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Abstract: Electric vehicles (EVs) are increasingly central to sustainable mobility, but braking control remains a safety-critical challenge. EVs must 
balance regenerative braking, which recovers kinetic energy, with dynamic braking, which ensures rapid deceleration in emergency situations. 
At the same time, driver drowsiness contributes to nearly one-fifth of serious accidents worldwide, underscoring the importance of systems that 
respond to external conditions and human states. This study presents a Python-programmed electronic control unit (ECU) on a Raspberry Pi Pico, 
integrating real-time driver drowsiness detection with adaptive braking control. Inputs from ultrasonic sensors, wheel encoders, and a camera-based 
drowsiness detection module are transmitted via the Message Queuing Telemetry Transport (MQTT) protocol. At the same time, a fuzzy inference 
engine processes driver condition, vehicle speed, and obstacle distance to generate proportional pulse width modulation (PWM) signals for motor 
braking. Experimental validation using a laboratory-scale prototype demonstrated distinct braking profiles under three conditions: slightly drowsy 
states produced proportional speed reductions as early warnings, drowsy states resulted in smooth full stops with consistent deceleration between 
0.042 and 0.050 m/s², and emergency braking delivered rapid stops with shorter distances of 0.116 to 0.204 meters. While a 1-second latency was 
observed in some slightly drowsy runs, the system consistently adapted braking behavior and restored regular operation when drowsiness signals 
ceased. These findings validate that a Micro-Python-based ECU can reliably integrate behavioral monitoring with adaptive braking, offering a 
low-cost, scalable solution for future EV safety systems.
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1. Introduction
Driver drowsiness remains one of the most critical human 

factors contributing to severe road accidents worldwide. Reduced 
alertness affects reaction time, decision-making, and vehicle control, 
often leading to delayed braking or loss of lane discipline. Recent 
studies have demonstrated that vision-based driver monitoring 
systems can effectively detect fatigue indicators, including 
prolonged eye closure, variations in head posture, and facial movement 
patterns, in real time [1, 2]. These systems provide a valuable foundation 
for enhancing road safety, particularly when implemented on embedded 
platforms that enable continuous monitoring during vehicle operation.

Most existing driver drowsiness detection systems primarily focus 
on warning mechanisms, including visual alarms and audible alerts [3]. 
While such approaches can increase driver awareness, they rely heavily 
on the assumption that the driver is capable of responding appropriately. 
In situations involving extreme fatigue or microsleep events, warning-
based systems alone may be insufficient. This limitation has motivated 
recent research toward more proactive safety interventions, where 
vehicle control actions are automatically triggered when the driver’s 
state deteriorates beyond a safe threshold [4].

Electric vehicles offer a suitable environment for such integration 
due to their electronically controlled drivetrains and flexible software 
architecture. Modern electric vehicles use multiple electronic control 

units to precisely manage propulsion, energy flow, and braking functions 
[5]. Regenerative braking systems, in particular, enable controlled 
deceleration through motor torque modulation while simultaneously 
recovering energy and enhancing overall efficiency [6]. Advanced 
control strategies have demonstrated that intelligent braking algorithms 
can enhance both vehicle stability and energy recovery under varying 
driving conditions [7].

Despite these advancements, limited research has addressed the 
direct coupling of driver state assessment with active braking control in 
electric vehicles. Existing regenerative braking studies generally focus 
on energy optimization, friction management, or battery longevity, 
without considering the driver’s physiological condition as a control 
input [8]. Conversely, driver monitoring research often stops at 
detection and alert generation without extending into vehicle actuation. 
This separation highlights a significant gap in current intelligent vehicle 
safety frameworks.

To address this gap, embedded control solutions capable of real-
time sensing, decision-making, and actuation are required. Recent work 
has demonstrated the feasibility of deploying complex perception and 
control algorithms on low-cost embedded platforms such as Raspberry 
Pi-based systems [9]. Python-based control frameworks further enable 
rapid development, flexibility, and integration of sensor data with motor 
control logic, making them suitable for experimental and prototype-
level electronic control unit design.

