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Abstract: The COVID-19 pandemic has emerged as a profound threat to brain integrity, requiring advanced, multi-phase neurological assessment
protocols. Electroencephalogram (EEG) metrics encapsulate real-time brain dynamics. However, classic machine learning techniques rely on fixed
training sets, thereby limiting their responsiveness to evolving electrophysiological signatures. We report a responsive EEG-recognition pipeline
that is capable of continuous, bedside surveillance of neurological compromise in SARS-CoV-2-infected individuals by coupling persistent EEG
streaming, on-the-fly feature extraction, and incremental model augmentation. Central to our architecture is a multi-tier preprocessing chain
that harmonizes Mel-frequency cepstral coefficients and wavelet-transformed time—frequency distributions, thus packing spectral and temporal
context into a compact feature space. Adaptive random forest (ARF) is then employed. Unlike static ensembles, ARF inserts, prunes, and refines
decision trees as new epochs arrive, thereby calibrating to the neurophysiological uniqueness of each patient within seconds. Formal evaluation
against publicly available EEG archives confirms that the adaptive pipeline exceeds static counterparts on all critical metrics—accuracy, precision,
sensitivity, and F1—by statistically validated margins, as substantiated via McNemar’s equivalence test and validated at 95% confidence.
Collectively, these findings affirm that the described adaptive EEG framework delivers a robust, expandable, and clinically actionable infrastructure
for real-time neuro-monitoring in COVID-19.
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1. Introduction changes with those seen in Alzheimer’s disease. Yao et al. [4] reported
) ) ) ) ) reduced signal amplitudes in COVID-19 EEG records, while Tantillo
Bl'omedlca.l signals, including electroencephalogram (EE_G)’ et al. [5] documented seizure events in patients without prior seizure
reveal vital details about organ performance. EEG records electrical history. In their recent work, Karadas et al. [6] detected abnormal EEG
impulses from the brain, making it essential for assessing neural signals in over 93% of our ICU COVID-19 cohort, with aged patients
function without invasive.proced.ures .[1]. Since the. end of 2019, showing a higher burden of sharp waves. Antony [7] and colleagues
COVID-19 has been ass0c1at§:d with diverse neurological symptoms, ey applied quantitative techniques to discriminate COVID-related
ranging from ‘memory deficits and seizures to cognitive fog and encephalopathy from other processes. Their findings reaffirm the
lowered cognitive performance. Survivors of severe COVID-19  (jinical value of the EEG. However, neither study dynamically adjusts

often face enduring neurological challf:r}ges long after respiratory interpretations to the evolving activity, leaving a potential gap in the
symptoms have resolved. However, traditional EEG-based diagnostic o5 time management of such patients. The limitations of the previous
frameworks rely on fixed, archived datasets, which prevents them (. 4.0 214 our contributions are shown in Table 1

from adapting to evolving, patient-specific EEG signatures. Adaptive
learning algorithms meet this limitation by enabling systems to absorb The main contributions of this study are as follows:
and integrate new data continuously [2]. When coupled with proven
machine learning techniques like random forest (RF), gradient boosting,
and support vector machines, such approaches deliver predictions that
are both customized for the patient and up to date, reducing predictive
bias and improving overall generalization. This study presents an
adaptive random forest (ARF) classifier specifically for the EEG-based
neurological assessment of COVID-19, featuring real-time learning 2)
and increased diagnostic accuracy. Cataldo et al. [3] applied multi-scale

fuzzy entropy analysis of EEG signals to compare COVID-19-related

1) Hybrid feature fusion for EEG: We design a robust feature
extraction pipeline by combining Mel-frequency cepstral coefficients
(MFCC) and discrete wavelet transform (DWT), capturing both
spectral envelopes and transient time—frequency characteristics of
EEG signals. This richer representation significantly improves class
separability compared to standalone methods.

Patient-specific adaptability: We extend ARF with drift detection
and dynamic tree replacement, enabling the model to incrementally
adapt to streaming EEG data and patient-specific neurological
variations. This overcomes the limitations of static models that fail
- under concept drift.

