
Received: 12 September 2025 | Revised: 30 December 2025 | Accepted: 14 January 2026 | Published online: 25 January 2026

RESEARCH ARTICLE Artificial Intelligence and Applications
2026, Vol. 00(00) 1–12

DOI: 10.47852/bonviewAIA62027648

Treatment Regimen Segmentation from 
Handwritten Medical Prescriptions Using 
Advanced Neural Network

Rekha G. R.1    , Siddesha S.1,*, and V. N. Manjunath Aradhya1

1 Department of Computer Applications, JSS Science and Technology University, India

Abstract: Handwritten medical prescriptions are a critical yet under-digitized component of clinical workflows, often serving as a source of 
ambiguity due to illegible handwriting, overlapping text blocks, and structural inconsistencies. The automatic segmentation of such prescriptions 
into meaningful textual blocks is vital for downstream tasks like drug recognition and dosage extraction. Traditional methods grounded on connected 
components or projection profiles often falter under the irregularities of freeform handwriting. To address these limitations, the paper proposes 
an advanced deep learning architecture—PrescNet—that primarily segment the treatment regimen (medicine and its associated components) as 
text-blocks using classical U-Net design with spatial–channel attention gates and a lightweight 32 channel projection layer to better capture salient 
features in prescription images. The model is trained on a custom dataset with pixel-level annotations and evaluated using 10-fold cross-validation 
with varying data splits. Experimental results demonstrated that the proposed architecture significantly transcend the baseline variants and a few 
state-of-the-art deep learning models of text-line segmentation achieving an Intersection over Union (IoU) of 87.2%, Dice score of 92.9%, and a 
minimal Dice loss of 0.071. The results validate its effectiveness in handling complex handwritten layouts, establishing its suitability for real-world 
clinical applications.
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1. Introduction
The digitization of handwritten medical prescriptions remains 

a complex yet crucial component of modern healthcare systems. 
Accurate extraction and structural preservation of prescription content 
is vital, particularly in contexts where the spatial relationship between 
drug names and associated information (e.g., dosage, frequency, and 
administration route) must be maintained to avoid misinterpretation. 
While recent years have witnessed a surge in digitization frameworks 
targeting hospital records and patient documentation [1, 2], the 
challenge of segmenting unstructured, handwritten prescriptions at the 
text-block level has not been adequately addressed.

Many existing literatures focus on either document-level 
digitization [3] or extraction of structured data from typed or form-
based records [4, 5]. However, handwritten prescriptions are inherently 
irregular, featuring highly varied writing styles, non-linear layouts, 
overlapping components, and skewed text lines. These characteristics 
pose a significant challenge to conventional optical character 
recognition (OCR) and document parsing techniques, which often rely 
on rigid assumptions regarding textual structure [6].

Emerging solutions leveraging deep learning have demonstrated 
improved capability in handling such complexities. Models combining 
convolutional neural networks with sequence-to-sequence learning or 
hybrid approaches incorporating attention mechanisms have shown 
promise in historical manuscript segmentation [7]. Yet, these methods 
primarily target line-wise or entity-level segmentation, insufficient for 
preserving the semantic linkage within prescription blocks. Segmenting 
text blocks, as opposed to lines, become essential when the goal is to 
preserve the relationship between a medicine name and its modifiers—a 

relationship that may span multiple spatial zones within a handwritten 
layout. 

In recent work, machine learning-driven digitization pipelines 
have begun to bridge the gap between image understanding and clinical 
documentation by adopting structure-aware recognition techniques [8]. 
These methods underscore the necessity of not only recognizing text 
but also retaining its contextual and structural relevance—particularly 
in handwritten clinical content where visual cues often dictate semantic 
interpretation.

Figure 1 shows a few samples of region of interest (ROI) extracted 
handwritten medical prescriptions. Each prescription demonstrates 
a different mode of prescribing the medicines. The medicine and its 
associated components in few prescriptions are distributed across 
two or three lines (as given in Figure 1(a), (b), (c), and (e)). In certain 
instances, like Figure 1(e), the advice is given in a single line as 
well as in multi-lines. Few cases show orientations and overlapping 
characters (Figure 1(a), (d), and (f)). Hence, to preserve the semantic 
meaning of the medicines along with its components, text-block 
segmentation is attained in the current work instead of regular text-line 
segmentation. Consequently, this work proposes a novel deep learning-
based segmentation model tailored for the specific task of handwritten 
prescription block extraction. This block-level segmentation built upon 
the foundational U-Net architecture and amplifies with spatial and 
channel-wise attention mechanisms. Thus, the proposed PrescNet aims 
to enhance the accuracy of block segmentation while preserving the 
spatial context essential for downstream information extraction. The 
model is empirically validated on a custom dataset of prescriptions, 
as no standard datasets are publicly available and its performance is 
benchmarked against multiple deep learning models as well as U-Net 
variants across different data splits and k-fold cross-validation settings.

By addressing a previously underexplored granularity of 
prescription segmentation, this research contributes a robust framework 
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for structured prescription digitization—paving the way for downstream 
clinical NLP applications, safer electronic medical record integration, 
and enhanced patient care automation.

1.1. Key contributions
The core contributions of this study include:

1)  Reformulation of handwritten prescription that primarily highlights 
the block-level segmentation task to preserve semantic and 
structural coherence of medical components instead of regular text-
line segmentation.

2)  Proposed PrescNet, an advanced encoder–decoder architecture 
that integrates spatial and channel attention with attention-gated 
skip connections and a 32-channel projection layer for enhanced 
prescription segmentation.

3)  Extensive benchmarking against three state-of-the-art models and 
four U-Net variants and evaluate performance across different 
data splits and 10-fold cross validation to ensure robustness and 
generalizability.

