demonstrate that the model achieves high accuracy, strong robustness to blur,
noise, rotation, and scaling, and superior generalization performance compared with state-of-the-art methods. Cross-domain evaluations further
confirm that the proposed method is domain-independent and reliable for the classification of fruits and leaves infected by bacteria, fungi, and
viruses.
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1. Introduction or leaf types. Consequently, the ability of state-of-the-art techniques to
classify infected images is generally limited. Thus, the classification of
diseased fruit and leaf images, irrespective of the types of fruits and
leaves (domain-independent), remains a challenge. Simultaneously, the
classification of such images can help choose an appropriate method
to reduce crop loss and prevent its spread, which makes a significant
difference.

Adverse environmental conditions often lead to fruits and leaves
being affected by bacterial and fungal diseases. Diseases affecting fruits
and leaves reduce agricultural production worldwide, causing significant
economic losses and compromising food security. Traditional diagnostic
methods based on visual inspection are limited to human observation,
expertise, and resources. Rapid developments in digital imaging
technologies and machine learning algorithms have provided promising
solutions to overcome these challenges. Image-based disease detection
technology has become a powerful method for non-invasive, rapid, and
accurate disease detection [1]. Bacterial, viral, and fungal pathogens
are the main pathogens, each presenting diagnostic challenges. These
diseases can lead to crop loss, and their symptoms are often subtle
and difficult to distinguish through visual inspection alone. Therefore,
the identification of images infected by bacteria, viruses, and fungi is
difficult and important for assessing crop health and productivity.

Methods have been proposed in the literature for identifying
viral, bacterial, and fungal diseases in fruit and leaf images [2].
However, most of these methods focus on specific diseases and fruit

Therefore, this study focused on developing a robust and domain-
independent system for viral, bacterial, and fungal fruit and leaf image
classification. The effects of viruses, bacteria, and fungi are the same
regardless of the fruit and leaves. For instance, black spots and white
and yellow patches indicate bacterial, fungal, and viral infections. We
believe that the image quality changes due to black spots, yellow, and
white patches introduced by bacteria, viruses, and fungal diseases.
The change is demonstrated by the sample images in Figure 1, where
one can see changes in quality in terms of texture and color. This
observation motivated us to introduce quality measures as features in
the R, G, B, and Gray color spaces for classification. The measures are
the Mean Squared Error (MSE), Peak Signal-To-Noise Ratio (PSNR),
and Structural Similarity (SSIM). Similarly, a Convolutional Neural
Network (CNN) was proposed for encoding quality measure-based
#Corresponding author: Basavanna Mahadevappa, Department of Studies ieatures for the classification of images of different diseased fruits and
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davangereuniversity.ac.in enhance the classification performance, the proposed method inputs the

© The Author(s) 2026. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/
by/4.0/


https://doi.org/10.47852/bonviewAIA62027747
https://orcid.org/0009-0007-0569-2527
https://orcid.org/0000-0001-9404-4183
https://orcid.org/0000-0001-9026-4613
https://orcid.org/0000-0002-8440-9270
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:basavanna.m@davangereuniversity.ac.in
mailto:basavanna.m@davangereuniversity.ac.in

Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

Figure 1

Example images of fruits and leaves infected by bacteria, fungus, and viruses
- 3

original images of R, G, B, and Gray to the CNN, along with quality
metric-based features.

Therefore, the contributions of this study are as follows: (i)
Proposing a simple and effective method for tackling a complex
problem is original. (ii) Extracting quality measures as features from
various color spaces based on quality differences in disease images
is novel compared to current methods. (iii) Adapting a convolutional
neural network to combine image features and quality measures for
accurate classification is new. The rest of this paper is organized as
follows. In Section 2, techniques for identifying fruit and leaf diseases
are reviewed. Section 3 describes the CNN and feature extraction
processes for classifying bacteria, viruses, and fungal pathogens in fruit
and leaf images. Section 4 discusses the results of the classification
validation and the robustness of the proposed method. An overview of
the proposed approach and future directions is provided in Section 5.

2. Related Work

Based on the type of input data and disease-causing agent, the latest
deep learning approaches can be categorized into three main groups:
fruit and leaf disease classification, combined fruit and leaf disease
classification, and pathogen-specific classification of bacterial, fungal,
and viral infections. Early studies on automated plant disease recognition
relied on classical image processing and machine learning techniques
before the widespread adoption of deep learning-based frameworks [4, 5].

2.1. Fruit disease classification

Sultana et al. [6] developed XAlI-FruitNet, an explainable model
for fruit classification that enhances interpretability but focuses on fruit
quality rather than pathogen type. Bansal et al. [7] presented a CNN-
based model for apple disease classification, which showed strong
results but was constrained to specific apple diseases only. Anim-
Ayeko et al. [8] proposed a deep learning system for blight detection
in potato and tomato, which is effective but disease-specific. A study
conducted by Mallikarjuna et al. [9] used deep learning for feature
extraction and classification using gradient-directional information to
improve photos to classify illnesses in areca nuts. Furthermore, Javidan
et al. [10] introduced variations in illumination, background clutter, and
image quality have been reported to significantly affect fruit disease
classification accuracy, highlighting the importance of robust feature
learning. Overall, existing methods perform well on specific fruit
datasets, but their scope is limited to a particular domain.

2.2. Leaf disease classification

Chandrashekar et al. [11] introduced a Modified Dense
Convolution Network (MDCN), for mango leaf disease classification,
showing high performance but limited to mango leaf cases. Li et al. [12]
proposed a dual-network approach integrating a Multi-fusion U-Net
with an enhanced VGG-19 to detect grape leaf diseases in diverse
environmental conditions. Liu et al. [13] introduced a flooding-based
MobileNet to identify cucumber leaf diseases under natural settings,
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emphasizing background complexity. Li et al. [14] developed DAC-
YOLOv4 for strawberry disease detection. Liu et al. [15] proposed
MCDCNet, which utilizes feature fusion and dual-constrained
deformable convolution for apple leaf disease detection. Thakkar et al.
[16] introduced multi-level feature fusion strategies in CNN-based
architectures have also been shown to improve discrimination between
visually similar leaf diseases. Thai et al. [17] introduced FormerLeaf,
a transformer-based model for cassava leaf disease recognition, which
used sparse matrix operations to improve efficiency. Pradhan et al. [18]
proposed an involutional neural network for classifying diseases in leaf
images, including various pathogens. Rani et al. [19] applied feature-
based deep learning for identifying infected leaves. Jiang et al. [2]
enhanced CNNss for real-time apple leaf disease detection. In summary,
these models offer strong performance for leaf disease tasks; however,
their scope is confined to leaf diseases.