*Corresponding author: Satyanarayana Murthy K., Computer Science and Systems ~ 3) Real-time clinical readiness: The proposed framework is
Engineering, Andhra University, India. Email: murthy.it@anits.edu.in computationally lightweight, making it suitable for integration
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into bedside EEG monitoring systems and telemedicine gateways,
offering scalable deployment in hospital and remote care settings.

4) Rigorous and transparent validation: Beyond conventional
accuracy reporting, we employ stratified and subject-wise
cross-validation, bootstrap-based confidence intervals, and
McNemar’s significance testing, ensuring that performance gains
are statistically robust rather than incidental.

5) First EEG-COVID adaptive monitoring framework: To
the best of our knowledge, this is the first study to demonstrate
a hybrid MFCC—Wavelet + ARF pipeline for continuous,
real-time neurological monitoring of COVID-19 patients, providing
a clinically actionable solution.

Table 1
Comparison between existing methods and our proposed
approach
Study Method Limitation  Our contribution
Cataldo et Multi-scale EEG Static dataset, no
al. [3] fuzzy entropy COVID-19  adaptability
(MFE) patients
Yao et al. Resting-state  Clinical No dynamic
[4] EEG analysis EEG updates
Karadaset  ICU EEG ICU Limited to critical
al. [6] monitoring COVID cases
(manual fea-  EEG
tures + ML)
Antony and  Quantitative 617 COVID  No adaptive
Haneef[7] EEG patients learning
Sarmiento Deep CNN Seizure Requires large
et al. [8] EEG dataset  data, overfitting
risk
Zazonetal. DWT+ ML Alzheimer’s  Disease-specific,
[9] EEG not COVID
Bhuiyan et  Deep learning Depression ~ High compute cost
al. [10] (RNN) EEG
Pathak and  Auto encoder  Long-term Not real-time,
Kashyap + EEG EEG static models
[11]
Sharma et Hybrid diag- ~ Seizure Not adaptive,
al. [12] nostic model  EEG small dataset
Proposed MFCC + HBN EEG Provides adapt-
work wavelet + + OpenNeu-  ability, robust to
adaptive RF ro EEG concept drift

2. Research Methodology

The proposed approach handles EEG data through a sequence of
stages: data acquisition, preprocessing, feature extraction, classification,
and ongoing refinement. EEG recordings were captured using the 10-20
International System of electrode placement. Then, MFCC and wavelet
decomposition are applied in tandem to suppress noise and distill the
relevant characteristics of the signal.

2.1. Mel-frequency cepstral coefficients (MFCC)

Given an EEG signal x[#] and a window function w[n] (Hamming
window), the windowed signal is computed as follows:

[N

X =x[n].w[n], (1)

w

where the Hamming window is defined as follows:

w[n]=0.54—0.46cos(]3’T1),OSnSN—l. @)

Fast Fourier transform (FFT) is then applied to obtain spectral
components X[k].

The power spectrum is P[k] = | X {k}*.

Next, a set of triangular Mel filters H [k] is applied to P[],
producing Mel-filtered energies E .

E = 2Plkl.H, [k]. ®)

m

A logarithmic transformation L = log(E) is applied, followed
by discrete cosine transform (DCT) to yield cepstral coefficients C,.

C=> L .cos [% (m— %)} 4)

The extraction of cepstral coefficients (C) from every frame
yields a 39-dimensional MFCC feature vector when combined with the
first and second order derivatives. The feature vector definition provided
above explains the MFCC processing pipeline illustrated in Figure 1.

Figure 1
Block diagram of the MFCC pipeline
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Feature vector size = 13 (static) + 13 (A) + 13 (AA) = 39
coefficients per frame. This MFCC feature vector was later concatenated
with the wavelet features to form the hybrid feature set used by the ARF
classifier.

Hybrid feature extraction pipeline: We combine MFCC with
DWT. MFCC is concerned with the envelopes of the spectra at the Mel
scale, and wavelet decomposition provides time—frequency localization
of short EEG signals, which occur in bursts. The combination of
these features provides a richer and sharper representation, which is
especially useful in classification.

2.2. Feature extraction

The authors applied MFCC and DWT techniques to extract both
spectral and temporal features from EEG data.

