
Received: 10 February 2023 | Revised: 2 May 2023 | Accepted: 24 May 2023 | Published online: 31 May 2023

REVIEW

A Study of Vulnerability Scanners
for Detecting SQL Injection and XSS
Attack in Websites

Seema Sharma1,*

1Department of Computer Science and Engineering, JECRC University, India

Abstract: In themodern world, the internet makes our lives easier. Making use of online services like social media, online banking, and online
shopping can provide information while also saving time and resources. As the user’s information is then accessible on the website,
maintaining its security is essential. To determine whether a site is susceptible or not, a website vulnerability scanner is utilized. A web
attack can happen very quickly if the website is weak. Due to this, data theft is possible. This paper aims to identify the website’s
weaknesses and vulnerabilities and make improvements. If a website is vulnerable, attacks can be carried out quickly. It allows for data
theft. This paper’s objective is to discover the website’s vulnerabilities and sources of vulnerability so that they can be fixed. If the web
app is weak, an attacker could exploit the website by sending in malicious code from the client side. To resolve these problems, this
paper outlines potential modern best practices. Also, it is beneficial for web security researchers.

Keywords: XSS, SQL, injection attack, vulnerability, security

1. Introduction

Website vulnerability scanners are used to identify flaws in
websites and then display the types of bugs found. Vulnerability
scanners are important tools for identifying as well as reporting
security flaws in the IT infrastructure of an organization. This is an
essential security procedure that every organization may use. These
scans can provide details about possible security vulnerabilities, which
can help an organization has a better understanding of the security
hazards that might be present in their background (Jain et al., 2022).

To ensure that they are getting complete coverage of each asset and
to build a complete view, many organizations employ multiple
vulnerability scanners (Fu et al., 2016). Over time, many different
scanners have been developed with a variety of features and
possibilities. Cybersecurity threats increase for two reasons:
strategically and practically. Six main areas can be used to classify
vulnerabilities: network, personnel, software, organizational, physical,
and hardware. The vulnerability can occur due to several factors, such
as complex software, weak device connectivity, weak password
handling, software defects, and uncontrolled client-side input. To
make our website consistently secure, we have conducted a lot of
analysis on various kinds of websites linked to PHP, HTML,
JavaScript, and CSS (Wang et al., 2018).

One of the attacks that occur on vulnerable web applications is
an injection attack. An injection attack is a technique where an
attacker inserts or infects harmful code into your app to steal your
details or harm your system (PHP Labware, 2023). Your software
went to the request without question, believing that you issued the

request. The injection attack is among the oldest and most
destructive cyberattacks. Once the malicious codes are injected, an
attacker can hijack your network and obtain any information they
require from it (Sharma & Yadav, 2021; Zukran & Siraj, 2021).

The most common injection attacks are SQL injection (SQLI)
and cross-site scripting (XSS) injection attacks (Liu et al., 2023; Buja
et al., 2022).When initiating a SQLI, a SQL command is used to send
database queries, particularly ones that save, access, retrieve, or
delete database data. By using your comment areas, form input
fields, or other user-accessible channels, the attacker manipulates
your SQL by targeting it. In other words, SQL queries can pass
directly to and query the database because of the fields that are
open for user input. Web-based attacks using SQLI are mostly
uncontested by firewalls and other systems for intrusion detection.

In short, SQLI is generated because the fields available for
user input allow SQL statements to pass directly to and query the
database. The security against extensive SQLI web attacks
offered by firewalls and similar intrusion detection systems is
minimal to zero. Another one is the XSS injection attack. It is
one of the most frequent application-layer web attacks,
focusing on scripts that are injected into pages but run on the
server rather than on the client.