2.3. Fruit and leaf disease classification

Vasconez et al. [20] implemented CNN models to detect bacterial
wilt in tomatoes, with Xception and MobileNet-v2 showing the best
results. Prajwala et al. [3] proposed a method for pomegranate disease
detection in both fruit and leaf images using adaptive histogram-
based features and an artificial neural network (ANN) classifier.
Chin et al. [21] compared deep learning models across several plant
disease datasets. Khanal et al. [22] developed a mobile application
integrating CNNs for paddy disease detection. Benfenati et al. [23]
applied unsupervised deep learning for automatic disease detection in
both fruit and leaf images. Most of these approaches are designed for
limited plant organs or controlled datasets and struggle to generalize
across different domains such as fruits and leaves affected by multiple
disease types [24]. In summary, these approaches primarily focus on
one or two plant parts and do not comprehensively address all three
diseases in plants.

2.4. Virus, bacteria, and fungal disease classification

Cao et al. [25] and Liu and Wang [1] reviewed the challenges
and strategies for plant disease detection, including fungal and bacterial
infections. Pacal et al. [26] provided comprehensive reviews and
case studies on fungal, bacterial, and viral classification using deep
models. Tejaswini et al. [27] addressed early detection using CNNs and
Al-enhanced feature engineering. Pandian et al. [28] used CNNs for
pathogen-infected plant image classification. Wang et al. [29], Thakur
etal. [30], and Kumar et al. [31] utilized advanced CNNs and attention-
based models to identify multiple pathogens, including viruses,
bacteria, and fungi, in various environmental settings. Saraswat et al.
[32] proposed a modified deep neural network combined with DSURF
features for fungi-bacterial detection. In summary, most of the above
methods work well for a particular domain but not for multiple domains
simultaneously. Therefore, these methods may not perform well in
detecting fruit and leaf diseases.

In conclusion, although recent studies have proposed a range of
deep learning models tailored to specific datasets and disease types,
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Figure 2
Block diagram of the proposed method
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none provide a unified, robust solution for classifying both fruit and leaf
images infected by bacterial, fungal, and viral diseases under varying
image qualities and conditions. This research gap underscores the need
for a domain-independent disease classification framework capable of
maintaining consistent performance across diverse plant organs and
infection types [33]. A domain-independent model effectively integrates
quality metrics and image-based features to achieve reliable and stable
results.

3. The Proposed Approach

As noted in the previous section, the classification of fruit and leaf
images from viruses, bacteria, and fungi is a complex problem because of
the diverse nature of the images. One of the co-authors, a biotechnology
expert, observed that bacterial, viral, and fungal infections resulted in black
spots, white patches, and yellow patches, respectively. In addition, these
infections alter the quality of the images [3, 9]. These findings motivated
us to use quality metrics as classification features in this study, specifically
MSE, PSNR, and SSIM. To implement quality measure-based features,
the proposed method performs a connected component operation to detect
the patches in the image as components. Simultaneously, the color of the
patches and the input image provide vital cues for the classification of
diseased fruit and leaf images. This intuition motivated us to introduce
a conventional neural network for fusing images and quality measure-
based features for classification. A block diagram of the proposed
method is presented in Figure 2. Owing to the simple adapted CNN and
handcrafted features, the proposed method is a lightweight model that
does not require a large number of training samples and computations,
unlike recent heavy deep learning models such as ResNet, DenseNet, and
Vision Transformers. In addition, because the problem is new and a larger
number of samples are not available for training and experimentation,
we believe that the combination of handcrafted features and the adapted
lightweight CNN is a better option for classification.

To show that the infection of diseases can change the quality
of images arbitrarily, we estimated the BRISQUE and NIQUE non-
parametric quality measures for the samples of fruit and leaf diseases,
as illustrated in Figures 3 and 4. As shown in Figures 3 and 4, the
BRISQUE and NIQUE report arbitrary values, whereas the same
measures report almost similar values for healthy images. The black
dots, yellow, and white patches affect the image quality.

3.1. Connected components for estimating quality
measures

The proposed approach divides an input color image into R, G,
B, and Gray channels before using K-means clustering with K = 2 for
each color space to produce high and low mean clusters. The value of
K is determined empirically. Because of the unsupervised nature of
K-means clustering, the mean of the clusters was calculated. The cluster
with the highest mean is referred to as a high-contrast cluster, whereas
the other cluster is referred to as a low-contrast one. For the sample
images shown in Figure 5(a), the detection of connected components in
high- and low-contrast clusters for the images of bacterial, fungal, and
viral illnesses is shown in Figure 5(b).

Figure 3
Average BRISQUE scores for healthy and diseased fruit and leaf
images across the proposed and two benchmark datasets
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Average NIQE scores for healthy and diseased fruit and leaf
images across the proposed and two benchmark datasets
NIQE Scores Across Datasets

0.35
0.30
0.25
2
S 0204
2]
m
< 0.154
Z
0.10
0.05
0.00 -
Bacteria Fungus Healthy Virus
Dataset
@ Fruit ™ Standard 1
W Leaf Standard 2

Figure 5 illustrates that for the R, G, B, and Gray spaces, the
pixels representing white patches are classified into high mean clusters,
while the pixels that represent black spots are classified as low-contrast
clusters. The same is not true for pixels that represent yellow patches
because some pixels can be classified as high-contrast, and other parts
of the yellow patches can be classified as low-contrast clusters. This
is because high pixel values represent white patches, low pixel values
represent black spots, and neither high nor low pixel values represent
yellow patches in the images. The same conclusions can be drawn for
the images of the leaves.
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Figure 5
Connected components are detected for the infected fruit images
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(b) Connected components detection in the high and low mean clusters of fruit images.

As mentioned above, the value of the K is determined empirically,
which is 2. This is because of the following. When we look at the cues
of bacteria, fungus, and virus in fruit and leaf samples, the dark, white,
and yellow patches represent each disease in both fruits and leaves. This
implies that the patches have either high or low pixel values compared
to the background pixels, irrespective of diseases and fruits, and leaf
samples. For example, the dark patches usually have low values while
the white patches have high values. However, the values of yellow
patches are inclined to high values compared to background pixels. This
observation motivated us to introduce K-means clustering with K = 2,
such that it outputs high and low mean clusters containing the patches
as connected components. This observation is illustrated in Figure 6(a)-

(b), where, for K = 2, we can see distinct clusters for different classes,
while the clusters are not clear for K =2, 3, 4, and 5.

The quality measures are estimated for each connected
component in the high- and low-contrast clusters of the R, G, B, and
Gray spaces and considered as features for classification. This step
detects the region of interest and discards the other regions of interest.
Consequently, the problem complexity and computation count are
reduced, making the proposed approach both effective and efficient.
The pixels in the input images (original images) that match the pixels
in the clusters are retrieved to calculate the quality measures (MSE,
PSNR, and SSIM) for high- and low-contrast clusters in each R, G, B,
and Gray space. Quality measurements were estimated using the input

Figure 6
Determining the feasible K values for the successful classification
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image pixels and clusters. The clusters are considered reconstructed
images in this study.

