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Abstract: The COVID-19 pandemic has emerged as a profound threat to brain integrity, requiring advanced, multi-phase neurological assessment 
protocols. Electroencephalogram (EEG) metrics encapsulate real-time brain dynamics. However, classic machine learning techniques rely on fixed 
training sets, thereby limiting their responsiveness to evolving electrophysiological signatures. We report a responsive EEG-recognition pipeline 
that is capable of continuous, bedside surveillance of neurological compromise in SARS-CoV-2-infected individuals by coupling persistent EEG 
streaming, on-the-fly feature extraction, and incremental model augmentation. Central to our architecture is a multi-tier preprocessing chain 
that harmonizes Mel-frequency cepstral coefficients and wavelet-transformed time–frequency distributions, thus packing spectral and temporal 
context into a compact feature space. Adaptive random forest (ARF) is then employed. Unlike static ensembles, ARF inserts, prunes, and refines 
decision trees as new epochs arrive, thereby calibrating to the neurophysiological uniqueness of each patient within seconds. Formal evaluation 
against publicly available EEG archives confirms that the adaptive pipeline exceeds static counterparts on all critical metrics—accuracy, precision, 
sensitivity, and F1—by statistically validated margins, as substantiated via McNemar’s equivalence test and validated at 95% confidence. 
Collectively, these findings affirm that the described adaptive EEG framework delivers a robust, expandable, and clinically actionable infrastructure 
for real-time neuro-monitoring in COVID-19.
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1. Introduction
Biomedical signals, including electroencephalogram (EEG), 

reveal vital details about organ performance. EEG records electrical 
impulses from the brain, making it essential for assessing neural 
function without invasive procedures [1]. Since the end of 2019, 
COVID-19 has been associated with diverse neurological symptoms, 
ranging from memory deficits and seizures to cognitive fog and 
lowered cognitive performance. Survivors of severe COVID-19 
often face enduring neurological challenges long after respiratory 
symptoms have resolved. However, traditional EEG-based diagnostic 
frameworks rely on fixed, archived datasets, which prevents them 
from adapting to evolving, patient-specific EEG signatures. Adaptive 
learning algorithms meet this limitation by enabling systems to absorb 
and integrate new data continuously [2]. When coupled with proven 
machine learning techniques like random forest (RF), gradient boosting, 
and support vector machines, such approaches deliver predictions that 
are both customized for the patient and up to date, reducing predictive 
bias and improving overall generalization. This study presents an 
adaptive random forest (ARF) classifier specifically for the EEG-based 
neurological assessment of COVID-19, featuring real-time learning 
and increased diagnostic accuracy. Cataldo et al. [3] applied multi-scale 
fuzzy entropy analysis of EEG signals to compare COVID-19-related 

changes with those seen in Alzheimer’s disease. Yao et al. [4] reported 
reduced signal amplitudes in COVID-19 EEG records, while Tantillo 
et al. [5] documented seizure events in patients without prior seizure 
history. In their recent work, Karadas et al. [6] detected abnormal EEG 
signals in over 93% of our ICU COVID-19 cohort, with aged patients 
showing a higher burden of sharp waves. Antony [7] and colleagues 
then applied quantitative techniques to discriminate COVID-related 
encephalopathy from other processes. Their findings reaffirm the 
clinical value of the EEG. However, neither study dynamically adjusts 
its interpretations to the evolving activity, leaving a potential gap in the 
real-time management of such patients. The limitations of the previous 
studies and our contributions are shown in Table 1.

The main contributions of this study are as follows:

1)  Hybrid feature fusion for EEG: We design a robust feature 
extraction pipeline by combining Mel-frequency cepstral coefficients 
(MFCC) and discrete wavelet transform (DWT), capturing both 
spectral envelopes and transient time–frequency characteristics of 
EEG signals. This richer representation significantly improves class 
separability compared to standalone methods.

2)  Patient-specific adaptability: We extend ARF with drift detection 
and dynamic tree replacement, enabling the model to incrementally 
adapt to streaming EEG data and patient-specific neurological 
variations. This overcomes the limitations of static models that fail 
under concept drift.

3)  Real-time clinical readiness: The proposed framework is 
computationally lightweight, making it suitable for integration 
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into bedside EEG monitoring systems and telemedicine gateways, 
offering scalable deployment in hospital and remote care settings.

