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Abstract: Electric vehicles (EVs) are increasingly central to sustainable mobility, but braking control remains a safety-critical challenge. EVs must
balance regenerative braking, which recovers kinetic energy, with dynamic braking, which ensures rapid deceleration in emergency situations.
At the same time, driver drowsiness contributes to nearly one-fifth of serious accidents worldwide, underscoring the importance of systems that
respond to external conditions and human states. This study presents a Python-programmed electronic control unit (ECU) on a Raspberry Pi Pico,
integrating real-time driver drowsiness detection with adaptive braking control. Inputs from ultrasonic sensors, wheel encoders, and a camera-based
drowsiness detection module are transmitted via the Message Queuing Telemetry Transport (MQTT) protocol. At the same time, a fuzzy inference
engine processes driver condition, vehicle speed, and obstacle distance to generate proportional pulse width modulation (PWM) signals for motor
braking. Experimental validation using a laboratory-scale prototype demonstrated distinct braking profiles under three conditions: slightly drowsy
states produced proportional speed reductions as early warnings, drowsy states resulted in smooth full stops with consistent deceleration between
0.042 and 0.050 m/s?, and emergency braking delivered rapid stops with shorter distances of 0.116 to 0.204 meters. While a 1-second latency was
observed in some slightly drowsy runs, the system consistently adapted braking behavior and restored regular operation when drowsiness signals
ceased. These findings validate that a Micro-Python-based ECU can reliably integrate behavioral monitoring with adaptive braking, offering a
low-cost, scalable solution for future EV safety systems.
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1. Introduction units to precisely manage propulsion, energy flow, and braking functions
[5]. Regenerative braking systems, in particular, enable controlled
deceleration through motor torque modulation while simultaneously
recovering energy and enhancing overall efficiency [6]. Advanced
control strategies have demonstrated that intelligent braking algorithms
can enhance both vehicle stability and energy recovery under varying
driving conditions [7].

Despite these advancements, limited research has addressed the
direct coupling of driver state assessment with active braking control in
electric vehicles. Existing regenerative braking studies generally focus
on energy optimization, friction management, or battery longevity,
without considering the driver’s physiological condition as a control
input [8]. Conversely, driver monitoring research often stops at
detection and alert generation without extending into vehicle actuation.
This separation highlights a significant gap in current intelligent vehicle
safety frameworks.

To address this gap, embedded control solutions capable of real-
time sensing, decision-making, and actuation are required. Recent work
has demonstrated the feasibility of deploying complex perception and
control algorithms on low-cost embedded platforms such as Raspberry
Pi-based systems [9]. Python-based control frameworks further enable
rapid development, flexibility, and integration of sensor data with motor
control logic, making them suitable for experimental and prototype-
level electronic control unit design.

In thi n he presen investi Python-
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usm.my driver drowsiness detection with dynamic braking control in an electric

Driver drowsiness remains one of the most critical human
factors contributing to severe road accidents worldwide. Reduced
alertness affects reaction time, decision-making, and vehicle control,
often leading to delayed braking or loss of lane discipline. Recent
studies have demonstrated that vision-based driver monitoring
systems can effectively detect fatigue indicators, including
prolonged eye closure, variations in head posture, and facial movement
patterns, in real time [ 1, 2]. These systems provide a valuable foundation
for enhancing road safety, particularly when implemented on embedded
platforms that enable continuous monitoring during vehicle operation.

Most existing driver drowsiness detection systems primarily focus
on warning mechanisms, including visual alarms and audible alerts [3].
While such approaches can increase driver awareness, they rely heavily
on the assumption that the driver is capable of responding appropriately.
In situations involving extreme fatigue or microsleep events, warning-
based systems alone may be insufficient. This limitation has motivated
recent research toward more proactive safety interventions, where
vehicle control actions are automatically triggered when the driver’s
state deteriorates beyond a safe threshold [4].

Electric vehicles offer a suitable environment for such integration
due to their electronically controlled drivetrains and flexible software
architecture. Modern electric vehicles use multiple electronic control
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vehicle platform. By linking vision-based fatigue assessment directly
to motor braking commands, the proposed system aims to enhance
road safety through timely and autonomous intervention. The approach
builds upon recent developments in driver monitoring, embedded
intelligence, and regenerative braking control, contributing toward safer
and more adaptive electric vehicle systems [10]. A preliminary version
of this work was presented at ROVISP 2025 under the title “Design
and Implementation of a Drowsiness Aware Braking System Using
an Embedded EV ECU.” This manuscript represents a substantially
extended version, incorporating in-depth methodological analysis,
comprehensive literature integration, and a more thorough evaluation
of system performance.