This work uses a gray image in addition to R, G, and B images
for connected components extraction. This is because the gray images
resultin the average of R, G, and B values in the color spaces. This means
the gray image can be considered as a normalized image compared to
individual R, G, and B images. Therefore, we believe that the features
extracted from gray images are robust and stable (this can be confirmed
from the results in the Ablation study experiments). The features
extracted from the gray image are better than R, G, and B. However,
the gray image does not provide color information. This motivated us
to extract features from R, G, and B images directly to strengthen the
features because color is a key feature for the classification of bacteria,
viruses, and fungi. Therefore, the combination of features extracted
from gray and R, G, and B separately makes the features robust and
generic.

Mean Squared Error (MSE): The average squared difference
between the original and reconstructed images is measured by the MSE,
as defined in Equation (1).

/ 2
(1)

MSE <1, 1')
where I; is the pixel value in the original image at pixel 4z, I’; is the
pixel value in the reconstructed image at pixel ii, and N represents the
total pixel count of the image.

Peak Signal-to-Noise Ratio (PSNR): It is a metric that
compares the power of the noise (the difference between the original
and compared images) to the greatest power of a signal (an image). It is
defined as in Equation (2).

1N
¥

i=1
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where L is the maximum possible pixel value (for 8-bit images, L =

/
255) and MSE (I I ) is the Mean Squared Error between the original

and the compared images.

Structural Similarity Index (SSIM): The SSIM is a perceptual
measure of the similarity between two images, considering the
brightness, contrast, and structure. It is calculated using Equation (3).

/ !
<2,u[,uI+C’1> <2011+c2>

<u§+u"’,+01 (a§+crz,+cz> )
i 1

SSIM (I, I') = (3)

/
where pI and pI are the mean intensities of the original and compared
images, respectively. o2 and ¢ are the variances of the original and

compared images, respectively; émd ol I, is the covariance between the
original and compared images. The division with weak denominators is
stabilized by the constants Ci and C-.

The average of the features taken from the high-mean and low-
mean clusters of the corresponding R, G, B, and Gray images was
calculated using the suggested approach. Twelve features in total—
three features with four color spaces—are extracted. A convolutional
neural network uses these properties to classify data. Figures 7 and 8
illustrate the distributions of the MSE, PSNR, and SSIM for diseased
fruit and leaf, where we can see a unique distribution for each class.
This demonstrates that the proposed features can successfully classify
diseased fruit and leaf images.

3.2. Classification of fruit and leaf images caused by
virus, bacteria, and fungus

/ L As noted in the previous section, the extracted quality measures
PSNR|(I,I | =20logyg—=—w— 2) . . . . X
s SE(I 1') can differentiate between the three diseases. However, a quality metric
Figure 7

The unique feature distribution for the classification of diseased fruit images
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Figure 8
The unique feature distribution for classification of diseased leaf images
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feature alone is insufficient to achieve a high classification rate owing
to the multiple domains. Therefore, to improve the classification
performance, the input images of R, G, B, and Gray are fed to the CNN
along with the quality metric features, as shown in Figure 9.

For each of the R, G, B, and Gray channels, the proposed method
obtains connected components from high- and low-mean clusters of the
input images as discussed earlier. Three quality metrics were computed
for each component in each cluster of the four-color channels. This
resulted in 12 features (3 metrics x 4 color spaces) per image, which
were normalized and fed into the CSV input branch of the network.
The full RGB image (size: 180 x 240 x 3) was directly passed into
the CNN branch of the network. Furthermore, both the image (RGB)
and extracted features were fused using a concatenation approach for
classification. Full RGB and Gray images are processed through a series
of convolutional layers in a CNN. These layers extract high-level visual
features, such as texture, shape, and spatial patterns. The final output
from this branch is a compact visual representation vector after global
average pooling and a dense transformation. The outputs of the two
branches, the visual features from the CNN, and the structural features
from the quality metric, were concatenated into a single unified feature
vector. This concatenated representation captures visual and abrupt
changes using quality metrics, providing complementary information.
The fused feature vector is passed through additional dense layers with
dropout for regularization and is finally classified using a SoftMax layer
into the respective disease categories (bacteria, fungus, and virus). More
details of the classification architecture are presented below.

A multi-channel CNN architecture was used in this study to
handle RGB and grayscale picture inputs concurrently. The network
begins with parallel input channels for the Red, Green, Blue, and
Gray components, which are fed into a series of Conv2D layers with
kernel sizes of 3 x 3. The architectural depth progressively increased
through the convolutional layers with expanding filter sizes from 64

to 512 filters, which were interspersed with MaxPooling2D layers for
spatial dimension reduction and feature concentration. The network
incorporates a hierarchical feature extraction approach in which the
initial layers extract basic features, whereas the deeper layers process
complex patterns. A GlobalPooling2D layer completes the design, and
then a rectified linear unit (ReLU) with a special feature combination
stage that implies feature fusion capabilities is used. In addition to
processing picture characteristics, the model can handle CSV file inputs,
demonstrating its capacity to handle more structured data. Multiple
measures, including MSE, PSNR, and SSIM, were used to assess
network performance. These metrics make the network particularly
well-suited for image classification tasks that require both structural
and visual data analysis.

The fusion process involves careful dimensional alignment and
integration of two distinct feature representations. The 12 quality-metric
features, comprising MSE, PSNR, and SSIM values extracted from R,
G, B, and Gray color spaces through connected component analysis, first
undergo normalization to ensure consistent scaling. These normalized
features are then passed through a dense (fully connected) layer with
64 neurons and ReLU activation, followed by dropout regularization
(rate: 0.3-0.5), which transforms the 12-dimensional quality feature
vector into a 64-dimensional representation that captures structural
degradation patterns caused by disease infections. Simultaneously,
the full RGB image (180 x 240 x 3) is processed through the CNN
branch, where sequential Conv2D layers with progressively increasing
filter sizes (64 to 512) extract hierarchical visual features, followed by
GlobalAveragePooling2D for spatial dimension reduction and a dense
layer with 64 neurons, producing a 64-dimensional visual feature
representation vector. The fusion mechanism operates by concatenating
these two 64-dimensional vectors using a concatenate layer, creating
a unified 128-dimensional feature vector that synergistically combines
both the handcrafted quality-metric features and the learned visual



Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

Figure 9
Architecture of the proposed CNN-based framework with quality-metric feature fusion across multiple color channels
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features. The concatenated 128-dimensional vector is then passed
through additional dense layers with dropout for regularization before
the final softmax classification layer. This fusion strategy at the feature
level, rather than at the decision level, enables the model to learn
complex interactions between quality degradation patterns and visual
disease symptoms to make the proposed method domain-independent
for the classification of diverse fruit and leaf disease images.

