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Abstract: Early and reliable detection of bacterial, fungal, and viral infections in fruits and leaves is essential for improving crop productivity, 
preventing disease spread, and supporting food security. Most existing approaches are domain-specific and struggle to generalize across diverse 
plant organs or varying image qualities. To address this challenge, we propose a novel domain-independent classification framework that integrates 
quality-metric features—Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM)—with an 
adapted lightweight Convolutional Neural Network (CNN). This is the first approach that explores quality measures as features for addressing 
challenges of classification of fruits and leaves infected by virus, fungus, and bacteria. The method first performs connected-component analysis on 
K-means clusters generated from R, G, B, and Gray channels to isolate disease-relevant regions and extract quality-based features. These features 
are fused with visual features extracted from the RGB images using a multimodal CNN architecture. Extensive experiments conducted on the 
proposed fruit–leaf dataset and four external benchmark datasets demonstrate that the model achieves high accuracy, strong robustness to blur, 
noise, rotation, and scaling, and superior generalization performance compared with state-of-the-art methods. Cross-domain evaluations further 
confirm that the proposed method is domain-independent and reliable for the classification of fruits and leaves infected by bacteria, fungi, and 
viruses.

Keywords: connected component labeling, quality measures, convolutional neural networks, fruit/leaf disease classification

1. Introduction
Adverse environmental conditions often lead to fruits and leaves 

being affected by bacterial and fungal diseases. Diseases affecting fruits 
and leaves reduce agricultural production worldwide, causing significant 
economic losses and compromising food security. Traditional diagnostic 
methods based on visual inspection are limited to human observation, 
expertise, and resources. Rapid developments in digital imaging 
technologies and machine learning algorithms have provided promising 
solutions to overcome these challenges. Image-based disease detection 
technology has become a powerful method for non-invasive, rapid, and 
accurate disease detection [1]. Bacterial, viral, and fungal pathogens 
are the main pathogens, each presenting diagnostic challenges. These 
diseases can lead to crop loss, and their symptoms are often subtle 
and difficult to distinguish through visual inspection alone. Therefore, 
the identification of images infected by bacteria, viruses, and fungi is 
difficult and important for assessing crop health and productivity.

Methods have been proposed in the literature for identifying 
viral, bacterial, and fungal diseases in fruit and leaf images [2]. 
However, most of these methods focus on specific diseases and fruit 

or leaf types. Consequently, the ability of state-of-the-art techniques to 
classify infected images is generally limited. Thus, the classification of 
diseased fruit and leaf images, irrespective of the types of fruits and 
leaves (domain-independent), remains a challenge. Simultaneously, the 
classification of such images can help choose an appropriate method 
to reduce crop loss and prevent its spread, which makes a significant 
difference.

Therefore, this study focused on developing a robust and domain-
independent system for viral, bacterial, and fungal fruit and leaf image 
classification. The effects of viruses, bacteria, and fungi are the same 
regardless of the fruit and leaves. For instance, black spots and white 
and yellow patches indicate bacterial, fungal, and viral infections. We 
believe that the image quality changes due to black spots, yellow, and 
white patches introduced by bacteria, viruses, and fungal diseases. 
The change is demonstrated by the sample images in Figure 1, where 
one can see changes in quality in terms of texture and color. This 
observation motivated us to introduce quality measures as features in 
the R, G, B, and Gray color spaces for classification. The measures are 
the Mean Squared Error (MSE), Peak Signal-To-Noise Ratio (PSNR), 
and Structural Similarity (SSIM). Similarly, a Convolutional Neural 
Network (CNN) was proposed for encoding quality measure-based 
features for the classification of images of different diseased fruits and 
leaves, motivated by the achievements of CNNs in the literature [3]. To 
enhance the classification performance, the proposed method inputs the 
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original images of R, G, B, and Gray to the CNN, along with quality 
metric-based features.

Therefore, the contributions of this study are as follows: (i) 
Proposing a simple and effective method for tackling a complex 
problem is original. (ii) Extracting quality measures as features from 
various color spaces based on quality differences in disease images 
is novel compared to current methods. (iii) Adapting a convolutional 
neural network to combine image features and quality measures for 
accurate classification is new. The rest of this paper is organized as 
follows. In Section 2, techniques for identifying fruit and leaf diseases 
are reviewed. Section 3 describes the CNN and feature extraction 
processes for classifying bacteria, viruses, and fungal pathogens in fruit 
and leaf images. Section 4 discusses the results of the classification 
validation and the robustness of the proposed method. An overview of 
the proposed approach and future directions is provided in Section 5.

2. Related Work
Based on the type of input data and disease-causing agent, the latest 

deep learning approaches can be categorized into three main groups: 
fruit and leaf disease classification, combined fruit and leaf disease 
classification, and pathogen-specific classification of bacterial, fungal, 
and viral infections. Early studies on automated plant disease recognition 
relied on classical image processing and machine learning techniques 
before the widespread adoption of deep learning-based frameworks [4, 5].

2.1. Fruit disease classification
Sultana et al. [6] developed XAI-FruitNet, an explainable model 

for fruit classification that enhances interpretability but focuses on fruit 
quality rather than pathogen type. Bansal et al. [7] presented a CNN-
based model for apple disease classification, which showed strong 
results but was constrained to specific apple diseases only. Anim-
Ayeko et al. [8] proposed a deep learning system for blight detection 
in potato and tomato, which is effective but disease-specific. A study 
conducted by Mallikarjuna et al. [9] used deep learning for feature 
extraction and classification using gradient-directional information to 
improve photos to classify illnesses in areca nuts. Furthermore, Javidan 
et al. [10] introduced variations in illumination, background clutter, and 
image quality have been reported to significantly affect fruit disease 
classification accuracy, highlighting the importance of robust feature 
learning. Overall, existing methods perform well on specific fruit 
datasets, but their scope is limited to a particular domain. 

2.2. Leaf disease classification
Chandrashekar et al. [11] introduced a Modified Dense 

Convolution Network (MDCN), for mango leaf disease classification, 
showing high performance but limited to mango leaf cases. Li et al. [12] 
proposed a dual-network approach integrating a Multi-fusion U-Net 
with an enhanced VGG-19 to detect grape leaf diseases in diverse 
environmental conditions. Liu et al. [13] introduced a flooding-based 
MobileNet to identify cucumber leaf diseases under natural settings, 

emphasizing background complexity. Li et al. [14] developed DAC-
YOLOv4 for strawberry disease detection. Liu et al. [15] proposed 
MCDCNet, which utilizes feature fusion and dual-constrained 
deformable convolution for apple leaf disease detection. Thakkar et al. 
[16] introduced multi-level feature fusion strategies in CNN-based 
architectures have also been shown to improve discrimination between 
visually similar leaf diseases. Thai et al. [17] introduced FormerLeaf, 
a transformer-based model for cassava leaf disease recognition, which 
used sparse matrix operations to improve efficiency. Pradhan et al. [18] 
proposed an involutional neural network for classifying diseases in leaf 
images, including various pathogens. Rani et al. [19] applied feature-
based deep learning for identifying infected leaves. Jiang et al. [2] 
enhanced CNNs for real-time apple leaf disease detection. In summary, 
these models offer strong performance for leaf disease tasks; however, 
their scope is confined to leaf diseases. 

