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Abstract: This study explored the key aspects and risks associated with the implementation of large language models (LLMs) in the electric power
sector of Ukraine. We propose a unique taxonomy of risks, along with a hierarchical structure that enables their assessment using the analytic
hierarchy process (AHP) developed by T. Saaty. The LLM lifecycle is described with a focus on both human and technological factors (from
knowledge selection and training to operational deployment). The study addresses critical concerns related to confabulations, sensitive information
leakage, compliance with personal data protection regulations, and the safeguarding of trade secrets. The paper highlights the importance of
employing tools for hallucination detection, sentiment analysis, and legal compliance monitoring. A separate section presents an in-depth analysis
of LLMs’ readiness to accurately digitize graphical content—such as schematics, diagrams, and technical drawings, which are common for
documentation in the energy sector worldwide. A series of experiments using the state-of-the-art generative Al systems revealed significant
limitations in interpreting complex diagrams, logical structures, and semantic relationships between elements. The findings demonstrate both the
potential and the critical limitations of LLMs in energy-related applications, particularly in processing graphical content, making decisions based

on synthetic data, and managing risks associated with model training, operation, and upgrades.
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1. Introduction

Large language models (LLMs) are predominantly generative
artificial neural networks [1] built on a decoder-only transformer-based
architecture. Because of their ability to process, interpret, and generate
domain-specific technical information, LLMs are increasingly adopted
across industries. Within the energy sector, LLMs are used for tasks
such as forecasting and optimization, anomaly detection, predictive
maintenance, cybersecurity assistance, operator decision support,
and automation of reporting [2, 3]. This expanding applicability
demonstrates the growing role of LLMs in supporting both operational
and strategic processes in energy systems.

Recent publications highlight that LLM-based solutions can
improve fault detection accuracy, enhance situational awareness,
assist in early hazard identification, and reduce cognitive workload
for personnel in energy enterprises [4]. However, despite these
advancements, existing studies primarily focus on demonstrating
the technical potential and performance improvements delivered by
LLMs. High-level Al governance frameworks—such as the NIST
Al Risk Management Framework [5] and the EU Al Act risk-based
classification scheme [6]—provide general guidelines, but they do not
offer quantitative, domain-specific methodologies tailored to assess the
risks associated with LLM deployment in the energy sector.

A gap remains in the literature regarding structured and
quantitative approaches to evaluating LLM-related risks within critical
infrastructure environments. While several studies have highlighted
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the benefits and potential use cases, none provide a method for
systematically identifying, categorizing, and prioritizing risks relevant
to the unique operational, technological, and regulatory context of the
energy sector.

2. Problem Statement

The absence of a tailored methodology introduces uncertainty
for organizations considering the integration of LLMs into critical
infrastructure. To address this gap, the present study develops a method
for assessing the risks of implementing Al in the form of LLM at critical
infrastructure facilities. The method is designed to satisfy the following
key requirements:

1) adaptability of the methodology to the needs of specific industry
organization;

2) transparency, visual clarity, representativeness, and the ability to
clearly communicate the results;

3) reliance on established and validated analytical methods.

To guide the development of the method, the study examines the
following questions:

1) Which human- and technology-related risks are most relevant to the
implementation of LLMs in the energy sector?

2) How can these risks be systematically identified, categorized, and
prioritized using established analytical techniques?

3) How can the assessment methodology remain rigorous while still
being adaptable to different organizational contexts?

4) What limitations do current LLMs exhibit when processing graphical
technical documentation?
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3. Background

Majumder et al. [2] highlighted in their recent study the significant
potential of using LLMs to solve a wide range of problems in the energy
sector and identified the following key applications:

1) detecting defects in generation and/or distribution network
components based on video or photo analysis;

2) performing correlation analysis and forecasting of time series data
using fine-tuned neural networks (e.g., predicting network load,
equipment failures due to service life);

3) assessing the risk of external (e.g., wildfires, hurricanes, earthquakes,
tsunamis) and internal (e.g. employee strikes, insider fraud) factors
that may hinder or make electricity generation or distribution
impossible;

4) analyzing documents at all stages—from the construction of an
electric energy facility to its operation and eventual decommissioning.

Meanwhile, the key weaknesses were identified as follows:

1) non-guaranteed availability of domain-specific data for real-time
decision-making;

2) lack of security guardrails;

3) poor adaptability to surrounding physical processes;

4) potential vulnerability to cyberattacks.