4)  Detailed error analysis on overlapping and ambiguous text regions.
5)  Demonstration of the model’s real-world applicability for digitizing 

handwritten prescriptions in clinical workflows.

2. Literature Review 

2.1. Traditional text-line and block segmentations
Text-line and block segmentations have long served as 

foundational steps in document image analysis, particularly in the 
processing of historical and handwritten manuscripts. Early approaches 

relied heavily on projection profiles, connected component analysis, and 
morphological operations. For instance, Wahl et al. [9] proposed one 
of the earliest frameworks for block segmentation and text extraction 
in mixed text-image documents using projection-based heuristics. 
However, the method often struggled with irregular line spacing, 
overlapping characters, and skewed writing.

To address these limitations, Li et al. [10] introduced a script-
independent segmentation technique designed for freestyle handwritten 
documents, which leveraged directional continuity for line detection. 
While these methods improved flexibility, they remained limited in 
their ability to handle dense layouts and multi-touching text instances. 
More recent efforts have introduced neural and hybrid techniques. 
For example, Vadlamudi et al. [11] incorporated recognition-based 
evaluation and high-precision attention mechanisms respectively, but 
still primarily addressed line-wise separation.

Traditional segmentation methods also struggled in complex 
clinical contexts where handwriting irregularities are frequent. 
Shivakumara et al. [12] explored segmentation in struck-out text, a 
scenario common in clinical revisions, but their technique is highly 
sensitive to background noise. Collectively, these studies underscore 
the need for more adaptable segmentation frameworks that can preserve 
spatial relationships in dense handwritten layouts such as medical 
prescriptions.

2.2. Other advanced deep learning models in text-line 
segmentation

Other than U-Net model, various deep learning models like 
Mask R-CNN, generative adversarial network (GAN), and fully 
convolutional network (FCN) models showcased their efficacy in 
segmenting text-lines from various types of documents. To identify text 
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Different samples of handwritten medical prescriptions
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lines in historical texts, Jian et al. [13] proposed an Iterative Attention 
Head (IAH) and a Dynamic Rotational Proposal Network (DRPN), that 
integrates into Mask R-CNN. Dorby et al. [14] worked on extraction of 
text-lines from by training the document patches using Mask R-CNN 
and further merged these patches to segment text-lines from the whole 
page of historical documents. A study by Fizaine et al. [15] directly 
compares the U-Net-based models with Mask R-CNN and claims 
outperformance in segmenting text-lines.

A hybrid method introduced by Vo et al. [16] predicts the structure 
of text-line utilizing an FCN, and generates a line map for text strings and 
line adjacency graph (LAG) method that splits the touching characters. 
Another FCN-based U-shaped model, Doc-UFCN, proposed by Biollet 
et al. [17] for detecting the text-lines from historical documents, 
emphasizes the usage of a lighter pre-training architecture instead of 
heavy encoders like ResNet. A novel strategy to extract text-lines using 
GAN was introduced by Kundu et al. [18]. This approach employs 
U-Net architecture for generator and Patch GAN for discriminator to 
address the challenges such as skewed, degraded, and multi-language 
environments. Along with these challenges, the problem of overlapping 
characters was also addressed by Demir et al. [19] and Ozseker et al. 
[20] using GAN, where image-to-image translation was employed to 
learn the features of text-lines and to generate segmentation masks 
without post-processing.

2.3. U-Net and its evolution in document and medical 
image segmentations

The advent of U-Net architectures revolutionized segmentation 
tasks across multiple domains, particularly in biomedical imaging 
emphasizing the architecture’s flexibility and success in delineating 
complex anatomical boundaries.

A number of architectural modifications have been proposed 
to enhance U-Net’s performance. For instance, Azad et al. [21] 
demonstrated the superiority of U-Net variants on diverse medical 
benchmarks, while Yu et al. [22] proposed EU-Net, an automatically 
optimized U-Net variant based on evolutionary neural architecture 
search, further refining segmentation performance. Other notable works 
include DC-UNet [23], and transformer-augmented hybrids [24], each 
targeting different limitations in feature representation, model depth, 
and global context awareness.

The discipline of document layout analysis, has seen the 
emergence of U-Net adaptations. Mechi et al. [25] developed an 
adaptive U-Net for text-line segmentation in historical documents, 
showing its effectiveness in preserving structural coherence. However, 
most U-Net applications in document analysis remain constrained to 
line or region-level segmentation, lacking the granularity to preserve 
block-level semantics.

Although U-Net and its variants have exhibited strong 
interpretation in both medical and document segmentation tasks, 
their application to the specific challenge of prescription text-block 
segmentation remains underexplored. Medical prescriptions require 
not only accurate boundary detection but also contextual preservation 
between medicine names and associated instructions. Existing models 
do not adequately address this nuanced requirement, indicating a clear 
research gap. The present work responds to this need by proposing an 
attention-augmented U-Net framework tailored for fine-grained block 
segmentation in handwritten medical prescriptions.

2.4. Attention mechanisms in document understanding
The incorporation of attention mechanisms into deep learning 

architectures has significantly improved the interpretability and 
performance of models across various document understanding tasks 

[26]. Originally introduced to enhance natural language processing, 
attention mechanisms have been effectively adapted to visual tasks, 
including document layout analysis and page object detection. Naik et 
al. [27] explored the role of attention in detecting structural components 
within document images, showing that attention-based models could 
localize and classify layout elements more effectively than conventional 
CNN-based approaches.

The utility of attention as a tool for interpretability has also 
been emphasized. Tutek and Snajder [28] investigated the practical 
deployment of attention mechanisms for explainable artificial 
intelligence applications, while Soydaner [29] provided a comprehensive 
analysis of how attention operates within neural networks across 
various domains. These findings were further reinforced by Brauwers 
and Frasincar [30], who presented an extensive survey of attention-
based models, underscoring their widespread applicability and impact 
on model performance.