Toensure consistent feature representationand stable convergence,
all extracted quality features (MSE, PSNR, and SSIM) are first
normalized before being fed to the CNN. The CNN hyperparameters—
kernel sizes (3 x 3), number of filters (64-512), learning rate (1e—4),
batch size, and dropout ratios (0.3-0.5)—are determined through an
empirical grid-search procedure. Multiple configurations were trained
and evaluated using 10-fold cross-validation, and the model achieving
the highest validation accuracy was selected as the final configuration.
This systematic workflow, beginning with preprocessing — feature
normalization — empirical hyperparameter tuning — cross-validation
selection, ensures that the parameters remain properly scaled across
feature domains and contribute robustly to the final classification
performance.

To show the effectiveness of the proposed adapted CNN
compared with the baseline CNN, the steps of the baseline and

proposed adapted CNN are shown in Figure 10(a) and (b), respectively.
In the standard CNN shown in Figure 10(a), the model takes only the
raw image input, which passes through a series of convolutional layers
(Conv2D), batch normalization, pooling layers (MaxPooling2D), and
a final dense layer before classification. This design focuses solely
on learning visual patterns from image pixels, such as textures and
shapes, without considering other structural cues or image degradation
metrics. In contrast, the adapted CNN shown in Figure 10(b) enhances
the architecture by introducing a dual branch structure. One branch
processes the image input using CNN layers to extract visual features.
The second branch takes a set of pre-computed quality metrics (for
example, MSE, PSNR, and SSIM from CSV files) as input, which
represents the structural degradation in the image caused by the disease
itself. These features are processed through a dense layer with dropout
to learn high-level representations. The outputs from both the image and
quality metric branches were then concatenated (fused) into a combined
feature vector, which was passed through additional dense layers for
final classification. This fusion mechanism is the core difference: while
the standard CNN relies only on raw pixel information, the adopted
CNN integrates domain-specific structural features with visual features,
making it more robust and accurate for identifying bacterial, fungal,
and viral infections across different fruit- and leaf-related domains. This
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The proposed adopting CNN vs baseline CNN for the classification of fruit and leaf diseases

Figure 10

(a) Standard CNN Block diagram.
Input Batch .
Images C016112D —»| Normalization [ Max;’ g)lmg L »| GlobalPooling || Dense Layer
(b) Adopted CNN Block diagram for classification
Conv2D MaxPooling Conv2D :
643x3 [P 22 25633 [ GlobalPooling
R, G, B,
Gray
Images
CSV Input Dense 128

multimodal approach significantly enhances the generalization ability
of the model, particularly in cross-dataset scenarios. Figure 11 shows
the clusters of different classes obtained for the baseline and proposed
adapted CNN. Clusters representing different classes overlap in the case
of the baseline CNN, whereas there is no overlap in the case of the
modified CNN.

4. Experimental Results

To validate the proposed and current approaches, we collected a
dataset from the Biotechnology Department of Davanagere University
in Karnataka, India. To discover cures for illnesses, they concentrate on
studying bacteria, fungi, and viruses at the microscopic level. However,
handling a wide range of images infected with various diseases is
challenging because this manual method requires more time and effort.
The collected images were verified by experts in the biotechnology
department. To make the collection as comprehensive and diverse as
possible, images were collected from multiple sources, areas, and fields,
open spaces, and under various weather conditions. The proposed
approach was also evaluated using two benchmark datasets [34, 35]
of images of fruits, plants, leaves, stems, and vegetables affected by
bacteria, fungi, and viruses to demonstrate that it is resilient to varying
datasets and the number of classes.

4.1. Creation and assessment of datasets

Each class of disease contained 500 images of fruits and leaves;
hence, the total dataset size was 1500 for the three classes of fruits and
leaves. Images were captured across multiple agricultural fields and
experimental settings in Karnataka, India. The dataset will be compiled
over six months (July to December 2024). This timeframe allowed for
the capture of disease progression under varied climatic conditions.
Images were captured with cameras placed approximately 0.5 to 1
meter from the subject to ensure clear visibility of disease symptoms.
The camera specifications included 12-24 MP resolutions, standard
RGB sensors, and macro lenses for detailed close-up images. A
combination of controlled (laboratory settings with plain backgrounds)
and uncontrolled (real-world agricultural environments) conditions was
used to capture images. Controlled settings ensured high-quality samples
for baseline comparisons, whereas uncontrolled environments provided
robustness against real-world challenges such as variable lighting,
shadows, and occlusions. The dataset incorporated both high-quality
and degraded images to simulate real-world conditions. Degradations
include blurring, noise, and occlusion by other objects (e.g., leaves
and stems). Two datasets containing photos of fruits, plants, stems, and
vegetables affected by bacteria, fungi, and viruses were used to test the
robustness and generalization capacity of the proposed method [34].

Figure 11
t-SNE distribution for illustrating the effectiveness of the baseline and adapted CNN for classification of fruit and leaf diseases.
(a) Clusters of different classes of fruit disease using baseline CNN and adopted CNN for classification, (b) Clusters of different classes of
leaf diseases using baseline and adapted CNN for classification

(a)
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NZDLPlantDisease-v1 dataset: This dataset includes images of
kiwifruit, apples, pears, avocados, and grapevines from the agricultural
fields of New Zealand. The dataset contains images of multiple diseases
on leaves, fruits, and stems, under various environmental conditions.
The Bacteria class contained 1500 photographs, the Fungus class 400,
the Healthy class 1500 images, and the Viruses class 648 images.

NZDLPlantDisease-v2 dataset: This dataset includes a wide
range of photos highlighting plant diseases affecting vegetables grown
in New Zealand. The bacteria, fungi, virus, and healthy classes contained
1800, 652, 1800, and 648 images, respectively, for a total of 4900
samples. This includes multiple disease categories that affect different
vegetables under various environmental conditions. Consequently, the
high accuracy on these benchmark datasets confirms the robustness and
capacity for generalization of the proposed method.

Plant Disease Recognition: This dataset provides three classes,
namely Healthy, Powdery, and Rust, which have 1382 samples in
total. These classes differ from those in our dataset and other standard
datasets.

Augmented Grapevine Disease Dataset: This dataset provides
four classes of Black Rot, ESCA, Leaf Blight, and Healthy, and each
class includes (1,656 original + 1,344 augmented = 3000) 9120 in total.
These two datasets differ in terms of diseases, the number of samples
for each class, the number of classes, complexities, and applications.