In 2024, the National Institute of Standards and Technology
(NIST) introduced the Artificial Intelligence (AI) Risk Management
Framework: Generative Al Profile [5]. While this issue is in the
carly stage of development, LLMs are considered a subclass of
generative Al (hereinafter—GenAl), capable only of reproduction and
limited extrapolation of information presented in text, without deep
understanding of the principles that underlie such text generation [7],
and if such a premise is accepted then the risks associated with GenAl
are also inherent to LLMs. GenAl-related risks then differ from those
associated with traditional software, may exacerbate these risks, and
may be unique and multidimensional:

1) Stage dimension: may arise during design,
deployment, operation, or decommissioning;

2) Scope dimension: can exist at the level of a specific model or system,
at the implementation or deployment level, or at the environmental
level—beyond a single system or organizational context;

3) Source dimension: may stem from factors such as GenAl
architecture, training methodology, operator training, or model
usage, whereas the most significant ones are often related to human
factors and the human-AlI interaction.

development,

Challenges in risk assessment are exacerbated by the lack
of access to the training data used for a given Al model and by the
immature state of science regarding the quantitative evaluation of Al
and its safety [5]. It becomes evident that a comprehensive risk analysis
must cover the full lifecycle—from the formulation of the task to the
deployment of the Al model in production.

The following categories of risks are identified as inherent to
GenAl (including LLMs) or amplified by its development and use [5]:

1) information on chemical, biological, radiological, and nuclear
(CBRN) weapons and their capabilities;

2) confabulation, i.e., generation of incorrect or fake content
(commonly referred to as “hallucination” or “fabrication”), which
can mislead or deceive users;

3) harmful, violent, or hateful content (i.e., easier generation and access
to violent, inflammatory, radicalizing, or threatening material,
including recommendations for self-harm or illegal activity, and
difficulty in controlling the public display of hateful, disparaging, or
stereotypical content);

4) data privacy (i.e., leakage, unauthorized use, disclosure, or de-
anonymization of biometric data, health information, location data,
or other personal data or confidential information).

Some of these risks appear to be more important than others.

When it comes to information on CBRN weapons, one must focus
on how Al acquires knowledge about such weapons in the first place.
From an “anatomical” standpoint, LLMs are stochastic generators that
produce output based largely on the probability of the next word or
sequence of words [1]. This means that an Al system that has never
encountered words about weapons in its training corpus of texts cannot
produce such information. In this context, a corpus refers to a body of
texts selected and processed according to certain rules [8].

Although confabulation (generation of factually incorrect
content) is a serious challenge for LLM developers and users [9-11],
Sui et al. [12] view it as an underexplored opportunity. However, in
the context of the energy sector, LLM confabulations are unacceptable
due to the risk of erroneous decisions based on “fabricated data,”
potentially leading to catastrophic consequences. While, following
the categorization, extrinsic hallucinations (which cannot be verified
from the source content but neither contradict nor are supported by
that) may well not be as problematic as intrinsic hallucinations (which
contradict the source content) [13], as well as factual contradiction
(factuality hallucination where a generated response is grounded
in real-world information but is contradictory), factual fabrication
(factuality hallucination where a generated response can not be verified
with real-world information), instruction inconsistency (faithfulness
hallucination where a generated response violates instructions given
in the prompt), context inconsistency (faithfulness hallucination where
a generated response drifts from the context given in the prompt), or
logical inconsistency where a generated response contains internal
reasoning contradictions that are logically flawed) [14]. In order to
mitigate this risk, it is advisable to use hallucination and confabulation
checkers.

As for the generation of harmful or hateful content, this is
considered a minor risk in the energy sector because the ability of highly
trained professionals in this high-tech field to ignore such content, as
well as strong corporate policies and industry standards. The risk can
also be effectively mitigated using sentiment analysis tools [15].

Data confidentiality is a critical issue—especially concerning
personal data and trade secrets. When classifying data, one must
also rely on the legal framework of the country considered. The data
confidentiality issue and addressing that are therefore sector and
jurisdiction dependent. An important consideration here though is the
access of Al to such confidential data during training, piloting, and
deployment to production, and proper oversight of LLM outputs is
crucial. While it is unlikely that pre-trained models contain personal
data as reference information, in the event of data leakage, liability will
most likely fall on experts who fine-tuned the model using such real-
world data or those who granted Al access thereto. The very idea of
training on personal data raises numerous questions, especially given
regional peculiarities such as naming conventions (surname, first name,
patronymic).

4. Methodology

The methodology proposed in this study is designed to address
the identified gap by providing a structured approach to assess the risks
of implementing LLMs in the energy sector. It is based on establishing
analytical techniques and considers both human and technological
factors.

The approach includes three main components:

1) Risk taxonomy development:
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a. Risks need to be grouped into two categories: human and
technological factors.

b. The taxonomy should cover the entire lifecycle of LLM
implementation.

2) Risk prioritization and evaluation:
a. Expert judgement and pairwise comparison are used to establish
weightings for different factors.
b. Structured decision-making technique(s), such as the analytical
hierarchy process (AHP), is applied to quantify the relative
importance of identified risks.