Client-side scripting languages like HTML and JavaScript have
cybersecurity flaws that make XSS a hazard. The idea behind XSS is
to trick a client-side script in a web application to run the way a
malicious user wants it to. The rest of this paper is divided as
follows: Section 2 provides the motivation and objective of the
study, Section 3 provides a review, Section 4 shows the
implementation, Section 5 discusses the experimental results, and
Section 6 provides a conclusion

*Corresponding author: Seema Sharma, Department of Computer Science and
Engineering, JECRC University, India. Email: seemasharmacg@gmail.com

Artificial Intelligence and Applications
2023, Vol. 1(4) 214–220

DOI: 10.47852/bonviewAIA3202754

© The Author(s) 2023. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/
licenses/by/4.0/).

214

https://orcid.org/0000-0003-3131-4179
mailto:seemasharmacg@gmail.com
https://doi.org/10.47852/bonviewAIA3202754
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2. Motivation

Attacks utilizing input injection can serve several purposes inside
the present system. They are typically used by malicious users as a
method of gaining unauthorized access to confidential data from a
back-end database or of uploading malicious code to a fake server
that would then spread malware to innocent users. This may lead to
these customers learning about their credentials or personal
information, which would be exciting for them (Vandana et al.,
2014; Biswas & Majumder, 2014). This approach mainly replaces
the existing time-consuming, expensive, and low-interactive structure
for cognitive scanning procedures. The major features of the
approaches are reputation maintenance and the detection of several
unusual vulnerabilities, data storage for scanning, program design,
and the generation of reports for all scanned websites. Some
advantages of the suggested framework include the quickest Web
crawler, the simplest sessions to access, scanning of any specific
page, a variety of examinations, the fastest electronic scanner,
Google Dorking available, etc. The primary objective of this paper is
to provide an overview of the analysis and specifications of the
current scenario or system to identify its functioning components.
This paper provides a detailed description of the whole software
specification of the entire differential vulnerabilities scanner. In this
paper, vulnerabilities scanner aims to develop an online scanner for
all enterprises and organizations. It is made to be used by developers
and will act as the starting point for testing.

3. Review

As new technologies, HTML elements, and JavaScript functions
emerge, attacks on web applications are expanding quickly. Aggressors
use XSS flaws to inject malicious JavaScript code into the victim’s web
applications to steal the resources (cookies, credentials, etc.) from the
victim’s web browsers (Dukes et al., 2013). The vulnerability can be
classified as follows: a flaw in input validation (client-side request
level), a weakness in session management (session level), and a
vulnerability in the application logic (whole application).

Vulnerabilities in input validation occur if an attacker discovers
that an application makes unverified assumptions about the nature,
length, format, or range of input data, The program is then subject
to input validation vulnerabilities. Attackers are ready to introduce
maliciously designed inputs into systems if inputs are not correctly
sanitized. These inputs may change program functionality or grant
unauthorized access to resources. Incorrect input validation can
open them to a variety of attacks, including buffer overflow attacks,
SQLI attacks, XSS attacks, and other code injection assaults (Dukes
et al., 2013). Session management security flaws, a web application,
may track user inputs and preserve application states, thanks to
session management. The cooperation between the client and the
server is used to manage sessions in web application development.
To prevent session hijacking, the confidentiality, integrity, and
validity of the session ID must be guaranteed because it is the only
evidence of the client’s identity (Tang et al., 2020). The goal of an
injection attack is to exploit a flaw in the program's logic,
bypassing or missing the proposed order in which application
functions are established. These attacks typically target a website,
but they can also be directed toward its users and their personal
information.

Traditional SQL infusion barriers employ boycotts to filter out
illegal symbols, and a lot is currently done. The book “SQL Injection
Attacks and Defence” (Tang et al., 2020) describes two distinct types
of information approval strategies to deal with securing SQL
infusion. Although entry testing can be used to make up for the

shortcomings of the high contrast list separating guard method, it
cannot generally fix the flaws (Tian et al., 2012). To test the
scanners’ ability to distinguish SQLI and XSS, Parvez et al.
(2015) dissected the exhibition and identification capabilities of
the most modern discovery web application security scanners
against hidden SQLI and hidden XSS.