2.3. Fruit and leaf disease classification
Vásconez et al. [20] implemented CNN models to detect bacterial 

wilt in tomatoes, with Xception and MobileNet-v2 showing the best 
results. Prajwala et al. [3] proposed a method for pomegranate disease 
detection in both fruit and leaf images using adaptive histogram-
based features and an artificial neural network (ANN) classifier. 
Chin et al. [21] compared deep learning models across several plant 
disease datasets. Khanal et al. [22] developed a mobile application 
integrating CNNs for paddy disease detection. Benfenati et al. [23] 
applied unsupervised deep learning for automatic disease detection in 
both fruit and leaf images. Most of these approaches are designed for 
limited plant organs or controlled datasets and struggle to generalize 
across different domains such as fruits and leaves affected by multiple 
disease types [24]. In summary, these approaches primarily focus on 
one or two plant parts and do not comprehensively address all three 
diseases in plants.

2.4. Virus, bacteria, and fungal disease classification
Cao et al. [25] and Liu and Wang [1] reviewed the challenges 

and strategies for plant disease detection, including fungal and bacterial 
infections. Pacal et al. [26] provided comprehensive reviews and 
case studies on fungal, bacterial, and viral classification using deep 
models. Tejaswini et al. [27] addressed early detection using CNNs and 
AI-enhanced feature engineering. Pandian et al. [28] used CNNs for 
pathogen-infected plant image classification. Wang et al. [29], Thakur 
et al. [30], and Kumar et al. [31] utilized advanced CNNs and attention-
based models to identify multiple pathogens, including viruses, 
bacteria, and fungi, in various environmental settings. Saraswat et al. 
[32] proposed a modified deep neural network combined with DSURF 
features for fungi-bacterial detection. In summary, most of the above 
methods work well for a particular domain but not for multiple domains 
simultaneously. Therefore, these methods may not perform well in 
detecting fruit and leaf diseases.

In conclusion, although recent studies have proposed a range of 
deep learning models tailored to specific datasets and disease types, 
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Figure 1
Example images of fruits and leaves infected by bacteria, fungus, and viruses
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none provide a unified, robust solution for classifying both fruit and leaf 
images infected by bacterial, fungal, and viral diseases under varying 
image qualities and conditions. This research gap underscores the need 
for a domain-independent disease classification framework capable of 
maintaining consistent performance across diverse plant organs and 
infection types [33]. A domain-independent model effectively integrates 
quality metrics and image-based features to achieve reliable and stable 
results. 

3. The Proposed Approach 
As noted in the previous section, the classification of fruit and leaf 

images from viruses, bacteria, and fungi is a complex problem because of 
the diverse nature of the images. One of the co-authors, a biotechnology 
expert, observed that bacterial, viral, and fungal infections resulted in black 
spots, white patches, and yellow patches, respectively. In addition, these 
infections alter the quality of the images [3, 9]. These findings motivated 
us to use quality metrics as classification features in this study, specifically 
MSE, PSNR, and SSIM. To implement quality measure-based features, 
the proposed method performs a connected component operation to detect 
the patches in the image as components. Simultaneously, the color of the 
patches and the input image provide vital cues for the classification of 
diseased fruit and leaf images. This intuition motivated us to introduce 
a conventional neural network for fusing images and quality measure-
based features for classification. A block diagram of the proposed 
method is presented in Figure 2. Owing to the simple adapted CNN and 
handcrafted features, the proposed method is a lightweight model that 
does not require a large number of training samples and computations, 
unlike recent heavy deep learning models such as ResNet, DenseNet, and 
Vision Transformers. In addition, because the problem is new and a larger 
number of samples are not available for training and experimentation, 
we believe that the combination of handcrafted features and the adapted 
lightweight CNN is a better option for classification.

To show that the infection of diseases can change the quality 
of images arbitrarily, we estimated the BRISQUE and NIQUE non-
parametric quality measures for the samples of fruit and leaf diseases, 
as illustrated in Figures 3 and 4. As shown in Figures 3 and 4, the 
BRISQUE and NIQUE report arbitrary values, whereas the same 
measures report almost similar values for healthy images. The black 
dots, yellow, and white patches affect the image quality.

3.1. Connected components for estimating quality 
measures

The proposed approach divides an input color image into R, G, 
B, and Gray channels before using K-means clustering with K = 2 for 
each color space to produce high and low mean clusters. The value of 
K is determined empirically. Because of the unsupervised nature of 
K-means clustering, the mean of the clusters was calculated. The cluster 
with the highest mean is referred to as a high-contrast cluster, whereas 
the other cluster is referred to as a low-contrast one. For the sample 
images shown in Figure 5(a), the detection of connected components in 
high- and low-contrast clusters for the images of bacterial, fungal, and 
viral illnesses is shown in Figure 5(b).

Figure 5 illustrates that for the R, G, B, and Gray spaces, the 
pixels representing white patches are classified into high mean clusters, 
while the pixels that represent black spots are classified as low-contrast 
clusters. The same is not true for pixels that represent yellow patches 
because some pixels can be classified as high-contrast, and other parts 
of the yellow patches can be classified as low-contrast clusters. This 
is because high pixel values represent white patches, low pixel values 
represent black spots, and neither high nor low pixel values represent 
yellow patches in the images. The same conclusions can be drawn for 
the images of the leaves. 

3

Figure 2
Block diagram of the proposed method

 Figure 3
Average BRISQUE scores for healthy and diseased fruit and leaf 

images across the proposed and two benchmark datasets

 Figure 4
Average NIQE scores for healthy and diseased fruit and leaf 

images across the proposed and two benchmark datasets
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As mentioned above, the value of the K is determined empirically, 
which is 2. This is because of the following. When we look at the cues 
of bacteria, fungus, and virus in fruit and leaf samples, the dark, white, 
and yellow patches represent each disease in both fruits and leaves. This 
implies that the patches have either high or low pixel values compared 
to the background pixels, irrespective of diseases and fruits, and leaf 
samples. For example, the dark patches usually have low values while 
the white patches have high values. However, the values of yellow 
patches are inclined to high values compared to background pixels. This 
observation motivated us to introduce K-means clustering with K = 2, 
such that it outputs high and low mean clusters containing the patches 
as connected components. This observation is illustrated in Figure 6(a)-

(b), where, for K = 2, we can see distinct clusters for different classes, 
while the clusters are not clear for K = 2, 3, 4, and 5. 

The quality measures are estimated for each connected 
component in the high- and low-contrast clusters of the R, G, B, and 
Gray spaces and considered as features for classification. This step 
detects the region of interest and discards the other regions of interest. 
Consequently, the problem complexity and computation count are 
reduced, making the proposed approach both effective and efficient. 
The pixels in the input images (original images) that match the pixels 
in the clusters are retrieved to calculate the quality measures (MSE, 
PSNR, and SSIM) for high- and low-contrast clusters in each R, G, B, 
and Gray space. Quality measurements were estimated using the input 
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 Figure 5
Connected components are detected for the infected fruit images

 Figure 6
Determining the feasible K values for the successful classification
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image pixels and clusters. The clusters are considered reconstructed 
images in this study.

