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Abstract: Handwritten medical prescriptions are a critical yet under-digitized component of clinical workflows, often serving as a source of
ambiguity due to illegible handwriting, overlapping text blocks, and structural inconsistencies. The automatic segmentation of such prescriptions
into meaningful textual blocks is vital for downstream tasks like drug recognition and dosage extraction. Traditional methods grounded on connected
components or projection profiles often falter under the irregularities of freeform handwriting. To address these limitations, the paper proposes
an advanced deep learning architecture—PrescNet—that primarily segment the treatment regimen (medicine and its associated components) as
text-blocks using classical U-Net design with spatial-channel attention gates and a lightweight 32 channel projection layer to better capture salient
features in prescription images. The model is trained on a custom dataset with pixel-level annotations and evaluated using 10-fold cross-validation
with varying data splits. Experimental results demonstrated that the proposed architecture significantly transcend the baseline variants and a few
state-of-the-art deep learning models of text-line segmentation achieving an Intersection over Union (IoU) of 87.2%, Dice score of 92.9%, and a
minimal Dice loss of 0.071. The results validate its effectiveness in handling complex handwritten layouts, establishing its suitability for real-world

clinical applications.
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1. Introduction

The digitization of handwritten medical prescriptions remains
a complex yet crucial component of modern healthcare systems.
Accurate extraction and structural preservation of prescription content
is vital, particularly in contexts where the spatial relationship between
drug names and associated information (e.g., dosage, frequency, and
administration route) must be maintained to avoid misinterpretation.
While recent years have witnessed a surge in digitization frameworks
targeting hospital records and patient documentation [1, 2], the
challenge of segmenting unstructured, handwritten prescriptions at the
text-block level has not been adequately addressed.

Many existing literatures focus on either document-level
digitization [3] or extraction of structured data from typed or form-
based records [4, 5]. However, handwritten prescriptions are inherently
irregular, featuring highly varied writing styles, non-linear layouts,
overlapping components, and skewed text lines. These characteristics
pose a significant challenge to conventional optical character
recognition (OCR) and document parsing techniques, which often rely
on rigid assumptions regarding textual structure [6].

Emerging solutions leveraging deep learning have demonstrated
improved capability in handling such complexities. Models combining
convolutional neural networks with sequence-to-sequence learning or
hybrid approaches incorporating attention mechanisms have shown
promise in historical manuscript segmentation [7]. Yet, these methods
primarily target line-wise or entity-level segmentation, insufficient for
preserving the semantic linkage within prescription blocks. Segmenting
text blocks, as opposed to lines, become essential when the goal is to
preserve the relationship between a medicine name and its modifiers—a
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relationship that may span multiple spatial zones within a handwritten
layout.

In recent work, machine learning-driven digitization pipelines
have begun to bridge the gap between image understanding and clinical
documentation by adopting structure-aware recognition techniques [8].
These methods underscore the necessity of not only recognizing text
but also retaining its contextual and structural relevance—particularly
in handwritten clinical content where visual cues often dictate semantic
interpretation.

Figure 1 shows a few samples of region of interest (ROI) extracted
handwritten medical prescriptions. Each prescription demonstrates
a different mode of prescribing the medicines. The medicine and its
associated components in few prescriptions are distributed across
two or three lines (as given in Figure 1(a), (b), (c), and (e)). In certain
instances, like Figure 1(e), the advice is given in a single line as
well as in multi-lines. Few cases show orientations and overlapping
characters (Figure 1(a), (d), and (f)). Hence, to preserve the semantic
meaning of the medicines along with its components, text-block
segmentation is attained in the current work instead of regular text-line
segmentation. Consequently, this work proposes a novel deep learning-
based segmentation model tailored for the specific task of handwritten
prescription block extraction. This block-level segmentation built upon
the foundational U-Net architecture and amplifies with spatial and
channel-wise attention mechanisms. Thus, the proposed PrescNet aims
to enhance the accuracy of block segmentation while preserving the
spatial context essential for downstream information extraction. The
model is empirically validated on a custom dataset of prescriptions,
as no standard datasets are publicly available and its performance is
benchmarked against multiple deep learning models as well as U-Net
variants across different data splits and k-fold cross-validation settings.

By addressing a previously underexplored granularity of
prescription segmentation, this research contributes a robust framework
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Figure 1
Different samples of handwritten medical prescriptions
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for structured prescription digitization—paving the way for downstream
clinical NLP applications, safer electronic medical record integration,
and enhanced patient care automation.

1.1. Key contributions
The core contributions of this study include:

1) Reformulation of handwritten prescription that primarily highlights
the block-level segmentation task to preserve semantic and
structural coherence of medical components instead of regular text-
line segmentation.
Proposed PrescNet, an advanced encoder—decoder architecture
that integrates spatial and channel attention with attention-gated
skip connections and a 32-channel projection layer for enhanced
prescription segmentation.
Extensive benchmarking against three state-of-the-art models and
four U-Net variants and evaluate performance across different
data splits and 10-fold cross validation to ensure robustness and
generalizability.
4) Detailed error analysis on overlapping and ambiguous text regions.
5) Demonstration of the model’s real-world applicability for digitizing
handwritten prescriptions in clinical workflows.

2)

3)

2. Literature Review

2.1. Traditional text-line and block segmentations

Text-line and block segmentations have long served as
foundational steps in document image analysis, particularly in the
processing of historical and handwritten manuscripts. Early approaches

relied heavily on projection profiles, connected component analysis, and
morphological operations. For instance, Wahl et al. [9] proposed one
of the earliest frameworks for block segmentation and text extraction
in mixed text-image documents using projection-based heuristics.
However, the method often struggled with irregular line spacing,
overlapping characters, and skewed writing.