3) Analysis of graphical images using LLMs:

a. A series of experiments to process and digitize graphics materials
(e.g., drawings, illustrations, diagrams, charts) are conducted
using state-of-the-art generative Al tools.

b. The goal of this stage is to determine whether current LLMs
can reliably convert visual information into structured textual
representation.

c. The results of these experiments provide insight into the
limitations and risks of relying on LLMs for autonomous
representation of technical documents.

The combination of these steps—risk taxonomy, prioritization,
and empirical testing of LLMs—forms a comprehensive framework
for assessing the readiness and risks of applying LLMs in critical
infrastructure tasks. The introduced mathematical formalization is not
intended to constitute a predictive or empirically validated statistical
model of risk. Instead, it provides a normalized interpretive framework
that enables conceptual analysis of how risks evolve during the LLM
lifecycle.

4.1. Process of LLM implementation

Evidently, the risks associated with the use of LLMs in the energy
sector involve multiple factors and stakeholders. Let us visualize the
process of selecting, training, and operating an LLM, indicating on the
diagram a notional distribution of energy expenditures—both human
and computational resources.

Figure 1 illustrates the processes as follows:

1) Knowledge selection is the initial stage that involves choosing
a domain expert (or group of experts) and compiling the most

comprehensive possible text corpus, referred to here as the text
library [8]. The output of this stage is a corpus of texts for training
the model and a set of tests (questions and answers) to be used for
LLM validation.

2) Knowledge analysis is the second stage of LLM preparation, which
involves finding machine learning experts and familiarizing them
with the library. During this stage, the machine learning experts
must select those texts from the library that (in their opinion) are
most suitable for LLM training. Additionally, they choose the
neural network architecture, algorithms for transforming concepts
into vectors, and define the metric vector space used to calculate
semantic distances between concepts. It is critical to ensure that the
chosen distance function is a strict mathematical metric, satistfying
the axioms of identity, symmetry, and the triangle inequality. The
output of this phase is a correctly chosen model architecture.
At this stage, particular attention should be paid to the model’s
ability to interpret graphical content, such as diagrams, which are
prevalent in documentation within the energy sector overall and the
electric power sector particularly. A dedicated experiment on the
performance of modern Al models in handling schematic data is
discussed later in this article.

3) Model training is the stage when the machine learning expert defines
criteria for evaluating the success of the training and initiates the
actual training process. Model validation is performed using the
tests prepared by the domain expert during the knowledge selection
stage. This stage is iterative and continues until satisfactory results
are achieved in passing the tests, or until it is reasonably concluded
that an adequate model cannot be created given the development
objective and available validation data. A model that successfully
passes all validation tests, as defined by the domain expert, is
deemed ready for deployment.

4) Model operation stage includes two sub-stages: test deployment
and deployment to production. In both cases, the model generates
recommendations based on real-time data streams. These
recommendations are reviewed by the domain experts, who
determine whether the LLM is allowed to be used in production.

Note that Figure 1 intentionally omits the last two stages of the
Al model lifecycle: upgrade and decommission. Upgrade is essentially
the replacement of one model with another that offers better functional
or non-functional characteristics (e.g., faster inference time, lower
resource consumption). Decommissioning occurs either when the

Figure 1
Model of energy expenditures in the development and use of LLMs
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model is replaced by a more powerful version or when there is no
longer a need for the Al to solve the given problem.

Figure 1 shows the boundaries of the LLM development lifecycle
(from project initiation to deployment into production) and includes
two hypothetical lines: one representing constant normalized energy
expenditure (normalized unit or 100%) and the other representing
the notional distribution of energy expenditure between human and
technological contributions.

The concept of constant energy cost supports the idea that, at
the initial stages, most of the energy investment comes from humans
who recognize the need for an LLM, set the development goals, process
the text library, and prepare the training and validation datasets. The
slope of the human—machine energy investment line reflects significant
energy input from humans in the early stages.

With each subsequent stage, human energy input decreases, while
computational energy expenditure increases. If one closely examines

Figure 1, it becomes apparent that the amount of energy invested at
each stage correlates with specific risks that directly impact the success
of LLM development and deployment.

4.2. Risks classification

We will now analyze the potential risks at each stage as presented
in Table 1.

The risks and their classification presented in Table 1 reflect the
authors’ perspective and may be expanded or completely revised by
relevant departments within organizations in the sector.

The risks described in Table 1 logically form a hierarchy, in
which each stage of model preparation and operation can be treated
as a stage-specific risk, while the corresponding factors can be
interpreted as risk categories (i.e., technological risks and human
factors risks).