This work uses a gray image in addition to R, G, and B images 
for connected components extraction. This is because the gray images 
result in the average of R, G, and B values in the color spaces. This means 
the gray image can be considered as a normalized image compared to 
individual R, G, and B images. Therefore, we believe that the features 
extracted from gray images are robust and stable (this can be confirmed 
from the results in the Ablation study experiments). The features 
extracted from the gray image are better than R, G, and B. However, 
the gray image does not provide color information. This motivated us 
to extract features from R, G, and B images directly to strengthen the 
features because color is a key feature for the classification of bacteria, 
viruses, and fungi. Therefore, the combination of features extracted 
from gray and R, G, and B separately makes the features robust and 
generic.

Mean Squared Error (MSE): The average squared difference 
between the original and reconstructed images is measured by the MSE, 
as defined in Equation (1).

where  is the pixel value in the original image at pixel ,  is the 
pixel value in the reconstructed image at pixel ii, and N represents the 
total pixel count of the image.

Peak Signal-to-Noise Ratio (PSNR): It is a metric that 
compares the power of the noise (the difference between the original 
and compared images) to the greatest power of a signal (an image). It is 
defined as in Equation (2). 

where L is the maximum possible pixel value (for 8-bit images, L = 
255) and  is the Mean Squared Error between the original 

and the compared images.
Structural Similarity Index (SSIM): The SSIM is a perceptual 

measure of the similarity between two images, considering the 
brightness, contrast, and structure. It is calculated using Equation (3).

where  and  are the mean intensities of the original and compared 
images, respectively.   and  are the variances of the original and 
compared images, respectively; and   is the covariance between the 
original and compared images. The division with weak denominators is 
stabilized by the constants C1 and C2. 

The average of the features taken from the high-mean and low-
mean clusters of the corresponding R, G, B, and Gray images was 
calculated using the suggested approach. Twelve features in total—
three features with four color spaces—are extracted. A convolutional 
neural network uses these properties to classify data. Figures 7 and 8 
illustrate the distributions of the MSE, PSNR, and SSIM for diseased 
fruit and leaf, where we can see a unique distribution for each class. 
This demonstrates that the proposed features can successfully classify 
diseased fruit and leaf images. 

3.2. Classification of fruit and leaf images caused by 
virus, bacteria, and fungus 

As noted in the previous section, the extracted quality measures 
can differentiate between the three diseases. However, a quality metric 

(1)

(2)

(3)
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 Figure 7
The unique feature distribution for the classification of diseased fruit images
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feature alone is insufficient to achieve a high classification rate owing 
to the multiple domains. Therefore, to improve the classification 
performance, the input images of R, G, B, and Gray are fed to the CNN 
along with the quality metric features, as shown in Figure 9. 

For each of the R, G, B, and Gray channels, the proposed method 
obtains connected components from high- and low-mean clusters of the 
input images as discussed earlier. Three quality metrics were computed 
for each component in each cluster of the four-color channels. This 
resulted in 12 features (3 metrics × 4 color spaces) per image, which 
were normalized and fed into the CSV input branch of the network. 
The full RGB image (size: 180 × 240 × 3) was directly passed into 
the CNN branch of the network. Furthermore, both the image (RGB) 
and extracted features were fused using a concatenation approach for 
classification. Full RGB and Gray images are processed through a series 
of convolutional layers in a CNN. These layers extract high-level visual 
features, such as texture, shape, and spatial patterns. The final output 
from this branch is a compact visual representation vector after global 
average pooling and a dense transformation. The outputs of the two 
branches, the visual features from the CNN, and the structural features 
from the quality metric, were concatenated into a single unified feature 
vector. This concatenated representation captures visual and abrupt 
changes using quality metrics, providing complementary information. 
The fused feature vector is passed through additional dense layers with 
dropout for regularization and is finally classified using a SoftMax layer 
into the respective disease categories (bacteria, fungus, and virus). More 
details of the classification architecture are presented below.

A multi-channel CNN architecture was used in this study to 
handle RGB and grayscale picture inputs concurrently. The network 
begins with parallel input channels for the Red, Green, Blue, and 
Gray components, which are fed into a series of Conv2D layers with 
kernel sizes of 3 × 3. The architectural depth progressively increased 
through the convolutional layers with expanding filter sizes from 64 

to 512 filters, which were interspersed with MaxPooling2D layers for 
spatial dimension reduction and feature concentration. The network 
incorporates a hierarchical feature extraction approach in which the 
initial layers extract basic features, whereas the deeper layers process 
complex patterns. A GlobalPooling2D layer completes the design, and 
then a rectified linear unit (ReLU) with a special feature combination 
stage that implies feature fusion capabilities is used. In addition to 
processing picture characteristics, the model can handle CSV file inputs, 
demonstrating its capacity to handle more structured data. Multiple 
measures, including MSE, PSNR, and SSIM, were used to assess 
network performance. These metrics make the network particularly 
well-suited for image classification tasks that require both structural 
and visual data analysis.

The fusion process involves careful dimensional alignment and 
integration of two distinct feature representations. The 12 quality-metric 
features, comprising MSE, PSNR, and SSIM values extracted from R, 
G, B, and Gray color spaces through connected component analysis, first 
undergo normalization to ensure consistent scaling. These normalized 
features are then passed through a dense (fully connected) layer with 
64 neurons and ReLU activation, followed by dropout regularization 
(rate: 0.3–0.5), which transforms the 12-dimensional quality feature 
vector into a 64-dimensional representation that captures structural 
degradation patterns caused by disease infections. Simultaneously, 
the full RGB image (180 × 240 × 3) is processed through the CNN 
branch, where sequential Conv2D layers with progressively increasing 
filter sizes (64 to 512) extract hierarchical visual features, followed by 
GlobalAveragePooling2D for spatial dimension reduction and a dense 
layer with 64 neurons, producing a 64-dimensional visual feature 
representation vector. The fusion mechanism operates by concatenating 
these two 64-dimensional vectors using a concatenate layer, creating 
a unified 128-dimensional feature vector that synergistically combines 
both the handcrafted quality-metric features and the learned visual 
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 Figure 8
The unique feature distribution for classification of diseased leaf images
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features. The concatenated 128-dimensional vector is then passed 
through additional dense layers with dropout for regularization before 
the final softmax classification layer. This fusion strategy at the feature 
level, rather than at the decision level, enables the model to learn 
complex interactions between quality degradation patterns and visual 
disease symptoms to make the proposed method domain-independent 
for the classification of diverse fruit and leaf disease images.