To address these limitations, Li et al. [10] introduced a script-
independent segmentation technique designed for freestyle handwritten
documents, which leveraged directional continuity for line detection.
While these methods improved flexibility, they remained limited in
their ability to handle dense layouts and multi-touching text instances.
More recent efforts have introduced neural and hybrid techniques.
For example, Vadlamudi et al. [11] incorporated recognition-based
evaluation and high-precision attention mechanisms respectively, but
still primarily addressed line-wise separation.

Traditional segmentation methods also struggled in complex
clinical contexts where handwriting irregularities are frequent.
Shivakumara et al. [12] explored segmentation in struck-out text, a
scenario common in clinical revisions, but their technique is highly
sensitive to background noise. Collectively, these studies underscore
the need for more adaptable segmentation frameworks that can preserve
spatial relationships in dense handwritten layouts such as medical
prescriptions.

2.2. Other advanced deep learning models in text-line
segmentation

Other than U-Net model, various deep learning models like
Mask R-CNN, generative adversarial network (GAN), and fully
convolutional network (FCN) models showcased their efficacy in
segmenting text-lines from various types of documents. To identify text
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lines in historical texts, Jian et al. [13] proposed an Iterative Attention
Head (IAH) and a Dynamic Rotational Proposal Network (DRPN), that
integrates into Mask R-CNN. Dorby et al. [14] worked on extraction of
text-lines from by training the document patches using Mask R-CNN
and further merged these patches to segment text-lines from the whole
page of historical documents. A study by Fizaine et al. [15] directly
compares the U-Net-based models with Mask R-CNN and claims
outperformance in segmenting text-lines.

Ahybrid method introduced by Vo et al. [ 16] predicts the structure
oftext-line utilizing an FCN, and generates a line map for text strings and
line adjacency graph (LAG) method that splits the touching characters.
Another FCN-based U-shaped model, Doc-UFCN, proposed by Biollet
et al. [17] for detecting the text-lines from historical documents,
emphasizes the usage of a lighter pre-training architecture instead of
heavy encoders like ResNet. A novel strategy to extract text-lines using
GAN was introduced by Kundu et al. [18]. This approach employs
U-Net architecture for generator and Patch GAN for discriminator to
address the challenges such as skewed, degraded, and multi-language
environments. Along with these challenges, the problem of overlapping
characters was also addressed by Demir et al. [19] and Ozseker et al.
[20] using GAN, where image-to-image translation was employed to
learn the features of text-lines and to generate segmentation masks
without post-processing.

2.3. U-Net and its evolution in document and medical
image segmentations

The advent of U-Net architectures revolutionized segmentation
tasks across multiple domains, particularly in biomedical imaging
emphasizing the architecture’s flexibility and success in delineating
complex anatomical boundaries.

A number of architectural modifications have been proposed
to enhance U-Net’s performance. For instance, Azad et al. [21]
demonstrated the superiority of U-Net variants on diverse medical
benchmarks, while Yu et al. [22] proposed EU-Net, an automatically
optimized U-Net variant based on evolutionary neural architecture
search, further refining segmentation performance. Other notable works
include DC-UNet [23], and transformer-augmented hybrids [24], each
targeting different limitations in feature representation, model depth,
and global context awareness.

The discipline of document layout analysis, has seen the
emergence of U-Net adaptations. Mechi et al. [25] developed an
adaptive U-Net for text-line segmentation in historical documents,
showing its effectiveness in preserving structural coherence. However,
most U-Net applications in document analysis remain constrained to
line or region-level segmentation, lacking the granularity to preserve
block-level semantics.

Although U-Net and its variants have exhibited strong
interpretation in both medical and document segmentation tasks,
their application to the specific challenge of prescription text-block
segmentation remains underexplored. Medical prescriptions require
not only accurate boundary detection but also contextual preservation
between medicine names and associated instructions. Existing models
do not adequately address this nuanced requirement, indicating a clear
research gap. The present work responds to this need by proposing an
attention-augmented U-Net framework tailored for fine-grained block
segmentation in handwritten medical prescriptions.

2.4. Attention mechanisms in document understanding

The incorporation of attention mechanisms into deep learning
architectures has significantly improved the interpretability and
performance of models across various document understanding tasks

[26]. Originally introduced to enhance natural language processing,
attention mechanisms have been effectively adapted to visual tasks,
including document layout analysis and page object detection. Naik et
al. [27] explored the role of attention in detecting structural components
within document images, showing that attention-based models could
localize and classify layout elements more effectively than conventional
CNN-based approaches.

The utility of attention as a tool for interpretability has also
been emphasized. Tutek and Snajder [28] investigated the practical
deployment of attention mechanisms for explainable artificial
intelligence applications, while Soydaner [29] provided a comprehensive
analysis of how attention operates within neural networks across
various domains. These findings were further reinforced by Brauwers
and Frasincar [30], who presented an extensive survey of attention-
based models, underscoring their widespread applicability and impact
on model performance.

In the context of medical and document image segmentations,
mechanisms of attention have been embedded within U-Net variants
to enhance localization accuracy. The works such as SA-UNet [31] and
ASCU-Net [32], each integrated spatial and channel attention to better
capture hierarchical features. The CBAM module [33], combining
both types of attention, has proven particularly effective in guiding
convolutional networks to emphasize informative features in medical
and layout images.