In this context, the present study investigates a Python-
programmed embedded electronic control unit that integrates real-time 
driver drowsiness detection with dynamic braking control in an electric 
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vehicle platform. By linking vision-based fatigue assessment directly 
to motor braking commands, the proposed system aims to enhance 
road safety through timely and autonomous intervention. The approach 
builds upon recent developments in driver monitoring, embedded 
intelligence, and regenerative braking control, contributing toward safer 
and more adaptive electric vehicle systems [10]. A preliminary version 
of this work was presented at ROVISP 2025 under the title “Design 
and Implementation of a Drowsiness Aware Braking System Using 
an Embedded EV ECU.” This manuscript represents a substantially 
extended version, incorporating in-depth methodological analysis, 
comprehensive literature integration, and a more thorough evaluation 
of system performance.

2. Literature Review
Electric vehicles are increasingly relying on intelligent 

braking systems to enhance both energy efficiency and operational 
safety. Regenerative braking has been widely studied as an effective 
approach to recover kinetic energy during deceleration and convert 
it into electrical energy for battery charging. Recent studies have 
demonstrated that adaptive braking control strategies can significantly 
enhance energy recovery while maintaining vehicle stability and 
braking comfort [7, 10, 6, 8]. Advanced controllers, such as fuzzy 
logic-based and model-driven approaches, have demonstrated 
superior performance in optimizing braking torque distribution under 
varying speed and load conditions, resulting in improved state of 
charge retention and extended driving range [11, 12]. These findings 
confirm that regenerative braking plays a crucial role in enhancing 
the efficiency of electric vehicles, particularly when combined with 
intelligent control logic.

Parallel to energy optimization research, significant attention 
has been given to driver drowsiness detection as a major safety 
concern in intelligent transportation systems. Vision-based 
monitoring approaches dominate recent literature due to their 
nonintrusive nature and compatibility with real-time implementation. 
Techniques based on facial landmarks, eye closure duration, head 
posture, and yawning patterns have demonstrated high accuracy 
in identifying driver fatigue [13, 14, 1, 15]. Deep learning models, 
particularly convolutional neural networks, have further improved 
detection robustness under varying lighting and driver conditions 
[16, 17]. Several studies highlight that fatigue detection systems 
deployed on embedded platforms can operate with low latency while 
maintaining reliable performance, making them suitable for in-
vehicle applications [2].

Despite the progress in detection accuracy, most drowsiness 
monitoring systems remain limited to warning-based interventions 
such as visual or auditory alerts. This approach assumes driver 
responsiveness, which may not hold during severe fatigue or 
microsleep events. Recent works have begun exploring proactive 
safety responses, where vehicle behavior is modified based on driver 
condition [18]. However, such implementations are still scarce and 
often lack integration with braking systems that can actively reduce 
vehicle speed in critical scenarios.

Embedded electronic control units form the backbone of modern 
electric vehicle architectures, enabling real-time coordination among 
sensing, decision-making, and actuation. Low-cost embedded platforms, 
such as Raspberry Pi-based systems, have been widely adopted for 
prototyping intelligent vehicle functions due to their flexibility and 
processing capability [19, 20]. Research indicates that Python-based 
control environments facilitate rapid algorithm development while 
ensuring sufficient performance for real-time applications. These 
embedded systems have successfully hosted perception algorithms, 
control logic, and actuator commands within a unified framework [9].

Communication protocols play a crucial role in enabling the 
reliable exchange of data between sensors, controllers, and monitoring 
interfaces. Lightweight publish-subscribe protocols such as MQTT 
have gained popularity in embedded automotive and industrial 
applications due to their low overhead and scalability [5, 21]. Studies 
demonstrate that MQTT-based communication supports real-time data 
transmission with minimal latency, making it suitable for safety-critical 
systems where a timely response is essential. Integration of embedded 
controllers with MQTT enables efficient coordination between driver 
monitoring modules and braking control units, facilitating closed-loop 
safety responses.