To ensure consistent feature representation and stable convergence, 
all extracted quality features (MSE, PSNR, and SSIM) are first 
normalized before being fed to the CNN. The CNN hyperparameters—
kernel sizes (3 × 3), number of filters (64–512), learning rate (1e−4), 
batch size, and dropout ratios (0.3–0.5)—are determined through an 
empirical grid-search procedure. Multiple configurations were trained 
and evaluated using 10-fold cross-validation, and the model achieving 
the highest validation accuracy was selected as the final configuration. 
This systematic workflow, beginning with preprocessing → feature 
normalization → empirical hyperparameter tuning → cross-validation 
selection, ensures that the parameters remain properly scaled across 
feature domains and contribute robustly to the final classification 
performance.

To show the effectiveness of the proposed adapted CNN 
compared with the baseline CNN, the steps of the baseline and 

proposed adapted CNN are shown in Figure 10(a) and (b), respectively. 
In the standard CNN shown in Figure 10(a), the model takes only the 
raw image input, which passes through a series of convolutional layers 
(Conv2D), batch normalization, pooling layers (MaxPooling2D), and 
a final dense layer before classification. This design focuses solely 
on learning visual patterns from image pixels, such as textures and 
shapes, without considering other structural cues or image degradation 
metrics. In contrast, the adapted CNN shown in Figure 10(b) enhances 
the architecture by introducing a dual branch structure. One branch 
processes the image input using CNN layers to extract visual features. 
The second branch takes a set of pre-computed quality metrics (for 
example, MSE, PSNR, and SSIM from CSV files) as input, which 
represents the structural degradation in the image caused by the disease 
itself. These features are processed through a dense layer with dropout 
to learn high-level representations. The outputs from both the image and 
quality metric branches were then concatenated (fused) into a combined 
feature vector, which was passed through additional dense layers for 
final classification. This fusion mechanism is the core difference: while 
the standard CNN relies only on raw pixel information, the adopted 
CNN integrates domain-specific structural features with visual features, 
making it more robust and accurate for identifying bacterial, fungal, 
and viral infections across different fruit- and leaf-related domains. This 
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 Figure 9
Architecture of the proposed CNN-based framework with quality-metric feature fusion across multiple color channels
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multimodal approach significantly enhances the generalization ability 
of the model, particularly in cross-dataset scenarios. Figure 11 shows 
the clusters of different classes obtained for the baseline and proposed 
adapted CNN. Clusters representing different classes overlap in the case 
of the baseline CNN, whereas there is no overlap in the case of the 
modified CNN.

4. Experimental Results
To validate the proposed and current approaches, we collected a 

dataset from the Biotechnology Department of Davanagere University 
in Karnataka, India. To discover cures for illnesses, they concentrate on 
studying bacteria, fungi, and viruses at the microscopic level. However, 
handling a wide range of images infected with various diseases is 
challenging because this manual method requires more time and effort. 
The collected images were verified by experts in the biotechnology 
department. To make the collection as comprehensive and diverse as 
possible, images were collected from multiple sources, areas, and fields, 
open spaces, and under various weather conditions. The proposed 
approach was also evaluated using two benchmark datasets [34, 35] 
of images of fruits, plants, leaves, stems, and vegetables affected by 
bacteria, fungi, and viruses to demonstrate that it is resilient to varying 
datasets and the number of classes.

4.1. Creation and assessment of datasets
Each class of disease contained 500 images of fruits and leaves; 

hence, the total dataset size was 1500 for the three classes of fruits and 
leaves. Images were captured across multiple agricultural fields and 
experimental settings in Karnataka, India. The dataset will be compiled 
over six months (July to December 2024). This timeframe allowed for 
the capture of disease progression under varied climatic conditions. 
Images were captured with cameras placed approximately 0.5 to 1 
meter from the subject to ensure clear visibility of disease symptoms. 
The camera specifications included 12–24 MP resolutions, standard 
RGB sensors, and macro lenses for detailed close-up images. A 
combination of controlled (laboratory settings with plain backgrounds) 
and uncontrolled (real-world agricultural environments) conditions was 
used to capture images. Controlled settings ensured high-quality samples 
for baseline comparisons, whereas uncontrolled environments provided 
robustness against real-world challenges such as variable lighting, 
shadows, and occlusions. The dataset incorporated both high-quality 
and degraded images to simulate real-world conditions. Degradations 
include blurring, noise, and occlusion by other objects (e.g., leaves 
and stems). Two datasets containing photos of fruits, plants, stems, and 
vegetables affected by bacteria, fungi, and viruses were used to test the 
robustness and generalization capacity of the proposed method [34].
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 Figure 10
The proposed adopting CNN vs baseline CNN for the classification of fruit and leaf diseases

 Figure 11
t-SNE distribution for illustrating the effectiveness of the baseline and adapted CNN for classification of fruit and leaf diseases. 

(a) Clusters of different classes of fruit disease using baseline CNN and adopted CNN for classification, (b) Clusters of different classes of 
leaf diseases using baseline and adapted CNN for classification
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NZDLPlantDisease-v1 dataset: This dataset includes images of 
kiwifruit, apples, pears, avocados, and grapevines from the agricultural 
fields of New Zealand. The dataset contains images of multiple diseases 
on leaves, fruits, and stems, under various environmental conditions. 
The Bacteria class contained 1500 photographs, the Fungus class 400, 
the Healthy class 1500 images, and the Viruses class 648 images. 

NZDLPlantDisease-v2 dataset: This dataset includes a wide 
range of photos highlighting plant diseases affecting vegetables grown 
in New Zealand. The bacteria, fungi, virus, and healthy classes contained 
1800, 652, 1800, and 648 images, respectively, for a total of 4900 
samples. This includes multiple disease categories that affect different 
vegetables under various environmental conditions. Consequently, the 
high accuracy on these benchmark datasets confirms the robustness and 
capacity for generalization of the proposed method.

Plant Disease Recognition: This dataset provides three classes, 
namely Healthy, Powdery, and Rust, which have 1382 samples in 
total. These classes differ from those in our dataset and other standard 
datasets. 

Augmented Grapevine Disease Dataset: This dataset provides 
four classes of Black Rot, ESCA, Leaf Blight, and Healthy, and each 
class includes (1,656 original + 1,344 augmented = 3000) 9120 in total. 
These two datasets differ in terms of diseases, the number of samples 
for each class, the number of classes, complexities, and applications.

The following state-of-the-art methods were trained and 
evaluated on our dataset and four benchmark datasets to demonstrate the 
effectiveness of the proposed model. Using the DenseNet architecture, 
Chandrashekar et al. [11] created a model for classifying mango leaf 
diseases without including pathogens. This approach was chosen for 
the comparative study because its objective was similar to that of the 
proposed method. Another study, Sultana et al. [6], suggested a model 
based on the Explainable AI-integrated deep architecture XAI-FruitNet 
for classifying various fruits. We used the current fruit classification 
approach [6] for comparative analysis because categorization was the 
goal of this study. This demonstrates that the general classification 
method might not be sophisticated enough to categorize photos infected 
with bacteria, fungi, or viruses. The methods proposed in Du et al. [36] 
and Linfeng et al. [37] were developed for crop pest disease detection 
and tomato leaf disease identification, respectively, using deep learning-
based models. The methods [25, 30] were implemented to show that the 
method developed for a specific dataset and disease may not work well 
for images of multiple domains compared to the proposed method. We 
estimated a confusion matrix and Average Classification Rate (ACR), 
which is the mean of the diagonal elements of the confusion matrices, 
to evaluate the efficacy of the proposed and existing methods. We used 
10-fold cross-validation, which automatically selects the number of 
training and testing samples used. The effectiveness of this approach 
was confirmed by determining the average of the confusion matrices.