Despite these advancements, most attention-based models in the
literature have focused on general image segmentation or high-level
document component recognition. Cao et al. [34] proposed selective
region concentration for visual document understanding but primarily
targeted forms and structured layouts. In the domain of handwritten
medical prescriptions, existing works such as those by Hassan et al.
[35] and Jain et al. [36] have concentrated on character recognition or
end-to-end prescription transcription using CNN-LSTM and CRNN
models. While effective for isolated token recognition, these approaches
often fail to preserve the spatial-semantic relationships among grouped
entities like medicine names, dosages, and administration instructions.

Furthermore, document-specific models such as DocPresRec
[37] and attention guided recognition methods for student notes [38§]
remain largely line-centric or token-based, lacking the granularity
required to segment and preserve functional blocks of medical
prescriptions. Shende et al. [39] addressed handwriting recognition and
prescription scanning, but their method overlooked the need to preserve
the hierarchical grouping of textual components.

This body of work reveals a significant gap: while attention
mechanisms have enhanced structural understanding in many document
processing scenarios, their application to the block-level segmentation
of handwritten medical prescriptions remains underdeveloped.
Medical prescriptions are inherently spatially dense and semantically
interdependent, where the failure to preserve block structure may
lead to the disassociation of critical information. The current research
addresses this gap by proposing a U-Net-based segmentation framework
augmented with spatial and channel attention, explicitly designed
to extract and preserve coherent prescription blocks from complex
handwritten inputs.

2.5. Motivation and challenges

Table 1 provides the details of various recent deep learning
models used in text-line segmentation with architectural highlights and
limitations on handwritten documents along with results of different
evaluation parameters. Each study focuses on text-line segmentation
and none focuses on block-level segmentation. This motivates our
study to experiment on text block-level segmentation using handwritten
medical prescriptions.
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Table 1
Comparison of deep learning models for text-line segmentation
Model Architectural highlights Limitations in handwritten documents  Results
UFCN [17] U-Net with FCN using dilated Model trained on one dataset often do not IoU — 0.80, F1-score — 0.89,

convolutions

generalize well on other historical dataset
as each dataset uses different annotation

AP@0.5-0.94 on ScribbleLense
dataset

formats and conventions.

Adaptive U-Net [25] U-Net with 32 filters at the initial

block to reduce parameters

Attention U-Net [40]  U-Net with attention gates for
spatial focus

Vision Captures global dependen-

transformer-based cies; learns contextual token

model [41] relationships

Mask R-CNN [15] Uses Region Proposal Network
(RPN) for instance segmentation

with bounding boxes and masks

Conditional GAN with encoder—
decoder generator and learns
structured translation from images
to masks. Captures global and fine
texture context

GAN [20]

Performance drops on very complex/
variable layouts

Still may struggle without domain specific
tuning in cluttered documents

Requires large datasets and longer
training; sensitive to irregular cursive flow

Heavy model and needs diverse training
data. Sensitive to discriminator and
generator balance

Precision — 0.75, Recall — 0.85,
F-score — 0.79 on cBad Dataset
Precision — 0.93, Recall — 0.94,
F-measure — 0.93 on BADAM
dataset

Detection rate — 0.92 on Turkish
Line segmentation dataset

Requires precise bounding box annotations IoU — 0.85, F1-score — 0.91,
and careful hyper-parameter tuning

AP@0.5-0.98 on HOME-Alcar
dataset

GAN loss — 0.99, GAN L1 — 0.94,
GAN L2 — 0.90 on VML-AHTE
dataset

Despite considerable progress in document layout analysis,
handwritten text segmentation, and attention-based neural models,
several persistent gaps remain unaddressed in the literature—particularly
concerning the segmentation of handwritten medical prescriptions. The
following research challenges have been identified:

Block-level preservation in dense handwritten layouts:
Existing methods such as Jain et al. [36] and Shende et al. [39] focus
primarily on line or character-level segmentation and recognition, often
overlooking the need for block level semantic coherence in handwritten
medical prescriptions. This omission may lead to disassociation of
critical information such as drug names and corresponding dosage
instructions.

Limited adaptability of traditional deep segmentation
models: Conventional segmentation models including FCN, SegNet,
and even standard U-Net variants often struggle to maintain high fidelity
in scenarios involving spatial noise, overlapping strokes, and low-
contrast ink conditions. Work by Shivakumara et al. [12] demonstrates
this vulnerability when applied to real-world clinical data.

Insufficient integration of attention in fine-grained document
tasks: Although attention mechanisms have been widely adopted for
high-level document classification and structural component detection
[27], their application in enhancing block-level segmentation in
handwritten contexts remains underexplored. Notable frameworks such
as Attention U-Net and CBAM [33] have shown promise in medical
imaging but are seldom optimized for unstructured, densely packed
handwritten prescriptions.

Scarcity of benchmarked frameworks for medical prescription
layout segmentation: End-to-end systems such as Seamformer [11]
and DocPresRec [37] target holistic understanding or structured layout
inference but lack dedicated mechanisms for preserving functional
groupings at a block level. Most available systems do not benchmark
their segmentation modules independently for medical prescriptions,
thereby limiting generalizability assessments.

These gaps motivate and provide a baseline for the present
study to introduce a novel attention-augmented U-Net architecture
explicitly tailored to handwritten medical prescriptions. This work

prioritizes block-level integrity of the medicines and its components to
preserve the association between them and integrates spatial-channel
attention. This comprehensive approach positions the proposed method
as a distinct advancement over existing segmentation pipelines in
prescription digitization.

