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Abstract: This study explored the key aspects and risks associated with the implementation of large language models (LLMs) in the electric power 
sector of Ukraine. We propose a unique taxonomy of risks, along with a hierarchical structure that enables their assessment using the analytic 
hierarchy process (AHP) developed by T. Saaty. The LLM lifecycle is described with a focus on both human and technological factors (from 
knowledge selection and training to operational deployment). The study addresses critical concerns related to confabulations, sensitive information 
leakage, compliance with personal data protection regulations, and the safeguarding of trade secrets. The paper highlights the importance of 
employing tools for hallucination detection, sentiment analysis, and legal compliance monitoring. A separate section presents an in-depth analysis 
of LLMs’ readiness to accurately digitize graphical content—such as schematics, diagrams, and technical drawings, which are common for 
documentation in the energy sector worldwide. A series of experiments using the state-of-the-art generative AI systems revealed significant 
limitations in interpreting complex diagrams, logical structures, and semantic relationships between elements. The findings demonstrate both the 
potential and the critical limitations of LLMs in energy-related applications, particularly in processing graphical content, making decisions based 
on synthetic data, and managing risks associated with model training, operation, and upgrades.
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1. Introduction
Large language models (LLMs) are predominantly generative 

artificial neural networks [1] built on a decoder-only transformer-based 
architecture. Because of their ability to process, interpret, and generate 
domain-specific technical information, LLMs are increasingly adopted 
across industries. Within the energy sector, LLMs are used for tasks 
such as forecasting and optimization, anomaly detection, predictive 
maintenance, cybersecurity assistance, operator decision support, 
and automation of reporting [2, 3]. This expanding applicability 
demonstrates the growing role of LLMs in supporting both operational 
and strategic processes in energy systems.

Recent publications highlight that LLM-based solutions can 
improve fault detection accuracy, enhance situational awareness, 
assist in early hazard identification, and reduce cognitive workload 
for personnel in energy enterprises [4]. However, despite these 
advancements, existing studies primarily focus on demonstrating 
the technical potential and performance improvements delivered by 
LLMs. High-level AI governance frameworks—such as the NIST 
AI Risk Management Framework [5] and the EU AI Act risk-based 
classification scheme [6]—provide general guidelines, but they do not 
offer quantitative, domain-specific methodologies tailored to assess the 
risks associated with LLM deployment in the energy sector.

A gap remains in the literature regarding structured and 
quantitative approaches to evaluating LLM-related risks within critical 
infrastructure environments. While several studies have highlighted 

the benefits and potential use cases, none provide a method for 
systematically identifying, categorizing, and prioritizing risks relevant 
to the unique operational, technological, and regulatory context of the 
energy sector.

2. Problem Statement
The absence of a tailored methodology introduces uncertainty 

for organizations considering the integration of LLMs into critical 
infrastructure. To address this gap, the present study develops a method 
for assessing the risks of implementing AI in the form of LLM at critical 
infrastructure facilities. The method is designed to satisfy the following 
key requirements:

1)  adaptability of the methodology to the needs of specific industry 
organization;

2)  transparency, visual clarity, representativeness, and the ability to 
clearly communicate the results;

3)  reliance on established and validated analytical methods.

To guide the development of the method, the study examines the 
following questions:

1)  Which human- and technology-related risks are most relevant to the 
implementation of LLMs in the energy sector?

2)  How can these risks be systematically identified, categorized, and 
prioritized using established analytical techniques?

3)  How can the assessment methodology remain rigorous while still 
being adaptable to different organizational contexts?

4)  What limitations do current LLMs exhibit when processing graphical 
technical documentation?
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3. Background
Majumder et al. [2] highlighted in their recent study the significant 

potential of using LLMs to solve a wide range of problems in the energy 
sector and identified the following key applications:

1)  detecting defects in generation and/or distribution network 
components based on video or photo analysis;

2)  performing correlation analysis and forecasting of time series data 
using fine-tuned neural networks (e.g., predicting network load, 
equipment failures due to service life);

3)  assessing the risk of external (e.g., wildfires, hurricanes, earthquakes, 
tsunamis) and internal (e.g. employee strikes, insider fraud) factors 
that may hinder or make electricity generation or distribution 
impossible;

4)  analyzing documents at all stages—from the construction of an 
electric energy facility to its operation and eventual decommissioning.