Table 1
Risks and mitigation measures in the implementation of LLMs

Factor Risk

Risk Mitigation Measures

Knowledge Selection Stage

Human Poor representativeness of knowledge in the text library
Low qualification of the domain expert (or expert group)
in the domain area

Technological  Inadequate digitization of knowledge or low quality of

digitization
Knowledge Analysis Stage

Human Insufficient representativeness of the corpus

Presence of personal data in the corpus
Presence of trade secrets in the corpus

Presence of confidential information in the corpus that
may appear in model outputs

Implementation of tests that fail to detect confabulations
or the leakage of confidential information which implicitly

presents in the corpus (e.g., metaphorically)

Insufficient competence of those responsible for selecting

the machine learning expert (or expert group)

Insufficient competence of the machine learning expert in

model architectures, selection, and training

Technological ~ Limited access to the text library

Limited tools for working with digitized texts

Model Training Stage

Human Compromised validation of the trained model (due to

limited resources or administrative pressure)

Invest in the development of the text library by adding texts from
the relevant and adjacent fields of knowledge

Collaborative selection of candidates from a broader list

Invest in high-quality digitization of texts from the relevant and
adjacent domains

This issue results, on one hand, from poor representativeness of
the library and, on the other, from excessive narrowing of the
corpus during expert analysis.

Invest in the text library and the preparation or selection of highly
qualified domain experts.

Implement control mechanisms for the selected text corpus
Implement control mechanisms for the selected text corpus

Confidential information (excluding personal data and trade
secrets) may be highly valuable for training the model. To reduce
the risk, it is recommended to implement both additional control
over the corpus and over the model’s outputs

Prepare or select highly qualified domain experts and train them
in Al prompt engineering

Engage top specialists in the relevant machine learning field
based on economic feasibility

Select a machine learning expert based on a theoretical interview
and a practical test task

Invest in secure infrastructure for the storage and processing of
digitized knowledge

Invest in high-quality tools for working with digitized texts (e.g.,
tools capable of identifying information that should be excluded
from training)

Strictly adhere to the model validation protocol using the test set
and ensuring independent oversight of the training process
Allocate sufficient resources

Prevent administrative pressure
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Table 1
(Continued)
Factor Risk Risk Mitigation Measures
Technological  Insufficient resources for high-quality model training Invest in appropriate hardware and sufficient time resources

Poorly prepared training infrastructure, causing frequent

training interruptions and restarts
Poor implementation of the model

Model Operation Stage
Human
security perspective
Unauthorized access to the working model

Unauthorized access to the model’s outputs

Poorly prepared infrastructure for model deployment

Delays in deployment due to bureaucratic procedures

Technological ~ Issues with hardware used for model operation

Weak cybersecurity, allowing attackers to disrupt

operation or reconfigure the model to produce incorrect

outputs

Lack of automated quality assurance of the model’s
performance

Use of data that is highly sensitive from an information

Invest in appropriate hardware and its configuration

Use only those implementations (libraries, software) that have
been time-tested and vetted by the ML community

Be aware and accept the risks associated with using the model for
analyzing sensitive data

Access control to the operational model via privilege
management

Access control to model outputs to ensure result preservation for
further use

Invest in appropriate hardware and its configuration

Exclude individuals or departments not directly involved in the
subject matter from the decision-making process

Invest in high-quality hardware and its proper configuration

Ensure robust cybersecurity for both the Al solution and the data
it uses to generate recommendations

Periodically execute validation tests during industrial operation to
monitor the model’s functionality and adequacy

Continuously monitor confabulations and hallucinations using
specialized tools [13] (approaches to hallucination prevention and
a taxonomy are discussed by Zhao [16])

Given this hierarchy, it is reasonable—by analogy with Li et al.
[17]—to apply AHP by Saaty [18] for building the risk assessment
methodology, as it aligns well with the study’s objectives.

Before proceeding to the practical part, let us formulate
a mathematical model for risk (energy) distribution during the
implementation of GenAl. The correlation between normalized risk
and normalized energy expenditure is hypothetical and based on the
assumption that avoiding energy expenditures results in zero risk.

In Figure 1, we show four stages of LLM implementation:
knowledge selection, knowledge analysis, model training, and model
operation.

Assuming each stage is indivisible, we define the length of each
stage as a unit of 1. This means that for any stage, 0 represents the
beginning and 1 represents its full completion. With this, we normalize
the duration of each stage to percentages or fractions, ignoring the
actual time required for completion. As a result, the domain of the risk
distribution function f{7) can be defined as D(f{?)), t€[0;4].

With this definition, it becomes easy to interpret both the stage
and its degree of completion:

1) The completed stage index is calculated as 7+ 1, where + denotes the
floor (integer-division) operation.

2) The completion share of the current stage is calculated as ¢ mod 1,
where mod denotes the modulus (remainder) operation.

For example, ¢ = 3,25 means the third stage is completed, and the
fourth stage is 25% done.

For interpretive convenience, let us assume the area of the
rectangle in Figure 1 (bounded by the start of the knowledge selection
stage, the end of GenAl deployment, the time axis, and the constant
energy line) is normalized to 1.

This implies the rectangle formed by the time axis, energy axis,
the endpoint of the final stage, and the start of the first stage (marked
with bold lines) has an area equal to 1.