The following state-of-the-art methods were trained and
evaluated on our dataset and four benchmark datasets to demonstrate the
effectiveness of the proposed model. Using the DenseNet architecture,
Chandrashekar et al. [11] created a model for classifying mango leaf
diseases without including pathogens. This approach was chosen for
the comparative study because its objective was similar to that of the
proposed method. Another study, Sultana et al. [6], suggested a model
based on the Explainable Al-integrated deep architecture X Al-FruitNet
for classifying various fruits. We used the current fruit classification
approach [6] for comparative analysis because categorization was the
goal of this study. This demonstrates that the general classification
method might not be sophisticated enough to categorize photos infected
with bacteria, fungi, or viruses. The methods proposed in Du et al. [36]
and Linfeng et al. [37] were developed for crop pest disease detection
and tomato leaf disease identification, respectively, using deep learning-
based models. The methods [25, 30] were implemented to show that the
method developed for a specific dataset and disease may not work well
for images of multiple domains compared to the proposed method. We
estimated a confusion matrix and Average Classification Rate (ACR),
which is the mean of the diagonal elements of the confusion matrices,
to evaluate the efficacy of the proposed and existing methods. We used
10-fold cross-validation, which automatically selects the number of
training and testing samples used. The effectiveness of this approach
was confirmed by determining the average of the confusion matrices.

Implementation Details: For our experiments, we employed the
following software and hardware components: Software: OS: Windows
10, Editor: VSCODE 1.93, Python: 3.10.12, Optimizer: Adam optimizer,
Training Method: Standard supervised learning, Number of Epochs: 3.

Hardware: Processor -AMD Ryzen 3200G @ 3.6GHz, Ram:
8GB, HDD: 1TB. The optimization strategy involved fine-tuning the
learning rate (le—4 to le—5), batch size (16, 32), and dropout rates

(0.3 to 0.5). The Adam optimizer was used with default momentum
parameters (1 = 0.9, B2 = 0.999). The final configuration was selected
based on validation accuracy using 10-fold cross-validation. This
tuning ensured the best convergence and prevented overfitting while
maintaining computational efficiency.

4.2. Ablation study

The proposed method, illustrated in Section 3, has vital steps and
components for achieving the best classification results. To assess the
effectiveness of each component, we conducted ablation experiments,
as listed in Table 1. In the proposed work, (i)—(iv) image features
are extracted from R, G, B and Gray color spaces; (v) component
labeling; (vi)—(viii) quality measures estimated as features; (ix)—(x)
high- and low-contrast clusters; and (xi) input images are supplied
to CNN directly for classification. The effectiveness of each key step
was verified by calculating the average classification rate for the fruit
and leaf datasets, as indicated in Table 1. Table 1 shows that all steps
contribute to the best results, with the proposed method (xii) achieving
the highest average classification rate compared to the individual key
steps. The performances of various color spaces were compared, and
the green color space contributed more to the classification of fruit and
leaf pathogens than the other color spaces. This shows that the green
color is effective for images of viruses, bacteria, and fungi. A possible
reason for this is that the causes or effects of viruses, bacteria, and fungi
can be noticed in green spaces compared to other color spaces. The red
and blue spaces may be confused with white and yellow patches caused
by fungi and viruses, respectively.

Similarly, when comparing the results obtained with the
proposed method without labeling, it can be seen that connected-
component labeling is an important step for classification. This is
because unnecessary information is filtered out of the image. Similarly,
according to the results of the different quality measurements for fruit
and leaf data, PSNR was the best measurement for classifying infected
fruit and leaf images. This indicates that the PSNR can be applied to
images of bacteria, viruses, and fungi. This is because the black spots,
white patches, and yellow patches of bacteria, fungi, and viruses are
considered to be noisy in the images. Although MSE and SSIM are
suitable for identifying similarities between the original and clustered
images, they do not contribute significantly to the classification
compared to the PSNR-based features.

Additionally, high-contrast clusters can be useful because
their contribution to the fruit and leaf data is larger than that of low-
contrast clusters when we compare their contributions. This is logical
because most pixels represent white patches, and the yellow patches
are classified as high-contrast clusters. In other words, high-contrast
clusters provide more important information for classification than low-
contrast clusters. When the input images were supplied directly to the
CNN for classification, the results were not as good as those of the
proposed method. Therefore, CNN alone is insufficient for achieving
high accuracy. Nonetheless, the outcomes demonstrate that it works
well and helps the proposed approach to function better.

Similarly, the contribution of the features and components of the
proposed method was validated by adding components one after the

Table 1
ACR of the key steps of the proposed method for fruit and leaf disease classification
SL. no (i) (ii) (iii) (>iv) v) (vi) (vii) (viii) (ix) (x) (xi) (xii)
Steps Gray R G B No labeling MSE  PSNR SSIM High-cluster Low-cluster Input-CNN Proposed
Fruit 29.62 33.33 4148  40.74 57.09 81.82 8636  72.73 84.88 78.83 56.97 90.81
Leaf 42.86 48.38 49.18  48.38 83.43 76.00  84.00  52.00 91.71 86.76 61.33 95.55
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other, as reported in Table 2. (i) Only gray image, (ii) Gray image +
R, (iii) Gray + R + G, (iv) Gray + R+ G+ B, (v) Gray + R+ G+ B +
MSE, (vi) Gray + R + G + B + MSE + PSNR, (vii) Gray + R+ G + B
+ MSE + PSNR + SSIM, (viii) Gray + R + G + B + MSE + PSNR +
SSIM + High cluster, (ix) Gray + R + G + B + MSE + PSNR + SSIM
+ High cluster + Low cluster. Furthermore, new experiments were
conducted to show that K = 2 is feasible for the classification of fruits
and leaves infected by bacteria, viruses, and fungi. The classification
rate was calculated for different K values. It can be observed from the
table that K =2 is feasible. This is valid because high values for healthy
images and low values for diseased images are expected to be due to
the distortion caused by black dots, yellow, and white patches. When
we examine the results of each experiment listed in Table 2, the average
classification rate increases gradually as additional steps are added to
the previous step. Therefore, it is clear from this experiment that each
step contributes equally to achieving the best results using the proposed
method.

Table 2

Average classification rate of each component of the proposed
method on our dataset

# Steps Fruit Leaf
1) Only gray image 66.66  76.19
(ii) Gray + R image 6296  72.73
(iii) Gray + R + G image 64.99  74.24
(iv) Gray + R+ G + B image 63.64  73.03
W) Gray + R + G + B image + MSE 78.56  83.76
(vi) Gray + R+ G + B image + MSE + 89.29 8333
PSNR
(vii) Gray + R + G + B image + MSE + 90.81  95.55
PSNR + SSIM
(viii) Gray + R + G + B image + MSE + 13.64 1875
PSNR + SSIM + High cluster
(ix) Gray + R+ G + B image + MSE + 22,73 25.00
PSNR + SSIM + Low cluster
(x) Gray + R + G + B image + MSE + 90.81 95.55
PSNR + SSIM + High cluster + Low
cluster
(x1) K =2 for clustering 90.81 95.55
(xii) K =3 for clustering 63.33 83.89
(xiii) K =4 for clustering 54.44  70.28
(xiv) K =5 for clustering 57.78  80.56
(xv) Proposed method 90.81 95.55

It is noted from the Ablations study experiments in Table 2
that when we add quality measure features to different color spaces,
the average classification rate jumps to more than 90% from 89% for
fruits and 83% to 95% for leaves. Therefore, one can conclude that the
combination of quality measure-based features and a dense network for
classification is the best for achieving high classification results. This
makes sense because the features extracted through quality measures
are generic for the classification of affected images.