On the one hand, in conventional web applications, the server-side
part of the function has increasingly been moved to the client. On the
other hand, because current browsers support the HTML API,
JavaScript code is becoming more and more common, and its
functions are becoming increasingly complicated. All of these result
in steadily increasing security issues (Mitropoulos et al., 2017;
Sivakorn et al., 2016). The third sort of XSS is also referred to as
DOM-XSS, and it is purely a client-side security problem. In other
words, it simply causes XSS by parsing the browser’s DOM and
does not need to be directly participating in the server’s analytic response.

Another API (Snow et al., 2016) uses data in the form of
executable code. The server is entirely undetectable. Third, a lot
of contemporary web apps make use of controlled, server-
invisible JavaScript code from third parties.

Hydara et al. (2015) and others examined a significant amount
of earlier work on XSS before 2013, but only 0.9% of it was detected
in the study about DOM-XSS. Vogt et al. (2007) suggested a static
analysis and dynamic information flow tracing method to lessen the
danger of XSS. However, instead of tracking sensitive data, they
concentrated on sensitive information, such as cookies or
prospective information leaks, and were unable to identify the root
cause of vulnerabilities.

A Firefox plug-in called Ra.2 (Wang et al., 2018) uses black box
fuzzing to detect DOM-XSS. The first DOM-XSS detection tool
based on tent tracking, DOMINATOR, was created by changing
the Spiderman-key JavaScript engine in Firefox. It cannot,
however, implement automatic vulnerability scanning.

A black box fuzzing (Sutton et al., 2007) based on tainted
growth was proposed by Saxena et al. (2010). In this study,
automated random fuzzing techniques are paired with dynamic
tent analysis. The identical prototype tool, FLAX, was created at
the same time. To find XSS, Criscione (2013) proposed an
automation method based on the black box, and it tested and
verified vulnerabilities using a real browser.

The DOMXSS scanner (Gomez, 2016) is used to check the
source code of web pages for DOM XSS sources and sinks
without finding vulnerabilities. Black box testing, static analysis (Xie
& Aiken, 2006), and dynamic analysis are three current directions
for DOM-XSS research. The black box test suffers from false
negatives as a result of its coverage of the attack vector limitations.
The static analysis approach can address simple issues, but when it is
used in a complicated situation, it has a high accuracy rate and a
high false-positive rate. In this paper, DOM-XCD vulnerability
discovery and verification are accomplished using dynamic analysis
and dynamic tent tracking technologies.

Zukran & Siraj (2021) suggest the model OW ASP ZAP that
examines the vulnerability in the website that has improper inputs.
Invalid inputs cause several vulnerabilities. They presented a
collection of indicators that tested and handled invalid inputs based
on this possibility. To put this paradigm into practice, a tool is
created. They evaluated a number of randomly chosen websites to
test the model. The drawback of the model is no special authorization
or access to any of the tested websites is provided by the tool.

Alsmadi et al. (2021) offer conventional defense systems that
employ static and heuristic methods to recognize previously
known SQLI attacks. Researchers use machine learning methods
that can identify new and previously unidentified attack types.

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

215

The author suggests using a probabilistic neural network to recognize
SQLI attacks, utilizing deep learning to improve detection accuracy.
They used the BAT algorithm, a metaheuristic optimization method,
to determine a smoothing parameter’s ideal value. To determine a
smoothing parameter’s ideal value, they used the BAT algorithm, a
metaheuristic optimization method. This experiment used a dataset
of 6,000 SQLIs and 3500 regular queries. In this experiment, a
dataset of 6,000 SQLIs and 3500 regular queries was used.

4. Methods and Tools for Preventing and
Detecting Vulnerability

Strategies to classify risks in web use can be classified in more
detail as follows:

(I) Static investigation: It is the examination of the source code
before executing a program. This methodology makes
preparations for the event of particular sorts of vulnerabilities
and does not give space for indistinct defenselessness at the
hour of coding.