Although substantial research exists independently on 
regenerative braking, driver drowsiness detection, embedded control 
systems, and communication frameworks, there is limited work that 
addresses their unified integration within a single embedded control 
architecture. Existing studies often treat driver monitoring and braking 
control as separate subsystems, resulting in fragmented safety solutions 
[22]. This gap underscores the need for an integrated approach in which 
the driver’s physiological state directly influences braking behavior 
through an embedded electronic control unit, supported by reliable 
communication and real-time decision-making. 

2.1. Theoretical framework
This study is founded on three complementary theoretical pillars. 

First, adaptive regenerative braking control research demonstrates that 
fuzzy logic-based controllers can effectively map uncertain inputs into 
smooth braking torque adjustments, thereby improving stability under 
varying operating conditions [7, 12, 8]. Incorporating braking intention 
recognition further enables differentiated responses for normal and 
emergency scenarios [11], supporting fuzzy control as an effective 
strategy for adaptive braking.

Second, behavioral driver monitoring studies have established 
that visual cues, such as eyelid closure, blink rate, and facial expression, 
are reliable indicators of drowsiness [23]. Temporal behavior analysis 
and individual driving patterns further enhance driver state estimation 
accuracy [15]. These findings justify the use of camera-based 
drowsiness detection as supervisory input for braking decisions when 
driver responsiveness declines.

Third, embedded system and communication studies confirm 
that lightweight platforms, such as the Raspberry Pi Pico, can 
support sensing, control, and actuation tasks for experimental electric 
vehicle systems [9]. MQTT has been shown to provide low latency 
and reliable communication in constrained environments, enabling 
distributed control architectures with minimal computational 
overhead [24].

Together, these foundations define a human-centered adaptive 
control framework in which driver state and vehicle dynamics jointly 
influence braking behavior through fuzzy decision logic and embedded 
MQTT-based coordination.

2.2. Contributions of this study
Within the context defined above, this study makes four main 

contributions. First, it integrates a vision-based drowsiness detection 
module with a regenerative braking controller, allowing braking 
intensity to be adjusted according to both driver alertness and distance 
to potential obstacles. Existing works often consider these elements 
separately, whereas the present study treats driver state as a direct 
input to the braking decision. Second, it demonstrates that a Python-
programmed Raspberry Pi Pico-based controller can manage sensor 
acquisition, fuzzy rule evaluation, and PWM generation within the 
response times required for electric vehicle braking, extending earlier 
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feasibility studies on embedded Python control [5, 22]. Third, the study 
defines a fuzzy rule base and membership structure that reflects braking 
intention and drowsiness level, building on prior regenerative braking 
and optimization work while adapting it to a human-monitored context 
[25, 11]. Fourth, it uses MQTT as the communication layer between the 
vision module and the ECU, leveraging its low overhead and scalability 
to ensure the timely delivery of drowsiness events on a resource-
constrained platform [20, 26]. Together, these contributions offer a 
practical pathway toward affordable, intelligent braking systems that 
enhance electric vehicle safety without relying on high-end automotive 
hardware.

3. Research Methodology
The proposed system was implemented as a compact, embedded 

architecture that integrates driver state monitoring, decision logic, 
and braking actuation. The overall framework comprises a vision-
based drowsiness detection module, an embedded electronic control 
unit, and a motor braking interface, all of which are coordinated 
through lightweight communication. This structure enables real-time 
assessment of driver alertness and adaptive braking response under 
different operating conditions.

Driver drowsiness detection was performed using a camera-
based vision module that continuously monitored facial indicators 
associated with fatigue. The captured visual data were processed to 
extract features related to eye closure, blink duration, and head posture. 
These indicators were mapped to discrete driver states representing 
alert, mildly drowsy, sustained drowsy, and emergency conditions. 
The resulting driver state information served as supervisory input to 
the braking controller.