4)  Rigorous and transparent validation: Beyond conventional 
accuracy reporting, we employ stratified and subject-wise 
cross-validation, bootstrap-based confidence intervals, and 
McNemar’s significance testing, ensuring that performance gains 
are statistically robust rather than incidental.

5)  First EEG–COVID adaptive monitoring framework: To 
the best of our knowledge, this is the first study to demonstrate 
a hybrid MFCC–Wavelet + ARF pipeline for continuous, 
real-time neurological monitoring of COVID-19 patients, providing 
a clinically actionable solution.

2. Research Methodology
The proposed approach handles EEG data through a sequence of 

stages: data acquisition, preprocessing, feature extraction, classification, 
and ongoing refinement. EEG recordings were captured using the 10-20 
International System of electrode placement. Then, MFCC and wavelet 
decomposition are applied in tandem to suppress noise and distill the 
relevant characteristics of the signal.

2.1. Mel-frequency cepstral coefficients (MFCC)
Given an EEG signal x[n] and a window function w[n] (Hamming 

window), the windowed signal is computed as follows:

Xw = x[n].w[n],

where the Hamming window is defined as follows:

w[n] = 0.54  0.46 cos π  ,0 ≤ n ≤ N  1.

Fast Fourier transform (FFT) is then applied to obtain spectral 
components X[k].

The power spectrum is P[k] = | X {k}2.
Next, a set of triangular Mel filters Hm[k] is applied to P[k], 

producing Mel-filtered energies Em.

Em = P[k].Hm [k].

A logarithmic transformation Lm = log(Em) is applied, followed 
by discrete cosine transform (DCT) to yield cepstral coefficients Cn.

Cn = ∑m Lm. cos π .

The extraction of cepstral coefficients (Cn) from every frame 
yields a 39-dimensional MFCC feature vector when combined with the 
first and second order derivatives. The feature vector definition provided 
above explains the MFCC processing pipeline illustrated in Figure 1. 

Feature vector size = 13 (static) + 13 (Δ) + 13 (ΔΔ) = 39 
coefficients per frame. This MFCC feature vector was later concatenated 
with the wavelet features to form the hybrid feature set used by the ARF 
classifier.

Hybrid feature extraction pipeline: We combine MFCC with 
DWT. MFCC is concerned with the envelopes of the spectra at the Mel 
scale, and wavelet decomposition provides time–frequency localization 
of short EEG signals, which occur in bursts. The combination of 
these features provides a richer and sharper representation, which is 
especially useful in classification.

2.2. Feature extraction
The authors applied MFCC and DWT techniques to extract both 

spectral and temporal features from EEG data. 

 1)  EEG signal processing began with frame segmentation into 25-
ms intervals with 10-ms overlaps. Each frame’s power spectrum 
underwent processing using triangular Mel filters. The first step 

(1)

(2)

(3)

(4)
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Study Method Limitation Our contribution
Cataldo et 
al. [3]

Multi-scale 
fuzzy entropy 
(MFE)

EEG 
COVID-19 
patients

Static dataset, no 
adaptability

Yao et al. 
[4]

Resting-state 
EEG analysis

Clinical 
EEG

No dynamic 
updates

Karadas et 
al. [6] 

ICU EEG 
monitoring 
(manual fea-
tures + ML)

ICU 
COVID 
EEG

Limited to critical 
cases

Antony and 
Haneef [7]

Quantitative 
EEG

617 COVID 
patients

No adaptive 
learning

Sarmiento 
et al. [8]

Deep CNN Seizure 
EEG dataset

Requires large 
data, overfitting 
risk

Zazon et al. 
[9]

DWT + ML Alzheimer’s 
EEG

Disease-specific, 
not COVID

Bhuiyan et 
al. [10] 

Deep learning 
(RNN)

Depression 
EEG

High compute cost

Pathak and 
Kashyap 
[11] 

Auto encoder 
+ EEG

Long-term 
EEG

Not real-time, 
static models

Sharma et 
al. [12]

Hybrid diag-
nostic model

Seizure 
EEG

Not adaptive, 
small dataset

Proposed 
work 

MFCC + 
wavelet + 
adaptive RF

HBN EEG 
+ OpenNeu-
ro EEG

Provides adapt-
ability, robust to 
concept drift

Table 1
Comparison between existing methods and our proposed 

approach

Figure 1
Block diagram of the MFCC pipeline
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applied 26 Mel filters, followed by logarithmic compression and 
DCT. This process resulted in 13 cepstral coefficients for each frame. 
First-order (Δ) and second-order (ΔΔ) derivatives were added to 
account for temporal dynamics, creating a 39-dimensional MFCC 
feature vector for each frame. To construct a compact representation 
for each EEG segment, the coefficients were averaged over the 
frames. 