(II) Dynamic investigation: It describes in detail what the program
does while running, mainly through the mediator’s interface
after analyzing the syntactic structure.

Detection methods: The attack detection framework is an
innovation that establishes a complex network of double dealings
at scale without the need for technical expertise. There are
numerous detecting techniques. A few are summarized below.

In the design of the web apps’ automatic detection system,
analytical taint analysis methods are used to detect persistent
attacks. It is preventing further site attacks by crossing the filter
pattern as a dynamical pattern filtering method for XSS detection.
Its testing is a consistent method for XSS detection. A protection
model is created to protect the website from site attacks by the
Zen system. It is a nonpersistent approach to detection.

4.1. Tools

OWASP is a society that provides freely available articles,
documentation, methodologies, equipment, and technologies
within the field of web application safety (Trickel et al., 2022;
Dukes et al., 2013).

• N-Stalker: The N-Stalker is a scanner for web application security
that examines a web application for numerous vulnerabilities,
including those at the application layer and network level
(Trickel et al., 2022).

• Acunetix: Acunetix is a security testing automation tool that was
founded to combat the rise in attacks at the web application layer.

• Paros: A Java-based HTTP/HTTPS proxy for evaluating web
application vulnerability. It supports editing HTTP messages on
the fly.

• Web Scarab: This Java-based solution is used to monitor
applications that employ the HTTP or HTTPS protocol. This
functions as a catch-all intermediary to examine ongoing and
active solicitation and approachable site pages. It can recognize
various vulnerabilities in web applications like CSRF, XSS,
SQLI, and so on (Port Swigger, 2023).

• OWASP Xenotix XSS Exploit Framework: It is the best in the
class structure created under OWASP ventures to distinguish
and misuse the XSS assault. It includes three fuzzes to limit the
checking time and yield better results.

• ImmuniWeb® On-Demand, (n.d.): It is a tool used for multilayer
web applications, and it links the capacities of AI and its

techniques. It recommends a quick, versatile, and economic
strategy for distinguishing vulnerabilities. It addresses all 10
significant flaws listed by OWASP (HTML purifier, n.d.).

• HTML Purifier: It is a quick and straightforward HTML sanitizer
created in Java under OWASP ventures. To prevent an XSS
attack, it only permitsHTMLwritten by external apps (Snyder, 2019).

• htmLawed: For the program to access and create the HTML labels
and features permitted by the site management, it is written in PHP
to separate the HTML content. It is speedy, flexible, and uses
minimum memory (OWASP Projects, 2014).

• XSSer: This is a scripter, a programmed framework to recognize, abuse,
and inform about XSS vulnerabilities present in web applications.

• Burp Scanner: It is an entirely robotized access analyzer that
security specialists utilize to test an application. It tends to be
incorporated with different procedures to get compelling
outcomes (on-demand).

4.2. Defenses approaches

There are a variety of safety efforts available to secure web
applications against XSS attacks (Rocha and Souto, 2014).
Avoid executing scripts on websites with vulnerable content.
The web application may be in the safe harbor can pick one of
the accompanying approaches.

• Content filtering: Before transmitting poor HTML to a browser,
an application may make an effort to extract and remove any text
and script from it.

• Browser collaboration: The system can communicate with the
web browser by allowing the browser to know which
documents have been shown on the web page while still
preserving the authorization rules.

• Well-known prevent XSS: There are many ways to ensure the
targeting of site writing currently, such as user input validation,
sanitizing user input, and the exercise of a content protection policy.

• Sanitize user input: Sanitizing user input, for example, G.E.T.
solicitations and treats, will quickly place you in a prime spot
against XSS assaults. This resistance strategy works on sites
that allow HTML markup to require an information script to
clear inappropriate or harmful user entries.