The electronic control unit was implemented using a Raspberry 
Pi Pico platform programmed in Python. This embedded controller 
received driver state data and vehicle-related inputs, including speed 
and distance information, and executed decision logic to determine 
appropriate braking actions. A fuzzy logic-based control strategy was 
employed to translate driver state and vehicle context into graded 
braking commands. This approach allowed smooth modulation of motor 
braking torque while avoiding abrupt transitions that could compromise 
stability or passenger comfort.

Communication between the vision module and the electronic 
control unit was established using the MQTT protocol. The driver 
monitoring module published drowsiness state updates, while the 
ECU subscribed to these messages and responded accordingly. MQTT 
was selected due to its low overhead and suitability for constrained 
embedded environments, enabling timely and reliable data exchange 
without excessive computational load.

Braking actuation was achieved through motor speed control, 
where braking intensity was adjusted according to the output of the 
fuzzy controller. Under mild drowsiness, gradual speed reduction 
was applied as an early intervention mechanism. Sustained 
drowsiness triggered controlled deceleration, while emergency 
conditions resulted in rapid braking to minimize stopping distance. 
The entire system was evaluated on a prototype setup to verify real-
time operation, response consistency, and the feasibility of low-cost 
embedded deployment.

4. Result and Discussion

4.1 Prototype implementation
A prototype vehicle was developed to validate the integration 

of the driver drowsiness detection system with the ECU-controlled 
dynamic braking mechanism. The physical assembly, illustrated in 

Figures 1–3, demonstrates the hardware implementation based on the 
schematic design.

From the top view in Figure 1, the key components include the 
Raspberry Pi Pico 2W microcontroller, the L298N motor driver, the 
XL4015 buck converter, LEDs, and a piezoelectric buzzer, all of which 
are centrally positioned to optimize wiring efficiency. The bottom 
view, shown in Figure 2, displays the dual DC motors equipped with 
built-in encoders, which are used to capture real-time wheel speed. 
The front view, shown in Figure 3, highlights the placement of HC-
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Figure 1
Top view of the ECU prototype showing the Raspberry Pi Pico 
2W, L298N motor driver, XL4015 buck converter, LEDs, and 

piezo buzzer

Figure 2
Bottom view of the ECU prototype highlighting dual DC motors 

with integrated encoders for wheel speed

 Figure 3
Front view of the ECU prototype displaying HC-SR04 ultrasonic 

sensors for obstacle detection and vehicle proximity sensing
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SR04 ultrasonic sensors for obstacle detection, replicating the front 
and rear vehicle proximity sensing commonly found in real-world 
driving scenarios.

This layout ensures functional consistency, ease of debugging, 
and reliable interaction between all components, forming the 
experimental basis for evaluating braking behavior under different 
driver states.

4.2. Braking performance evaluation
The ECU’s performance was evaluated through controlled 

experiments designed to simulate three distinct driver conditions: 
slightly drowsy, fully drowsy, and emergency braking. Tests were 
conducted in a laboratory environment over a 10-meter track, with the 
prototype transmitting data to a fixed Raspberry Pi 4 unit that hosted 
the graphical user interface (GUI) for parameter monitoring, as shown 
in Figure 4.

4.2.1. Slightly drowsy driving condition
Under slightly drowsy conditions, braking forces of 30%–60% 

were applied. The PWM duty cycle was reduced proportionally, with 
speed decrements calculated as:

Decrement = 10000 + (20000 − 10000) * (Fb − 30) / (60 − 30)

The new motor speed was then set as:

New speed = 50000 − Decrement

where Fb denotes the braking force percentage and New speed 
represents the updated motor speed.

Results from three runs confirmed a consistent system response. 
A representative dataset for run 1 is presented in Table 1, while the 
corresponding speed-time profile is shown in Figure 5.

Across all runs, the system successfully reduced motor speed 
when drowsiness was detected and restored once normal conditions 
resumed. In some cases, a 1-second response delay was observed likely 
due to algorithm buffering or mechanical inertia. While this confirms 
the system’s adaptability, it also indicates scope for improving real-time 
responsiveness.