In the context of medical and document image segmentations, 
mechanisms of attention have been embedded within U-Net variants 
to enhance localization accuracy. The works such as SA-UNet [31] and 
ASCU-Net [32], each integrated spatial and channel attention to better 
capture hierarchical features. The CBAM module [33], combining 
both types of attention, has proven particularly effective in guiding 
convolutional networks to emphasize informative features in medical 
and layout images.

Despite these advancements, most attention-based models in the 
literature have focused on general image segmentation or high-level 
document component recognition. Cao et al. [34] proposed selective 
region concentration for visual document understanding but primarily 
targeted forms and structured layouts. In the domain of handwritten 
medical prescriptions, existing works such as those by Hassan et al. 
[35] and Jain et al. [36] have concentrated on character recognition or 
end-to-end prescription transcription using CNN-LSTM and CRNN 
models. While effective for isolated token recognition, these approaches 
often fail to preserve the spatial–semantic relationships among grouped 
entities like medicine names, dosages, and administration instructions.

Furthermore, document-specific models such as DocPresRec 
[37] and attention guided recognition methods for student notes [38] 
remain largely line-centric or token-based, lacking the granularity 
required to segment and preserve functional blocks of medical 
prescriptions. Shende et al. [39] addressed handwriting recognition and 
prescription scanning, but their method overlooked the need to preserve 
the hierarchical grouping of textual components.

This body of work reveals a significant gap: while attention 
mechanisms have enhanced structural understanding in many document 
processing scenarios, their application to the block-level segmentation 
of handwritten medical prescriptions remains underdeveloped. 
Medical prescriptions are inherently spatially dense and semantically 
interdependent, where the failure to preserve block structure may 
lead to the disassociation of critical information. The current research 
addresses this gap by proposing a U-Net-based segmentation framework 
augmented with spatial and channel attention, explicitly designed 
to extract and preserve coherent prescription blocks from complex 
handwritten inputs.

2.5. Motivation and challenges 
Table 1 provides the details of various recent deep learning 

models used in text-line segmentation with architectural highlights and 
limitations on handwritten documents along with results of different 
evaluation parameters. Each study focuses on text-line segmentation 
and none focuses on block-level segmentation. This motivates our 
study to experiment on text block-level segmentation using handwritten 
medical prescriptions.
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Despite considerable progress in document layout analysis, 
handwritten text segmentation, and attention-based neural models, 
several persistent gaps remain unaddressed in the literature—particularly 
concerning the segmentation of handwritten medical prescriptions. The 
following research challenges have been identified:

Block-level preservation in dense handwritten layouts: 
Existing methods such as Jain et al. [36] and Shende et al. [39] focus 
primarily on line or character-level segmentation and recognition, often 
overlooking the need for block level semantic coherence in handwritten 
medical prescriptions. This omission may lead to disassociation of 
critical information such as drug names and corresponding dosage 
instructions.

Limited adaptability of traditional deep segmentation 
models: Conventional segmentation models including FCN, SegNet, 
and even standard U-Net variants often struggle to maintain high fidelity 
in scenarios involving spatial noise, overlapping strokes, and low-
contrast ink conditions. Work by Shivakumara et al. [12] demonstrates 
this vulnerability when applied to real-world clinical data.

Insufficient integration of attention in fine-grained document 
tasks: Although attention mechanisms have been widely adopted for 
high-level document classification and structural component detection 
[27], their application in enhancing block-level segmentation in 
handwritten contexts remains underexplored. Notable frameworks such 
as Attention U-Net and CBAM [33] have shown promise in medical 
imaging but are seldom optimized for unstructured, densely packed 
handwritten prescriptions.

Scarcity of benchmarked frameworks for medical prescription 
layout segmentation: End-to-end systems such as Seamformer [11] 
and DocPresRec [37] target holistic understanding or structured layout 
inference but lack dedicated mechanisms for preserving functional 
groupings at a block level. Most available systems do not benchmark 
their segmentation modules independently for medical prescriptions, 
thereby limiting generalizability assessments.

These gaps motivate and provide a baseline for the present 
study to introduce a novel attention-augmented U-Net architecture 
explicitly tailored to handwritten medical prescriptions. This work 

prioritizes block-level integrity of the medicines and its components to 
preserve the association between them and integrates spatial–channel 
attention. This comprehensive approach positions the proposed method 
as a distinct advancement over existing segmentation pipelines in 
prescription digitization.

3. Proposed Methodology 
The objective of the proposed framework is to segment structured 

textual blocks from handwritten medical prescriptions. Formally, let 
 denote a grayscale input image and  its 

corresponding ground truth binary mask, where each pixel yi,j indicates 
whether pixel (i,j) belongs to a meaningful text block grouping (e.g., 
medicine name, dosage, and frequency).

The segmentation task is modeled as a dense binary 
classification setback where the intent is to learn a mapping function 

θ  parameterized by network weights θ, such 
that:

θ

where ϕ(·) denotes the encoder–decoder network (i.e., U-Net with 
attention), W implies a 1 × 1 convolutional projection layer, and σ(·) 
is the sigmoid activation function that outputs pixel-wise probabilities 
in [0,1]. Each prediction   > 0.5 is interpreted as a foreground pixel, 
contributing to a coherent prescription block.