• Validate user input: Information approval is the way to test all
client or application inputs and block inaccurately framed
information from entering a data framework. This OWASP
deception sheet maintains that client input approval is not a
silver-bullet answer for XSS prevention; however, it can help
keep clients from importing unusual characters into top-down
fields in the form.

• Utilize a content security policy: By allowing only specific types
of content from trusted sources, the content security strategy helps
define guidelines to prevent illegal content. The content safety mode
teaches the user browser only to enable the content to be used.

5. Implementation

The hardware and software used in its compilation are the main
factors that determine whether a work will run successfully. The
hardware that is employed in the simple machine must be capable
of supporting the software that will be mounted for assembling
the paper. This essay discusses the hardware and software that are
easily accessible on each machine that a user is given.

Hardware requirement: CPU: i3 or above; ram: 500 MB or
above; HDD: 20 GB or above

Software requirement: Bone: 8 senses of the window, macOS,
any Linux-based distro.

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

216

Broadcast: Python 2.7 or above.
Language: Python (Python is a physical object-oriented, high-

level programming language with integrated dynamic semantics
primarily for web and app development).

Library required:
(i) Urllib2: The urllib2mental faculty definesmaps and classes that

aid in identifying URLs outside a complicated environment
using simple and digest authentication, redirections, cookies,
and more.

(ii) SYS: This faculty gives users access to some variables that the
interpretive program uses or maintains, as well as mapping that
has a close relationship with the interpreter.

(iii) OS: This module offers a portable approach to using
functionality that depends on the operating system being
used. Open() can be used to simply read or write a file. The
os. path module can be used to alter paths. The file input
module can be used to read all of the short letters in all of
the program line files.

6. Framework and Working

Vulnerability scanners are programs that analyze the architecture
of a network, disclose found vulnerabilities, and provide
recommendations on how to fix them (Wang et al., 2018). Figure 1
illustrates the fundamental structure of a vulnerability scanner.
Frequent vulnerability assessments are essential for maintaining
robust cybersecurity. An organization is nearly certain to have at
least one unpatched vulnerability that puts it at risk due to the
complete number of vulnerabilities that exist and the complexity of
the typical company’s digital infrastructure. Discovering these
weaknesses before an attacker can strike can mean the difference
between a successful attack and an unpleasant one. Vulnerability
scans can be carried out from either inside or outside the network
or the network segment that is being assessed. The vulnerability of
servers and applications that are directly accessible via the internet
can be assessed by organizations by conducting external scans from
outside the boundaries of their network.

The steps for vulnerability assessment are as

follows:

Resource identification:Making this decision is not always as
easy as it sounds because you have to determine what you want to
scan. One of the most common cybersecurity concerns that
enterprises face is a lack of visibility into their digital
infrastructure and linked devices.

Vulnerability scanning: It is also known security flaws can be
found using vulnerability scanners, which also offer advice on
how to address them. It is possible to find a lot of information
on susceptible software because these vulnerabilities are
frequently reported to the public. The infrastructure of an
organization uses these data to find weak hardware and software
using vulnerability scanners. First, the scanner sends probes to
systems to identify: In addition, the scanner sends certain probes
to discover particular vulnerabilities, which can only be tested
by delivering a safe exploit that verifies the weakness is present.
These kinds of probes can spot widespread flaws like “command
injection,” “XSS,” or the use of systems’ default users and
passwords.

The report analysis:- The scanner offers a report on the
assessment following the conclusion of the vulnerability scan. The
following factors consist in the report and create remedial plans
based on it:

• Severity: The severity of a suspected vulnerability should be
shown by a vulnerability scanner.

• Vulnerability: Internet-facing systems should receive higher
priority for remediation since they are more likely to be
attacked by any random attacker scouring the internet.