Meanwhile, the key weaknesses were identified as follows:

1)  non-guaranteed availability of domain-specific data for real-time 
decision-making;

2)  lack of security guardrails;
3)  poor adaptability to surrounding physical processes;
4)  potential vulnerability to cyberattacks.

In 2024, the National Institute of Standards and Technology 
(NIST) introduced the Artificial Intelligence (AI) Risk Management 
Framework: Generative AI Profile [5]. While this issue is in the 
early stage of development, LLMs are considered a subclass of 
generative AI (hereinafter—GenAI), capable only of reproduction and 
limited extrapolation of information presented in text, without deep 
understanding of the principles that underlie such text generation [7], 
and if such a premise is accepted then the risks associated with GenAI 
are also inherent to LLMs. GenAI-related risks then differ from those 
associated with traditional software, may exacerbate these risks, and 
may be unique and multidimensional:

1)  Stage dimension: may arise during design, development, 
deployment, operation, or decommissioning;

2)  Scope dimension: can exist at the level of a specific model or system, 
at the implementation or deployment level, or at the environmental 
level—beyond a single system or organizational context;

3)  Source dimension: may stem from factors such as GenAI 
architecture, training methodology, operator training, or model 
usage, whereas the most significant ones are often related to human 
factors and the human-AI interaction.

Challenges in risk assessment are exacerbated by the lack 
of access to the training data used for a given AI model and by the 
immature state of science regarding the quantitative evaluation of AI 
and its safety [5]. It becomes evident that a comprehensive risk analysis 
must cover the full lifecycle—from the formulation of the task to the 
deployment of the AI model in production.

The following categories of risks are identified as inherent to 
GenAI (including LLMs) or amplified by its development and use [5]:

1)  information on chemical, biological, radiological, and nuclear 
(CBRN) weapons and their capabilities;

2)  confabulation, i.e., generation of incorrect or fake content 
(commonly referred to as “hallucination” or “fabrication”), which 
can mislead or deceive users;

3)  harmful, violent, or hateful content (i.e., easier generation and access 
to violent, inflammatory, radicalizing, or threatening material, 
including recommendations for self-harm or illegal activity, and 
difficulty in controlling the public display of hateful, disparaging, or 
stereotypical content);

4)  data privacy (i.e., leakage, unauthorized use, disclosure, or de-
anonymization of biometric data, health information, location data, 
or other personal data or confidential information).

Some of these risks appear to be more important than others.
When it comes to information on CBRN weapons, one must focus 

on how AI acquires knowledge about such weapons in the first place. 
From an “anatomical” standpoint, LLMs are stochastic generators that 
produce output based largely on the probability of the next word or 
sequence of words [1]. This means that an AI system that has never 
encountered words about weapons in its training corpus of texts cannot 
produce such information. In this context, a corpus refers to a body of 
texts selected and processed according to certain rules [8].

Although confabulation (generation of factually incorrect 
content) is a serious challenge for LLM developers and users [9–11], 
Sui et al. [12] view it as an underexplored opportunity. However, in 
the context of the energy sector, LLM confabulations are unacceptable 
due to the risk of erroneous decisions based on “fabricated data,” 
potentially leading to catastrophic consequences. While, following 
the categorization, extrinsic hallucinations (which cannot be verified 
from the source content but neither contradict nor are supported by 
that) may well not be as problematic as intrinsic hallucinations (which 
contradict the source content) [13], as well as factual contradiction 
(factuality hallucination where a generated response is grounded 
in real-world information but is contradictory), factual fabrication 
(factuality hallucination where a generated response can not be verified 
with real-world information), instruction inconsistency (faithfulness 
hallucination where a generated response violates instructions given 
in the prompt), context inconsistency (faithfulness hallucination where 
a generated response drifts from the context given in the prompt), or 
logical inconsistency where a generated response contains internal 
reasoning contradictions that are logically flawed) [14]. In order to 
mitigate this risk, it is advisable to use hallucination and confabulation 
checkers.