To show that the proposed model is effective compared to the
standard CNN, we conducted new experiments using a standard
CNN with different components of the proposed method. The results
are reported in Table 3, where the standard CNN achieves the lowest
accuracy, confirming that pixel-level features alone are insufficient.
Adding the quality-metric branch produces a notable improvement,
showing that MSE, PSNR, and SSIM features capture structural
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information essential for distinguishing disease patterns. When the
fusion layer is introduced, performance increases further, indicating
the complementary nature of CNN and quality-metric features. The
complete proposed architecture achieves the highest accuracy across
both fruit and leaf datasets, validating that every added component
strengthens the model and collectively leads to superior classification.
This shows that the standard CNN alone is not sufficient to address the
challenge of fruit and leaf disease classification.

4.3. Experiments for classification on proposed dataset

Tables 4—6 report the quantitative results of the proposed method
and existing approaches for classifying fruit and leaf samples infected
by bacteria, viruses, and fungi, including methods proposed in Cao
et al. [25], Chandrashekar et al. [11], Du et al. [36], Linfeng et al. [37],
Sultana et al. [6], and Thakur et al. [30]. According to Tables 36, the
proposed approach outperforms all existing approaches [6, 11, 25, 30,
36, 37] in terms of the average classification rate. Consequently, it can
be concluded that the proposed approach is better than the existing
approaches. The derived characteristics are robust to changes in the
images and invariant to multiple domains (fruit and leaf), which is
the primary reason why the proposed method produces better results.
However, the scope of the methods in existing studies [6, 11, 25, 30, 36,
37] is limited to a specific dataset. Furthermore, fruit- and leaf-infected
images cannot be successfully classified using these approaches because
their effectiveness is dependent on the number of training samples.
Because there were not enough examples in our dataset, we chose the
number of training and testing samples using 10-fold cross-validation.
Compared with the proposed method, the existing approaches perform
poorly and lack the capacity for generalization. Nonetheless, as
demonstrated by the ablation study trials, the crucial actions suggested
in this study were successful and helped provide excellent outcomes.
CNN and feature extraction work together to improve generalization,
and the suggested approach outperforms the current approaches in
terms of the average classification rate for both fruit and leaf datasets.

4.4. Experiments for classification on benchmark
datasets

As mentioned earlier, each class of the proposed dataset contained
samples of mixed items, but there was no class containing only fruits
and leaves in our dataset. These datasets included fruits, leaves, stems,
and vegetables affected by viruses, bacteria, and fungi in each class. In

Table 3
Average classification rate for the ablation study comparing
the standard CNN with progressively enhanced versions of the
proposed architecture

Steps Fruit Leaf
Baseline CNN + proposed classification 29.63 4444
Image + SE (squeeze-and-excitation) + CNN + 3333 33.33
proposed classification

CSV only + CNN + proposed classification 33.24 40.0
Fusion no SepConv (CNN + CSV fusion is used, 42.50  33.33
but WITHOUT the separable convolution) +

proposed classification

Fusion no SE (CNN features and CSV features 4731  40.28
but without the SE/structural enhancement) +

proposed classification

Proposed method -Fusion (CNN image features + 90.81  95.55

CSV quality-metric features)
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Table 4
Confusion matrix and ACR of the proposed and comparative methods on fruit and leaf disease pathogen classification (in %)
B-Bacteria, F-Fungus and V-Virus

Frait/ Proposed Chandrashekar et al. [11] Sultana et al. [6]

rui

leaf Fruits Leaf Fruits Leaf Fruits Leaf

class B F \% B F \% B F \% B F \% B F \% B F \%

Bacteria 91.20 4.80 4.00 95.00 3.75 1.25 86.80 7.50 5.70 89.17 5.83 5.00 82.80 840 880 84.17 1042 542
Fungus 435 91.74 391 042 96.25 333 3.78 88.09 8.13 1.67 91.67 6.67 522 86.52 826 875 8542 5.83
Virus 6.05 395 90.00 4.12 039 9549 9.05 748 8347 451 255 9294 11.05 842 80.53 5.69 451 89.80

ACR 90.81 95.55 86.12 91.72 82.79 87.37
Table S
Confusion matrix and ACR of comparative methods on fruit and leaf disease pathogen classification (in %) B-Bacteria, F-Fungus and
V-Virus
Du et al. [36] Linfeng et al. [37]
Fruit/ Fruits Leaf Fruits Leaf
leaf class Bacteria Fungus  Virus Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus  Virus
Bacteria 66.67 33.33 0 0 375 62.5 66.67 0 33.33 83.33 16.67 0
Fungus 0 100 0 0 60 40 66.67 0 33.33 0 100 0
Virus 20 40 40 0 0 100 50 0 50 0 100 0
ACR 63.64 60.00 38.89 61.11
Table 6

Confusion matrix and ACR of additional comparative methods on fruit and leaf disease pathogen classification (in %) B-Bacteria,
F-Fungus and V-Virus

Thakur et al. [30] Cao et al. [25]
Fruit/ Fruit Leaf Fruit Leaf
leaf class Bacteria Fungus  Virus Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus Virus
Bacteria 20.00 5.00 5.00 96.5 2.00 0 25.00 16.70 13.33 51.00 44.00 5.00
Fungus 2.00 10.00 3.00 23.00 78.25 0 0 82.00 18.00 2.00 91.00 7.00
Virus 4.00 6.00 20.00 0 6.00 94.75 0 10.00 70.50 10.00 7.00 54.25
ACR 16.67 89.8 59.17 65.42

other words, each class can have any type of image rather than each  two benchmark datasets in terms of the confusion matrix and average
class for each type of image. In addition, the images are exposed to  classification rates, including comparisons with recent state-of-the-art
environmental conditions that affect their contents. Therefore, these methods [25, 11, 36, 37, 6, 30]. Compared to the existing approaches,
two datasets are appropriate for confirming the robustness and capacity = Tables 7-9 demonstrate that it obtained the best ACR for both datasets.
for generalization of the proposed method. Tables 7-9 show the This outcome suggests that the proposed approach is highly robust and
performance of the proposed method and existing approaches on the has good generalization capabilities. Better results were obtained for

Table 7
Confusion matrix and ACR of the proposed and comparative methods on the NZDLPlantDisease-vl and NZDLPlantDisease-v2 datasets
(in %) B-Bacteria, F-Fungus, H-Health and V-Virus

Proposed Chandrashekar et al. [11] Sultana et al. [6]