In the modern world, the internet makes our lives easier.
Making use of online services like social media, online banking,
and online shopping can provide information while also saving
time and resources. As the user’s information is then accessible on
the website, maintaining its security is essential. To determine
whether a site is susceptible or not, a website vulnerability
scanner is utilized. A web attack can happen very quickly if the
website is weak. Due to this, data theft is possible. This paper
aims to identify the website’s weaknesses and vulnerabilities and
make improvements. If a website is vulnerable, attacks can be
carried out quickly. It allows for data theft.

This paper’s objective is to discover the website’s
vulnerabilities and sources of vulnerability so that they can be
fixed. If the web app is weak, an attacker could exploit the
website by sending in malicious code from the client side. To
resolve these problems, the resources must be identified,
vulnerabilities must be scanned for, and reports must be analyzed,
as shown in Figure 1.

7. Test and Results

Testing is the process of running the program to see whether
there are any bugs. This is the final step in the verification and
verification process. We have also made an effort to fix mistakes
made in earlier steps. A solid test case has a strong chance of
spotting an error that has not been found yet.

Help page: The help page of the scanner shows the argument
such as e for browser information, h for help, t for targeted web side,
o for output result, r for revise domain, etc. as shown in Figure 2.

Dump results: The information that was scanned from the
server and represented by the dump, such as URL details and the
language used to create the website, is included. The result is
stored in json file as shown in Figure 3.

Result: The scanner has displayed the outcome of the
vulnerable URL including the domain name, server name, and
database name. The result of the scanner is shown in Figure 4.

Scanning a website: The output of the scanning result of the
vulnerable website is shown in Figure 5, which shows the actual
website’s service details.

Figure 1
Process of a vulnerability scanner

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

217

Figure 2
Help page of the scanner

Figure 3
Dump result of the scanner

Figure 4
Result of the scanner

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

218

The output of the vulnerability scanner is shown in Figures 1–4.
As illustrated in Figure 2, the scanner is used on the Bing, Google,
and Yahoo search engines. The server name and vulnerable URL are
depicted in Figure 3.

8. Conclusion

There are various security organizations available today to
protect the website. In this piece, we employ a vulnerability
scanner, scan the website link, and determine whether or not this
website is vulnerable. This paper can be very helpful in fixing
vulnerabilities on websites. Since the primary focus of the paper is
security, the framework’s display is appropriate because every
objective was met. This paper also offers some advice for the
ever-expanding technology industry. The “Site Vulnerability
Scanner” was well-planned, created, and tested in this paper.
This module has exceptional capabilities; therefore, it can be
enhanced to create a complete framework because of this. It
offers the protection analyst all the required security issues and
how to prevent hackers from exploiting them. This paper aims
to provide a security analyst with a thorough overview of
all fundamental security issues and a suggestion for how
programmers could mitigate them. It provides all the advantages
required for users to obtain and personalize the information
presented to them. After choosing to use this framework, we
believe that the business will eventually realize its significance
and worth, as well as the issues with the manual procedure.
Vulnerability scanners are anticipated to incorporate new
automated solutions as threat environment modifications, helping
organizations manage security risks without losing adaptability or
speed. These technologies will help organizations stay one step
ahead of hackers.

Conflicts of Interest

The author declares that she has no conflicts of interest to this
work.

References

Alsmadi, I., AlEroud, A., & Saifan, A. A. (2021). Fault-based testing
for discovering SQL injection vulnerabilities in web
applications. International Journal of Information and
Computer Security, 16(1–2), 51–62. https://doi.org/10.1504/
IJICS.2021.117394

Biswas, A., &Majumder, D. (2014). Genetic algorithm based hybrid
fuzzy system for assessing morningness. Advances in Fuzzy
Systems, 2014, 8. https://doi.org/10.1155/2014/732831

Buja, A., Luma, Z. B., Ademi, R., & Bela, B. (2022). An online SQL
vulnerability assessment tool and its impact on SMEs.
International Journal of Advanced Research in Computer
Science, 13(5).