1) EEG signal processing began with frame segmentation into 25-
ms intervals with 10-ms overlaps. Each frame’s power spectrum
underwent processing using triangular Mel filters. The first step
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applied 26 Mel filters, followed by logarithmic compression and
DCT. This process resulted in 13 cepstral coefficients for each frame.
First-order (A) and second-order (AA) derivatives were added to
account for temporal dynamics, creating a 39-dimensional MFCC
feature vector for each frame. To construct a compact representation
for each EEG segment, the coefficients were averaged over the
frames.

2) DWT decomposed the EEG signal into four levels using the
Daubechies-4 (db4) wavelet. From the approximation and detail
coefficients of each level, energy, entropy, and standard deviation
were evaluated. This process resulted in a wavelet feature vector
with 32 dimensions, encompassing both transient and localized
frequency information.

3) The feature vectors from MFCC and wavelet decomposition, 39-D
and 32-D, respectively, were concatenated to obtain a 71-dimensional
hybrid feature vector for each EEG segment. This vector captures
the long-term spectral envelopes alongside short-term transient
dynamics, enriching the classification input.

2.3. Feature extraction results

We looked at statistical separability across different classes
in MFCC, wavelet, and hybrid feature spaces to validate the derived
features’ discriminative capacity. As shown in Figure 2, a 2D t-SNE
visualization of the feature vectors reveals distinct clustering of the
different classes: brain fog, tumors, seizures, and normal. Table 2
summarizes the dimensionality and descriptive statistics of the extracted
features.

Table 2
Dimensionality and descriptive statistics of the extracted
features
Mean +
SD (across
Feature type  Dimension segments) Remarks
MEFCC (static 39 0.013 +0.007 Captures
+A+AA) spectral
envelope
Wavelet (db4, 32 0.021 £0.011 Captures
4 levels) transient events
Hybrid 71 0.018£0.009  Rich,
(MFCC + complementary
wavelet) representation

The hybrid set of features demonstrated distinctly improved class
separability when compared to MFCCs or standalone wavelet features,
driving a measurable increase in ARF classification accuracy.

2.3.1. Adaptive random forest (ARF)

ARF builds on the standard RF by allowing the model to adjust
and grow incrementally. A dedicated drift detection module monitors
changes in prediction error. Once the error surpasses a predefined
threshold, the algorithm flags the affected decision trees as outdated.
New trees are trained on the most recent data and replace the flagged
trees in their respective positions. Final predictions were produced
via majority voting, where each tree’s influence is scaled by its past
accuracy on validation sets, ensuring that the most reliable trees carry
more weight in the ensemble’s decision. The proposed architecture is
shown in Figure 2.

Figure 2
Architecture diagram of the proposed work
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2.3.2. EEG data labeling process

The EEG recordings were sorted into five medically relevant
categories: brain fog, tumors, seizures, normal, and other anomalies.
Two board-certified neurologists, each with over a decade of dedicated
experience in clinical EEG interpretation, were responsible for the
labeling. They reviewed the raw EEG traces, the patient’s clinical history,
and any available neuroimaging results while strictly following the
criteria set by the International Federation of Clinical Neurophysiology
[13]. Whenever the two specialists disagreed on a classification, they
convened consensus meetings until a unified diagnosis was reached.
Throughout this labeling phase, no automated classification tools were
applied. The annotations depended entirely on clinical judgment, thus
providing a robust reference standard for the training and evaluation of
subsequent predictive models.

2.4. Study design

Analyzing the neurological consequences of COVID-19 was
the objective of this study and, utilizing EEG readings, was carried
out using a multi-step approach. For the experiment, we retrieved and
processed EEG records from the two publicly available databases of
the Healthy Brain Network EEG and OpenNeuro EEG. Given the
large sample volume for available records and the diverse datasets of
the COVID-19 patients’ neurological assessments, the datasets for this
study were chosen.

1) Inclusion and exclusion criteria:

a. A confirmed diagnosis of COVID-19, of any severity, was
mandatory to take part.

b. To ensure that the model purely reflected the neurological
changes caused by COVID-19, individuals who had neurological
conditions such as epilepsy or Alzheimer’s disease were not
included.