We formally define the energy or risk distribution function f{¢)
as D(f(1)), t € [0;4], 0 < AH) <1 with 0 < jo(/m) At < 1. This formal
definition gives the energy or risk distribution function a probability
density function—Ilike nature over the defined domain.

Such a formalization of risk f{¢) is a convenient and effective tool
for:

1) setting expected risk distributions,
2) approximating observed risks,
3) assessing the level of unexpected risk.

Let f; (¢) represent the function of expected risk distribution, and
/f, (9) the function of observed risk distribution.
We introduce a binary function:
a—>b, if(a—b)>0
d(a,b) =
(a,6) { 0, if(a—b)<0

Apositive value of d(f; (¢), f, (¢)) indicates observed technological
risks exceeded expectations.

Similarly, a negative d(f, (¢), f, (¢)) indicates human-related risks
were underestimated.

The case d(f, (1), f, (1)) = d(f, (¢), f, (£)) = 0 corresponds to fully
aligned observation and expectation £, (£) =1, (¢).

4.3. GenAl-aided analysis of graphical images

Even before LLMs acquired multimodal capabilities, they
demonstrated prerequisites for exploring images effectively. When
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the content of a highly specialized energy sector related illustration
was literally reproduced in text, a GenAl tool was able to extract the
very essence of what was depicted in the illustration [19]. Following
significant advancements in the image-to-text techniques overall [20]
and the emergence of multimodality in particular [21], LLMs have
expanded translations from image to text, become affordable, moved
closer to end users, and found their application far beyond the computer
science domain, including the spheres where health and life are at stake
[3,22,23]. While LLMs do demonstrate significant progress in accuracy
[23, 24] and multilinguality [25], it seems more important to explore
their effectiveness in analyzing images at the intersection of an arbitrary
domain, a non-English environment, and under real-world conditions.
A dedicated experiment in handling schematic images related to the
energy sector in the Ukrainian language from the standpoint of an end
user appears to address the issue in focus.

The readiness of LLMs to accurately digitize graphical images
can be examined by means of GenAl. More specifically, the focus is on
the suitability of such models, given the state-of-the-art technology, to
process visually represented materials (drawings, illustrations, schemas,
diagrams, charts, etc.) and convert them into textual representations,
which can be examined by conducting experiments on processing a
graphic image using various GenAl tools.

Figure 1 was selected as a hypothetical graphic image to compare
human understanding, based on this article and the outputs generated by
the mentioned tools. Since this study was contextualized on the electric
power sector of Ukraine, the labels in Figure 1 are in Ukrainian as in
the Ukrainian electric power sector drawings, schemas, diagrams and
other visually represented materials in documentation. However, we
expect the study’s findings to be applicable to the energy sector beyond
Ukraine.

The GenAl tools used in the experiment are publicly accessible
and thus suitable for evaluation outside the controlled laboratory
conditions:

1) Google Gemini using 2.5 Flash (preview) and 2.5 Pro (preview)
2) OpenAl ChatGPT using GPT-40 and 04-mini

3) Microsoft Edge Copilot using the Think Deeper parameter

4) xAI Grok using the DeepSearch parameter

5) Perplexity Al using the Research parameter

The GPT-4.1-mini model for OpenAl ChatGPT was excluded
due to declared availability but practical inaccessibility. The Quick
response parameter for Microsoft Edge Copilot was not used, as it
simply reproduces the image without following instructions. The
Search parameter for Perplexity Al was excluded since it behaves
more like a search engine. The DeepSearch parameter for xAI Grok
was excluded despite producing quality results because the time to first
token exceeded 61 minutes, making it unsuitable for categorization as
a widely accessible tool.

Likewise, the supposed availability of Anthropic Claude could
not be confirmed, as usage attempts failed due to user resource limits
being exceeded.

As prompts, we use four natural language instructions in
Ukrainian that can be translated as follows:

1) “Describe the content of the given material”

2) “Interpret the content of the given material”

3) “You are an expert in software-hardware implementation, describe
the content of the given material”

4) “You are an expert in software-hardware implementation, interpret
the content of the given material”

This variety was chosen to minimize the potential sensitivity of
LLMs to specific wording and to simulate real-world conditions, where
an average user may not possess prompt engineering expertise.

5. Results

The area containing the elements of the model preparation process
in Figure 1 is enclosed within a rectangle, and we impose the condition
that the area of this rectangle equals 1. We assume that probability has
a geometric interpretation as area.

A line dividing the rectangle diagonally (from the bottom-left
corner to the top-right) serves as the boundary between risks associated
with technological factors and those related to human factors. This
division aligns with the principle of maximum entropy, assuming equal
probability for both categories of factors. The probability distribution
between these factors was treated as hypothetical.