3. Proposed Methodology

The objective of the proposed framework is to segment structured
textual blocks from handwritten medical prescriptions. Formally, let
X € RV denote a grayscale input image and Y € {0,1}7" its
corresponding ground truth binary mask, where each pixel Vi indicates
whether pixel (i,j) belongs to a meaningful text block grouping (e.g.,
medicine name, dosage, and frequency).

The segmentation task is modeled as a dense binary
classification setback where the intent is to learn a mapping function
Fo:REW — L0137 parameterized by network weights 6, such
that:

Y = fy(X) = o(W*(X) +b) M

where ¢(-) denotes the encoder—decoder network (i.e., U-Net with
attention), /¥ implies a 1 X 1 convolutional projection layer, and o(-)
is the sigmoid activation function that outputs pixel-wise probabilities
in [0,1]. Each prediction 7;; > 0.5 is interpreted as a foreground pixel,
contributing to a coherent prescription block.

Unlike line-level segmentation techniques, this formulation aims
to preserve the spatial and semantic integrity of block-level groupings,
mitigating the risk of disassociating interdependent prescription
elements (e.g., breaking dosage from its corresponding drug name). The
model is thus optimized to generate masks Y e {O,I}HXW indicating
the spatial footprint of prescription blocks that maximize both pixel-
wise accuracy and region-wise cohesion, which are measured using a
composite loss £ defined as:

L(Y,Y) =a-BCE(Y, ¥)+ (1 - a) - Dice(Y, Y) )
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where a € [0,1] balances the binary cross-entropy (BCE) and Dice loss
terms.

The Dice measures the region-overlap-based metric and evaluates
how well the predicted mask (V) overlaps with the ground-truth mask
).

2 Z”m “Yij
ZZJEI\J + Zi,j Yi,j

©)

Dice (l//:, Y) =

where 1; is the predicted probability at pixel (i), and Yy, 1s the
corresponding ground-truth. Dice emphasizes block-wise segmentation
where foreground pixels are sparse and spatial cohesion is demanding.
Here, the Dice is integrated as a loss term to encourage coherent block-
level segmentation.

The end-to-end segmentation pipeline is schematically illustrated
in Figure 2. The ROI extracted image along with its masks are passed
as input to the proposed model. The masks are generated using the
annotation tools that serves as a ground-truth during the training phase.

3.1. Encoder—Decoder backbone with Attention
modulation

The core architecture employed in this study is a refined
variant of the canonical U-Net, herein referred to as PrescNet. This
design integrates three principal innovations: (i) an auxiliary shallow
convolutional stem for early feature enhancement, (ii) attention gating
across skip connections to enable discriminative feature selection, and
(iii) combined spatial and channel attention mechanisms to reinforce
semantic localization. These modifications are engineered specifically
for the task of block-wise segmentation of handwritten prescriptions,
which are characterized by spatial clutter, overlapping strokes, and
cursive variability.

The encoder path comprises five hierarchical stages. At each level
[, the input tensor F, is transformed via two successive convolutional
operations, each defined as:

F = o(B(W,*s(B(W,"*F)))))

where W, and W denote the 3 x 3 convolutional kernels at level
[, B(-) symbolizes batch normalization, and ¢(-) denotes the ReLU
activation function.

The batch normalization, applied to the output of each convolution
layer normalizes feature activations computed using the mean and
variance over mini-batch and applies learnable scaling and shifting
parameters. For a given activation ‘x’, batch normalization is defined as,

“4)

z—p

BV

+8 ®)

where p and o2 are the mean and variance of batch and 7 and S are
the learnable parameters. B(-) generates real-value feature maps with
stabilized distribution, that improves training stability by accelerating
convergence and reduces sensitivity to handwriting variability occur in
prescription images.

A shallow 32-channel projection layer is introduced as the
initial convolutional block P(-) operating on the input X:

Fo = ¢(B(Wp*X +bp)) (6)

This layer serves as a low-level feature amplifier that
progressively down-samples the input image designed to capture
micro-textural cues that may otherwise be attenuated by deeper
layers, a critical factor for enhancing character boundary localization
in cluttered scripts. The decoder reverses the encoder structure by

Figure 2
Proposed PrescNet model
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applying transposed convolutions to progressively restore spatial
resolution and produce segmentation maps. Importantly, skip
connections between encoder and decoder blocks are modulated by
attention gates, as opposed to naive concatenation.

3.1.1. Attention-gated skip connections

The attention gated skip connections preserve the fine structural
details that are lost during down-sampling and transfer the intermediate
encoder features to the decoder by enabling precise boundary
delineations.

Let g, represent the gating signal from decoder level / and x, be
the corresponding encoder output. The attention gating function A(-,-)
is computed as:

Y= o(Wy - p(Wygi + Waz) +b) ™

where o(*) is the sigmoid function and %! denotes the spatial attention
coefficients for skip connection /. The filtered feature map is defined as:

T = O ®)

with © indicating element-wise multiplication. These modulated
features are concatenated with upsampled decoder outputs prior to
further decoding.

3.1.2. Channel—-spatial attention fusion

The skip connections pass all the features, including noise and
some irrelevant background information. Hence, to filter encoder
outputs, and to enhance contextual awareness, each decoder feature map
undergoes channel-spatial attention fusion. These attentions emphasize
on the most discriminative features and relevant pixel regions,
suppressing noise and blank areas and contribute reconstructions. It
also helps in improving the separation of overlapping lines or closely
spaced lines by enhancing the clarity of segmentation mask by reducing
the influence of artifacts. A channel attention map M, € RO1X1 gnd
a spatial attention map M, € R****Ware computed sequentially and
multiplied with the intermediate feature representation £:

F'=FoM.0 M, ©)

These attention maps are learned implicitly and highlight the most
discriminative regions and feature channels across the segmentation
hierarchy [33].