2. Literature Review

Electric vehicles are increasingly relying on intelligent
braking systems to enhance both energy efficiency and operational
safety. Regenerative braking has been widely studied as an effective
approach to recover kinetic energy during deceleration and convert
it into electrical energy for battery charging. Recent studies have
demonstrated that adaptive braking control strategies can significantly
enhance energy recovery while maintaining vehicle stability and
braking comfort [7, 10, 6, 8]. Advanced controllers, such as fuzzy
logic-based and model-driven approaches, have demonstrated
superior performance in optimizing braking torque distribution under
varying speed and load conditions, resulting in improved state of
charge retention and extended driving range [11, 12]. These findings
confirm that regenerative braking plays a crucial role in enhancing
the efficiency of electric vehicles, particularly when combined with
intelligent control logic.

Parallel to energy optimization research, significant attention
has been given to driver drowsiness detection as a major safety
concern in intelligent transportation systems. Vision-based
monitoring approaches dominate recent literature due to their
nonintrusive nature and compatibility with real-time implementation.
Techniques based on facial landmarks, eye closure duration, head
posture, and yawning patterns have demonstrated high accuracy
in identifying driver fatigue [13, 14, 1, 15]. Deep learning models,
particularly convolutional neural networks, have further improved
detection robustness under varying lighting and driver conditions
[16, 17]. Several studies highlight that fatigue detection systems
deployed on embedded platforms can operate with low latency while
maintaining reliable performance, making them suitable for in-
vehicle applications [2].

Despite the progress in detection accuracy, most drowsiness
monitoring systems remain limited to warning-based interventions
such as visual or auditory alerts. This approach assumes driver
responsiveness, which may not hold during severe fatigue or
microsleep events. Recent works have begun exploring proactive
safety responses, where vehicle behavior is modified based on driver
condition [18]. However, such implementations are still scarce and
often lack integration with braking systems that can actively reduce
vehicle speed in critical scenarios.

Embedded electronic control units form the backbone of modern
electric vehicle architectures, enabling real-time coordination among
sensing, decision-making, and actuation. Low-cost embedded platforms,
such as Raspberry Pi-based systems, have been widely adopted for
prototyping intelligent vehicle functions due to their flexibility and
processing capability [19, 20]. Research indicates that Python-based
control environments facilitate rapid algorithm development while
ensuring sufficient performance for real-time applications. These
embedded systems have successfully hosted perception algorithms,
control logic, and actuator commands within a unified framework [9].

Communication protocols play a crucial role in enabling the
reliable exchange of data between sensors, controllers, and monitoring
interfaces. Lightweight publish-subscribe protocols such as MQTT
have gained popularity in embedded automotive and industrial
applications due to their low overhead and scalability [5, 21]. Studies
demonstrate that MQTT-based communication supports real-time data
transmission with minimal latency, making it suitable for safety-critical
systems where a timely response is essential. Integration of embedded
controllers with MQTT enables efficient coordination between driver
monitoring modules and braking control units, facilitating closed-loop
safety responses.

Although substantial research exists independently on
regenerative braking, driver drowsiness detection, embedded control
systems, and communication frameworks, there is limited work that
addresses their unified integration within a single embedded control
architecture. Existing studies often treat driver monitoring and braking
control as separate subsystems, resulting in fragmented safety solutions
[22]. This gap underscores the need for an integrated approach in which
the driver’s physiological state directly influences braking behavior
through an embedded electronic control unit, supported by reliable
communication and real-time decision-making.

2.1. Theoretical framework

This study is founded on three complementary theoretical pillars.
First, adaptive regenerative braking control research demonstrates that
fuzzy logic-based controllers can effectively map uncertain inputs into
smooth braking torque adjustments, thereby improving stability under
varying operating conditions [7, 12, 8]. Incorporating braking intention
recognition further enables differentiated responses for normal and
emergency scenarios [11], supporting fuzzy control as an effective
strategy for adaptive braking.