4.2.2. Fully drowsy braking condition
For sustained drowsiness, braking forces of 60%–100% were 

applied, triggering a smooth deceleration until the vehicle came to a 
complete stop. The PWM decrement formula was adjusted accordingly: 

Decrement = 8000 + (15000 − 8000) * (Fb − 61) / (100 − 61)

New speed = Current speed − Decrement

where Current speed represents the instantaneous motor speed prior to 
braking.

The algorithm iterated every 0.1 second until the motor speed 
reached zero. Table 2 summarizes the results of five runs under drowsy 
conditions.

The ECU consistently achieved controlled braking, with 
stopping times ranging from 3.2 to 4.3 seconds and distances of 0.26 
to 0.39 meters. Deceleration remained moderate (0.042–0.050 m/s²), 
confirming the design’s intention to prioritize stability and gradual 
halting.

4.2.3. Emergency braking condition
Emergency braking was triggered when the front ultrasonic 

sensor detected an obstacle within 30 centimeters, overriding 
fuzzy logic decisions. The ECU immediately cut PWM to zero, 
producing rapid deceleration. Results for five runs are presented in 
Table 3.

Emergency braking consistently produced higher deceleration 
values (0.098–0.151 m/s²), reducing stopping distance to 0.12–0.20 
meters and braking time to 1.6–3.2 seconds. This demonstrates the 
system’s capacity to prioritize collision avoidance over comfort in 
critical situations.

(1)

(2)

(3)

(4)

4

 Figure 4
Graphical user interface (GUI) for driver monitoring and braking 

parameter visualization

 Figure 5
Motor speed vs. time for run 1 under slightly drowsy conditions

Time 
(s)

Brake 
force

Speed decrement 
(16-bit 

resolution)
Speed (16-bit 

resolution)

Motor 
speed 

(RPM)
1 0 0 50000 46.74
2 45.95 15317 50000 44.70
3 33.28 11093 34684 41.76
4 41.25 13750 38907 41.76
5 0 0 36250 46.88

Table 1
Test run 1 for slightly drowsy state
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4.3. Comparative study with the existing system
The braking performance of the proposed ECU was tested 

under both drowsy and emergency conditions, and the outcomes 
were compared across three critical areas: braking time, stopping 
distance, and deceleration. As shown in Figure 6, emergency braking 
consistently achieved faster responses, requiring only 1.64 to 3.20 
seconds to stop the vehicle, compared to 3.2 to 4.3 seconds under 
drowsy braking. This difference reflects the controller’s ability 
to apply gentle deceleration during periods of drowsiness while 
prioritizing rapid stopping in emergency situations. Similarly, Figure 
7 shows that stopping distances were much shorter in emergency 
conditions, ranging from 0.116 to 0.204 meters, compared to drowsy 
conditions, where they ranged from 0.259 to 0.396 meters. Finally, 
Figure 8 highlights contrasting deceleration profiles: drowsy braking 
produced moderate and stable values between 0.042 and 0.050 meters 
per second squared, consistent with the design goal of passenger 
comfort, whereas emergency braking generated higher and more 
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 Figure 7
Stopping distance comparison between drowsy and emergency 

conditions

 Figure 6
Braking time comparison between drowsy and emergency 

conditions

Run Brake force Initial velocity (m/s) Braking time (s) Stopping distance (m) Deceleration (m/s²)
1 99.992 0.161 3.213 0.259 0.050
2 100 0.188 3.753 0.353 0.050
3 99.987 0.192 3.885 0.373 0.049
4 99.990 0.183 4.335 0.396 0.042
5 99.986 0.195 3.907 0.380 0.050

Table 2
Braking performance under drowsy conditions

Run Front distance (m) Initial velocity (m/s) Braking time (s) Stopping distance (m) Deceleration (m/s²)
1 25.5 0.072 3.20 0.116 0.023
2 4.06 0.171 1.68 0.143 0.102
3 14.43 0.167 1.70 0.142 0.098
4 18.59 0.248 1.64 0.204 0.151
5 14.88 0.178 1.79 0.160 0.099

Table 3
Braking performance under emergency conditions

 Figure 8
Deceleration comparison between drowsy and emergency 

conditions
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variable values between 0.098 and 0.151 meters per second squared, 
aligning with the principle of collision avoidance.