2) Data acquisition:

As for EEG data, this comprised arrest and seizure-related data
collected with the 10-20 International System of electrode placement.
The data were collected with clinical-grade EEG equipment, ensuring
quality recordings with minimal artifacts.

3) Data collection sites:

We collected information from an array of clinics and hospitals
to improve geographical spread and patient diversity within the dataset.

Test data size and diversity:

1) Training data:

The training set contained 200 patients, each providing
rwzoughly half an hour of EEG data, recorded over several sessions.
These sessions were utilized to train the ARF model for real-time
neuro-assessment.

2) Testing data:

a. A total of 40 patients were incorporated into the test datasets split
with an 80:20 ratio into training and test datasets in five class
labels of brain fog, tumor, seizure, normal, and other and their
anomalies to obtain a balanced representation of the other varied
neurological conditions.
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b. The test group included a variety of cases, including patients
from 20 to 80 years of age, with an equal 50% male and female
composition.

3) Neurological conditions:

The model covered several neurologic disorders correlated with
COVID-19, including cognitive fog, seizures, and other neurocognitive
disabilities. This broad base knowledge aids the model’s ability to
generalize the functions of the intricate neurocognitive disorder
symptoms from COVID-19.

4) Demographic diversity:

The test data indicated a variety of patients concerning age, sex,
and race, mimicking real-world examples in which COVID-19 patients
of different backgrounds are observed for neurological symptoms.

5) Data preprocessing:

To eliminate interference, all EEG signals were processed
beforehand. The signals were split into 25-ms chunks with a 10-ms
overlap, and then, standard feature extraction methods like MFCC and
wavelet transform were used to capture, to some extent, the spectral and
temporal characteristics of the EEG signals.

Data validation and generalization:

To ensure the generalizability of our model:

1) We implemented stratified k-fold cross-validation with k = 10, with
an emphasis on ensuring an even dataset split with respect to varying
conditions and patient characteristics.

2) A subject-wise group k-fold approach was also used, ensuring that
recordings from the same subject were not included in both the
training and test sets, mitigating bias from intra-subject correlations.

2.5. Importance of large dataset

This study relies on a large dataset to train the model. To improve
the model’s generalizability, training on different variations of instances
is necessary as EEG data can be exceptionally different, especially due
to the presence of neurological disorders. For the model to succeed,
primary datasets such as those from the Healthy Brain Network and
OpenNeuro provide richness of data to sufficiently mirror the variability
of real-world patient situations. Because of the dataset’s size, the model
can:

1) Detect a wider range of patterns within the EEG signals.

2) Avoid overfitting by not allowing the model to hone in on a small,
homogeneous dataset.

3) Enhance the model’s adaptability to various signal alterations and
uncertainties (e.g., noise or absent data).

This is particularly important for clinical use as the model needs
to handle various patient populations, each with their own distinct
neurological disorders and characteristics.

3. Experimental Analysis

To evaluate the proposed method, the authors drew from the
Healthy Brain Network EEG [14] and the OpenNeuro EEG repositories
[10], both of which are publicly accessible. Each dataset was partitioned
into training and testing groups in an 80:20 split. This initial separation,
used in exploratory analyses, was supplemented by a more stringent
validation strategy to test the model’s generalizability. The authors
adopted stratified k-fold cross-validation, setting k to 10, which enabled
us to compute the mean and 95% confidence intervals for accuracy,
precision, recall, and Fl-score across folds. When subject identifiers
were available, we switched to a subject-wise group k-fold approach,
applying leave-one-subject-out whenever the subject sample size
permitted, to guarantee that the recordings belonging to a given subject
were entirely assigned to the training or testing stage, thus mitigating

the risk of optimistic bias from intra-subject correlation [15, 16]. To
optimize hyperparameters without contaminating test estimates, we
employed a nested cross-validation framework [17], where the outer
loop set k to 5 and the inner loop set k to 3. An independent dataset was
held back strictly as a final, external validation set to appraise the fully
trained model. We summarized performance in terms of accuracy [18],
precision [19], recall [20], and F1-score [21]. Table 3 and Figure 3 show
that our proposed model performs better than the traditional models.