The integration of shallow feature extraction, spatial attention,
and selective skip connections is critical for precise delineation of
text boundaries in handwritten prescriptions. Unlike natural image
segmentation tasks, the target domain in this work involves low inter-
class variance and substantial intra-class deformation. Hence, enhancing
intra-layer focus via channel-spatial modulation and inter-layer flow
control via attention gates allows for improved generalization under
variable scan quality and handwriting styles.

This architectural framework thus obtains the balance between
computational efficiency and contextual adaptively, laying the
foundation for robust clinical document parsing and downstream
information extraction.

3.2. Output prediction and sigmoid projection

The final decoder output is projected to a single-channel mask via
a 1 x 1 convolution and sigmoid activation:

Y = (Winat *  Fout + bfinal) (10)

where Y represents the probabilistic segmentation mask with pixel-
wise membership scores in [0,1]. A threshold of 0.5 is applied during
inference to obtain the binary label map.

The textual contents from the individual masks are extracted
from the output predicted masks as text-blocks for our future study.

3.3. Loss function and optimization strategy

To effectively train the segmentation model in the presence
of class imbalance and noisy annotations, a hybrid loss function is
employed by linearly uniting the BCE loss and the Dice loss. This
composite objective function offers a principled balance between pixel-
wise classification accuracy and regional overlap fidelity, which is
crucial for dense text-block segmentation where boundary delineation
is inherently ambiguous.

_ Let Y € [0,1]7*W denote the predicted segmentation mask and
Y € {0,1}"*W the corresponding ground truth binary mask. The BCE
loss L, is defined as:

1 Y —
LBCE=7F Zj\il [yi log (yl) + (1 —y;) log (1 — yl)] (11)

where N = H x W is the total number of pixels, and ¥ and v represent
the ground truth and predicted values at pixel i, respectively. While
BCE penalizes incorrect pixel classifications, it treats all pixels equally
and is sensitive to class imbalance.

To address these hindrances, the Dice loss £  is introduced,
which estimates the overlap between ground truth and prediction:

22:‘]\;1%@1“'5
T TN N — ) (12)
Ei:1yi+zi:1 Y t+e€

where € is a smoothing constant (e = 1076) to ensure numerical
stability. The Dice loss emphasizes structural similarity and penalizes
under-segmentation more heavily than pixel misclassification.

The net combined loss £ is a weighted sum of both terms:

al

Dice

L, =a L +(1-a) L (13)

Dice
where a € [0,1] controls the trade-off between pixel-wise accuracy and
region level consistency. In our experiments, a was empirically set to
0.5 to ensure equal importance during optimization. This dual-objective
formulation has been shown to stabilize training while simultaneously
improving segmentation robustness in small and imbalanced foreground
regions [21].

Dice coefficient (D): evaluates spatial overlap, equivalent to
Fl-score in binary tasks,

2.-TP

D=
2.- TP+ FP+ FN

(14)

Intersection over Union (loU): assesses normalized region
agreement between prediction Y and ground truth Y,

_ /Y NY/
JYUY/

IoU 135

Precision (P) and Recall (R): Quantify pixel-level correctness
and completeness,

TP

TP
P= TP+ FP

TP+ FN

and R = (16)
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These metrics altogether provides nuanced understanding of
the model performance, capturing both micro-level pixel fidelity
and macro-level boundary coherence—critical in clinical document
scenarios where precise text-block localization directly influences
downstream interpretation and digitization.

4. Experimentation and Results

To rigorously examine the efficacy of the proposed PrescNet
architecture, a series of controlled experiments were conducted. This
section presents a dataset description, comparative analysis of different
model variants, training—validation split ratios, and the associated
performance across multiple segmentation metrics. The goal is to verify
the superiority of the proposed method through empirical evidence and
establish its robustness across configurations.

4.1. Dataset description

The efficacy of deep learning models in prescription segmentation
is closely tied to the complexity and variability present in the training
data. For this study, we employ a custom dataset comprising 855
grayscale image—mask pairs derived from handwritten medical
prescriptions. Unlike public datasets, the current dataset was curated
through an automatic extraction process of ROI/advice section from
the actual prescription [42] and underwent post-processing procedures
as outlined in earlier internal works. Each prescription image was
manually labeled to produce corresponding binary segmentation
masks that delineate entire semantic blocks rather than isolated words
or characters. A block here denotes a contiguous region comprising
elements such as drug name, dosage, and administration frequency. The
goal is to capture such medically meaningful groupings, which form the
basis for accurate digitization and downstream extraction.

The dataset is sliced into different training and validation images,
maintaining some partition and the images are rescaled to 256 x 256
and normalized to have zero mean and unit variance. To improve model
generalization over diverse handwriting styles, random horizontal flips
and contrast adjustments are applied as part of data augmentation. The
transformation pipeline 7 applied to each sample X is defined as:

T (X) = Norm ° Flipp = 0.5 » Resize256 x 256(X) 17)

where Norm(-) denotes standard normalization and Flipp = 0.5 refers to
stochastic horizontal flipping with a probability of 0.5.