2)  DWT decomposed the EEG signal into four levels using the 
Daubechies-4 (db4) wavelet. From the approximation and detail 
coefficients of each level, energy, entropy, and standard deviation 
were evaluated. This process resulted in a wavelet feature vector 
with 32 dimensions, encompassing both transient and localized 
frequency information.

3)  The feature vectors from MFCC and wavelet decomposition, 39-D 
and 32-D, respectively, were concatenated to obtain a 71-dimensional 
hybrid feature vector for each EEG segment. This vector captures 
the long-term spectral envelopes alongside short-term transient 
dynamics, enriching the classification input.

2.3. Feature extraction results
We looked at statistical separability across different classes 

in MFCC, wavelet, and hybrid feature spaces to validate the derived 
features’ discriminative capacity. As shown in Figure 2, a 2D t-SNE 
visualization of the feature vectors reveals distinct clustering of the 
different classes: brain fog, tumors, seizures, and normal. Table 2 
summarizes the dimensionality and descriptive statistics of the extracted 
features.

The hybrid set of features demonstrated distinctly improved class 
separability when compared to MFCCs or standalone wavelet features, 
driving a measurable increase in ARF classification accuracy.

2.3.1. Adaptive random forest (ARF)

ARF builds on the standard RF by allowing the model to adjust 
and grow incrementally. A dedicated drift detection module monitors 
changes in prediction error. Once the error surpasses a predefined 
threshold, the algorithm flags the affected decision trees as outdated. 
New trees are trained on the most recent data and replace the flagged 
trees in their respective positions. Final predictions were produced 
via majority voting, where each tree’s influence is scaled by its past 
accuracy on validation sets, ensuring that the most reliable trees carry 
more weight in the ensemble’s decision. The proposed architecture is 
shown in Figure 2.

2.3.2. EEG data labeling process

The EEG recordings were sorted into five medically relevant 
categories: brain fog, tumors, seizures, normal, and other anomalies. 
Two board-certified neurologists, each with over a decade of dedicated 
experience in clinical EEG interpretation, were responsible for the 
labeling. They reviewed the raw EEG traces, the patient’s clinical history, 
and any available neuroimaging results while strictly following the 
criteria set by the International Federation of Clinical Neurophysiology 
[13]. Whenever the two specialists disagreed on a classification, they 
convened consensus meetings until a unified diagnosis was reached. 
Throughout this labeling phase, no automated classification tools were 
applied. The annotations depended entirely on clinical judgment, thus 
providing a robust reference standard for the training and evaluation of 
subsequent predictive models.

2.4. Study design
Analyzing the neurological consequences of COVID-19 was 

the objective of this study and, utilizing EEG readings, was carried 
out using a multi-step approach. For the experiment, we retrieved and 
processed EEG records from the two publicly available databases of 
the Healthy Brain Network EEG and OpenNeuro EEG. Given the 
large sample volume for available records and the diverse datasets of 
the COVID-19 patients’ neurological assessments, the datasets for this 
study were chosen.

1)  Inclusion and exclusion criteria:
a.  A confirmed diagnosis of COVID-19, of any severity, was 

mandatory to take part.
b.  To ensure that the model purely reflected the neurological 

changes caused by COVID-19, individuals who had neurological 
conditions such as epilepsy or Alzheimer’s disease were not 
included.

2)  Data acquisition:
As for EEG data, this comprised arrest and seizure-related data 

collected with the 10-20 International System of electrode placement. 
The data were collected with clinical-grade EEG equipment, ensuring 
quality recordings with minimal artifacts.
3)  Data collection sites:

We collected information from an array of clinics and hospitals 
to improve geographical spread and patient diversity within the dataset.