Unlike line-level segmentation techniques, this formulation aims 
to preserve the spatial and semantic integrity of block-level groupings, 
mitigating the risk of disassociating interdependent prescription 
elements (e.g., breaking dosage from its corresponding drug name). The 
model is thus optimized to generate masks  indicating 
the spatial footprint of prescription blocks that maximize both pixel-
wise accuracy and region-wise cohesion, which are measured using a 
composite loss ℒ defined as: 

ℒ(Ŷ, Y ) = 𝛼 ⋅ BCE(Ŷ, Y ) + (1 – 𝛼)  ⋅ Dice(Ŷ, Y )

4

Model Architectural highlights Limitations in handwritten documents Results
UFCN [17] U-Net with FCN using dilated 

convolutions
Model trained on one dataset often do not 
generalize well on other historical dataset 
as each dataset uses different annotation 
formats and conventions.

IoU — 0.80, F1-score — 0.89, 
AP@0.5–0.94 on ScribbleLense 
dataset

Adaptive U-Net [25] U-Net with 32 filters at the initial 
block to reduce parameters

Performance drops on very complex/
variable layouts

Precision — 0.75, Recall — 0.85, 
F-score — 0.79 on cBad Dataset

Attention U-Net [40] U-Net with attention gates for 
spatial focus

Still may struggle without domain specific 
tuning in cluttered documents

Precision — 0.93, Recall — 0.94, 
F-measure — 0.93 on BADAM 
dataset

Vision 
transformer-based 
model [41]

Captures global dependen-
cies; learns contextual token 
relationships

Requires large datasets and longer 
training; sensitive to irregular cursive flow

Detection rate — 0.92 on Turkish 
Line segmentation dataset

Mask R-CNN [15] Uses Region Proposal Network 
(RPN) for instance segmentation 
with bounding boxes and masks

Requires precise bounding box annotations 
and careful hyper-parameter tuning

IoU — 0.85, F1-score — 0.91, 
AP@0.5–0.98 on HOME-Alcar 
dataset

GAN [20] Conditional GAN with encoder–
decoder generator and learns 
structured translation from images 
to masks. Captures global and fine 
texture context

Heavy model and needs diverse training 
data. Sensitive to discriminator and 
generator balance

GAN loss — 0.99, GAN L1 — 0.94, 
GAN L2 — 0.90 on VML-AHTE 
dataset

Table 1
Comparison of deep learning models for text-line segmentation

(1)

(2)
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where α  [0,1] balances the binary cross-entropy (BCE) and Dice loss 
terms.

The Dice measures the region-overlap-based metric and evaluates 
how well the predicted mask ( ̂) overlaps with the ground-truth mask 
(Y  ).

where  is the predicted probability at pixel (i,j), and yi,j is the 
corresponding ground-truth. Dice emphasizes block-wise segmentation 
where foreground pixels are sparse and spatial cohesion is demanding. 
Here, the Dice is integrated as a loss term to encourage coherent block-
level segmentation.

The end-to-end segmentation pipeline is schematically illustrated 
in Figure 2. The ROI extracted image along with its masks are passed 
as input to the proposed model. The masks are generated using the 
annotation tools that serves as a ground-truth during the training phase.

3.1. Encoder–Decoder backbone with Attention 
modulation

The core architecture employed in this study is a refined 
variant of the canonical U-Net, herein referred to as PrescNet. This 
design integrates three principal innovations: (i) an auxiliary shallow 
convolutional stem for early feature enhancement, (ii) attention gating 
across skip connections to enable discriminative feature selection, and 
(iii) combined spatial and channel attention mechanisms to reinforce 
semantic localization. These modifications are engineered specifically 
for the task of block-wise segmentation of handwritten prescriptions, 
which are characterized by spatial clutter, overlapping strokes, and 
cursive variability.

The encoder path comprises five hierarchical stages. At each level 
l, the input tensor Fl is transformed via two successive convolutional 
operations, each defined as:

ϕ

where Wl
(1) and Wl

(2) denote the 3 × 3 convolutional kernels at level 
l, B(·) symbolizes batch normalization, and ϕ(·) denotes the ReLU 
activation function.

The batch normalization, applied to the output of each convolution 
layer normalizes feature activations computed using the mean and 
variance over mini-batch and applies learnable scaling and shifting 
parameters. For a given activation ‘x’, batch normalization is defined as,

where  and  are the mean and variance of batch and  and  are 
the learnable parameters. B(·) generates real-value feature maps with 
stabilized distribution, that improves training stability by accelerating 
convergence and reduces sensitivity to handwriting variability occur in 
prescription images.

A shallow 32-channel projection layer is introduced as the 
initial convolutional block P(·) operating on the input X:

This layer serves as a low-level feature amplifier that 
progressively down-samples the input image designed to capture 
micro-textural cues that may otherwise be attenuated by deeper 
layers, a critical factor for enhancing character boundary localization 
in cluttered scripts. The decoder reverses the encoder structure by 
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Figure 2
Proposed PrescNet model

(3)

(4)

(5)

(6)
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applying transposed convolutions to progressively restore spatial 
resolution and produce segmentation maps. Importantly, skip 
connections between encoder and decoder blocks are modulated by 
attention gates, as opposed to naive concatenation.

3.1.1. Attention-gated skip connections
The attention gated skip connections preserve the fine structural 

details that are lost during down-sampling and transfer the intermediate 
encoder features to the decoder by enabling precise boundary 
delineations.

Let 𝑔l represent the gating signal from decoder level l and xl be 
the corresponding encoder output. The attention gating function A(·,·) 
is computed as:

where σ(·) is the sigmoid function and  denotes the spatial attention 
coefficients for skip connection l. The filtered feature map is defined as:

with  indicating element-wise multiplication. These modulated 
features are concatenated with upsampled decoder outputs prior to 
further decoding.