Implementation Details: For our experiments, we employed the 
following software and hardware components: Software: OS: Windows 
10, Editor: VSCODE 1.93, Python: 3.10.12, Optimizer: Adam optimizer, 
Training Method: Standard supervised learning, Number of Epochs: 3. 

Hardware: Processor -AMD Ryzen 3200G @ 3.6GHz, Ram: 
8GB, HDD: 1TB. The optimization strategy involved fine-tuning the 
learning rate (1e−4 to 1e−5), batch size (16, 32), and dropout rates 

(0.3 to 0.5). The Adam optimizer was used with default momentum 
parameters (β₁ = 0.9, β₂ = 0.999). The final configuration was selected 
based on validation accuracy using 10-fold cross-validation. This 
tuning ensured the best convergence and prevented overfitting while 
maintaining computational efficiency.

4.2. Ablation study 
The proposed method, illustrated in Section 3, has vital steps and 

components for achieving the best classification results. To assess the 
effectiveness of each component, we conducted ablation experiments, 
as listed in Table 1. In the proposed work, (i)–(iv) image features 
are extracted from R, G, B and Gray color spaces; (v) component 
labeling; (vi)–(viii) quality measures estimated as features; (ix)–(x) 
high- and low-contrast clusters; and (xi) input images are supplied 
to CNN directly for classification. The effectiveness of each key step 
was verified by calculating the average classification rate for the fruit 
and leaf datasets, as indicated in Table 1. Table 1 shows that all steps 
contribute to the best results, with the proposed method (xii) achieving 
the highest average classification rate compared to the individual key 
steps. The performances of various color spaces were compared, and 
the green color space contributed more to the classification of fruit and 
leaf pathogens than the other color spaces. This shows that the green 
color is effective for images of viruses, bacteria, and fungi. A possible 
reason for this is that the causes or effects of viruses, bacteria, and fungi 
can be noticed in green spaces compared to other color spaces. The red 
and blue spaces may be confused with white and yellow patches caused 
by fungi and viruses, respectively.

Similarly, when comparing the results obtained with the 
proposed method without labeling, it can be seen that connected-
component labeling is an important step for classification. This is 
because unnecessary information is filtered out of the image. Similarly, 
according to the results of the different quality measurements for fruit 
and leaf data, PSNR was the best measurement for classifying infected 
fruit and leaf images. This indicates that the PSNR can be applied to 
images of bacteria, viruses, and fungi. This is because the black spots, 
white patches, and yellow patches of bacteria, fungi, and viruses are 
considered to be noisy in the images. Although MSE and SSIM are 
suitable for identifying similarities between the original and clustered 
images, they do not contribute significantly to the classification 
compared to the PSNR-based features.

Additionally, high-contrast clusters can be useful because 
their contribution to the fruit and leaf data is larger than that of low-
contrast clusters when we compare their contributions. This is logical 
because most pixels represent white patches, and the yellow patches 
are classified as high-contrast clusters. In other words, high-contrast 
clusters provide more important information for classification than low-
contrast clusters. When the input images were supplied directly to the 
CNN for classification, the results were not as good as those of the 
proposed method. Therefore, CNN alone is insufficient for achieving 
high accuracy. Nonetheless, the outcomes demonstrate that it works 
well and helps the proposed approach to function better.

Similarly, the contribution of the features and components of the 
proposed method was validated by adding components one after the 
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SL. no (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)
Steps Gray R G B No labeling MSE PSNR SSIM High-cluster Low-cluster Input-CNN Proposed
Fruit 29.62 33.33 41.48 40.74 57.09 81.82 86.36 72.73 84.88 78.83 56.97 90.81
Leaf 42.86 48.38 49.18 48.38 83.43 76.00 84.00 52.00 91.71 86.76 61.33 95.55

Table 1
ACR of the key steps of the proposed method for fruit and leaf disease classification
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other, as reported in Table 2. (i) Only gray image, (ii) Gray image + 
R, (iii) Gray + R + G, (iv) Gray + R + G + B, (v) Gray + R + G + B + 
MSE, (vi) Gray + R + G + B + MSE + PSNR, (vii) Gray + R + G + B 
+ MSE + PSNR + SSIM, (viii) Gray + R + G + B + MSE + PSNR + 
SSIM + High cluster, (ix) Gray + R + G + B + MSE + PSNR + SSIM 
+ High cluster + Low cluster. Furthermore, new experiments were 
conducted to show that K = 2 is feasible for the classification of fruits 
and leaves infected by bacteria, viruses, and fungi. The classification 
rate was calculated for different K values. It can be observed from the 
table that K = 2 is feasible. This is valid because high values for healthy 
images and low values for diseased images are expected to be due to 
the distortion caused by black dots, yellow, and white patches. When 
we examine the results of each experiment listed in Table 2, the average 
classification rate increases gradually as additional steps are added to 
the previous step. Therefore, it is clear from this experiment that each 
step contributes equally to achieving the best results using the proposed 
method. 

It is noted from the Ablations study experiments in Table 2 
that when we add quality measure features to different color spaces, 
the average classification rate jumps to more than 90% from 89% for 
fruits and 83% to 95% for leaves. Therefore, one can conclude that the 
combination of quality measure-based features and a dense network for 
classification is the best for achieving high classification results. This 
makes sense because the features extracted through quality measures 
are generic for the classification of affected images. 

To show that the proposed model is effective compared to the 
standard CNN, we conducted new experiments using a standard 
CNN with different components of the proposed method. The results 
are reported in Table 3, where the standard CNN achieves the lowest 
accuracy, confirming that pixel-level features alone are insufficient. 
Adding the quality-metric branch produces a notable improvement, 
showing that MSE, PSNR, and SSIM features capture structural 

information essential for distinguishing disease patterns. When the 
fusion layer is introduced, performance increases further, indicating 
the complementary nature of CNN and quality-metric features. The 
complete proposed architecture achieves the highest accuracy across 
both fruit and leaf datasets, validating that every added component 
strengthens the model and collectively leads to superior classification. 
This shows that the standard CNN alone is not sufficient to address the 
challenge of fruit and leaf disease classification.