Figure 3 presents several representative samples from the dataset.
The left picture shows the raw grayscale prescription image, while the

Figure 3
Representative sample from the dataset: (a) original grayscale
prescription and (b) manually annotated binary mask capturing
contiguous text blocks
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right displays the annotated segmentation mask. These masks are block-
level in nature, encapsulating semantically grouped handwritten content
and captures entire semantic units essential for structured interpretation.
This block-level annotation facilitates downstream tasks such as drug
extraction, dosage parsing, and entity linking, forming a critical part of
the prescription digitization pipeline.

4.2. Training setup and evaluation protocol

The model training was conducted by adopting PyTorch
v1.13.1 on NVIDIA-Tesla T4 GPU of 16 GB memory. To maintain
computational efficiency and reproducibility, the proposed PrescNet
U-Net was trained for 50 epochs, which yielded a validation accuracy
of 98%. The 50-epoch configuration was selected for all reported
experiments to balance training time and overfitting risks. This choice
aligns with empirical observations across multiple folds, where
performance saturated within the 45-50 epoch range, indicating
sufficient convergence in order to scale the dataset.

A batch size of 4 was chosen after empirical benchmarking to
ensure optimal memory utilization without compromising gradient
stability. Given the resolution and complexity of handwritten
prescription images, larger bath sizes led to memory exhaustion on
the available GPU, whereas smaller batches induced unstable updates
due to high variance in mini-batch gradients. The selection of batch
size = 4 thus represents a compromise between stable convergence and
hardware constraints, particularly effective for medium-sized medical
imaging datasets like the one which is used.

The dataset was divided into nine distinct training—validation
ratios: 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90
with stratified random sampling used to preserve label balance across
partitions. The 70:30 split was found to provide the best generalization
performance, offering a reliable trade-off between model robustness
and training data sufficiency. Consequently, all primary experiments
and performance evaluations were conducted using this partition.

To statistically evaluate generalization and mitigate sampling
variance, a 10-fold cross-validation protocol was utilized. The full
dataset D was divided into 10 mutually exclusive folds {D1,...,D10},
such that each fold served once as a validation set while the remaining
nine formed the training subset. This strategy produced averaged
performance metrics and reduced dependency on any single data
configuration, thereby increasing result reliability.

Training optimization employed the Adam algorithm with
learning rate of 10™* and no scheduler, allowing analysis of the
model’s inherent generalization capacity without external learning rate
modulation. All experiments used identical hyperparameter settings to
ensure fair comparisons across folds and data splits.

Model evaluation was performed using a comprehensive set of
metrics for binary segmentation, encompassing both pixel-level and
region-level assessments.

4.3. Data split evaluation

To understand the impact of dataset partitioning on model
generalization, we conducted controlled experiments using nine training—
validation splits: 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80,
and 10:90. The same model architecture (PrescNet) and hyperparameters
were maintained across all configurations to ensure consistency. Table 2
summarizes the averaged results, showcasing key evaluation metrics
including validation IoU, validation Dice score, and validation Dice loss.

The val IoU and val Dice scores show optimal performance for
the 70:30 split. This observation highlights a key insight: increasing the
validation set size can result in reduced exposure to training variability,
thus undermining the model’s ability to generalize spatial boundaries.
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Table 2
Performance comparison across different train—validation splits

Split Val Val Dice  Val Dice Val Val

ratio IoU score loss precision  recall
90:10 86.09 92.22 0.078 93.86 91.40
80:20 86.13 92.24 0.076 94.42 90.91
70:30 87.21 92.91 0.071 92.56 93.91
60:40 86.18 92.22 0.078 93.92 91.45
50:50 85.95 92.08 0.079 92.80 92.26
40:60 85.77 91.81 0.082 92.27 92.6
30:70 85.24 91.38 0.086 93.56 90.77
20:80 85.07 90.46 0.095 91.68 92.41
10:90 81.22 85.33 0.147 94.41 85.56

Consequently, the 70:30 partition is chosen as the primary configuration
in all downstream evaluations. Dice loss, which quantifies the overlap
sensitivity maintains dominance in minimizing segmentation boundary
mismatches. With the same 70:30 train—val split ratio, the proposed
model achieved a val precision of 92.56% and val recall of 93.91%,
which implies a strong performance in correctly identifying relevant
blocks while lowering the false negatives and false positives. Besides,
the model reported a BCE loss of 0.258, reflecting a good alignment
between actual and predicted pixel-wise segmentations. The effective
optimization and generalization on the validation set are demonstrated
with the combined loss, that was reduced to 0.167. Collectively, the
analysis across each of the data splits reinforces the empirical decision
to adopt the 70:30 split for all model variants and different deep learning
models to accomplish comparative experiments due to its optimal trade-
off between loss minimization and validation stability.

4.4. Ablation study

This section systematically evaluates the effectiveness of
incorporating lightweight 32 channel projection along with the spatial—
channel attention gates to classical U-Net model. Table 3 summarizes

Table 3
Performance comparison across attention and channel in U-Net
model architectures

Val Val

Val  Dice Dice Val Val
Model IoU score loss  precision recall
U-Net 83.78 90.62 0.094 91.5 91.04
U-Net + 32 channels  85.8  91.1  0.080 92.08 90.91
U-Net + 32 channels  86.21 92 0.077 93.19 92.11
+ Attention (E)
U-Net + Attention 84.62 91.21 0.087 92.17 89.24
D)
U-Net + Attention 8592 91.70 0.082 93.61 91.45
(E & D)
U-Net + 32 86.20 92 0.077 92.5 92.8
channels+ Attention
(E&D)
U-Net + 32 channels ~ 85.51 91.32  0.087 92.42 92
+ CBAM
PrescNet 87.21 9290 0.071 92.56 93.91

the ablation study conducted to analyze the contribution of different
architectural components. The vanilla U-Net establishes a baseline
performance by achieving a validation IoU of 83.78% and Dice score
of 90.62%. The U-Net with 32 channels projection has showed better
results in terms of validation metrics compared to baseline. Further,
the spatial-channel attention gates are incorporated to encoder section
of the U-Net, and observed marginally improved metrics indicates
sharper segmentation. The vanilla U-Net incorporated with attentions in
decoder as well as in encoder and decoder attained better performance
than baseline but more or less same performance with lightweight
channels. CBAM based U-Net also improved upon the baseline but
lagged behind the tailored attention mechanism. Additionally, it is
observed that constituting attention gates either in encoder or decoder
or in both have almost the same performance.