5.1. Risk analysis

In accordance with Saaty [18], we chose the comparison scale
shown in Table 2:

Table 2
Scale for pairwise comparison of risks according to the AHP
method
Intensity Definition Explanation
1 Equal importance Both activities contribute
equally to the objective
2 Weak or slight
Moderate importance Experience and judgment
slightly favor one activity
over another
4 Moderate plus
5 Strong importance Experience and judgment
clearly favor one activity
over another
Strong plus
Very strong or One activity is strongly
demonstrated importance  favored over another
8 Very, very strong
9 Extreme importance The evidence favoring

one activity over another
is of the highest possible
order of affirmation

To assess risks using the AHP method [18], we constructed
pairwise comparison matrices A = {a;;} for each level of the hierarchy
(stage/factor/risk), such that a;; = aj;.

We then computed the eigenvector

In
(H}Ll “zj)
Wi = ————— 1.
Iy (Hj:l ‘lki)
h . . 1 A _ 1 n (Aw);
the maximum €igenvalue miz —1g Eizl w0’

the consistency index CI = “2e==,

and the consistency ratio CR = % for each comparison matrix.

Here, n is the dimension of the matrix, and R/ is the random
consistency index for a given matrix size.

The AHP comparison matrices used in this study illustrate the
methodology rather than represent an industry-wide consensus. The
weightings reflect the assessment of the authors based on synthesized
findings from the literature and domain knowledge. The approach was
designed so that organizations in the energy sector can substitute their
own expert judgements and derive project-specific weightings. To



Artificial Intelligence and Applications \Vol. 00

Iss. 00 2026

Table 3
Pairwise comparison matrix of risks for LLM implementation stages

Knowledge selection Knowledge analysis Model training  Model operation  Normalized weight
Knowledge selection 1 1/2 2 3 0.31
Knowledge analysis 2 1 2 4 0.42
Model training 172 172 1 4 0.19
Model operation 173 1/4 1/4 1 0.08

Note: consistency index: CR = 0.049

illustrate, we present several constructed comparison matrices along
with their respective consistency indices (Table 3)'.

As an example, we also present the pairwise comparison tables
for human factor risks during the knowledge analysis stage (Table 4)
and technological factor risks during the model training stage (Table 5).

Table 4
Pairwise comparison matrix of human factor risks for the
knowledge analysis stage

Normalized
R2.1.1 R2.1.2 R2.1.3 R2.1.4 R2.1.5 R2.1.6 R2.1.7 Weight
R, , 1 7 3 3 s 19 177 0.08
R,,, /7 1 2 s 19 19 177 0.02
R, , 173 2 1 V3 17 15 173 0.04
R, , 173 5 3 1 s 13 12 0.08
R, 5 9 7 5 1 1 2 0.31
R, 9 9 5 3 1 1 1 0.27
R,, ., 7 7 3 2 12 1 1 0.20

Note: consistency index: CR = 0.097
Here,

) R
2) R

is poor representativeness of the corpus

is presence of personal data in the corpus

3) R, . is presence of trade secrets in the corpus

4) R, , is presence of confidential information in the corpus that may
appear in the model output

5) R, . is test design that fails to detect confabulations or implicit

2.1.1
2.1.2

2.1.3

2.1.5
disclosure of confidential information (e.g., metaphorically)
6) R, is insufficient competence of those selecting the machine

learning expert (or expert group)
7) R, is insufficient competence of the machine learning expert in
model architectures, selection, and training

Table 5
Pairwise comparison matrix of technological factor risks for the
model training stage

Normalized
Ry Ry R;,, weight
R,,, 1 1/5 1/7 0,08
R, 5 1 1 0,44
Riss 7 1 1 0,49

Note: consistency index: CR =0.012

Here,

1) R,,, is insufficient resources for high-quality model training

! The full list of matrices and coefficients calculation according to T. Saaty method is available
at the following link: https:/github.com/oleksandrkravchukatpimee/LLM-risks-evaluation/
blob/3443a610d9b219a9f8db52b280f2f4fb247525¢c1/AHP.xIsx

2) R,,, is poorly prepared training infrastructure leading to frequent
failures and the need to restart training

3) R,,, is poor implementation of the model

The pairwise comparison procedure assumes a panel of 3—5 domain
experts from the energy sector and 1-2 machine learning specialists,
consistent with typical AHP applications in critical infrastructure studies.
Experts should be selected based on (1) domain knowledge, (2) familiarity
with Al-assisted systems, and (3) absence of conflicts of interest. In this
conceptual study, the authors provide a reference comparison matrix to
demonstrate the methodology; however, the framework was designed to
be applied using experts internal to sector organizations.

Thus, coefficients in the resulting pairwise comparison tables were
selected at the authors’ discretion, based on personal experience and logical
reasoning. In addition, all matrices were mutually consistent (each matrix
had a consistency ratio CR < 0.1). The local normalized risk weights were
obtained for each level of the hierarchy. The global weights are computed
by multiplying the weight of the stage, factor, and specific risk:

Walobal = Wstage X Wfactor X Wrisks-

The risk impact was “high” if w; > 0,15; “medium” if 0,05 < w;
<0,15; and “low” if w; < 0,05. Table 6 shows a summary of risks with
high and medium levels of impact.