Criscione, C. (2013).Drinking the ocean-finding XSS at Google Scale.
Dwivedi, V., Yadav, H., & Jain, A. (2014). A survey on web

application vulnerabilities. International Journal of
Computer Applications, 108(1), 25–31.

Dukes, L., Yuan, X., & Akowuah, F. (2013). A case study on web
application security testing with tools and manual testing. In
2013 Proceedings of IEEE SoutheastCon, 1–6.

Fu, Z., Wu, X., Guan, C., Sun, X., & Ren, K. (2016). Toward efficient
multi-keyword fuzzy search over encrypted outsourced datawith
accuracy improvement. In IEEE Transactions on Information
Forensics and Security, 11(12), 2706–2716.

Gomez, R. (2016). DOMXSS scanner. Retrieved from: https://
github.com/yaph/domxssscanner

HTML Purifier. (n.d.). Standards-Compliant HTML filtering.
Retrieved from: http://htmlpurifier.org/

Hydara, I., Sultan, A. B. M., Zulzalil, H., & Admodisastro, N.
(2015). Current state of research on cross-site scripting
(XSS)–A systematic literature review. Information and
Software Technology, 58, 170–186. https://doi.org/10.1016/j.
infsof.2014.07.010

ImmuniWeb® On-Demand (n.d.) Web application penetration
testing. Retrieved from: https://www.immuniweb.com/
products/ondemand/

Jain, A., Aadithyanarayanan, M. R., Anand, A., Maheshwari, H.,
Gonge, S., Joshi, R., & Kotecha, K. (2022). Web scanner: An
innovative prototype for checking web vulnerability. In
Proceedings of 6th Computational Methods in Systems and
Software 2022, 2023(1), 680–691.

Liu, Z., Fang, Y., Huang, C., & Xu, Y. (2023). MFXSS: An effective
XSS vulnerability detection method in JavaScript based on
multi-feature model. Computers & Security, 124, 103015.

Mitropoulos, D., Louridas, P., Polychronakis, M., &Keromytis, A. D.
(2017). Defending against web application attacks: Approaches,
challenges and implications. In IEEE Transactions on
Dependable and Secure Computing, 16(2), 188–203.

OWASP Projects. (2014). Web scarab. Retrieved from: https://
www.owasp.org/index.php/Category:OWASP_WebScarab_
Project.

Parvez, M., Zavarsky, P., & Khoury, N. (2015). Analysis of
effectiveness of black-box web application scanners in
detection of stored SQL injection and stored XSS vulner-
abilities. In 2015 IEEE 10th International Conference
for Internet Technology and Secured Transactions,
186–191.

Figure 5
Scanning website

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

219

https://doi.org/10.1504/IJICS.2021.117394
https://doi.org/10.1504/IJICS.2021.117394
https://doi.org/10.1155/2014/732831
https://github.com/yaph/domxssscanner
https://github.com/yaph/domxssscanner
http://htmlpurifier.org/
https://doi.org/10.1016/j.infsof.2014.07.010
https://doi.org/10.1016/j.infsof.2014.07.010
https://www.immuniweb.com/products/ondemand/
https://www.immuniweb.com/products/ondemand/
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
https://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

PHP Labware. (2023). htmLawed. Retrieved from: https://www.
bioinformatics.org/phplabware/internal_utilities/htmLawed/

Port Swigger. (2023). Automated scanning. Retrieved from: https://
support.portswigger.net/customer/portal/articles/1783127-
using-burp-scanner

Rocha, T. S., & Souto, E. (2014). ETSS Detector: A tool to
automatically detect cross-site scripting vulnerabilities. In
2014 IEEE 13th International Symposium on Network
Computing and Applications, 306–309.

Saxena, P., Hanna, S., Poosankam, P., & Song, D. (2010). FLAX:
Systematic discovery of client-side validation vulnerabilities
in rich web applications. In NDSS Symposium 2010.