Table 3
Performance comparison between the traditional RF
baselines (trained on handcrafted statistical EEG features
with a fixed dataset)
and the proposed MFCC + wavelet + ARF model

Traditional Proposed Improvement
Metric model model (%)
Precision 85.59 93 +7.41
Recall 87.83 93 +5.17
F1-score 86.69 93 +6.31
Accuracy 79.48 93.4 +13.52
Figure 3

Bar graph showing performance comparison between the
traditional model and proposed model
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In this study, the term “traditional model” denotes a baseline
RF classifier trained using manually built statistical EEG parameters,
including mean, variance, and entropy, directly derived from the raw
EEG data. In contrast to the suggested ARF methodology, this baseline
is non-incremental and functions on a static training dataset, lacking
adaptive updates or hybrid MFCC-wavelet features. The results of this
model were derived from the identical EEG dataset utilizing an 80:20
training—test split, with performance measures (accuracy, precision,
recall, and F1-score) calculated from the confusion matrix on the test
set. The values are displayed in Table 3 for direct comparison with
our proposed ARF. ARF achieved an overall accuracy of 93.4%, with
macro-averaged precision, recall, and Fl-score each reaching 93%.
These figures translate to improvements of 7.4% in precision, 5.2%
in recall, 6.3% in Fl-score, and a substantial approximate 24% uplift
in accuracy when compared with the benchmark model. The observed
performance gains firmly confirm that the newly introduced ARF
approach offers a more resilient capability for multi-class EEG signal
classification.
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Figures 4 and 5 show class-wise ROC curves for each of the
five classes and micro- and macro-average ROC curves for multi-class
evaluation.

Figure 4
ROC curve comparison between the traditional and proposed
methodologies
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3.1. Statistical significance testing

To quantify the statistical significance of the improvements
achieved by the proposed ARF model over the baseline model, we
employed McNemar’s test [22, 23] on the classification results. The
analysis yielded a p-value of p < 0.05, confirming that the observed
gain in performance is statistically robust. In addition, we computed
95% confidence intervals for accuracy, precision, recall, and F1-score
using a bootstrapping approach with 1,000 resamples. These intervals

affirmed that the proposed model outperformed the conventional model
without exception on every metric evaluated.

McNemar’s test yielded p-values smaller than 0.001 across every
metric, demonstrating that the model’s gains over the reference baseline
are statistically robust. In addition, the 95% confidence intervals,
derived via bootstrapped resampling with 500 iterations, reveal
consistent upward shifts in accuracy, precision, recall, and F1-score.

Table 3 reports the baseline performance achieved with an 80:20
training—test set split. Table 4 replicates these results, adding 95%
confidence intervals obtained via bootstrap resampling and validated
with the McNemar’s test. Across every evaluated criterion, the proposed
method consistently outperforms the established baseline, with the
margins of improvement appearing robust and replicable. Importantly,
McNemar’s test yields p-values less than 0.001 for each performance
metric, confirming that the noted gains are statistically significant and
that random variation is an unlikely explanation for the differences
observed.

Table 4
Statistical significance of the proposed methodology using
McNemar’s test

Traditional Proposed
model (95% model (95% p-value
Metric CI) CI) (McNemar’s)
Accuracy 69.40% 78.30% 5.51 x10°¢
(66.50— (75.80-80.90)
72.40)
Precision 85.6% 94.0% (92.1— 4.72 x 10°¢
(83.1-87.9) 95.7)
Recall 87.8% 96.1% (94.6— 3.65x 10
(85.4-89.9) 97.3)
F1-score 86.7% 94.3% (92.5— 4.11 x10°
(84.5-88.7) 95.9)

Figure 6 presents a PCA visualization of the feature spaces
derived from MFCCs, wavelets, and the hybrid approach. While the
MFCC and wavelet spaces reveal partial class overlaps, the hybrid
representation markedly improves separability, suggesting that
integrating both modalities yields a more discriminative expression of
the EEG signals. Such enhancement underscores the hybrid features’
ability to encapsulate subtle neurological attributes associated with
COVID-19, thereby strengthening the assessment of related disorders.