Table 6
Risks with high and medium levels of impact

Stage Factor Risk Impact

Knowledge Human
selection

Poor representativeness of
knowledge in the texts’ library

Average

Low qualification of the
domain expert (or expert
group)

Test design that fails to
detect confabulations or

the implicit disclosure of
confidential information (e.g.,
metaphorically)

High

Knowledge Human
analysis

Average

Insufficient competence of
those selecting the machine
learning expert (or expert
group)

Insufficient competence of the Average
machine learning expert in

model architectures, selection,

and training

Average

Model
training

Technological Poorly prepared training
infrastructure, leading to
frequent failures and the need

to restart training

Average

Poor implementation of the
model

Average
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Table 7
Evaluation of processing a graphic image using GenAl tools (understanding and generation dimension)
Google Google xAl
Gemini Gemini OpenAl  OpenAl  Microsoft Grok Perplexity
2.5 Flash 2.5 Pro ChatGPT ChatGPT Edge Copilot Grok-3 Al
(preview) (preview) GPT-40 04-mini Think Deeper DeepSearch Research
Usability in terms of accessibility + +/- + +/- + + +/-
Usability in terms of free-tier reliability +/- +/- +/- +/- +/- +/- +/-
Understanding of textual elements + + + + + + +
Understanding of graphical elements +/- +/- +/- +/- +/- +/- +/-
Understanding of combined textual and +/- +/- +/- +/- +/- +/- +/-
graphical elements
Non-English text processing +/- + +
Comprehensive text generation + +/- +/-
Table 8
Evaluation of processing a graphic image using GenAl tools (extrinsic and intrinsic hallucinations dimension)
Google Google xAl
Gemini Gemini OpenAl OpenAl Microsoft Grok
2.5 Flash 2.5 Pro ChatGPT ChatGPT  Edge Copilot Grok-3 Perplexity Al
(preview) (preview) GPT-40 04-mini Think Deeper DeepSearch Research
Extrinsic hallucination + + + + + + +
Intrinsic hallucination - - - - - - -
Table 9
Evaluation of processing a graphic image using GenAl tools (factuality and faithfulness hallucination dimension)
Google Google XAl
Gemini Gemini OpenAl OpenAl Microsoft Grok
2.5 Flash 2.5 Pro ChatGPT ChatGPT  Edge Copilot Grok-3 Perplexity Al
(preview) (preview) GPT-40 04-mini Think Deeper DeepSearch Research
Factual contradiction +/- - - - - +/- -
Factual fabrication - - - - - - -
Instruction inconsistency +/- - - - - - -
Context inconsistency +/- +/- +/- +/- +/- +/- +/-

Logical inconsistency - - -

The results of the study indicate that the most significant factor
influencing the success of LLM implementation in the electric power
sector taking into account the risk level is the involvement of a qualified
domain expert (or group of experts). For the first two stages (knowledge
selection and knowledge analysis), the human factor had the greatest
impact, whereas the success of model training was heavily dependent
on the quality of the infrastructure and the implemented model, which
were components of the technological factor.

The presented analysis is illustrative and requires further
expansion to build a more accurate and detailed risk assessment model
for the implementation of LLMs in the electric power sector particularly
and the energy sector overall.

External expert data collection was not within the scope of
the study because it focuses purely on constructing a structured
methodology rather than producing organization-specific risk weights.

5.2. Analysis of graphic images using LLMs

In order to consider the readiness of LLMs to accurately digitize
graphic images, we conducted a series of experiments on processing a
graphical image using GenAl tools.

Each prompt alternative (4 in total) was tested with each
GenAl tool (7 in total), using the same file of Figure 1 (originally
in Ukrainian). The obtained results’ allowed us to evaluate
such processing (Table 7, Table 8 [13], and Table 9 [14]) and
comment on the readiness of LLMs for graphic digitization in the
following way.

In general, the outputs across all the GenAl tools were comparable,
although results from Microsoft Edge Copilot (Think Deeper) and xAl
Grok (DeepSearch) were consistently less comprehensive; the latter
also exhibited errors at the language-level errors.

All prompts were conducted in Ukrainian, and results were
obtained in Ukrainian as well (i.e., there was no need to use translation
tools).

Exceptions were two cases when using Google Gemini 2.5 Flash
(preview), where results were returned in English (in both cases the
prompt contained the word “inTepnperyit”—which may have triggered
English word “interpret”, which has “translate” as an alternative
meaning).