Second, behavioral driver monitoring studies have established
that visual cues, such as eyelid closure, blink rate, and facial expression,
are reliable indicators of drowsiness [23]. Temporal behavior analysis
and individual driving patterns further enhance driver state estimation
accuracy [15]. These findings justify the use of camera-based
drowsiness detection as supervisory input for braking decisions when
driver responsiveness declines.

Third, embedded system and communication studies confirm
that lightweight platforms, such as the Raspberry Pi Pico, can
support sensing, control, and actuation tasks for experimental electric
vehicle systems [9]. MQTT has been shown to provide low latency
and reliable communication in constrained environments, enabling
distributed control architectures with minimal computational
overhead [24].

Together, these foundations define a human-centered adaptive
control framework in which driver state and vehicle dynamics jointly
influence braking behavior through fuzzy decision logic and embedded
MQTT-based coordination.

2.2. Contributions of this study

Within the context defined above, this study makes four main
contributions. First, it integrates a vision-based drowsiness detection
module with a regenerative braking controller, allowing braking
intensity to be adjusted according to both driver alertness and distance
to potential obstacles. Existing works often consider these elements
separately, whereas the present study treats driver state as a direct
input to the braking decision. Second, it demonstrates that a Python-
programmed Raspberry Pi Pico-based controller can manage sensor
acquisition, fuzzy rule evaluation, and PWM generation within the
response times required for electric vehicle braking, extending earlier
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feasibility studies on embedded Python control [5, 22]. Third, the study
defines a fuzzy rule base and membership structure that reflects braking
intention and drowsiness level, building on prior regenerative braking
and optimization work while adapting it to a human-monitored context
[25, 11]. Fourth, it uses MQTT as the communication layer between the
vision module and the ECU, leveraging its low overhead and scalability
to ensure the timely delivery of drowsiness events on a resource-
constrained platform [20, 26]. Together, these contributions offer a
practical pathway toward affordable, intelligent braking systems that
enhance electric vehicle safety without relying on high-end automotive
hardware.

3. Research Methodology

The proposed system was implemented as a compact, embedded
architecture that integrates driver state monitoring, decision logic,
and braking actuation. The overall framework comprises a vision-
based drowsiness detection module, an embedded electronic control
unit, and a motor braking interface, all of which are coordinated
through lightweight communication. This structure enables real-time
assessment of driver alertness and adaptive braking response under
different operating conditions.

Driver drowsiness detection was performed using a camera-
based vision module that continuously monitored facial indicators
associated with fatigue. The captured visual data were processed to
extract features related to eye closure, blink duration, and head posture.
These indicators were mapped to discrete driver states representing
alert, mildly drowsy, sustained drowsy, and emergency conditions.
The resulting driver state information served as supervisory input to
the braking controller.

The electronic control unit was implemented using a Raspberry
Pi Pico platform programmed in Python. This embedded controller
received driver state data and vehicle-related inputs, including speed
and distance information, and executed decision logic to determine
appropriate braking actions. A fuzzy logic-based control strategy was
employed to translate driver state and vehicle context into graded
braking commands. This approach allowed smooth modulation of motor
braking torque while avoiding abrupt transitions that could compromise
stability or passenger comfort.

Communication between the vision module and the electronic
control unit was established using the MQTT protocol. The driver
monitoring module published drowsiness state updates, while the
ECU subscribed to these messages and responded accordingly. MQTT
was selected due to its low overhead and suitability for constrained
embedded environments, enabling timely and reliable data exchange
without excessive computational load.

Braking actuation was achieved through motor speed control,
where braking intensity was adjusted according to the output of the
fuzzy controller. Under mild drowsiness, gradual speed reduction
was applied as an early intervention mechanism. Sustained
drowsiness triggered controlled deceleration, while emergency
conditions resulted in rapid braking to minimize stopping distance.
The entire system was evaluated on a prototype setup to verify real-
time operation, response consistency, and the feasibility of low-cost
embedded deployment.

4. Result and Discussion

4.1 Prototype implementation

A prototype vehicle was developed to validate the integration
of the driver drowsiness detection system with the ECU-controlled
dynamic braking mechanism. The physical assembly, illustrated in

Figures 1-3, demonstrates the hardware implementation based on the
schematic design.