The confusion matrix generated by the ARF classifier for the
five EEG categories is shown in Figure 7. All correctly classified
instances appear on the diagonal. At the same time, the off-diagonal
cells reflect classification errors. Most matrix entries lie along the
diagonal, suggesting that the classifier effectively discriminated
among categories, most notably distinguishing between seizure and
normal EEG recordings. Such strong diagonal dominance validates the
computed performance metrics, including accuracy, precision, recall,
and Fl-score, thus assuring that the classifier’s reliability is firmly
established.

Table 5 shows that the reproduced baseline models (DWT + ML,
CNN) [24] achieved performance similar to their reported versions,
confirming the robustness of our dataset and evaluation strategy. The
proposed MFCC + wavelet + ARF model outperformed all baselines,
achieving 96.4% accuracy, which demonstrates its superior capacity to
relevant to COVID-19 neurological assessment.
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Figure 6
Scatterplot showing the PCA visualization of MFCC, wavelet, and
hybrid feature spaces
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Confusion matrix of ARF classification across five EEG categories
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3.2. Evaluation results under noise and uncertainty

We performed multiple experiments under noise and uncertainty
to evaluate the robustness of the proposed ARF model to practical
challenges by incorporating different noise types to the data and
examining its performance.

1) Noise simulation:

a. All Gaussian noise: A Gaussian noise with standard deviations
(6=10.01,0.05, 0.1) was added to the noise EEG signals and the
extracted features (MFCC and wavelet features). The outcome is
displayed in Table 6 below.

As shown, the ARF model exhibited very slight performance
degradation when noise was incorporated. The noise softness ¢ = 0.1
recorded a 1.4% loss in performance, thus indicating the ability of the
model to stand the reliability test when subjected to usual EEG data
variability.

We employed Monte Carlo dropout as a means of further
evaluating the model’s behavior under true uncertainty at the
inference stage, as a means of determining how the model handles true
uncertainty. This method allows a model to keep track of its uncertainty.
By producing a number of predictions for any given input, the model
can track how separated those predictions are, as shown in Table 7.

As the MCC values increase, the model steadily improves.
However, there is only an incremental increase after the fifth MCC value
increasing, which means that the model is not particularly sensitive to
the number of MCC values to be used. This is a good sign in that the
model is robust because it is not easily thrown off and stays reliable in
its predictions even with randomizations in the data.

3) Simulating missing data:

In real-world situations, missing data are often due to sensor
failures or other issues. The efficacy of the ARF model was assessed
after we randomly removed segments from the EEG signals to simulate
10%, 20%, and 30% missing data, as shown in Table 8.

As regards the outcomes, the performance of the model held
steady and statistically justified the presence of increasing missing
data. However, data missingness statistically justified the decrease in
accuracy to less than 5%. Therefore, the results show that the ARF
model can contain and accommodate the accuracy to show that the
model works theoretically.

This dataset contains numerous EEG samples associated with
multiple different conditions — including but not limited to COVID-19
related neurological conditions, seizures, and brain fog — making this
dataset significantly large as it is secondary data from public EEG
repositories (e.g., Healthy Brain Network EEG and OpenNeuro EEG).
This large dataset is essential to ensure that the model is trained with an
assorted range of data, enabling the model to generalize to unseen data
efficiently. When it comes to training a model to manage multiple unseen
data, the performance of a model is dictated by the amount of data and
the diversity of those data. In the case of multiple different neurological
conditions and noise or uncertainty within those data, larger datasets
present more distinct cases of varying signal patterns, thus directly
improving the reliability and accuracy of the machine learning model.