Test data size and diversity:
1)  Training data:

The training set contained 200 patients, each providing 
rwzoughly half an hour of EEG data, recorded over several sessions. 
These sessions were utilized to train the ARF model for real-time 
neuro-assessment.
2)  Testing data:

a.  A total of 40 patients were incorporated into the test datasets split 
with an 80:20 ratio into training and test datasets in five class 
labels of brain fog, tumor, seizure, normal, and other and their 
anomalies to obtain a balanced representation of the other varied 
neurological conditions.

3

Feature type Dimension

Mean ± 
SD (across 
segments) Remarks

MFCC (static 
+ Δ + ΔΔ)

39 0.013 ± 0.007 Captures 
spectral 
envelope

Wavelet (db4, 
4 levels)

32 0.021 ± 0.011 Captures 
transient events

Hybrid 
(MFCC + 
wavelet)

71 0.018 ± 0.009 Rich, 
complementary 
representation

Table 2
Dimensionality and descriptive statistics of the extracted

 features

Figure 2
Architecture diagram of the proposed work
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b.  The test group included a variety of cases, including patients 
from 20 to 80 years of age, with an equal 50% male and female 
composition.

3)  Neurological conditions:
The model covered several neurologic disorders correlated with 

COVID-19, including cognitive fog, seizures, and other neurocognitive 
disabilities. This broad base knowledge aids the model’s ability to 
generalize the functions of the intricate neurocognitive disorder 
symptoms from COVID-19.
4)  Demographic diversity:

The test data indicated a variety of patients concerning age, sex, 
and race, mimicking real-world examples in which COVID-19 patients 
of different backgrounds are observed for neurological symptoms.
5)  Data preprocessing:

To eliminate interference, all EEG signals were processed 
beforehand. The signals were split into 25-ms chunks with a 10-ms 
overlap, and then, standard feature extraction methods like MFCC and 
wavelet transform were used to capture, to some extent, the spectral and 
temporal characteristics of the EEG signals.

Data validation and generalization:
To ensure the generalizability of our model:

1)  We implemented stratified k-fold cross-validation with k = 10, with 
an emphasis on ensuring an even dataset split with respect to varying 
conditions and patient characteristics.

2)  A subject-wise group k-fold approach was also used, ensuring that 
recordings from the same subject were not included in both the 
training and test sets, mitigating bias from intra-subject correlations.

2.5. Importance of large dataset
This study relies on a large dataset to train the model. To improve 

the model’s generalizability, training on different variations of instances 
is necessary as EEG data can be exceptionally different, especially due 
to the presence of neurological disorders. For the model to succeed, 
primary datasets such as those from the Healthy Brain Network and 
OpenNeuro provide richness of data to sufficiently mirror the variability 
of real-world patient situations. Because of the dataset’s size, the model 
can:
1)  Detect a wider range of patterns within the EEG signals.
2)  Avoid overfitting by not allowing the model to hone in on a small, 

homogeneous dataset.
3)  Enhance the model’s adaptability to various signal alterations and 

uncertainties (e.g., noise or absent data).

This is particularly important for clinical use as the model needs 
to handle various patient populations, each with their own distinct 
neurological disorders and characteristics.

3. Experimental Analysis
To evaluate the proposed method, the authors drew from the 

Healthy Brain Network EEG [14] and the OpenNeuro EEG repositories 
[10], both of which are publicly accessible. Each dataset was partitioned 
into training and testing groups in an 80:20 split. This initial separation, 
used in exploratory analyses, was supplemented by a more stringent 
validation strategy to test the model’s generalizability. The authors 
adopted stratified k-fold cross-validation, setting k to 10, which enabled 
us to compute the mean and 95% confidence intervals for accuracy, 
precision, recall, and F1-score across folds. When subject identifiers 
were available, we switched to a subject-wise group k-fold approach, 
applying leave-one-subject-out whenever the subject sample size 
permitted, to guarantee that the recordings belonging to a given subject 
were entirely assigned to the training or testing stage, thus mitigating 

the risk of optimistic bias from intra-subject correlation [15, 16]. To 
optimize hyperparameters without contaminating test estimates, we 
employed a nested cross-validation framework [17], where the outer 
loop set k to 5 and the inner loop set k to 3. An independent dataset was 
held back strictly as a final, external validation set to appraise the fully 
trained model. We summarized performance in terms of accuracy [18], 
precision [19], recall [20], and F1-score [21]. Table 3 and Figure 3 show 
that our proposed model performs better than the traditional models.