From the top view in Figure 1, the key components include the
Raspberry Pi Pico 2W microcontroller, the L298N motor driver, the
XL4015 buck converter, LEDs, and a piezoelectric buzzer, all of which
are centrally positioned to optimize wiring efficiency. The bottom
view, shown in Figure 2, displays the dual DC motors equipped with
built-in encoders, which are used to capture real-time wheel speed.
The front view, shown in Figure 3, highlights the placement of HC-

Figure 1
Top view of the ECU prototype showing the Raspberry Pi Pico
2W, L298N motor driver, XL.4015 buck converter, LEDs, and
piezo buzzer

DC-DC Buck
Converter

L298N Motor Driver

Microcontroller

Figure 2
Bottom view of the ECU prototype highlighting dual DC motors

with integrated encoders for wheel speed

DC Motor with
Encoder

Figure 3
Front view of the ECU prototype displaying HC-SR04 ultrasonic
sensors for obstacle detection and vehicle proximity sensing
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SR04 ultrasonic sensors for obstacle detection, replicating the front
and rear vehicle proximity sensing commonly found in real-world
driving scenarios.

This layout ensures functional consistency, ease of debugging,
and reliable interaction between all components, forming the
experimental basis for evaluating braking behavior under different
driver states.

4.2. Braking performance evaluation

The ECU’s performance was evaluated through controlled
experiments designed to simulate three distinct driver conditions:
slightly drowsy, fully drowsy, and emergency braking. Tests were
conducted in a laboratory environment over a 10-meter track, with the
prototype transmitting data to a fixed Raspberry Pi 4 unit that hosted
the graphical user interface (GUI) for parameter monitoring, as shown
in Figure 4.

Figure 4
Graphical user interface (GUI) for driver monitoring and braking
parameter visualization

Driver Monitoring GUI

Speed (RPM): 0.000 RPM
m/s

Spood (m/a): 0.000 m/z
Front Distance: 0.000 cm

*** Results Braking

Velocity Initial: 0.000 m/s
Deceleration: 0.000 m/s*

4.2.1. Slightly drowsy driving condition

Under slightly drowsy conditions, braking forces of 30%-60%
were applied. The PWM duty cycle was reduced proportionally, with
speed decrements calculated as:

Decrement = 10000 + (20000 — 10000) * (Fb —30) / (60 —30) (1)
The new motor speed was then set as:
New speed = 50000 — Decrement 2)

where Fb denotes the braking force percentage and New speed
represents the updated motor speed.

Results from three runs confirmed a consistent system response.
A representative dataset for run 1 is presented in Table 1, while the
corresponding speed-time profile is shown in Figure 5.

Across all runs, the system successfully reduced motor speed
when drowsiness was detected and restored once normal conditions
resumed. In some cases, a 1-second response delay was observed likely
due to algorithm buffering or mechanical inertia. While this confirms
the system’s adaptability, it also indicates scope for improving real-time
responsiveness.

Table 1
Test run 1 for slightly drowsy state
Speed decrement Motor
Time Brake (16-bit Speed (16-bit speed
(s) force resolution) resolution) (RPM)
1 0 0 50000 46.74
2 45.95 15317 50000 44.70
3 33.28 11093 34684 41.76
4 41.25 13750 38907 41.76
5 0 0 36250 46.88
Figure 5
Motor speed vs. time for run 1 under slightly drowsy conditions
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4.2.2. Fully drowsy braking condition

For sustained drowsiness, braking forces of 60%—100% were
applied, triggering a smooth deceleration until the vehicle came to a
complete stop. The PWM decrement formula was adjusted accordingly:

Decrement = 8000 + (15000 — 8000) * (Fb—61)/(100—61)  (3)
New speed = Current speed — Decrement “4)

where Current speed represents the instantaneous motor speed prior to
braking.

The algorithm iterated every 0.1 second until the motor speed
reached zero. Table 2 summarizes the results of five runs under drowsy
conditions.

The ECU consistently achieved controlled braking, with
stopping times ranging from 3.2 to 4.3 seconds and distances of 0.26
to 0.39 meters. Deceleration remained moderate (0.042-0.050 m/s?),
confirming the design’s intention to prioritize stability and gradual
halting.

4.2.3. Emergency braking condition

Emergency braking was triggered when the front ultrasonic
sensor detected an obstacle within 30 centimeters, overriding
fuzzy logic decisions. The ECU immediately cut PWM to zero,
producing rapid deceleration. Results for five runs are presented in
Table 3.