As for the generation of harmful or hateful content, this is 
considered a minor risk in the energy sector because the ability of highly 
trained professionals in this high-tech field to ignore such content, as 
well as strong corporate policies and industry standards. The risk can 
also be effectively mitigated using sentiment analysis tools [15].

Data confidentiality is a critical issue—especially concerning 
personal data and trade secrets. When classifying data, one must 
also rely on the legal framework of the country considered. The data 
confidentiality issue and addressing that are therefore sector and 
jurisdiction dependent. An important consideration here though is the 
access of AI to such confidential data during training, piloting, and 
deployment to production, and proper oversight of LLM outputs is 
crucial. While it is unlikely that pre-trained models contain personal 
data as reference information, in the event of data leakage, liability will 
most likely fall on experts who fine-tuned the model using such real-
world data or those who granted AI access thereto. The very idea of 
training on personal data raises numerous questions, especially given 
regional peculiarities such as naming conventions (surname, first name, 
patronymic).

4. Methodology
The methodology proposed in this study is designed to address 

the identified gap by providing a structured approach to assess the risks 
of implementing LLMs in the energy sector. It is based on establishing 
analytical techniques and considers both human and technological 
factors.

The approach includes three main components:

1)  Risk taxonomy development:
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a.  Risks need to be grouped into two categories: human and 
technological factors.

b.  The taxonomy should cover the entire lifecycle of LLM 
implementation.

2)  Risk prioritization and evaluation:
a.  Expert judgement and pairwise comparison are used to establish 

weightings for different factors.
b.  Structured decision-making technique(s), such as the analytical 

hierarchy process (AHP), is applied to quantify the relative 
importance of identified risks.

3)  Analysis of graphical images using LLMs:
a.  A series of experiments to process and digitize graphics materials 

(e.g., drawings, illustrations, diagrams, charts) are conducted 
using state-of-the-art generative AI tools.

b.  The goal of this stage is to determine whether current LLMs 
can reliably convert visual information into structured textual 
representation.

c.  The results of these experiments provide insight into the 
limitations and risks of relying on LLMs for autonomous 
representation of technical documents.

The combination of these steps—risk taxonomy, prioritization, 
and empirical testing of LLMs—forms a comprehensive framework 
for assessing the readiness and risks of applying LLMs in critical 
infrastructure tasks. The introduced mathematical formalization is not 
intended to constitute a predictive or empirically validated statistical 
model of risk. Instead, it provides a normalized interpretive framework 
that enables conceptual analysis of how risks evolve during the LLM 
lifecycle.

4.1. Process of LLM implementation
Evidently, the risks associated with the use of LLMs in the energy 

sector involve multiple factors and stakeholders. Let us visualize the 
process of selecting, training, and operating an LLM, indicating on the 
diagram a notional distribution of energy expenditures—both human 
and computational resources.

Figure 1 illustrates the processes as follows:

1)  Knowledge selection is the initial stage that involves choosing 
a domain expert (or group of experts) and compiling the most 

comprehensive possible text corpus, referred to here as the text 
library [8]. The output of this stage is a corpus of texts for training 
the model and a set of tests (questions and answers) to be used for 
LLM validation.

2)  Knowledge analysis is the second stage of LLM preparation, which 
involves finding machine learning experts and familiarizing them 
with the library. During this stage, the machine learning experts 
must select those texts from the library that (in their opinion) are 
most suitable for LLM training. Additionally, they choose the 
neural network architecture, algorithms for transforming concepts 
into vectors, and define the metric vector space used to calculate 
semantic distances between concepts. It is critical to ensure that the 
chosen distance function is a strict mathematical metric, satisfying 
the axioms of identity, symmetry, and the triangle inequality. The 
output of this phase is a correctly chosen model architecture. 
At this stage, particular attention should be paid to the model’s 
ability to interpret graphical content, such as diagrams, which are 
prevalent in documentation within the energy sector overall and the 
electric power sector particularly. A dedicated experiment on the 
performance of modern AI models in handling schematic data is 
discussed later in this article.