These results are consistent with established findings in the 
literature. Previous research on fuzzy braking controllers demonstrated 
that adaptive inference approaches make smoother braking responses 
compared to binary schemes [27, 28]. In contrast, autonomous 
emergency braking systems were designed to minimize stopping 
distance even at the cost of ride comfort [29]. The present ECU unites 
these two approaches by incorporating real-time driver drowsiness as 
a control input, thereby extending conventional frameworks that rely 
solely on vehicle-state measurements [30, 31]. This human-aware 
dimension represents a significant advancement toward personalized 
safety mechanisms.

From an implementation standpoint, most earlier systems relied 
on high-end ECUs or computationally intensive software platforms. 
By contrast, the proposed ECU demonstrates that a Raspberry Pi Pico 
running Micro-Python can achieve deterministic real-time performance 
in braking applications [32, 33]. Furthermore, the adoption of MQTT-
based communication between the driver monitoring system and the 
ECU supports rapid and reliable data exchange, with latency values 
well within the millisecond range as reported in multiple evaluations 
[34–37]. This modular communication layer not only ensures timely 
actuation but also enhances scalability for integration with other safety 
subsystems.

Overall, the comparative study emphasizes three distinctive 
advances of the proposed design: first, the integration of human-state 
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Category Reference Method/platform Output/focus Limitation
Difference from 
proposed work

Regenerative 
braking

[11] Dual fuzzy braking with 
force distribution

Smooth braking, 
intention-based control

Depends on pedal 
behavior

Uses the drowsiness 
state instead of pedal 
intention

[7] ECE-compliant braking 
control

Regulatory-compliant 
stability

No human state input Includes behavioral 
trigger

[12] Multi-mode 
regenerative braking

Energy recovery 
optimization

Fixed braking modes Selects braking intensity 
dynamically based on 
fatigue

[8] Fuzzy neural network 
braking

Adaptive torque control High computational 
load

Uses lightweight Python 
fuzzy logic suitable for 
microcontrollers

Drowsiness 
detection

[13] Edge-based facial 
fatigue detection

On-device visual 
detection

No actuation Links detection to 
immediate braking

[15] EEG and facial hybrid 
detection

High sensitivity Requires contact sensors Uses noncontact 
camera-based sensing

[17] CNN-based real-time 
detection

High accuracy No ECU integration Forms a complete 
sensing-to-actuation 
pipeline

[9] IoT-assisted deep 
learning model

Remote fatigue 
monitoring

Not vehicle focused Provides local real-time 
braking response

Embedded ECU [5] Embedded vision-based 
device

Mechanical task 
automation

Not vehicle related Targets electric vehicle 
safety

[21] RV IoT multi-
architecture board

Edge computing 
platform

General-purpose 
hardware

Designed for safety-
critical braking

[22] Micro-Python extended 
ESP32 design

Rapid prototyping No braking pathway Unifies sensing, 
inference, and actuation 
in one ECU

MQTT 
communication

[18] MQTT for home 
automation

Reliable low-overhead 
messaging

Not safety critical Enables real-time brake 
triggering

[38] MQTT for 
environmental sensing

Low-latency data 
transfer

Monitoring only Used for actuation 
rather than monitoring

[39] MQTT in incubator 
control

Stable communication Not vehicular First application of 
MQTT in drowsiness-
driven braking

Proposed system – Raspberry Pi Pico, 
camera, MQTT

Real-time drowsiness 
detection and adaptive 
braking

– First unified system 
combining drowsiness 
sensing, braking 
control, and MQTT 
communication

Table 4
Comparison of existing studies with the proposed drowsiness-aware braking ECU
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monitoring into braking decisions [31, 32]; second, the feasibility 
of low-cost Micro-Python ECU deployment [32, 33]; and third, the 
successful use of MQTT messaging for real-time distributed control 
[34–37]. Together, these features confirm the novelty and practical 
value of the system as a cost-effective, human-aware safety solution for 
intelligent electric vehicles.