In this study, the term “traditional model” denotes a baseline 
RF classifier trained using manually built statistical EEG parameters, 
including mean, variance, and entropy, directly derived from the raw 
EEG data. In contrast to the suggested ARF methodology, this baseline 
is non-incremental and functions on a static training dataset, lacking 
adaptive updates or hybrid MFCC-wavelet features. The results of this 
model were derived from the identical EEG dataset utilizing an 80:20 
training–test split, with performance measures (accuracy, precision, 
recall, and F1-score) calculated from the confusion matrix on the test 
set. The values are displayed in Table 3 for direct comparison with 
our proposed ARF. ARF achieved an overall accuracy of 93.4%, with 
macro-averaged precision, recall, and F1-score each reaching 93%. 
These figures translate to improvements of 7.4% in precision, 5.2% 
in recall, 6.3% in F1-score, and a substantial approximate 24% uplift 
in accuracy when compared with the benchmark model. The observed 
performance gains firmly confirm that the newly introduced ARF 
approach offers a more resilient capability for multi-class EEG signal 
classification.
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Metric
Traditional 

model
Proposed 

model
Improvement 

(%)
Precision 85.59 93 +7.41

Recall 87.83 93 +5.17

F1-score 86.69 93 +6.31

Accuracy 79.48 93.4 +13.52

Table 3
Performance comparison between the traditional RF 

baselines (trained on handcrafted statistical EEG features 
with a fixed dataset)

and the proposed MFCC + wavelet + ARF model

Figure 3
Bar graph showing performance comparison between the 

traditional model and proposed model
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Figures 4 and 5 show class-wise ROC curves for each of the 
five classes and micro- and macro-average ROC curves for multi-class 
evaluation.

3.1. Statistical significance testing
To quantify the statistical significance of the improvements 

achieved by the proposed ARF model over the baseline model, we 
employed McNemar’s test [22, 23] on the classification results. The 
analysis yielded a p-value of p < 0.05, confirming that the observed 
gain in performance is statistically robust. In addition, we computed 
95% confidence intervals for accuracy, precision, recall, and F1-score 
using a bootstrapping approach with 1,000 resamples. These intervals 

affirmed that the proposed model outperformed the conventional model 
without exception on every metric evaluated.

McNemar’s test yielded p-values smaller than 0.001 across every 
metric, demonstrating that the model’s gains over the reference baseline 
are statistically robust. In addition, the 95% confidence intervals, 
derived via bootstrapped resampling with 500 iterations, reveal 
consistent upward shifts in accuracy, precision, recall, and F1-score. 

Table 3 reports the baseline performance achieved with an 80:20 
training–test set split. Table 4 replicates these results, adding 95% 
confidence intervals obtained via bootstrap resampling and validated 
with the McNemar’s test. Across every evaluated criterion, the proposed 
method consistently outperforms the established baseline, with the 
margins of improvement appearing robust and replicable. Importantly, 
McNemar’s test yields p-values less than 0.001 for each performance 
metric, confirming that the noted gains are statistically significant and 
that random variation is an unlikely explanation for the differences 
observed.

Figure 6 presents a PCA visualization of the feature spaces 
derived from MFCCs, wavelets, and the hybrid approach. While the 
MFCC and wavelet spaces reveal partial class overlaps, the hybrid 
representation markedly improves separability, suggesting that 
integrating both modalities yields a more discriminative expression of 
the EEG signals. Such enhancement underscores the hybrid features’ 
ability to encapsulate subtle neurological attributes associated with 
COVID-19, thereby strengthening the assessment of related disorders.

The confusion matrix generated by the ARF classifier for the 
five EEG categories is shown in Figure 7. All correctly classified 
instances appear on the diagonal. At the same time, the off-diagonal 
cells reflect classification errors. Most matrix entries lie along the 
diagonal, suggesting that the classifier effectively discriminated 
among categories, most notably distinguishing between seizure and 
normal EEG recordings. Such strong diagonal dominance validates the 
computed performance metrics, including accuracy, precision, recall, 
and F1-score, thus assuring that the classifier’s reliability is firmly 
established.

Table 5 shows that the reproduced baseline models (DWT + ML, 
CNN) [24] achieved performance similar to their reported versions, 
confirming the robustness of our dataset and evaluation strategy. The 
proposed MFCC + wavelet + ARF model outperformed all baselines, 
achieving 96.4% accuracy, which demonstrates its superior capacity to 
relevant to COVID-19 neurological assessment.