3.1.2. Channel–spatial attention fusion
The skip connections pass all the features, including noise and 

some irrelevant background information. Hence, to filter encoder 
outputs, and to enhance contextual awareness, each decoder feature map 
undergoes channel–spatial attention fusion. These attentions emphasize 
on the most discriminative features and relevant pixel regions, 
suppressing noise and blank areas and contribute reconstructions. It 
also helps in improving the separation of overlapping lines or closely 
spaced lines by enhancing the clarity of segmentation mask by reducing 
the influence of artifacts. A channel attention map  and 
a spatial attention map are computed sequentially and 
multiplied with the intermediate feature representation F:

These attention maps are learned implicitly and highlight the most 
discriminative regions and feature channels across the segmentation 
hierarchy [33].

The integration of shallow feature extraction, spatial attention, 
and selective skip connections is critical for precise delineation of 
text boundaries in handwritten prescriptions. Unlike natural image 
segmentation tasks, the target domain in this work involves low inter-
class variance and substantial intra-class deformation. Hence, enhancing 
intra-layer focus via channel–spatial modulation and inter-layer flow 
control via attention gates allows for improved generalization under 
variable scan quality and handwriting styles.

This architectural framework thus obtains the balance between 
computational efficiency and contextual adaptively, laying the 
foundation for robust clinical document parsing and downstream 
information extraction.

3.2. Output prediction and sigmoid projection 
The final decoder output is projected to a single-channel mask via 

a 1 × 1 convolution and sigmoid activation:

where  represents the probabilistic segmentation mask with pixel-
wise membership scores in [0,1]. A threshold of 0.5 is applied during 
inference to obtain the binary label map.

The textual contents from the individual masks are extracted 
from the output predicted masks as text-blocks for our future study.

3.3. Loss function and optimization strategy 
To effectively train the segmentation model in the presence 

of class imbalance and noisy annotations, a hybrid loss function is 
employed by linearly uniting the BCE loss and the Dice loss. This 
composite objective function offers a principled balance between pixel-
wise classification accuracy and regional overlap fidelity, which is 
crucial for dense text-block segmentation where boundary delineation 
is inherently ambiguous.

Let  denote the predicted segmentation mask and 
 the corresponding ground truth binary mask. The BCE 

loss ℒBCE is defined as:

ℒBCE=

where N = H × W is the total number of pixels, and  and  represent 
the ground truth and predicted values at pixel i, respectively. While 
BCE penalizes incorrect pixel classifications, it treats all pixels equally 
and is sensitive to class imbalance.

To address these hindrances, the Dice loss ℒDice is introduced, 
which estimates the overlap between ground truth and prediction:

ℒDice 

where  is a smoothing constant  to ensure numerical 
stability. The Dice loss emphasizes structural similarity and penalizes 
under-segmentation more heavily than pixel misclassification.

The net combined loss ℒtotal is a weighted sum of both terms:

ℒtotal= 𝛼 ⋅ ℒBCE+(1−α) ⋅ ℒDice

where α  [0,1] controls the trade-off between pixel-wise accuracy and 
region level consistency. In our experiments, α was empirically set to 
0.5 to ensure equal importance during optimization. This dual-objective 
formulation has been shown to stabilize training while simultaneously 
improving segmentation robustness in small and imbalanced foreground 
regions [21].

Dice coefficient (D): evaluates spatial overlap, equivalent to 
F1-score in binary tasks,

Intersection over Union (IoU): assesses normalized region 
agreement between prediction  and ground truth Y,

Precision (P) and Recall (R): Quantify pixel-level correctness 
and completeness,
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These metrics altogether provides nuanced understanding of 
the model performance, capturing both micro-level pixel fidelity 
and macro-level boundary coherence—critical in clinical document 
scenarios where precise text-block localization directly influences 
downstream interpretation and digitization.

4. Experimentation and Results
To rigorously examine the efficacy of the proposed PrescNet 

architecture, a series of controlled experiments were conducted. This 
section presents a dataset description, comparative analysis of different 
model variants, training–validation split ratios, and the associated 
performance across multiple segmentation metrics. The goal is to verify 
the superiority of the proposed method through empirical evidence and 
establish its robustness across configurations.

4.1. Dataset description
The efficacy of deep learning models in prescription segmentation 

is closely tied to the complexity and variability present in the training 
data. For this study, we employ a custom dataset comprising 855 
grayscale image–mask pairs derived from handwritten medical 
prescriptions. Unlike public datasets, the current dataset was curated 
through an automatic extraction process of ROI/advice section from 
the actual prescription [42] and underwent post-processing procedures 
as outlined in earlier internal works. Each prescription image was 
manually labeled to produce corresponding binary segmentation 
masks that delineate entire semantic blocks rather than isolated words 
or characters. A block here denotes a contiguous region comprising 
elements such as drug name, dosage, and administration frequency. The 
goal is to capture such medically meaningful groupings, which form the 
basis for accurate digitization and downstream extraction.

The dataset is sliced into different training and validation images, 
maintaining some partition and the images are rescaled to 256 × 256 
and normalized to have zero mean and unit variance. To improve model 
generalization over diverse handwriting styles, random horizontal flips 
and contrast adjustments are applied as part of data augmentation. The 
transformation pipeline T applied to each sample X is defined as:

T (X) = Norm ◦ Flipp = 0.5 ◦ Resize256 × 256(X) 

where Norm(·) denotes standard normalization and Flipp = 0.5 refers to 
stochastic horizontal flipping with a probability of 0.5.

Figure 3 presents several representative samples from the dataset. 
The left picture shows the raw grayscale prescription image, while the 

right displays the annotated segmentation mask. These masks are block-
level in nature, encapsulating semantically grouped handwritten content 
and captures entire semantic units essential for structured interpretation. 
This block-level annotation facilitates downstream tasks such as drug 
extraction, dosage parsing, and entity linking, forming a critical part of 
the prescription digitization pipeline.