4.3. Experiments for classification on proposed dataset 
Tables 4–6 report the quantitative results of the proposed method 

and existing approaches for classifying fruit and leaf samples infected 
by bacteria, viruses, and fungi, including methods proposed in Cao 
et al. [25], Chandrashekar et al. [11], Du et al. [36], Linfeng et al. [37], 
Sultana et al. [6], and Thakur et al. [30]. According to Tables 3–6, the 
proposed approach outperforms all existing approaches [6, 11, 25, 30, 
36, 37] in terms of the average classification rate. Consequently, it can 
be concluded that the proposed approach is better than the existing 
approaches. The derived characteristics are robust to changes in the 
images and invariant to multiple domains (fruit and leaf), which is 
the primary reason why the proposed method produces better results. 
However, the scope of the methods in existing studies [6, 11, 25, 30, 36, 
37] is limited to a specific dataset. Furthermore, fruit- and leaf-infected 
images cannot be successfully classified using these approaches because 
their effectiveness is dependent on the number of training samples. 
Because there were not enough examples in our dataset, we chose the 
number of training and testing samples using 10-fold cross-validation. 
Compared with the proposed method, the existing approaches perform 
poorly and lack the capacity for generalization. Nonetheless, as 
demonstrated by the ablation study trials, the crucial actions suggested 
in this study were successful and helped provide excellent outcomes. 
CNN and feature extraction work together to improve generalization, 
and the suggested approach outperforms the current approaches in 
terms of the average classification rate for both fruit and leaf datasets. 

4.4. Experiments for classification on benchmark 
datasets 

As mentioned earlier, each class of the proposed dataset contained 
samples of mixed items, but there was no class containing only fruits 
and leaves in our dataset. These datasets included fruits, leaves, stems, 
and vegetables affected by viruses, bacteria, and fungi in each class. In 
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# Steps Fruit Leaf
(i) Only gray image 66.66 76.19
(ii) Gray + R image 62.96 72.73
(iii) Gray + R + G image 64.99 74.24
(iv) Gray + R + G + B image 63.64 73.03
(v) Gray + R + G + B image + MSE 78.56 83.76
(vi) Gray + R + G + B image + MSE + 

PSNR
89.29 83.33

(vii) Gray + R + G + B image + MSE + 
PSNR + SSIM

90.81 95.55

(viii) Gray + R + G + B image + MSE + 
PSNR + SSIM + High cluster

13.64 18.75

(ix) Gray + R + G + B image + MSE + 
PSNR + SSIM + Low cluster

22.73 25.00

(x) Gray + R + G + B image + MSE + 
PSNR + SSIM + High cluster + Low 

cluster

90.81 95.55

(xi) K = 2 for clustering 90.81 95.55
(xii) K =3 for clustering 63.33 83.89
(xiii) K = 4 for clustering 54.44 70.28
(xiv) K = 5 for clustering 57.78 80.56
(xv) Proposed method 90.81 95.55

Table 2
Average classification rate of each component of the proposed 

method on our dataset

Steps Fruit Leaf
Baseline CNN + proposed classification 29.63 44.44
Image + SE (squeeze-and-excitation) + CNN + 
proposed classification 

33.33 33.33

CSV only + CNN + proposed classification 33.24 40.0
Fusion no SepConv (CNN + CSV fusion is used, 
but WITHOUT the separable convolution) + 
proposed classification 

42.50 33.33

Fusion no SE (CNN features and CSV features 
but without the SE/structural enhancement) + 
proposed classification 

47.31 40.28

Proposed method -Fusion (CNN image features + 
CSV quality-metric features) 

90.81 95.55

Table 3
Average classification rate for the ablation study comparing 

the standard CNN with progressively enhanced versions of the 
proposed architecture
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other words, each class can have any type of image rather than each 
class for each type of image. In addition, the images are exposed to 
environmental conditions that affect their contents. Therefore, these 
two datasets are appropriate for confirming the robustness and capacity 
for generalization of the proposed method. Tables 7–9 show the 
performance of the proposed method and existing approaches on the 

two benchmark datasets in terms of the confusion matrix and average 
classification rates, including comparisons with recent state-of-the-art 
methods [25, 11, 36, 37, 6, 30]. Compared to the existing approaches, 
Tables 7–9 demonstrate that it obtained the best ACR for both datasets. 
This outcome suggests that the proposed approach is highly robust and 
has good generalization capabilities. Better results were obtained for 
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Fruit/
leaf 
class

Proposed Chandrashekar et al. [11] Sultana et al. [6]
Fruits Leaf Fruits Leaf Fruits Leaf

B F V B F V B F V B F V B F V B F V
Bacteria 91.20 4.80 4.00 95.00 3.75 1.25 86.80 7.50 5.70 89.17 5.83 5.00 82.80 8.40 8.80 84.17 10.42 5.42
Fungus 4.35 91.74 3.91 0.42 96.25 3.33 3.78 88.09 8.13 1.67 91.67 6.67 5.22 86.52 8.26 8.75 85.42 5.83
Virus 6.05 3.95 90.00 4.12 0.39 95.49 9.05 7.48 83.47 4.51 2.55 92.94 11.05 8.42 80.53 5.69 4.51 89.80
ACR 90.81 95.55 86.12 91.72 82.79 87.37

Table 4
Confusion matrix and ACR of the proposed and comparative methods on fruit and leaf disease pathogen classification (in %) 

B-Bacteria, F-Fungus and V-Virus

Fruit/
leaf class

Thakur et al. [30] Cao et al. [25]
Fruit Leaf Fruit Leaf

Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus Virus
Bacteria 20.00 5.00 5.00 96.5 2.00 0 25.00 16.70 13.33 51.00 44.00 5.00
Fungus 2.00 10.00 3.00 23.00 78.25 0 0 82.00 18.00 2.00 91.00 7.00
Virus 4.00 6.00 20.00 0 6.00 94.75 0 10.00 70.50 10.00 7.00 54.25
ACR 16.67 89.8 59.17 65.42

Table 6
Confusion matrix and ACR of additional comparative methods on fruit and leaf disease pathogen classification (in %) B-Bacteria, 

F-Fungus and V-Virus

F/L 
class

Proposed Chandrashekar et al. [11] Sultana et al. [6]
NZDLPlant-v1 NZDLPlant-v2 NZDLPlant-v1 NZDLPlant-v2 NZDLPlant-v1 NZDLPlant-v2

B F H V B F H V B F H V B F H V B F H V B F H V
Bacteria 92.4 3.28 2.15 2.09 92.0 2.27 3.19 2.48 87.6 4.78 4.27 3.27 87.2 4.91 4.36 3.44 86.9 4.14 5.24 3.66 85.9 4.36 5.24 4.46
Fungus 3.57 90.2 3.25 2.98 2.73 89.6 4.05 3.54 5.07 86.9 3.90 4.11 5.86 85.1 4.70 4.29 3.86 85.0 5.94 5.19 5.73 82.4 6.44 5.40
Health 3.54 2.62 91.9 1.86 2.35 2.55 91.0 4.04 4.72 4.60 87.8 2.78 4.77 4.63 87.6 2.85 4.19 4.49 85.2 6.10 5.20 5.29 83.2 6.25
Virus 4.05 3.17 2.50 90.2 2.95 3.28 3.19 90.5 4.91 3.88 3.51 87.7 4.93 3.88 3.59 87.6 4.97 3.56 5.48 85.9 6.00 5.13 5.48 83.3
ACR 91.23 90.84 87.53 86.78 85.79 83.75