4.4. Extended comparison with recent literature
To further contextualize system performance, the proposed 

ECU was compared with existing work across regenerative braking, 
drowsiness detection, embedded control, and MQTT communication. 
Table 4 provides a structured comparison.

Across these domains, regenerative braking studies improved 
energy recovery and braking smoothness [11, 7, 12, 8], drowsiness 
detection studies enhanced recognition accuracy [13, 15, 17, 9], 
embedded systems research advanced hardware efficiency [5, 21, 22], 
and MQTT works demonstrated reliable low-latency communication 
[18, 38, 39]. However, none connected behavioral state detection 
to immediate braking actuation within a unified ECU. The proposed 
design, therefore, establishes the first integrated pathway that links 
human state sensing, embedded decision-making, and real-time motor 
braking.

4.5. Novelty of this study
Prior studies have independently improved regenerative 

braking performance, drowsiness detection accuracy, embedded 
system efficiency, and MQTT-based communication reliability [5, 7, 
8, 9, 11–13, 15, 17, 18, 21, 22, 38, 39]. However, existing works 
do not integrate behavioral state detection with immediate braking 
actuation within a unified embedded control unit, as systematically 
compared in Table 4. This study addresses that gap by establishing a 
direct sensing-to-actuation pathway linking driver state and real-time 
motor braking.

The primary contribution lies in introducing a human-centered 
braking trigger in which detected drowsiness initiates adaptive 
regenerative braking rather than relying solely on pedal input or vehicle 
dynamics. A second contribution is the demonstration that real-time 
visual inference and braking control can be achieved using low-cost 
Raspberry Pi-based embedded processing, eliminating dependence on 
high-end automotive ECUs. A third contribution is the application of 
MQTT as an event-driven communication layer between detection and 
braking modules, enabling timely and reliable actuation within a safety-
critical context.

Together, these contributions define a unified embedded 
architecture that integrates behavioral sensing, decision logic, and 
adaptive braking, providing a scalable foundation for human-aware 
safety systems in electric vehicles.

5. Conclusion
This research presented a Python-programmed embedded 

ECU on a Raspberry Pi Pico for drowsiness-responsive dynamic 
braking in electric vehicles. The system integrated real-time sensor 
data with driver monitoring inputs and applied fuzzy logic to adjust 
braking force across varying levels of drowsiness, including slightly 
drowsy, fully drowsy, and emergency conditions. Prototype validation 
confirmed reliable performance, where subtle speed reductions 
provided early warnings, controlled full stops ensured safety 
under sustained drowsiness, and rapid braking minimized stopping 
distances in emergencies. These results demonstrate that Python-

based embedded control can meet safety-critical requirements on low-
cost microcontrollers, offering a practical, intelligent, and scalable 
solution for EV safety systems.

Recommendations
Future work will expand this prototype toward larger-scale 

platforms and real vehicle testing. Integration with full-scale EV 
hardware, including hydraulic braking systems and regenerative 
subsystems, will be essential to validate the ECU in realistic driving 
conditions. At the same time, driver monitoring improvements will 
require deploying more advanced AI models capable of maintaining 
robust performance under diverse lighting and environmental 
situations, such as night driving. Performance optimization will also 
be a priority. Micro-Python execution can be enhanced through hybrid 
coding strategies, such as C extensions or embedded coprocessors, 
which reduce latency in safety-critical scenarios. Finally, compliance 
with automotive communication standards, such as the CAN bus 
protocol, will be pursued to ensure seamless integration with existing 
vehicle architectures. These directions will strengthen the system’s 
reliability, scalability, and industry relevance, bringing it closer to 
real-world electric vehicle applications.
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