4.5. Quantitative analysis

Our proposed PrescNet model achieves the best overall
performance, with a validation IoU of 87.21% and Dice score of 92.9%
with the lowest Dice loss of 0.071. Notably, it attained better precision
of 92.56% and highest recall of 93.91%, outperforming all ablations.
These performance results confirm that the integration of channel—
spatial attention method with lightweight channel model emphasizes
discriminative text-stroke patterns while suppressing the background
clutter.

To validate the contributions of the architectural modification
and to determine the potency of the proposed model, we carried out a
comparative analysis against leading-edge deep learning models and
few variants of U-Net models such as, CNN, FCN, UFCN, GANPatch,
Mask R-CNN, U-Net, Attention U-Net, CBAM U-Net, Adapt U-Net,
and the final PrescNet model. All models were trained under the
same 70:30 train—validation split, using identical hyperparameters
and optimization protocols. The evaluation was conducted using key
segmentation metrics: validation IoU, validation Dice coefficient, and
validation Dice loss.

Table 4 exhibits an analytical comparison of the proposed
PrescNet model relative to few established deep models for the task of
text-block semantic segmentation in handwritten medical prescriptions.
The evaluation encompasses validation metrics and loss functions are
reported.

The proposed PrescNet model demonstrates superior performance
across all the evaluation metrics and loss. Specifically, it achieves the
highest IoU (87.21%), Dice score (92.9%), and optimal Dice loss
(0.071), and improved generalization on validation data indicates a

Table 4
Performance comparison across different deep-learning model
architectures
Val Val
Val Dice Dice Val Val
Model IoU score loss precision  recall
CNN 79.40 88.39 0.163 89.7 87.86
FCN 80.59 88.01 0.124 85.44 91.05
UFCN 76.22 86.47 0.13 91.31 82.35
GANPatch 77.38 87.22 0.122 89.92 84.89
Mask R-CNN  84.56 91.58 0.414 87.89 94.84
U-Net 83.78 90.62 0.094 91.5 91.04
Adapt U-Net 83.15 90.05 0.10 90.79 91.5
PrescNet 87.21 92.90 0.071 92.56 93.91
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more accurate overlap between the ground-truth and predicted masks.
Further, it also yields a good precision (92.56%) and recall (93.91%),
highlighting the robustness in identifying true positive regions and low
false detections. This indicates that the integration of attention gates
and initial 32-channel projections enhances the segmentation precision,
particularly for irregular and cluttered handwriting instances.

Among the existing methods, Mask R-CNN shows relatively
competitive performance with IoU of 84.56% and Dice score of 91.58%.
The standard U-Net also performs well with IoU of 83.78% and Dice
score of 90.62%, confirming its effectiveness as a robust baseline for
segmentation task. In contrast, the conventional models such as CNN
and FCN achieve lower performance while UFCN and GAN exhibit
even weaker results with IoU and Dice score.

4.6. 10-fold cross-validation and error analysis

4.6.1. Fold-wise metric trajectories

To further validate consistency across training folds, Figure 4(a)—
(e) illustrate the metric progression across 10 folds. These plots reflect
how performance evolved across training epochs (50 total), highlighting
the learning stability and convergence behavior of the PrescNet.
However, the instance of fold 7 provides the best result than the rest
of the folds with respect to validation IoU, Dice score, and Dice loss.

The IoU metric, visualized in Figure 4(a), remains tightly bounded
with no major fold-specific degradation. This supports the high overlap

between predicted and ground-truth mask regions. Figure 4(b) indicates
that even under varied validation subsets, the model achieves consistent
validation Dice gains, reaffirming segmentation metrics across fold-
level handwriting diversity.

Figure 4(c) presents the fold-wise growth of precision. Despite
fold-wise initialization randomness, the final convergence levels
are tightly grouped, affirming boundary sensitivity in true positive
predictions. As seen in Figure 4(d), recall values gradually reach above
0.90, plateauing with fold-wise divergence. This implies high model
sensitivity across varied stroke densities and writing pressure scenarios.
In Figure 4(e), the Dice loss drops steadily across all folds, suggesting
uniform learning of spatial segmentation fidelity. The minor deviations
observed in folds 3, 4, and 6 do not significantly impact downstream
performance.

The loss trends are consistent across all folds, exhibit cross-
validation splits, are balanced, and the smooth convergence across all
folds attests to the architectural stability of PrescNet and confirms that
the model maintains strong pixel-level and region-level coherence.
These insights reinforce the statistical robustness of the proposed
approach and strengthen confidence in its deployment readiness for
real-world prescription digitization scenarios.