5

Metric

Traditional 
model (95% 

CI)

Proposed 
model (95% 

CI)
p-value 

(McNemar’s)
Accuracy 69.40% 

(66.50–
72.40)

78.30% 
(75.80–80.90)

5.51 × 10⁻⁶

Precision 85.6% 
(83.1–87.9)

94.0% (92.1–
95.7)

4.72 × 10⁻⁶

Recall 87.8% 
(85.4–89.9)

96.1% (94.6–
97.3)

3.65 × 10⁻⁶

F1-score 86.7% 
(84.5–88.7)

94.3% (92.5–
95.9)

4.11 × 10⁻⁶

Table 4
Statistical significance of the proposed methodology using 

McNemar’s test

Figure 4
ROC curve comparison between the traditional and proposed 

methodologies

Figure 5
ROC curve for the ECG classification model
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3.2. Evaluation results under noise and uncertainty
We performed multiple experiments under noise and uncertainty 

to evaluate the robustness of the proposed ARF model to practical 
challenges by incorporating different noise types to the data and 
examining its performance.

1)  Noise simulation:
a.  All Gaussian noise: A Gaussian noise with standard deviations 

(σ = 0.01, 0.05, 0.1) was added to the noise EEG signals and the 
extracted features (MFCC and wavelet features). The outcome is 
displayed in Table 6 below.
As shown, the ARF model exhibited very slight performance 

degradation when noise was incorporated. The noise softness σ = 0.1 
recorded a 1.4% loss in performance, thus indicating the ability of the 
model to stand the reliability test when subjected to usual EEG data 
variability.

2)  Uncertainty handling (Monte Carlo dropout):
We employed Monte Carlo dropout as a means of further 

evaluating the model’s behavior under true uncertainty at the 
inference stage, as a means of determining how the model handles true 
uncertainty. This method allows a model to keep track of its uncertainty. 
By producing a number of predictions for any given input, the model 
can track how separated those predictions are, as shown in Table 7.

As the MCC values increase, the model steadily improves. 
However, there is only an incremental increase after the fifth MCC value 
increasing, which means that the model is not particularly sensitive to 
the number of MCC values to be used. This is a good sign in that the 
model is robust because it is not easily thrown off and stays reliable in 
its predictions even with randomizations in the data.
3)  Simulating missing data:

In real-world situations, missing data are often due to sensor 
failures or other issues. The efficacy of the ARF model was assessed 
after we randomly removed segments from the EEG signals to simulate 
10%, 20%, and 30% missing data, as shown in Table 8.

As regards the outcomes, the performance of the model held 
steady and statistically justified the presence of increasing missing 
data. However, data missingness statistically justified the decrease in 
accuracy to less than 5%. Therefore, the results show that the ARF 
model can contain and accommodate the accuracy to show that the 
model works theoretically.

This dataset contains numerous EEG samples associated with 
multiple different conditions – including but not limited to COVID-19 
related neurological conditions, seizures, and brain fog – making this 
dataset significantly large as it is secondary data from public EEG 
repositories (e.g., Healthy Brain Network EEG and OpenNeuro EEG). 
This large dataset is essential to ensure that the model is trained with an 
assorted range of data, enabling the model to generalize to unseen data 
efficiently. When it comes to training a model to manage multiple unseen 
data, the performance of a model is dictated by the amount of data and 
the diversity of those data. In the case of multiple different neurological 
conditions and noise or uncertainty within those data, larger datasets 
present more distinct cases of varying signal patterns, thus directly 
improving the reliability and accuracy of the machine learning model.

We compare the performance of the ARF model with other 
leading machine learning techniques in EEG classification such as 

6

Figure 6
Scatterplot showing the PCA visualization of MFCC, wavelet, and 

hybrid feature spaces

Figure 7
Confusion matrix of ARF classification across five EEG categories
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support vector machine (SVM), RF, and K-nearest neighbors (KNN) to 
establish the value of the ARF model. Certain defining attributes such 
as accuracy, precision, recall, and F1-score are used in the comparison, 
as shown in Table 9.