3)  Model training is the stage when the machine learning expert defines 
criteria for evaluating the success of the training and initiates the 
actual training process. Model validation is performed using the 
tests prepared by the domain expert during the knowledge selection 
stage. This stage is iterative and continues until satisfactory results 
are achieved in passing the tests, or until it is reasonably concluded 
that an adequate model cannot be created given the development 
objective and available validation data. A model that successfully 
passes all validation tests, as defined by the domain expert, is 
deemed ready for deployment.

4)  Model operation stage includes two sub-stages: test deployment 
and deployment to production. In both cases, the model generates 
recommendations based on real-time data streams. These 
recommendations are reviewed by the domain experts, who 
determine whether the LLM is allowed to be used in production.

Note that Figure 1 intentionally omits the last two stages of the 
AI model lifecycle: upgrade and decommission. Upgrade is essentially 
the replacement of one model with another that offers better functional 
or non-functional characteristics (e.g., faster inference time, lower 
resource consumption). Decommissioning occurs either when the 

3
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model is replaced by a more powerful version or when there is no 
longer a need for the AI to solve the given problem.

Figure 1 shows the boundaries of the LLM development lifecycle 
(from project initiation to deployment into production) and includes 
two hypothetical lines: one representing constant normalized energy 
expenditure (normalized unit or 100%) and the other representing 
the notional distribution of energy expenditure between human and 
technological contributions.

The concept of constant energy cost supports the idea that, at 
the initial stages, most of the energy investment comes from humans 
who recognize the need for an LLM, set the development goals, process 
the text library, and prepare the training and validation datasets. The 
slope of the human–machine energy investment line reflects significant 
energy input from humans in the early stages.

With each subsequent stage, human energy input decreases, while 
computational energy expenditure increases. If one closely examines 

Figure 1, it becomes apparent that the amount of energy invested at 
each stage correlates with specific risks that directly impact the success 
of LLM development and deployment.

4.2. Risks classification
We will now analyze the potential risks at each stage as presented 

in Table 1.
The risks and their classification presented in Table 1 reflect the 

authors’ perspective and may be expanded or completely revised by 
relevant departments within organizations in the sector.

The risks described in Table 1 logically form a hierarchy, in 
which each stage of model preparation and operation can be treated 
as a stage-specific risk, while the corresponding factors can be 
interpreted as risk categories (i.e., technological risks and human 
factors risks).

4

Factor Risk Risk Mitigation Measures
Knowledge Selection Stage
Human Poor representativeness of knowledge in the text library Invest in the development of the text library by adding texts from 

the relevant and adjacent fields of knowledge
Low qualification of the domain expert (or expert group) 
in the domain area

Collaborative selection of candidates from a broader list

Technological Inadequate digitization of knowledge or low quality of 
digitization

Invest in high-quality digitization of texts from the relevant and 
adjacent domains

Knowledge Analysis Stage
Human Insufficient representativeness of the corpus This issue results, on one hand, from poor representativeness of 

the library and, on the other, from excessive narrowing of the 
corpus during expert analysis.

Invest in the text library and the preparation or selection of highly 
qualified domain experts.

Presence of personal data in the corpus Implement control mechanisms for the selected text corpus
Presence of trade secrets in the corpus Implement control mechanisms for the selected text corpus
Presence of confidential information in the corpus that 
may appear in model outputs

Confidential information (excluding personal data and trade 
secrets) may be highly valuable for training the model. To reduce 
the risk, it is recommended to implement both additional control 
over the corpus and over the model’s outputs

Implementation of tests that fail to detect confabulations 
or the leakage of confidential information which implicitly 
presents in the corpus (e.g., metaphorically)

Prepare or select highly qualified domain experts and train them 
in AI prompt engineering

Insufficient competence of those responsible for selecting 
the machine learning expert (or expert group)