> The set of experimental data of graphic digitization using the state-of-the-art language models
where images are described textually is available at the following link: https://gist.github.com/
taranowskiatpimee/174973d140a84da2b5¢c3b365a34f949¢
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This highlights an issue of true accessibility of GenAl tools to
general users.

Access under free-tier resource-limited conditions—where
computational resources are redistributed in favor of paid-tier users—
excludes such tools from being widely available, and together with
output unpredictability under such conditions makes these tools
unreliable for expected outcomes.

Similarly, limited query counts in Gemini 2.5 Pro (preview),
OpenAl o4-mini, and Perplexity Al Research mode also further limit
usability of these tools.

Regarding the textual rendering of the graphical content, most
responses listed key elements of the diagram, but not exhaustively, and
omissions were not explained.

While the image was incorrectly interpreted as a chart with
labeled “stages” and “actors and resources,” which was not the case.

Indeed, textual descriptions mentioned the overall process of
the LLM implementation, including knowledge selection, analysis,
model training, and model operation, as well as the participants
involved and resources utilized. However, even when the omitted
stages of the lifecycle were mentioned, there was no explanation for
their omission.

It is not uncommon that, across different prompt alternatives
and different GenAl tools used, the model training stage was involved
in the selection, design, or development of the model architecture,
although the diagram only references the model, with architecture
as an element without any specification as to when it is selected or
developed.

Some critical elements of the diagram received insufficient
attention: the lines that formed the rectangle with the diagonal line
and the labels “constant energy expenditure,” “human factor.” and
“technological factor”.

There is simply no holistic interpretation of these as a reallocation
of effort between human and technological resources under constant
energy expenditure throughout the whole process. This is exactly the
case where what’s not mentioned is much more important than what
is. Indeed, where “You are an expert... interpret the content...” prompt
alternative is used, some output contains fragments like:

1) “Human/Technological factor (diagonally right)—shows the
balance between human impact (in early stages) and technological
impact (in later stages)”

2) “the upper line labeled ‘constant energy expenditure’ can be
interpreted not literally as electricity, but as steady effort, resources
(including financial, human, temporal ones), and attention required
throughout the whole lifecycle of the project”

However, this is the case only for prompt alternative 4 and only
for 2 of the 7 GenAl tools—and notably, not the same tools, each
providing just one of the two relevant insights.

The curly braces on the diagram that group elements within
a stage and indicate which element they jointly contribute to in
the next stage are ignored completely. The only exception was a
correct partial interpretation by Al Grok used with the DeepSearch
parameter under the prompt “Describe the content...”. Yet, even
here, not all the curly braces relationships were properly covered.
This is the case just for 1 prompt alternative out of 4, and just for 1
GenAl tools of 7.

Thus, to use a well-known expression: LLMs not only miss the
forest for the trees — they do not even see all the trees. The readiness
of modern models to accurately digitize graphical images can be
considered relative at best. This highlights a risk when applying LLMs
in the energy sector, particularly regarding their ability to perform

proper analysis of graphic images, with schemas and diagrams being an
essential part of regulations and technical documentation in this field.

The conducted analysis has shown the dominant impact of
the human factor within the early stages (knowledge selection and
preparation) and the dominant impact of the technological factor within
the later stages (implementation and operation).

The proposed taxonomy of risks proved effective for representing
the main categories of challenges. The mathematical modeling of
energy expenditure added an additional dimension to risk evaluation,
supporting a more comprehensive assessment.

Empirical experiments with generative Al systems demonstrated
that modern LLMs are not yet ready for fully autonomous analysis of
graphical technical documentation. These limitations in interpreting
complex diagrams, structures, and logical relationships indicate a high
risk of using LLMs without human oversight in critical domains where
accuracy and contextual understanding are essential.

6. Conclusion

This study proposes a method for assessing the implementation
of LLMs for tasks related to the functioning of critical infrastructure in
the electric power sector. The findings highlight both the potential of
applying LLMs in the energy sector and several limitations that must be
considered during the development, validation, and deployment of such
solutions in practice.

The presented methodology lays the groundwork for a systematic
approach to risk management during the implementation of LLMs,
but the current version of the model remains illustrative and requires
further refinement to improve its accuracy. Future work should address
the identified challenges, especially in the limitations of LLMs in
processing graphical documentation.

A practical point of intervention for policymakers is to define
the conditions under which LLMs may be used in the energy sector,
including risk level categories (from unacceptable to minimal) and
the required degree of human oversight. Once such a regulatory
framework is established, energy companies and other stakeholders
can determine how to implement LLMs by developing internal policies
and industry standards; the methodology proposed in this paper can
serve as an initial template that organizations may refine to address
context-specific risks.

The identified limitations in processing graphical technical
documentation indicate a clear direction for further work by energy-
sector organizations: focusing on real documentation containing sector-
specific graphical content, fine-tuning LLMs on such data, and expanding
evaluation procedures through domain-expert review, automated
metrics, and consistency checks across repeated queries.
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