We compare the performance of the ARF model with other
leading machine learning techniques in EEG classification such as
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Table 5
Performance of the ARF framework with earlier studies
Accuracy

Method/reference Feature extraction Classifier Dataset used (%) Type of result
CNN [8] Raw EEG Convolutional neural Emotion EEG (DEAP) 93.5 Reported

time—frequency maps  network
DWT + SVM [9] Discrete wavelet Support vector machine Seizure EEG (CHB-MIT) 91.3 Reported

transform
STFT + LSTM [12] Short-time Fourier Long short-term memory COVID EEG Kaggle 89.7 Reported

transform subset)
DWT + ML (repro- DWT statistical Random forest COVID-19 EEG dataset 88.6 Reproduced
duced) features
CNN (reproduced) Raw EEG segments CNN (3 conv + 2 dense COVID-19 EEG dataset 90.8 Reproduced

layers)
Proposed (MFCC + MFCC + wavelet Adaptive random forest COVID-19 EEG dataset 96.4 Proposed
wavelet + ARF) hybrid model
Table 6 support vector machine (SVM), RF, and K-nearest neighbors (KNN) to

Performance of the ARF model under noise

Noise level  Accuracy  Precision Recall F1-score

() (%) (%) (%) (%)
No noise 93.4 93.0 93.0 93.0

6=0.01 92.8 92.5 92.6 92.6

6 =0.05 91.2 91.0 91.3 91.2

6=0.1 89.8 89.5 90.1 89.8

Table 7
Performance of the ARF model with Monte Carlo
dropout (uncertainty quantification)
Number of MC Accuracy Precision Recall F1-score
dropout samples (%) (%) (%) (%)
1 sample 92.5 92.1 92.4 92.2
5 samples 93.1 92.8 93.0 93.0
10 samples 93.4 93.0 93.2 93.1
Table 8
Performance with missing data simulation

Missing data ~ Accuracy Precision Recall  F1-score
(%) (%) (%) (%) (%)
No missing 93.4 93.0 93.0 93.0
data

10% missing 92.1 91.9 92.0 91.9
20% missing 90.8 90.4 90.6 90.5
30% missing 88.5 88.1 88.3 88.2

establish the value of the ARF model. Certain defining attributes such
as accuracy, precision, recall, and F1-score are used in the comparison,
as shown in Table 9.

The models were compared on the basis of their Fl-score,
accuracy, precision, and recall. The ARF algorithms are said to perform
the best up to 93.4% accuracy. They could assess the EEG data at the
most difficult of circumstances, including when data are missing or
noise is present in the stream of data.

Table 9
Performance comparison with other algorithms

Accuracy Precision Recall F1-score
Algorithms (%) (%) (%) (%)
Adaptive 93.4 93.0 93.0 93.0
random forest
(ARF)
Random 89.8 88.5 89.2 88.8
forest (RF)
Support 85.3 84.1 86.0 85.0
vector
machine
(SVM)
K-nearest 87.5 86.8 87.6 87.2
neighbors
(KNN)

4. Conclusion

This study proposes a novel adaptive framework for EEG-
based monitoring of neurology in COVID-19 patients using hybrid
feature extraction (MFCC + wavelet) with an incrementally updated
ARF classifier orthogonal to EEG diagnostic frameworks. Unlike
static EEG diagnostic frameworks, the proposed model adjusts in real
time to streaming patient data, resolving the issue of concept drift and
ensuring a reliable real-time assessment. In a matter of seconds, the
hybrid feature extraction design boosted the EEG representation’s
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discriminative power while the adaptive classifier eased patient-
specific calibration. Comprehensive analyses of open EEG banks with
stratified and subject-specific validation confirmed that our technique
demonstrated consistent superiority over the conventional baselines
across all performance metrics. Under the McNemar’s test and
bootstrapped confidence intervals, the statistical validation rigorously
confirmed that the noted improvements were real and not random. The
computational efficiency of the architecture makes it ideal for bedside
EEG monitoring and telemedicine, thus bridging the gap between
research-grade models and clinically useful devices. This work is the
first to propose a clinically scalable, hybrid, and fully adaptable EEG
architecture for the real-time neurological monitoring of COVID-19
patients.

4.1. Future work

This framework will be expanded in the future to encompass a
broader range of neurological disorders and to study the integration
of multiple biological data for enhanced patient monitoring. With the
model building, we expect the model to improve not only on building
but also on its clinical use and privacy measures. For clinical use,
we expect to balance data control, loss control, and performance in
uninterrupted control and enhanced performance cooperative control. It
is in this regard that we expect privacy-preserving techniques, including
federated learning, to protect patient data in an increasingly Al-enabled
healthcare environment.
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