Engage top specialists in the relevant machine learning field 
based on economic feasibility

Insufficient competence of the machine learning expert in 
model architectures, selection, and training

Select a machine learning expert based on a theoretical interview 
and a practical test task

Technological Limited access to the text library Invest in secure infrastructure for the storage and processing of 
digitized knowledge

Limited tools for working with digitized texts Invest in high-quality tools for working with digitized texts (e.g., 
tools capable of identifying information that should be excluded 
from training)

Model Training Stage
Human Compromised validation of the trained model (due to 

limited resources or administrative pressure)
Strictly adhere to the model validation protocol using the test set 
and ensuring independent oversight of the training process
Allocate sufficient resources
Prevent administrative pressure

Table 1
Risks and mitigation measures in the implementation of LLMs
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Given this hierarchy, it is reasonable—by analogy with Li et al. 
[17]—to apply AHP by Saaty [18] for building the risk assessment 
methodology, as it aligns well with the study’s objectives.

Before proceeding to the practical part, let us formulate 
a mathematical model for risk (energy) distribution during the 
implementation of GenAI. The correlation between normalized risk 
and normalized energy expenditure is hypothetical and based on the 
assumption that avoiding energy expenditures results in zero risk.

In Figure 1, we show four stages of LLM implementation: 
knowledge selection, knowledge analysis, model training, and model 
operation.

Assuming each stage is indivisible, we define the length of each 
stage as a unit of 1. This means that for any stage, 0 represents the 
beginning and 1 represents its full completion. With this, we normalize 
the duration of each stage to percentages or fractions, ignoring the 
actual time required for completion. As a result, the domain of the risk 
distribution function f(t) can be defined as D( f(t)), t∈[0;4].

With this definition, it becomes easy to interpret both the stage 
and its degree of completion:

1)  The completed stage index is calculated as t ÷ 1, where ÷ denotes the 
floor (integer-division) operation.

2)  The completion share of the current stage is calculated as t mod 1, 
where mod denotes the modulus (remainder) operation.

For example, t = 3,25 means the third stage is completed, and the 
fourth stage is 25% done.

For interpretive convenience, let us assume the area of the 
rectangle in Figure 1 (bounded by the start of the knowledge selection 
stage, the end of GenAI deployment, the time axis, and the constant 
energy line) is normalized to 1.

This implies the rectangle formed by the time axis, energy axis, 
the endpoint of the final stage, and the start of the first stage (marked 
with bold lines) has an area equal to 1.

We formally define the energy or risk distribution function f(t) 
as D( f(t)), t ∈ [0;4], 0 ≤ f(t) ≤ 1 with 0 ≤ ∫D(f(t)) f(t) ≤ 1. This formal 
definition gives the energy or risk distribution function a probability 
density function—like nature over the defined domain.

Such a formalization of risk f(t) is a convenient and effective tool 
for:

1)  setting expected risk distributions,
2)  approximating observed risks,
3)  assessing the level of unexpected risk.

Let f0 (t) represent the function of expected risk distribution, and 
f1 (t) the function of observed risk distribution.

We introduce a binary function:

A positive value of d(f0 (t), f1 (t)) indicates observed technological 
risks exceeded expectations.

Similarly, a negative d(f1 (t), f0 (t)) indicates human-related risks 
were underestimated.

The case d(f0 (t), f1 (t)) = d(f1 (t), f0 (t)) = 0 corresponds to fully 
aligned observation and expectation f0 (t) = f1 (t).