F/L NZDLPlant-vl NZDLPlant-v2 NZDLPlant-vl NZDLPlant-v2 NZDLPlant-vl NZDLPlant-v2
class B F H v B F H V B F H V B F H V B F H V B F H V
Bacteria 92.4 3.28 2.15 2.09 92.0 2.27 3.19 2.48 87.6 4.78 4.27 3.27 87.2 491 4.36 3.44 86.9 4.14 5.24 3.66 85.9 4.36 5.24 4.46
Fungus 3.57 90.2 3.25 2.98 2.73 89.6 4.05 3.54 5.07 86.9 3.90 4.11 5.86 85.1 4.70 4.29 3.86 85.0 5.94 5.19 5.73 82.4 6.44 5.40
Health 3.54 2.62 91.9 1.86 2.35 2.55 91.0 4.04 4.72 4.60 87.8 2.78 4.77 4.63 87.6 2.85 4.19 4.49 85.2 6.10 5.20 5.29 83.2 6.25
Virus  4.05 3.17 2.50 90.2 2.95 3.28 3.19 90.5 4.91 3.88 3.51 87.7 493 3.88 3.59 87.6 4.97 3.56 5.48 859 6.00 5.13 5.48 83.3
ACR 91.23 90.84 87.53 86.78 85.79 83.75
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Table 8
Confusion matrix and ACR of comparative methods on benchmark datasets (in %) B-Bacteria, F-Fungus, H-Health and V-Virus

Du et al. [36] Linfeng et al. [37]
NZDLPlant-v1l NZDLPlant-v2 NZDLPlant-v1l NZDLPlant-v2
F/L class B F H \Y% B F H \% B F H \% B F H v
Bacteria 68.75 192 144 27.88 2933 1587 54381 0 85.86  2.09 0 12.04 199 0 61.78 18.32
Fungus 0 100 0 0 0 100 0 0 19.35 80.65 0 0 19.35 129 58.06 9.68
Health 32 0 52.8 152 0 240  97.60 0 66.67 142 993 21.99 0 0 95.74 4.26
Virus 0 0 0 100 2.67 245 36.75 5813 1.79 0 0 98.21 1.12 0 491 93.97
ACR 85.84 61.42 68.66 55.63
Table 9
Confusion matrix and ACR of additional comparative methods on benchmark datasets (in %) B-Bacteria, F-Fungus, H-Health and
V-Virus
Thakur et al. [30] Cao et al. [25]
NZDLPlant-vl NZDLPlant-v2 NZDLPlant-v1 NZDLPlant-v2
F/L class B F H \Y% B F H \% B F H \% B F H v
Bacteria 0.56 0.00 0.00 99.44 0 0 0 100 53.51 14.59 1622 15.68 7027 3.78 20.00 5095
Fungus 0.00 0.00 0.00 100 0 0 0 100 693 88.12 495 0 18.81 66.34 10.89 3.96
Health 0.00 0.00 0.00 100 0 0 0 100 2639 9.03 5833 625 3333 4.17 5278 9.72
Virus 0.00 00.0 0.00 100 2.67 0 0 100 2.47 0 0 97.53 0.22 0 0 99.78
ACR 25.14 25.00 74.87 72.79

the benchmark datasets when we compared the performance of the
proposed strategy on the collected dataset (for this study) with that on
the benchmark datasets. The primary explanation is that the combination
of quality metrics and image-based features with CNN preserves
significant image information because the benchmark datasets contain
high-quality images. The performance of the proposed approach is
superior to that of the current methods, as shown in Tables 7-9. This
is evident because existing methods are developed to address a specific
challenge, but not multiple domains, such as fruits and leaves.

The average classification rates of the proposed and current
approaches, which are shown in Table 10 for both fruit and leaf-infected
images for classification, support these conclusions. Table 10 shows
that the outcomes of Chandrashekar et al. [11] are comparable to those
of the proposed method. This is because the approach was created for
the classification of diseases in mango leaves, whereas Sultana et al.

[6] offered a separate method for other fruits that is not for disease
classification. However, when compared to the suggested and other
existing approaches, Saleem et al. [34, 35] obtained high results for
NZDLPlantDisease-vl and NZDLPlantDisease-v2, respectively, for
the two benchmark datasets. This is because these two approaches were
created to tackle the difficulties presented by the two datasets. Given
the small disparity, this finding may not be considered a significant
flaw. In comparison to the current approaches, it is also observed that
the proposed approach produces findings for every trial that are nearly
identical. Therefore, unlike existing methods, the proposed method is
ideal for real-time applications because it is stable, dependable, and
domain-independent (fruit and leaf domains). The findings of Saleem
etal. [34] and Saleem et al. [35] were used for comparison. However, we
used them to compute measures for comparison with other approaches
currently in use [6, 11, 25, 30, 36, 37].

Table 10
The mean average precision of the proposed and existing methods on fruit and leaf of our dataset and two benchmark datasets (in %)
Our dataset

Method Fruit class Leaf class NZDLPlantDisease-v1 NZDLPlantDisease-v2
Proposed method 90.99 95.58 91.23 90.84
Chandrashekar et al. [11] 86.12 91.33 87.57 86.97
Sultana et al. [6] 83.27 86.45 85.82 83.76
Saleem et al. [34] - - 93.80 -
Saleem et al. [35] - - 87.68 91.33
Du et al. [36] 83.86 83.04 90.59 82.97
Linfeng et al. [37] 57.03 65.79 87.49 83.11
Thakur et al. [30] 18.56 89.24 28.65 28.34
Cao et al. [25] 68.53 89.97 77.19 75.23
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Table 11
Performance comparison of the proposed and state-of-the-art methods on two external benchmark datasets

Augmented Grapevine Disease

Plant Disease Recognition

Methods Accuracy Precision Recall F-score Accuracy Precision Recall F-score
Proposed method 7717 83.00 85.00 83.00 80.40 80.37 81.72 80.27
Chandrashekar et al. [11] 68.90 65.34 68.67 70.21 59.89 61.00 58.42 61.16
Sultana et al. [6] 59.54 57.89 55.20 60.30 69.50 67.42 64.40 66.36
Du et al. [36] 66.00 63.46 65.88 66.28 79.00 77.21 75.33 71.87
Linfeng et al. [37] 72.00 68.28 78.00 79.40 39.56 25.77 39.56 27.33
Thakur et al. [30] 28.50 64.57 29.00 17.90 33.33 11.11 11.11 11.11
Cao et al. [25] 75.12 79.57 83.89 80.43 78.22 77.67 79.34 75.45
Table 12
ACR of the proposed and existing methods for the leave-one-class-out validation dataset on fruit and leaf diseases
Chandrashekar
Training Proposed et al. [11] Sultana et al. [6] Du et al. [36] Linfeng et al. [37]
classes Testing classes Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf
Bacteria ~ Fungus, virus 83.25 88.20 80.85 86.00 78.23 84.70 78.40 75.41 27.57 31.16
Virus Bacteria, fungus ~ 86.32 90.71 84.23 87.21 81.12 86.71 50.00 50.38 49.68 51.88
Fungus Bacteria, virus 81.68 85.33 80.28 83.94 78.53 80.23 41.18 45.71 36.73 38.94
To show that the proposed method is generic and reliable, we also Table 13

evaluated the proposed and existing methods on two different datasets,
namely the Plant Disease Recognition and Augmented Grapevine
Disease Datasets [38] using Accuracy (A), Precision (P), Recall (R),
and F-score (F) on two external benchmark datasets—Augmented
Grapevine Disease and Plant Disease Recognition. These metrics offer
deeper insight into the reliability, sensitivity, and specificity of each
model under diverse disease types and imaging conditions. The results,
shown in Table 11, demonstrate that the proposed method achieves the
best overall balance across all four metrics compared with existing
techniques. Therefore, one can infer that the features extracted are
robust and effective for successful classification, while due to inherent
limitations, such as focusing on a specific dataset and a lack of generic
nature in feature extraction, the existing methods do not perform well
compared to the proposed method.