Emergency braking consistently produced higher deceleration
values (0.098-0.151 m/s?), reducing stopping distance to 0.12—0.20
meters and braking time to 1.6-3.2 seconds. This demonstrates the
system’s capacity to prioritize collision avoidance over comfort in
critical situations.
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Table 2
Braking performance under drowsy conditions

Run Brake force Initial velocity (m/s) Braking time (s) Stopping distance (m)  Deceleration (m/s?)
1 99.992 0.161 3.213 0.259 0.050
2 100 0.188 3.753 0.353 0.050
3 99.987 0.192 3.885 0.373 0.049
4 99.990 0.183 4335 0.396 0.042
5 99.986 0.195 3.907 0.380 0.050
Table 3
Braking performance under emergency conditions
Run Front distance (m) Initial velocity (m/s) Braking time (s) Stopping distance (m)  Deceleration (m/s?)
1 25.5 0.072 3.20 0.116 0.023
2 4.06 0.171 1.68 0.143 0.102
3 14.43 0.167 1.70 0.142 0.098
4 18.59 0.248 1.64 0.204 0.151
5 14.88 0.178 1.79 0.160 0.099
4.3. Comparative study with the existing system Figure 7
The braking performance of the proposed ECU was tested Stopping distance comparison l')eftween drowsy and emergency
o conditions
under both drowsy and emergency conditions, and the outcomes
" ] N . 0.40
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variable values between 0.098 and 0.151 meters per second squared,
aligning with the principle of collision avoidance.

These results are consistent with established findings in the
literature. Previous research on fuzzy braking controllers demonstrated
that adaptive inference approaches make smoother braking responses
compared to binary schemes [27, 28]. In contrast, autonomous
emergency braking systems were designed to minimize stopping
distance even at the cost of ride comfort [29]. The present ECU unites
these two approaches by incorporating real-time driver drowsiness as
a control input, thereby extending conventional frameworks that rely
solely on vehicle-state measurements [30, 31]. This human-aware
dimension represents a significant advancement toward personalized
safety mechanisms.

From an implementation standpoint, most earlier systems relied
on high-end ECUs or computationally intensive software platforms.
By contrast, the proposed ECU demonstrates that a Raspberry Pi Pico
running Micro-Python can achieve deterministic real-time performance
in braking applications [32, 33]. Furthermore, the adoption of MQTT-
based communication between the driver monitoring system and the
ECU supports rapid and reliable data exchange, with latency values
well within the millisecond range as reported in multiple evaluations
[34-37]. This modular communication layer not only ensures timely
actuation but also enhances scalability for integration with other safety
subsystems.

Overall, the comparative study emphasizes three distinctive
advances of the proposed design: first, the integration of human-state

Table 4

Comparison of existing studies with the proposed drowsiness-aware braking ECU

Difference from

Category Reference Method/platform Output/focus Limitation proposed work
Regenerative [11] Dual fuzzy braking with ~ Smooth braking, Depends on pedal Uses the drowsiness
braking force distribution intention-based control ~ behavior state instead of pedal
intention
[7] ECE-compliant braking  Regulatory-compliant No human state input Includes behavioral
control stability trigger
[12] Multi-mode Energy recovery Fixed braking modes Selects braking intensity
regenerative braking optimization dynamically based on
fatigue
[8] Fuzzy neural network Adaptive torque control  High computational Uses lightweight Python
braking load fuzzy logic suitable for
microcontrollers
Drowsiness [13] Edge-based facial On-device visual No actuation Links detection to
detection fatigue detection detection immediate braking
[15] EEG and facial hybrid High sensitivity Requires contact sensors ~ Uses noncontact
detection camera-based sensing
[17] CNN-based real-time High accuracy No ECU integration Forms a complete
detection sensing-to-actuation
pipeline
[9] IoT-assisted deep Remote fatigue Not vehicle focused Provides local real-time
learning model monitoring braking response
Embedded ECU [5] Embedded vision-based =~ Mechanical task Not vehicle related Targets electric vehicle
device automation safety
[21] RV IoT multi- Edge computing General-purpose Designed for safety-
architecture board platform hardware critical braking
[22] Micro-Python extended  Rapid prototyping No braking pathway Unifies sensing,
ESP32 design inference, and actuation
in one ECU
MQTT [18] MQTT for home Reliable low-overhead Not safety critical Enables real-time brake
communication automation messaging triggering
[38] MQTT for Low-latency data Monitoring only Used for actuation
environmental sensing transfer rather than monitoring
[39] MQTT in incubator Stable communication Not vehicular First application of