4.6.2. Qualitative error analysis
While the PrescNet demonstrates commendable results in terms
of IoU, Dice score, and generalizability, certain challenging cases

Figure 4
Fold-wise metric trajectories across 10-fold cross-validation
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highlight residual limitations, particularly under conditions such
as ink fading, text overlap, and a typical spatial layouts. A focused
qualitative error analysis was conducted on complex samples from
the test set. Figures 5 and 6 present two representative examples that
reveal characteristic error modes observed in real-world handwritten
prescriptions.

Figure 5 displays a vertically stacked prescription with slanted
cursive handwriting. Although the network delineates four out of
five textual segments, the first two blocks are erroneously merged
due to overlapping curvature and proximity. This mis-segmentation
underscores the challenge of preserving spatial separation in non-linear
writing trajectories where adjacent baselines are poorly defined.

As illustrated in Figure 6, a slight under-segmentation errors are
observed in lines 2, 4, and 6 caused by adjacent lines. Specifically, line
2, which actually belongs to blockl, is incorrectly merged with block?2.
Furthermore, the second and third blocks have been erroneously
fragmented into small sub-blocks signifying incorrect segmentation.
This indicates the need for regularization that distinguish complete
block boundaries.

Figure 5
Prediction for a vertically aligned, sparse prescription layout
(sample 1)
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Figure 6
Prediction for a cluttered prescription (sample 2)
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5. Discussion

The superior performance of the proposed PrescNet stems from
its deliberate architectural enhancements and context-aware design
philosophy. Unlike conventional segmentation networks, the proposed
model employs spatial-channel attention mechanisms and gated skip
connections that enable the network to selectively prioritize salient
features while suppressing background noise and inter-line interference.

A key contributing factor to performance improvement is the
integration of attention gates at each decoder—encoder junction, which

10

helps the network dynamically refine feature propagation during up-
sampling. This selective filtering ensures that only the most contextually
relevant activations are forwarded, thereby improving text-block
delineation, especially in cluttered prescriptions. Additionally, the
inclusion of a 32-channel projection layer in the encoder promotes better
spatial granularity during early-stage feature extraction. As observed in
Section 4, this architectural refinement leads to notable gains in both
Dice coefficient and IoU across all validation folds.

Block-wise segmentation is particularly critical in the context
of handwritten medical prescriptions, where structured layout often
encodes implicit semantics—such as medication type, medication
names, dosages, and intake frequency. Unlike sentence-based OCR,
prescription parsing necessitates reliable detection of spatial groupings
to avoid incorrect interpretations or skipped annotations. Therefore,
block-level segmentation serves as a vital preprocessing stage for
downstream tasks such as named-entity recognition, dosage parsing,
and automated e-prescription generation.

The PrescNet demonstrates strong generalization across multiple
data split variants (90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70,
20:80, and 10:90) and 10-fold cross-validation settings. Minimal
variance in validation loU, Dice scores, and precision metrics indicates
that the model does not overfit to any specific writing style or layout
template. Such robustness is critical for real-world deployment, where
unseen prescriptions can vary widely in format and clarity.

Despite its strengths, the model exhibits limitations under
certain pathological conditions. Handwritten scripts with uncommon
flourishes, tight line spacing, or dense overlapping strokes can degrade
prediction quality. As illustrated in Figures 5 and 6, these anomalies
lead to either under-segmentation or misclassification at boundary
regions. Additionally, rare writing patterns such as extremely slanted
text or hybrid cursive—print styles challenge the model’s learned priors
and require further tuning or augmentation.

Future work aims to address these limitations by incorporating
multi-view ensemble techniques and temporal learning for layout
prediction consistency. Integration of unsupervised spatial priors and
reinforcement-driven segmentation policies is also under consideration
to enhance performance in visually ambiguous scenarios. Overall, the
PrescNet provides a robust, interpretable, and extensible foundation for
handwritten medical document analysis in real-world settings.

6. Conclusion

The study outlines an innovative deep learning architecture
for the robust segmentation of handwritten medical prescriptions
at the block level instead of segmentation at line level to preserve
the association between the treatment regimen (medicine and its
components). By embedding attention gates into the classical U-Net
framework and introducing a shallow 32-channel projection layer,
the proposed model effectively captures spatial and contextual
dependencies inherent in complex handwritten inputs. Extensive
experiments conducted on a custom-curated dataset of prescription
images as no dataset of prescriptions are publicly available,
demonstrate that the architecture not only enhances segmentation of
IoU and Dice score but also achieves superior generalization across
various data splits and cross-validation settings. The integration of
spatial and channel-wise attention mechanisms enables the network to
emphasize semantically relevant regions while minimizing background
noise and stroke-level interference—key challenges in prescription
interpretation. Comparative analysis with sophisticated models such
as CNN, FCN, Mask R-CNN, UFCN, U-Net, AdaptU-Net, GAN, and
variants of U-Net further underscores the architectural efficacy of the
proposed design. Beyond empirical performance, this work emphasizes
the necessity of block-wise segmentation as a foundational step in
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automated medical document analysis. The accurate delineation of
textual blocks plays a pivotal role in supporting downstream tasks
such as drug name recognition, dosage interpretation, and compliance
verification in healthcare settings. However, the study also identifies
limitations arising from rare handwriting styles, occluded strokes, and
severe inter-line overlaps, which can affect segmentation granularity.
Future research will aim to address these challenges through more
sophisticated augmentation pipelines, hybrid architectures incorporating
transformer modules, and unsupervised pretraining on large-scale
medical corpora. In conclusion, the proposed PrescNet advances the
state-of-the-art in handwritten prescription block-level segmentation
and facilitates a scalable and interpretable foundation for intelligent
document understanding in medical informatics.
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