4.3. GenAI-aided analysis of graphical images
Even before LLMs acquired multimodal capabilities, they 

demonstrated prerequisites for exploring images effectively. When 

5

Factor Risk Risk Mitigation Measures
Technological Insufficient resources for high-quality model training Invest in appropriate hardware and sufficient time resources

Poorly prepared training infrastructure, causing frequent 
training interruptions and restarts

Invest in appropriate hardware and its configuration

Poor implementation of the model Use only those implementations (libraries, software) that have 
been time-tested and vetted by the ML community

Model Operation Stage
Human Use of data that is highly sensitive from an information 

security perspective
Be aware and accept the risks associated with using the model for 
analyzing sensitive data

Unauthorized access to the working model Access control to the operational model via privilege 
management

Unauthorized access to the model’s outputs Access control to model outputs to ensure result preservation for 
further use

Poorly prepared infrastructure for model deployment Invest in appropriate hardware and its configuration
Delays in deployment due to bureaucratic procedures Exclude individuals or departments not directly involved in the 

subject matter from the decision-making process
Technological Issues with hardware used for model operation Invest in high-quality hardware and its proper configuration

Weak cybersecurity, allowing attackers to disrupt 
operation or reconfigure the model to produce incorrect 
outputs

Ensure robust cybersecurity for both the AI solution and the data 
it uses to generate recommendations

Lack of automated quality assurance of the model’s 
performance

Periodically execute validation tests during industrial operation to 
monitor the model’s functionality and adequacy
Continuously monitor confabulations and hallucinations using 
specialized tools [13] (approaches to hallucination prevention and 
a taxonomy are discussed by Zhao [16])

Table 1
(Continued)
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the content of a highly specialized energy sector related illustration 
was literally reproduced in text, a GenAI tool was able to extract the 
very essence of what was depicted in the illustration [19]. Following 
significant advancements in the image-to-text techniques overall [20] 
and the emergence of multimodality in particular [21], LLMs have 
expanded translations from image to text, become affordable, moved 
closer to end users, and found their application far beyond the computer 
science domain, including the spheres where health and life are at stake 
[3, 22, 23]. While LLMs do demonstrate significant progress in accuracy 
[23, 24] and multilinguality [25], it seems more important to explore 
their effectiveness in analyzing images at the intersection of an arbitrary 
domain, a non-English environment, and under real-world conditions. 
A dedicated experiment in handling schematic images related to the 
energy sector in the Ukrainian language from the standpoint of an end 
user appears to address the issue in focus.

The readiness of LLMs to accurately digitize graphical images 
can be examined by means of GenAI. More specifically, the focus is on 
the suitability of such models, given the state-of-the-art technology, to 
process visually represented materials (drawings, illustrations, schemas, 
diagrams, charts, etc.) and convert them into textual representations, 
which can be examined by conducting experiments on processing a 
graphic image using various GenAI tools.

Figure 1 was selected as a hypothetical graphic image to compare 
human understanding, based on this article and the outputs generated by 
the mentioned tools. Since this study was contextualized on the electric 
power sector of Ukraine, the labels in Figure 1 are in Ukrainian as in 
the Ukrainian electric power sector drawings, schemas, diagrams and 
other visually represented materials in documentation. However, we 
expect the study’s findings to be applicable to the energy sector beyond 
Ukraine.

The GenAI tools used in the experiment are publicly accessible 
and thus suitable for evaluation outside the controlled laboratory 
conditions: 

1)  Google Gemini using 2.5 Flash (preview) and 2.5 Pro (preview)
2)  OpenAI ChatGPT using GPT-4o and o4-mini
3)  Microsoft Edge Copilot using the Think Deeper parameter
4)  xAI Grok using the DeepSearch parameter
5)  Perplexity AI using the Research parameter

The GPT-4.1-mini model for OpenAI ChatGPT was excluded 
due to declared availability but practical inaccessibility. The Quick 
response parameter for Microsoft Edge Copilot was not used, as it 
simply reproduces the image without following instructions. The 
Search parameter for Perplexity AI was excluded since it behaves 
more like a search engine. The DeepSearch parameter for xAI Grok 
was excluded despite producing quality results because the time to first 
token exceeded 61 minutes, making it unsuitable for categorization as 
a widely accessible tool.

Likewise, the supposed availability of Anthropic Claude could 
not be confirmed, as usage attempts failed due to user resource limits 
being exceeded.