4.2. Training setup and evaluation protocol
The model training was conducted by adopting PyTorch 

v1.13.1 on NVIDIA-Tesla T4 GPU of 16 GB memory. To maintain 
computational efficiency and reproducibility, the proposed PrescNet 
U-Net was trained for 50 epochs, which yielded a validation accuracy 
of 98%. The 50-epoch configuration was selected for all reported 
experiments to balance training time and overfitting risks. This choice 
aligns with empirical observations across multiple folds, where 
performance saturated within the 45–50 epoch range, indicating 
sufficient convergence in order to scale the dataset.

A batch size of 4 was chosen after empirical benchmarking to 
ensure optimal memory utilization without compromising gradient 
stability. Given the resolution and complexity of handwritten 
prescription images, larger bath sizes led to memory exhaustion on 
the available GPU, whereas smaller batches induced unstable updates 
due to high variance in mini-batch gradients. The selection of batch 
size = 4 thus represents a compromise between stable convergence and 
hardware constraints, particularly effective for medium-sized medical 
imaging datasets like the one which is used.

The dataset was divided into nine distinct training–validation 
ratios: 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90 
with stratified random sampling used to preserve label balance across 
partitions. The 70:30 split was found to provide the best generalization 
performance, offering a reliable trade-off between model robustness 
and training data sufficiency. Consequently, all primary experiments 
and performance evaluations were conducted using this partition.

To statistically evaluate generalization and mitigate sampling 
variance, a 10-fold cross-validation protocol was utilized. The full 
dataset D was divided into 10 mutually exclusive folds {D1,...,D10}, 
such that each fold served once as a validation set while the remaining 
nine formed the training subset. This strategy produced averaged 
performance metrics and reduced dependency on any single data 
configuration, thereby increasing result reliability.

Training optimization employed the Adam algorithm with 
learning rate of 10−4 and no scheduler, allowing analysis of the 
model’s inherent generalization capacity without external learning rate 
modulation. All experiments used identical hyperparameter settings to 
ensure fair comparisons across folds and data splits.

Model evaluation was performed using a comprehensive set of 
metrics for binary segmentation, encompassing both pixel-level and 
region-level assessments.

4.3. Data split evaluation
To understand the impact of dataset partitioning on model 

generalization, we conducted controlled experiments using nine training–
validation splits: 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, 
and 10:90. The same model architecture (PrescNet) and hyperparameters 
were maintained across all configurations to ensure consistency. Table 2 
summarizes the averaged results, showcasing key evaluation metrics 
including validation IoU, validation Dice score, and validation Dice loss.

The val IoU and val Dice scores show optimal performance for 
the 70:30 split. This observation highlights a key insight: increasing the 
validation set size can result in reduced exposure to training variability, 
thus undermining the model’s ability to generalize spatial boundaries. 
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 Figure 3
Representative sample from the dataset: (a) original grayscale 

prescription and (b) manually annotated binary mask capturing 
contiguous text blocks

(17)
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Consequently, the 70:30 partition is chosen as the primary configuration 
in all downstream evaluations. Dice loss, which quantifies the overlap 
sensitivity maintains dominance in minimizing segmentation boundary 
mismatches. With the same 70:30 train–val split ratio, the proposed 
model achieved a val precision of 92.56% and val recall of 93.91%, 
which implies a strong performance in correctly identifying relevant 
blocks while lowering the false negatives and false positives. Besides, 
the model reported a BCE loss of 0.258, reflecting a good alignment 
between actual and predicted pixel-wise segmentations. The effective 
optimization and generalization on the validation set are demonstrated 
with the combined loss, that was reduced to 0.167. Collectively, the 
analysis across each of the data splits reinforces the empirical decision 
to adopt the 70:30 split for all model variants and different deep learning 
models to accomplish comparative experiments due to its optimal trade-
off between loss minimization and validation stability.

4.4. Ablation study
This section systematically evaluates the effectiveness of 

incorporating lightweight 32 channel projection along with the spatial–
channel attention gates to classical U-Net model. Table 3 summarizes 

the ablation study conducted to analyze the contribution of different 
architectural components. The vanilla U-Net establishes a baseline 
performance by achieving a validation IoU of 83.78% and Dice score 
of 90.62%. The U-Net with 32 channels projection has showed better 
results in terms of validation metrics compared to baseline. Further, 
the spatial–channel attention gates are incorporated to encoder section 
of the U-Net, and observed marginally improved metrics indicates 
sharper segmentation. The vanilla U-Net incorporated with attentions in 
decoder as well as in encoder and decoder attained better performance 
than baseline but more or less same performance with lightweight 
channels. CBAM based U-Net also improved upon the baseline but 
lagged behind the tailored attention mechanism. Additionally, it is 
observed that constituting attention gates either in encoder or decoder 
or in both have almost the same performance.

4.5. Quantitative analysis
Our proposed PrescNet model achieves the best overall 

performance, with a validation IoU of 87.21% and Dice score of 92.9% 
with the lowest Dice loss of 0.071. Notably, it attained better precision 
of 92.56% and highest recall of 93.91%, outperforming all ablations. 
These performance results confirm that the integration of channel–
spatial attention method with lightweight channel model emphasizes 
discriminative text-stroke patterns while suppressing the background 
clutter.

To validate the contributions of the architectural modification 
and to determine the potency of the proposed model, we carried out a 
comparative analysis against leading-edge deep learning models and 
few variants of U-Net models such as, CNN, FCN, UFCN, GANPatch, 
Mask R-CNN, U-Net, Attention U-Net, CBAM U-Net, Adapt U-Net, 
and the final PrescNet model. All models were trained under the 
same 70:30 train–validation split, using identical hyperparameters 
and optimization protocols. The evaluation was conducted using key 
segmentation metrics: validation IoU, validation Dice coefficient, and 
validation Dice loss.