The models were compared on the basis of their F1-score, 
accuracy, precision, and recall. The ARF algorithms are said to perform 
the best up to 93.4% accuracy. They could assess the EEG data at the 
most difficult of circumstances, including when data are missing or 
noise is present in the stream of data. 

4. Conclusion
This study proposes a novel adaptive framework for EEG-

based monitoring of neurology in COVID-19 patients using hybrid 
feature extraction (MFCC + wavelet) with an incrementally updated 
ARF classifier orthogonal to EEG diagnostic frameworks. Unlike 
static EEG diagnostic frameworks, the proposed model adjusts in real 
time to streaming patient data, resolving the issue of concept drift and 
ensuring a reliable real-time assessment. In a matter of seconds, the 
hybrid feature extraction design boosted the EEG representation’s 

7

Method/reference Feature extraction Classifier Dataset used
Accuracy 

(%) Type of result
CNN [8] Raw EEG 

time–frequency maps
Convolutional neural 
network

Emotion EEG (DEAP) 93.5 Reported

DWT + SVM [9] Discrete wavelet 
transform

Support vector machine Seizure EEG (CHB-MIT) 91.3 Reported

STFT + LSTM [12] Short-time Fourier 
transform

Long short-term memory COVID EEG Kaggle 
subset)

89.7 Reported

DWT + ML (repro-
duced)

DWT statistical 
features

Random forest COVID-19 EEG dataset 88.6 Reproduced

CNN (reproduced) Raw EEG segments CNN (3 conv + 2 dense 
layers)

COVID-19 EEG dataset 90.8 Reproduced

Proposed (MFCC + 
wavelet + ARF)

MFCC + wavelet 
hybrid

Adaptive random forest COVID-19 EEG dataset 96.4 Proposed 
model

Table 5
Performance of the ARF framework with earlier studies

Noise level 
(σ)

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

No noise 93.4 93.0 93.0 93.0
σ = 0.01 92.8 92.5 92.6 92.6

σ = 0.05 91.2 91.0 91.3 91.2
σ = 0.1 89.8 89.5 90.1 89.8

Table 6
Performance of the ARF model under noise

Number of MC 
dropout samples

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

1 sample 92.5 92.1 92.4 92.2

5 samples 93.1 92.8 93.0 93.0

10 samples 93.4 93.0 93.2 93.1

Table 7
Performance of the ARF model with Monte Carlo 

dropout (uncertainty quantification)

Missing data 
(%)

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1-score 
(%)

No missing 
data

93.4 93.0 93.0 93.0

10% missing 92.1 91.9 92.0 91.9

20% missing 90.8 90.4 90.6 90.5

30% missing 88.5 88.1 88.3 88.2

Table 8
Performance with missing data simulation

Algorithms
Accuracy 

(%)
Precision 

(%)
Recall 
(%)

F1-score 
(%)

Adaptive 
random forest 
(ARF)

93.4 93.0 93.0 93.0

Random 
forest (RF)

89.8 88.5 89.2 88.8

Support 
vector 
machine 
(SVM)

85.3 84.1 86.0 85.0

K-nearest 
neighbors 
(KNN)

87.5 86.8 87.6 87.2

Table 9
Performance comparison with other algorithms
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discriminative power while the adaptive classifier eased patient-
specific calibration. Comprehensive analyses of open EEG banks with 
stratified and subject-specific validation confirmed that our technique 
demonstrated consistent superiority over the conventional baselines 
across all performance metrics. Under the McNemar’s test and 
bootstrapped confidence intervals, the statistical validation rigorously 
confirmed that the noted improvements were real and not random. The 
computational efficiency of the architecture makes it ideal for bedside 
EEG monitoring and telemedicine, thus bridging the gap between 
research-grade models and clinically useful devices. This work is the 
first to propose a clinically scalable, hybrid, and fully adaptable EEG 
architecture for the real-time neurological monitoring of COVID-19 
patients. 

4.1. Future work
This framework will be expanded in the future to encompass a 

broader range of neurological disorders and to study the integration 
of multiple biological data for enhanced patient monitoring. With the 
model building, we expect the model to improve not only on building 
but also on its clinical use and privacy measures. For clinical use, 
we expect to balance data control, loss control, and performance in 
uninterrupted control and enhanced performance cooperative control. It 
is in this regard that we expect privacy-preserving techniques, including 
federated learning, to protect patient data in an increasingly AI-enabled 
healthcare environment.
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