4.5. Experiments to analyze robustness

As shown in Tables 12 and 13, we conducted leave-one-
class-out validation, along with experiments under different scaling,
rotations, Gaussian blur, noise, and cross-dataset settings, to evaluate
the reliability, efficiency, and domain independence of the proposed
approach and to compare it with existing methods [25, 11, 36, 37, 6, 30].
For the fruit and leaf datasets, the leave-one-class-out validation tests
showed that the proposed model was resilient across several disease
pathogen classes (Tables 12 and 13). This validation method offers
important information about the model’s capacity to recognize disease
types, even in cases where one class is completely disregarded during
training. As indicated in Tables 12 and 13, the same conclusions can be
drawn based on the results of the current approaches. Compared with
the current methods, the experiments listed in Table 14 demonstrate
that the proposed method produces nearly consistent results for various
scales, rotations, blurs, and noises. This suggests that the approach
proposed in this study is unaffected by noise, blur, rotation, or scale.
This illustrates the benefits of using a basic CNN-based classifier in

ACR of the existing methods for the leave-one-class-out validation
dataset on fruit and leaf diseases

Thakur et al. [30]

Cao et al. [25]

Training

classes Testing classes  Fruit Leaf  Fruit Leaf
Bacteria  Fungus, virus 48.28 80.41 0 10.00
Virus Bacteria, fungus ~ 2.44 0 0 0
Fungus Bacteria, virus 76.30 50.00 0 0

conjunction with feature extraction methods. According to a summary
of the findings, the proposed approach is efficient, domain-independent,
noise-resistant, and invariant to various rotations, scaling, blurring, and
noise.

4.6. Experiments for domain independence

To further demonstrate the domain independence of the proposed
model, cross-domain experiments are conducted by training the model
on one crop type (fruit) and testing it on another (leaf), and vice versa.
The results presented in Table 15 show a clear performance advantage
of the proposed method compared to existing approaches across both
cross-domain settings. This is evident that the proposed method is
domain independent, while the existing methods are not.

Despite its strong performance, several limitations remain. The
method may face challenges when processing images with overlapping
disease symptoms, mixed-pathogen infections, or extreme variations in
illumination and background complexity. Addressing these limitations
requires exploring more advanced feature-fusion techniques,
incorporating temporal information from progressive infection stages,
and extending training to larger, more diverse datasets. Future work
will also focus on enhancing model interpretability and developing an
optimized version for embedded hardware. These improvements will

13



Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

Table 14
The average classification rate of the proposed and existing methods on scaled, rotated, and distorted images

Random scaling up and

Different levels of Different levels of

down Random rotations Gaussian noise Gaussian blur
Methods Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf
Proposed method 90.53 95.55 89.02 95.50 90.44 88.55 91.88 85.19
Chandrashekar et al. [11] 85.98 91.12 86.12 91.72 33.33 35.34 33.33 33.33
Sultana et al. [6] 82.02 87.34 82.79 87.37 59.09 12.00 63.64 32.00
Linfeng et al. [37] 33.33 76.60 33.33 38.89 33.33 33.33 33.33 38.89
Thakur et al. [30] 43.16 93.33 35.90 94.10 61.90 33.33 66.67 20.83
Cao et al. [25] 42.86 76.19 60.05 93.51 61.11 78.57 48.15 58.33
Table 15

The average classification rate of the proposed and existing methods for cross-domain experiments on fruit and leaf datasets
Training Testing Proposed  Chandrashekar Sultana et al. Linfeng et al.  Thakur et al.
dataset dataset method et al. [11] [6] Du et al. [36] [37] [30] Cao et al. [25]
Fruit Leaf 89.54 26.04 40.70 27.42 52.42 40.30 35.48
Leaf Fruit 93.30 40.91 45.52 35.19 34.26 64.8 35.19

support broader and more reliable adoption of the proposed system in
real-world agricultural applications.

As shown in Figure 12, the proposed approach performs poorly
on images with significant noise and degradation but is resilient to
unfavorable circumstances. Furthermore, the proposed approach cannot
work effectively if the same photos are affected by several factors, such
as if the image contains visual indicators of multiple disease pathogens.
For example, in Figure 12, the proposed approach misclassified a
fungal image as a bacterial one. Initially, bacterial infections manifest
as black spots, which are subsequently overgrown by fungal infections,
appearing as white patches. This overlap of features in the affected
regions poses a challenge for the classifier because it may incorrectly
attribute the combined visual characteristics to a single class. However,
this is beyond the scope of the present study. This limitation can be
overcome by proposing a segmentation step that separates the regions
of interest of different disease pathogens, and the segmented region can
then be analyzed further to classify the images. Hence, instead of using
global information in the proposed approach, local information can be
used to address the above challenges in future studies.

Figure 12
Example of failure cases caused by overlapping disease symptoms
in fruit and leaf images

Bacteria - Fungus

Fungus - Bacteria

5. Conclusion and Future Work

In this study, we proposed a novel approach for the classification
of fruit and leaf diseases by integrating quality-metric features
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with a lightweight CNN to achieve domain-independent and robust
performance. For the input of Gray, R, G, and B images, the connected
component approach is used for detecting patches through K-means
clustering with K = 2. The feature-based quality measures are extracted
from the connected components. To improve the discriminative power
of the features, we also extracted visual features from the input images
directly using CNN. The quality measures based on features and visual
features are fused and fed to the dense network for classification.
Experimental results on our dataset and benchmark datasets show that
the proposed method is the best in terms of average classification rate
compared to the state-of-the-art methods which proves the robustness
of the proposed method. To further demonstrate consistency in the
performance of the proposed method, experiments are conducted on
different rotations, scaling, noise, and blurred images. Further, cross-
domain validation experiments are conducted to show that the proposed
method is generic and domain-independent.

The proposed framework can be integrated into mobile devices,
handheld imaging tools, and edge-computing platforms to enable real-
time, on-field diagnostics for farmers. Such deployment would reduce
reliance on high-computing resources and make the system suitable for
agricultural environments with limited connectivity.
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