Table 4 exhibits an analytical comparison of the proposed 
PrescNet model relative to few established deep models for the task of 
text-block semantic segmentation in handwritten medical prescriptions. 
The evaluation encompasses validation metrics and loss functions are 
reported.

The proposed PrescNet model demonstrates superior performance 
across all the evaluation metrics and loss. Specifically, it achieves the 
highest IoU (87.21%), Dice score (92.9%), and optimal Dice loss 
(0.071), and improved generalization on validation data indicates a 
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Split 
ratio

Val 
IoU

Val Dice 
score

Val Dice 
loss

Val 
precision

Val 
recall

90:10 86.09 92.22 0.078 93.86 91.40
80:20 86.13 92.24 0.076 94.42 90.91
70:30 87.21 92.91 0.071 92.56 93.91
60:40 86.18 92.22 0.078 93.92 91.45
50:50 85.95 92.08 0.079 92.80 92.26
40:60 85.77 91.81 0.082 92.27 92.6
30:70 85.24 91.38 0.086 93.56 90.77
20:80 85.07 90.46 0.095 91.68 92.41
10:90 81.22 85.33 0.147 94.41 85.56

Table 2
Performance comparison across different train–validation splits

Model
Val 
IoU

Val 
Dice 
score

Val 
Dice 
loss

Val 
precision

Val 
recall

U-Net 83.78 90.62 0.094 91.5 91.04
U-Net + 32 channels 85.8 91.1 0.080 92.08 90.91
U-Net + 32 channels 
+ Attention (E)

86.21 92 0.077 93.19 92.11

U-Net + Attention 
(D)

84.62 91.21 0.087 92.17 89.24

U-Net + Attention 
(E & D)

85.92 91.70 0.082 93.61 91.45

U-Net + 32 
channels+ Attention 
(E & D)

86.20 92 0.077 92.5 92.8

U-Net + 32 channels 
+ CBAM

85.51 91.32 0.087 92.42 92

PrescNet 87.21 92.90 0.071 92.56 93.91

Table 3
Performance comparison across attention and channel in U-Net 

model architectures

Model
Val 
IoU

Val 
Dice 
score

Val 
Dice 
loss

Val 
precision

Val 
recall

CNN 79.40 88.39 0.163 89.7 87.86
FCN 80.59 88.01 0.124 85.44 91.05
UFCN 76.22 86.47 0.13 91.31 82.35
GANPatch 77.38 87.22 0.122 89.92 84.89
Mask R-CNN 84.56 91.58 0.414 87.89 94.84
U-Net 83.78 90.62 0.094 91.5 91.04

Adapt U-Net 83.15 90.05 0.10 90.79 91.5
PrescNet 87.21 92.90 0.071 92.56 93.91

Table 4
Performance comparison across different deep-learning model 

architectures 
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more accurate overlap between the ground-truth and predicted masks. 
Further, it also yields a good precision (92.56%) and recall (93.91%), 
highlighting the robustness in identifying true positive regions and low 
false detections. This indicates that the integration of attention gates 
and initial 32-channel projections enhances the segmentation precision, 
particularly for irregular and cluttered handwriting instances.

Among the existing methods, Mask R-CNN shows relatively 
competitive performance with IoU of 84.56% and Dice score of 91.58%. 
The standard U-Net also performs well with IoU of 83.78% and Dice 
score of 90.62%, confirming its effectiveness as a robust baseline for 
segmentation task. In contrast, the conventional models such as CNN 
and FCN achieve lower performance while UFCN and GAN exhibit 
even weaker results with IoU and Dice score.

4.6. 10-fold cross-validation and error analysis
4.6.1. Fold-wise metric trajectories

To further validate consistency across training folds, Figure 4(a)–
(e) illustrate the metric progression across 10 folds. These plots reflect 
how performance evolved across training epochs (50 total), highlighting 
the learning stability and convergence behavior of the PrescNet. 
However, the instance of fold 7 provides the best result than the rest 
of the folds with respect to validation IoU, Dice score, and Dice loss.

The IoU metric, visualized in Figure 4(a), remains tightly bounded 
with no major fold-specific degradation. This supports the high overlap 

between predicted and ground-truth mask regions. Figure 4(b) indicates 
that even under varied validation subsets, the model achieves consistent 
validation Dice gains, reaffirming segmentation metrics across fold-
level handwriting diversity.

Figure 4(c) presents the fold-wise growth of precision. Despite 
fold-wise initialization randomness, the final convergence levels 
are tightly grouped, affirming boundary sensitivity in true positive 
predictions. As seen in Figure 4(d), recall values gradually reach above 
0.90, plateauing with fold-wise divergence. This implies high model 
sensitivity across varied stroke densities and writing pressure scenarios. 
In Figure 4(e), the Dice loss drops steadily across all folds, suggesting 
uniform learning of spatial segmentation fidelity. The minor deviations 
observed in folds 3, 4, and 6 do not significantly impact downstream 
performance.

The loss trends are consistent across all folds, exhibit cross-
validation splits, are balanced, and the smooth convergence across all 
folds attests to the architectural stability of PrescNet and confirms that 
the model maintains strong pixel-level and region-level coherence. 
These insights reinforce the statistical robustness of the proposed 
approach and strengthen confidence in its deployment readiness for 
real-world prescription digitization scenarios.