Proposed system

control

Raspberry Pi Pico,
camera, MQTT

Real-time drowsiness
detection and adaptive
braking

MQTT in drowsiness-
driven braking

First unified system
combining drowsiness
sensing, braking
control, and MQTT
communication
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monitoring into braking decisions [31, 32]; second, the feasibility
of low-cost Micro-Python ECU deployment [32, 33]; and third, the
successful use of MQTT messaging for real-time distributed control
[34-37]. Together, these features confirm the novelty and practical
value of the system as a cost-effective, human-aware safety solution for
intelligent electric vehicles.

4.4. Extended comparison with recent literature

To further contextualize system performance, the proposed
ECU was compared with existing work across regenerative braking,
drowsiness detection, embedded control, and MQTT communication.
Table 4 provides a structured comparison.

Across these domains, regenerative braking studies improved
energy recovery and braking smoothness [11, 7, 12, 8], drowsiness
detection studies enhanced recognition accuracy [13, 15, 17, 9],
embedded systems research advanced hardware efficiency [5, 21, 22],
and MQTT works demonstrated reliable low-latency communication
[18, 38, 39]. However, none connected behavioral state detection
to immediate braking actuation within a unified ECU. The proposed
design, therefore, establishes the first integrated pathway that links
human state sensing, embedded decision-making, and real-time motor
braking.

4.5. Novelty of this study

Prior studies have independently improved regenerative
braking performance, drowsiness detection accuracy, embedded
system efficiency, and MQTT-based communication reliability [5, 7,
8,9, 11-13, 15, 17, 18, 21, 22, 38, 39]. However, existing works
do not integrate behavioral state detection with immediate braking
actuation within a unified embedded control unit, as systematically
compared in Table 4. This study addresses that gap by establishing a
direct sensing-to-actuation pathway linking driver state and real-time
motor braking.

The primary contribution lies in introducing a human-centered
braking trigger in which detected drowsiness initiates adaptive
regenerative braking rather than relying solely on pedal input or vehicle
dynamics. A second contribution is the demonstration that real-time
visual inference and braking control can be achieved using low-cost
Raspberry Pi-based embedded processing, eliminating dependence on
high-end automotive ECUs. A third contribution is the application of
MQTT as an event-driven communication layer between detection and
braking modules, enabling timely and reliable actuation within a safety-
critical context.

Together, these contributions define a unified embedded
architecture that integrates behavioral sensing, decision logic, and
adaptive braking, providing a scalable foundation for human-aware
safety systems in electric vehicles.

5. Conclusion

This research presented a Python-programmed embedded
ECU on a Raspberry Pi Pico for drowsiness-responsive dynamic
braking in electric vehicles. The system integrated real-time sensor
data with driver monitoring inputs and applied fuzzy logic to adjust
braking force across varying levels of drowsiness, including slightly
drowsy, fully drowsy, and emergency conditions. Prototype validation
confirmed reliable performance, where subtle speed reductions
provided early warnings, controlled full stops ensured safety
under sustained drowsiness, and rapid braking minimized stopping
distances in emergencies. These results demonstrate that Python-

based embedded control can meet safety-critical requirements on low-
cost microcontrollers, offering a practical, intelligent, and scalable
solution for EV safety systems.

Recommendations

Future work will expand this prototype toward larger-scale
platforms and real vehicle testing. Integration with full-scale EV
hardware, including hydraulic braking systems and regenerative
subsystems, will be essential to validate the ECU in realistic driving
conditions. At the same time, driver monitoring improvements will
require deploying more advanced Al models capable of maintaining
robust performance under diverse lighting and environmental
situations, such as night driving. Performance optimization will also
be a priority. Micro-Python execution can be enhanced through hybrid
coding strategies, such as C extensions or embedded coprocessors,
which reduce latency in safety-critical scenarios. Finally, compliance
with automotive communication standards, such as the CAN bus
protocol, will be pursued to ensure seamless integration with existing
vehicle architectures. These directions will strengthen the system’s
reliability, scalability, and industry relevance, bringing it closer to
real-world electric vehicle applications.
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