Table 7
Confusion matrix and ACR of the proposed and comparative methods on the NZDLPlantDisease-v1 and NZDLPlantDisease-v2 datasets 

(in %) B-Bacteria, F-Fungus, H-Health and V-Virus

Fruit/
leaf class

Du et al. [36] Linfeng et al. [37]
Fruits Leaf Fruits Leaf

Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus Virus Bacteria Fungus Virus
Bacteria 66.67 33.33 0 0 37.5 62.5 66.67 0 33.33 83.33 16.67 0
Fungus 0 100 0 0 60 40 66.67 0 33.33 0 100 0
Virus 20 40 40 0 0 100 50 0 50 0 100 0
ACR 63.64 60.00 38.89 61.11

Table 5
Confusion matrix and ACR of comparative methods on fruit and leaf disease pathogen classification (in %) B-Bacteria, F-Fungus and 

V-Virus
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the benchmark datasets when we compared the performance of the 
proposed strategy on the collected dataset (for this study) with that on 
the benchmark datasets. The primary explanation is that the combination 
of quality metrics and image-based features with CNN preserves 
significant image information because the benchmark datasets contain 
high-quality images. The performance of the proposed approach is 
superior to that of the current methods, as shown in Tables 7–9. This 
is evident because existing methods are developed to address a specific 
challenge, but not multiple domains, such as fruits and leaves. 

The average classification rates of the proposed and current 
approaches, which are shown in Table 10 for both fruit and leaf-infected 
images for classification, support these conclusions. Table 10 shows 
that the outcomes of Chandrashekar et al. [11] are comparable to those 
of the proposed method. This is because the approach was created for 
the classification of diseases in mango leaves, whereas Sultana et al. 

[6] offered a separate method for other fruits that is not for disease 
classification. However, when compared to the suggested and other 
existing approaches, Saleem et al. [34, 35] obtained high results for 
NZDLPlantDisease-v1 and NZDLPlantDisease-v2, respectively, for 
the two benchmark datasets. This is because these two approaches were 
created to tackle the difficulties presented by the two datasets. Given 
the small disparity, this finding may not be considered a significant 
flaw. In comparison to the current approaches, it is also observed that 
the proposed approach produces findings for every trial that are nearly 
identical. Therefore, unlike existing methods, the proposed method is 
ideal for real-time applications because it is stable, dependable, and 
domain-independent (fruit and leaf domains). The findings of Saleem 
et al. [34] and Saleem et al. [35] were used for comparison. However, we 
used them to compute measures for comparison with other approaches 
currently in use [6, 11, 25, 30, 36, 37].
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Method
Our dataset

NZDLPlantDisease-v1 NZDLPlantDisease-v2Fruit class Leaf class
Proposed method 90.99 95.58 91.23 90.84
Chandrashekar et al. [11] 86.12 91.33 87.57 86.97
Sultana et al. [6] 83.27 86.45 85.82 83.76
Saleem et al. [34] - - 93.80 -
Saleem et al. [35] - - 87.68 91.33
Du et al. [36] 83.86 83.04 90.59 82.97
Linfeng et al. [37] 57.03 65.79 87.49 83.11
Thakur et al. [30] 18.56 89.24 28.65 28.34
Cao et al. [25] 68.53 89.97 77.19 75.23

Table 10
The mean average precision of the proposed and existing methods on fruit and leaf of our dataset and two benchmark datasets (in %)

F/L class

Du et al. [36] Linfeng et al. [37]
NZDLPlant-v1 NZDLPlant-v2 NZDLPlant-v1 NZDLPlant-v2

B F H V B F H V B F H V B F H V
Bacteria 68.75 1.92 1.44 27.88 29.33 15.87 54.81 0 85.86 2.09 0 12.04 19.9 0 61.78 18.32
Fungus 0 100 0 0 0 100 0 0 19.35 80.65 0 0 19.35 12.9 58.06 9.68
Health 32 0 52.8 15.2 0 2.40 97.60 0 66.67 1.42 9.93 21.99 0 0 95.74 4.26
Virus 0 0 0 100 2.67 2.45 36.75 58.13 1.79 0 0 98.21 1.12 0 4.91 93.97
ACR 85.84 61.42 68.66 55.63

Table 8
Confusion matrix and ACR of comparative methods on benchmark datasets (in %) B-Bacteria, F-Fungus, H-Health and V-Virus

F/L class

Thakur et al. [30] Cao et al. [25]
NZDLPlant-v1 NZDLPlant-v2 NZDLPlant-v1 NZDLPlant-v2

B F H V B F H V B F H V B F H V
Bacteria 0.56 0.00 0.00 99.44 0 0 0 100 53.51 14.59 16.22 15.68 70.27 3.78 20.00 5.95
Fungus 0.00 0.00 0.00 100 0 0 0 100 6.93 88.12 4.95 0 18.81 66.34 10.89 3.96
Health 0.00 0.00 0.00 100 0 0 0 100 26.39 9.03 58.33 6.25 33.33 4.17 52.78 9.72
Virus 0.00 00.0 0.00 100 2.67 0 0 100 2.47 0 0 97.53 0.22 0 0 99.78
ACR 25.14 25.00 74.87 72.79

Table 9
Confusion matrix and ACR of additional comparative methods on benchmark datasets (in %) B-Bacteria, F-Fungus, H-Health and 

V-Virus
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To show that the proposed method is generic and reliable, we also 
evaluated the proposed and existing methods on two different datasets, 
namely the Plant Disease Recognition and Augmented Grapevine 
Disease Datasets [38] using Accuracy (A), Precision (P), Recall (R), 
and F-score (F) on two external benchmark datasets—Augmented 
Grapevine Disease and Plant Disease Recognition. These metrics offer 
deeper insight into the reliability, sensitivity, and specificity of each 
model under diverse disease types and imaging conditions. The results, 
shown in Table 11, demonstrate that the proposed method achieves the 
best overall balance across all four metrics compared with existing 
techniques. Therefore, one can infer that the features extracted are 
robust and effective for successful classification, while due to inherent 
limitations, such as focusing on a specific dataset and a lack of generic 
nature in feature extraction, the existing methods do not perform well 
compared to the proposed method.

4.5. Experiments to analyze robustness 
As shown in Tables 12 and 13, we conducted leave-one-

class-out validation, along with experiments under different scaling, 
rotations, Gaussian blur, noise, and cross-dataset settings, to evaluate 
the reliability, efficiency, and domain independence of the proposed 
approach and to compare it with existing methods [25, 11, 36, 37, 6, 30]. 
For the fruit and leaf datasets, the leave-one-class-out validation tests 
showed that the proposed model was resilient across several disease 
pathogen classes (Tables 12 and 13). This validation method offers 
important information about the model’s capacity to recognize disease 
types, even in cases where one class is completely disregarded during 
training. As indicated in Tables 12 and 13, the same conclusions can be 
drawn based on the results of the current approaches. Compared with 
the current methods, the experiments listed in Table 14 demonstrate 
that the proposed method produces nearly consistent results for various 
scales, rotations, blurs, and noises. This suggests that the approach 
proposed in this study is unaffected by noise, blur, rotation, or scale. 
This illustrates the benefits of using a basic CNN-based classifier in 

conjunction with feature extraction methods. According to a summary 
of the findings, the proposed approach is efficient, domain-independent, 
noise-resistant, and invariant to various rotations, scaling, blurring, and 
noise. 