Sharma, S., &Yadav, N. S. (2021). Ensemble-basedmachine learning
techniques for attack detection. In 2021 IEEE 9th International
Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions), 1–6.

Sivakorn, S., Polakis, I., & Keromytis, A. D. (2016). The cracked
cookie jar: HTTP cookie hijacking and the exposure of
private information. In 2016 IEEE Symposium on Security
and Privacy, 724–742.

Snow, K. Z., Rogowski, R., Werner, J., Koo, H., Monrose, F., &
Polychronakis, M. (2016). Return to the zombie gadgets:
Undermining destructive code reads via code inference
attacks. In 2016 IEEE Symposium on Security and Privacy,
954–968.

Snyder, C. (2019). What is cross-site scripting (XSS) & how to
prevent it. Retrieved from: https://www.extrahop.com/
company/blog/2019/what-is-cross-site-scripting-and-how-to-
prevent-xss/

Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute force
vulnerability discovery. UK: Pearson.

Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020). Detection
of SQL injection based on artificial neural network.
Knowledge-Based Systems, 190, 105528.

Tian, W., Yang, J. F., Xu, J., & Si, G. N. (2012). Attack model-based
penetration test for SQL injection vulnerability. In 2012 IEEE
36th Annual Computer Software and Applications Conference
Workshops, 589–594.

Trickel, E., Pagani, F., Zhu, C., Dresel, L., Vigna, G., Kruegel, C.,
: : : , & Doupé, A. (2022). Toss a fault to your Witcher:
Applying grey-box coverage-guided mutational fuzzing to
detect SQL and command injection vulnerabilities. In 2023
IEEE Symposium on Security and Privacy, 2658–2675.

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., &
Vigna, G. (2007). Cross site scripting prevention with
dynamic data tainting and static analysis. In NDSS 2007, 12.

Wang, R., Xu, G., Zeng, X., Li, X., & Feng, Z. (2018). TT-XSS: A
novel taint tracking based dynamic detection framework for
DOM cross-site scripting. Journal of Parallel and
Distributed Computing, 118, 100–106.

Xie, Y., & Aiken, A. (2006). Static detection of security
vulnerabilities in scripting languages. In USENIX Security
Symposium, 15, 179–192.

Zukran, B., & Siraj, M. M. (2021). Performance comparison on SQL
injection and XSS detection using open source vulnerability
scanners. In 2021 IEEE International Conference on Data
Science and Its Applications, 61–65.

How to Cite: Sharma, S. (2023). A Study of Vulnerability Scanners for Detecting
SQL Injection and XSS Attack inWebsites. Artificial Intelligence and Applications,
1(4), 214–220, https://doi.org/10.47852/bonviewAIA3202754

Artificial Intelligence and Applications Vol. 1 Iss. 4 2023

220

https://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/
https://www.bioinformatics.org/phplabware/internal_utilities/htmLawed/
https://support.portswigger.net/customer/portal/articles/1783127-using-burp-scanner
https://support.portswigger.net/customer/portal/articles/1783127-using-burp-scanner
https://support.portswigger.net/customer/portal/articles/1783127-using-burp-scanner
https://www.extrahop.com/company/blog/2019/what-is-cross-site-scripting-and-how-to-prevent-xss/
https://www.extrahop.com/company/blog/2019/what-is-cross-site-scripting-and-how-to-prevent-xss/
https://www.extrahop.com/company/blog/2019/what-is-cross-site-scripting-and-how-to-prevent-xss/
https://doi.org/10.47852/bonviewAIA3202754

	A Study of Vulnerability Scanners for Detecting SQL Injection and XSS Attack in Websites
	1. Introduction
	2. Motivation
	3. Review
	4. Methods and Tools for Preventing and Detecting Vulnerability
	4.1. Tools
	4.2. Defenses approaches

	5. Implementation
	6. Framework and Working
	The steps for vulnerability assessment are as follows:

	7. Test and Results
	8. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