4.6.2. Qualitative error analysis
While the PrescNet demonstrates commendable results in terms 

of IoU, Dice score, and generalizability, certain challenging cases 
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 Figure 4
Fold-wise metric trajectories across 10-fold cross-validation
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highlight residual limitations, particularly under conditions such 
as ink fading, text overlap, and a typical spatial layouts. A focused 
qualitative error analysis was conducted on complex samples from 
the test set. Figures 5 and 6 present two representative examples that 
reveal characteristic error modes observed in real-world handwritten 
prescriptions.

Figure 5 displays a vertically stacked prescription with slanted 
cursive handwriting. Although the network delineates four out of 
five textual segments, the first two blocks are erroneously merged 
due to overlapping curvature and proximity. This mis-segmentation 
underscores the challenge of preserving spatial separation in non-linear 
writing trajectories where adjacent baselines are poorly defined.

As illustrated in Figure 6, a slight under-segmentation errors are 
observed in lines 2, 4, and 6 caused by adjacent lines. Specifically, line 
2, which actually belongs to block1, is incorrectly merged with block2. 
Furthermore, the second and third blocks have been erroneously 
fragmented into small sub-blocks signifying incorrect segmentation. 
This indicates the need for regularization that distinguish complete 
block boundaries.

5. Discussion
The superior performance of the proposed PrescNet stems from 

its deliberate architectural enhancements and context-aware design 
philosophy. Unlike conventional segmentation networks, the proposed 
model employs spatial–channel attention mechanisms and gated skip 
connections that enable the network to selectively prioritize salient 
features while suppressing background noise and inter-line interference.

A key contributing factor to performance improvement is the 
integration of attention gates at each decoder–encoder junction, which 

helps the network dynamically refine feature propagation during up-
sampling. This selective filtering ensures that only the most contextually 
relevant activations are forwarded, thereby improving text-block 
delineation, especially in cluttered prescriptions. Additionally, the 
inclusion of a 32-channel projection layer in the encoder promotes better 
spatial granularity during early-stage feature extraction. As observed in 
Section 4, this architectural refinement leads to notable gains in both 
Dice coefficient and IoU across all validation folds.

Block-wise segmentation is particularly critical in the context 
of handwritten medical prescriptions, where structured layout often 
encodes implicit semantics—such as medication type, medication 
names, dosages, and intake frequency. Unlike sentence-based OCR, 
prescription parsing necessitates reliable detection of spatial groupings 
to avoid incorrect interpretations or skipped annotations. Therefore, 
block-level segmentation serves as a vital preprocessing stage for 
downstream tasks such as named-entity recognition, dosage parsing, 
and automated e-prescription generation.

The PrescNet demonstrates strong generalization across multiple 
data split variants (90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 
20:80, and 10:90) and 10-fold cross-validation settings. Minimal 
variance in validation IoU, Dice scores, and precision metrics indicates 
that the model does not overfit to any specific writing style or layout 
template. Such robustness is critical for real-world deployment, where 
unseen prescriptions can vary widely in format and clarity.

Despite its strengths, the model exhibits limitations under 
certain pathological conditions. Handwritten scripts with uncommon 
flourishes, tight line spacing, or dense overlapping strokes can degrade 
prediction quality. As illustrated in Figures 5 and 6, these anomalies 
lead to either under-segmentation or misclassification at boundary 
regions. Additionally, rare writing patterns such as extremely slanted 
text or hybrid cursive–print styles challenge the model’s learned priors 
and require further tuning or augmentation.

Future work aims to address these limitations by incorporating 
multi-view ensemble techniques and temporal learning for layout 
prediction consistency. Integration of unsupervised spatial priors and 
reinforcement-driven segmentation policies is also under consideration 
to enhance performance in visually ambiguous scenarios. Overall, the 
PrescNet provides a robust, interpretable, and extensible foundation for 
handwritten medical document analysis in real-world settings.

6. Conclusion
The study outlines an innovative deep learning architecture 

for the robust segmentation of handwritten medical prescriptions 
at the block level instead of segmentation at line level to preserve 
the association between the treatment regimen (medicine and its 
components). By embedding attention gates into the classical U-Net 
framework and introducing a shallow 32-channel projection layer, 
the proposed model effectively captures spatial and contextual 
dependencies inherent in complex handwritten inputs. Extensive 
experiments conducted on a custom-curated dataset of prescription 
images as no dataset of prescriptions are publicly available, 
demonstrate that the architecture not only enhances segmentation of 
IoU and Dice score but also achieves superior generalization across 
various data splits and cross-validation settings. The integration of 
spatial and channel-wise attention mechanisms enables the network to 
emphasize semantically relevant regions while minimizing background 
noise and stroke-level interference—key challenges in prescription 
interpretation. Comparative analysis with sophisticated models such 
as CNN, FCN, Mask R-CNN, UFCN, U-Net, AdaptU-Net, GAN, and 
variants of U-Net further underscores the architectural efficacy of the 
proposed design. Beyond empirical performance, this work emphasizes 
the necessity of block-wise segmentation as a foundational step in 
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 Figure 5
Prediction for a vertically aligned, sparse prescription layout 

(sample 1)

Figure 6
Prediction for a cluttered prescription (sample 2)
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automated medical document analysis. The accurate delineation of 
textual blocks plays a pivotal role in supporting downstream tasks 
such as drug name recognition, dosage interpretation, and compliance 
verification in healthcare settings. However, the study also identifies 
limitations arising from rare handwriting styles, occluded strokes, and 
severe inter-line overlaps, which can affect segmentation granularity. 
Future research will aim to address these challenges through more 
sophisticated augmentation pipelines, hybrid architectures incorporating 
transformer modules, and unsupervised pretraining on large-scale 
medical corpora. In conclusion, the proposed PrescNet advances the 
state-of-the-art in handwritten prescription block-level segmentation 
and facilitates a scalable and interpretable foundation for intelligent 
document understanding in medical informatics.
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