4.6. Experiments for domain independence
To further demonstrate the domain independence of the proposed 

model, cross-domain experiments are conducted by training the model 
on one crop type (fruit) and testing it on another (leaf), and vice versa. 
The results presented in Table 15 show a clear performance advantage 
of the proposed method compared to existing approaches across both 
cross-domain settings. This is evident that the proposed method is 
domain independent, while the existing methods are not.

Despite its strong performance, several limitations remain. The 
method may face challenges when processing images with overlapping 
disease symptoms, mixed-pathogen infections, or extreme variations in 
illumination and background complexity. Addressing these limitations 
requires exploring more advanced feature-fusion techniques, 
incorporating temporal information from progressive infection stages, 
and extending training to larger, more diverse datasets. Future work 
will also focus on enhancing model interpretability and developing an 
optimized version for embedded hardware. These improvements will 
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Training 
classes Testing classes

Thakur et al. [30] Cao et al. [25]
Fruit Leaf Fruit Leaf

Bacteria Fungus, virus 48.28 80.41 0 10.00
Virus Bacteria, fungus 2.44 0 0 0
Fungus Bacteria, virus 76.30 50.00 0 0

Table 13
ACR of the existing methods for the leave-one-class-out validation 

dataset on fruit and leaf diseases

Methods
Augmented Grapevine Disease Plant Disease Recognition

Accuracy Precision Recall F-score Accuracy Precision Recall F-score
Proposed method 77.17 83.00 85.00 83.00 80.40 80.37 81.72 80.27
Chandrashekar et al. [11] 68.90 65.34 68.67 70.21 59.89 61.00 58.42 61.16
Sultana et al. [6] 59.54 57.89 55.20 60.30 69.50 67.42 64.40 66.36
Du et al. [36] 66.00 63.46 65.88 66.28 79.00 77.21 75.33 71.87
Linfeng et al. [37] 72.00 68.28 78.00 79.40 39.56 25.77 39.56 27.33
Thakur et al. [30] 28.50 64.57 29.00 17.90 33.33 11.11 11.11 11.11
Cao et al. [25] 75.12 79.57 83.89 80.43 78.22 77.67 79.34 75.45

Table 11
Performance comparison of the proposed and state-of-the-art methods on two external benchmark datasets

Training 
classes Testing classes

Proposed 
Chandrashekar 

et al. [11] Sultana et al. [6] Du et al. [36] Linfeng et al. [37]
Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf

Bacteria Fungus, virus 83.25 88.20 80.85 86.00 78.23 84.70 78.40 75.41 27.57 31.16
Virus Bacteria, fungus 86.32 90.71 84.23 87.21 81.12 86.71 50.00 50.38 49.68 51.88
Fungus Bacteria, virus 81.68 85.33 80.28 83.94 78.53 80.23 41.18 45.71 36.73 38.94

Table 12
ACR of the proposed and existing methods for the leave-one-class-out validation dataset on fruit and leaf diseases
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support broader and more reliable adoption of the proposed system in 
real-world agricultural applications.

As shown in Figure 12, the proposed approach performs poorly 
on images with significant noise and degradation but is resilient to 
unfavorable circumstances. Furthermore, the proposed approach cannot 
work effectively if the same photos are affected by several factors, such 
as if the image contains visual indicators of multiple disease pathogens. 
For example, in Figure 12, the proposed approach misclassified a 
fungal image as a bacterial one. Initially, bacterial infections manifest 
as black spots, which are subsequently overgrown by fungal infections, 
appearing as white patches. This overlap of features in the affected 
regions poses a challenge for the classifier because it may incorrectly 
attribute the combined visual characteristics to a single class. However, 
this is beyond the scope of the present study. This limitation can be 
overcome by proposing a segmentation step that separates the regions 
of interest of different disease pathogens, and the segmented region can 
then be analyzed further to classify the images. Hence, instead of using 
global information in the proposed approach, local information can be 
used to address the above challenges in future studies.

5. Conclusion and Future Work 
In this study, we proposed a novel approach for the classification 

of fruit and leaf diseases by integrating quality-metric features 

with a lightweight CNN to achieve domain-independent and robust 
performance. For the input of Gray, R, G, and B images, the connected 
component approach is used for detecting patches through K-means 
clustering with K = 2. The feature-based quality measures are extracted 
from the connected components. To improve the discriminative power 
of the features, we also extracted visual features from the input images 
directly using CNN. The quality measures based on features and visual 
features are fused and fed to the dense network for classification. 
Experimental results on our dataset and benchmark datasets show that 
the proposed method is the best in terms of average classification rate 
compared to the state-of-the-art methods which proves the robustness 
of the proposed method. To further demonstrate consistency in the 
performance of the proposed method, experiments are conducted on 
different rotations, scaling, noise, and blurred images. Further, cross-
domain validation experiments are conducted to show that the proposed 
method is generic and domain-independent.

The proposed framework can be integrated into mobile devices, 
handheld imaging tools, and edge-computing platforms to enable real-
time, on-field diagnostics for farmers. Such deployment would reduce 
reliance on high-computing resources and make the system suitable for 
agricultural environments with limited connectivity.
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Training 
dataset

Testing 
dataset

Proposed 
method

Chandrashekar 
et al. [11]

Sultana et al. 
[6] Du et al. [36]

Linfeng et al. 
[37]

Thakur et al. 
[30] Cao et al. [25]

Fruit Leaf 89.54 26.04 40.70 27.42 52.42 40.30 35.48
Leaf Fruit 93.30 40.91 45.52 35.19 34.26 64.8 35.19

Table 15
The average classification rate of the proposed and existing methods for cross-domain experiments on fruit and leaf datasets

 Figure 12
Example of failure cases caused by overlapping disease symptoms 

in fruit and leaf images

Methods

Random scaling up and 
down Random rotations 

Different levels of 
Gaussian noise

Different levels of 
Gaussian blur

Fruit Leaf Fruit Leaf Fruit Leaf Fruit Leaf
Proposed method 90.53 95.55 89.02 95.50 90.44 88.55 91.88 85.19
Chandrashekar et al. [11] 85.98 91.12 86.12 91.72 33.33 35.34 33.33 33.33
Sultana et al. [6] 82.02 87.34 82.79 87.37 59.09 12.00 63.64 32.00
Linfeng et al. [37] 33.33 76.60 33.33 38.89 33.33 33.33 33.33 38.89
Thakur et al. [30] 43.16 93.33 35.90 94.10 61.90 33.33 66.67 20.83
Cao et al. [25] 42.86 76.19 60.05 93.51 61.11 78.57 48.15 58.33

Table 14
The average classification rate of the proposed and existing methods on scaled, rotated, and distorted images
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