As prompts, we use four natural language instructions in 
Ukrainian that can be translated as follows:

1)  “Describe the content of the given material”
2)  “Interpret the content of the given material”
3)  “You are an expert in software-hardware implementation, describe 

the content of the given material”
4)  “You are an expert in software-hardware implementation, interpret 

the content of the given material”

This variety was chosen to minimize the potential sensitivity of 
LLMs to specific wording and to simulate real-world conditions, where 
an average user may not possess prompt engineering expertise.

5. Results
The area containing the elements of the model preparation process 

in Figure 1 is enclosed within a rectangle, and we impose the condition 
that the area of this rectangle equals 1. We assume that probability has 
a geometric interpretation as area.

A line dividing the rectangle diagonally (from the bottom-left 
corner to the top-right) serves as the boundary between risks associated 
with technological factors and those related to human factors. This 
division aligns with the principle of maximum entropy, assuming equal 
probability for both categories of factors. The probability distribution 
between these factors was treated as hypothetical.

5.1. Risk analysis
In accordance with Saaty [18], we chose the comparison scale 

shown in Table 2:

To assess risks using the AHP method [18], we constructed 
pairwise comparison matrices  for each level of the hierarchy 
(stage/factor/risk), such that .

We then computed the eigenvector

the maximum eigenvalue , 
the consistency index , 
and the consistency ratio  for each comparison matrix.
Here, n is the dimension of the matrix, and RI is the random 

consistency index for a given matrix size.
The AHP comparison matrices used in this study illustrate the 

methodology rather than represent an industry-wide consensus. The 
weightings reflect the assessment of the authors based on synthesized 
findings from the literature and domain knowledge. The approach was 
designed so that organizations in the energy sector can substitute their 
own expert judgements and derive project-specific weightings. To 

6

Intensity Definition Explanation
1 Equal importance Both activities contribute 

equally to the objective
2 Weak or slight
3 Moderate importance Experience and judgment 

slightly favor one activity 
over another

4 Moderate plus
5 Strong importance Experience and judgment 

clearly favor one activity 
over another

6 Strong plus
7 Very strong or 

demonstrated importance
One activity is strongly 
favored over another

8 Very, very strong
9 Extreme importance The evidence favoring 

one activity over another 
is of the highest possible 
order of affirmation

Table 2
Scale for pairwise comparison of risks according to the AHP 

method
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illustrate, we present several constructed comparison matrices along 
with their respective consistency indices (Table 3)1.

As an example, we also present the pairwise comparison tables 
for human factor risks during the knowledge analysis stage (Table 4) 
and technological factor risks during the model training stage (Table 5). 

Here,

1)  R2.1.1 is poor representativeness of the corpus
2)  R2.1.2 is presence of personal data in the corpus
3)  R2.1.3 is presence of trade secrets in the corpus
4)  R2.1.4 is presence of confidential information in the corpus that may 

appear in the model output
5)  R2.1.5 is test design that fails to detect confabulations or implicit 

disclosure of confidential information (e.g., metaphorically)
6)  R2.1.6 is insufficient competence of those selecting the machine 

learning expert (or expert group)
7)  R2.1.7 is insufficient competence of the machine learning expert in 

model architectures, selection, and training

Here,

1)  R3.2.1 is insufficient resources for high-quality model training

1  The full list of matrices and coefficients calculation according to T. Saaty method is available 
at the following link: https://github.com/oleksandrkravchukatpimee/LLM-risks-evaluation/
blob/3443a610d9b2f9a9f8db52b280f2f4fb247525c1/AHP.xlsx

2)  R3.2.2 is poorly prepared training infrastructure leading to frequent 
failures and the need to restart training

3)  R3.2.3 is poor implementation of the model

The pairwise comparison procedure assumes a panel of 3–5 domain 
experts from the energy sector and 1–2 machine learning specialists, 
consistent with typical AHP applications in critical infrastructure studies. 
Experts should be selected based on (1) domain knowledge, (2) familiarity 
with AI-assisted systems, and (3) absence of conflicts of interest. In this 
conceptual study, the authors provide a reference comparison matrix to 
demonstrate the methodology; however, the framework was designed to 
be applied using experts internal to sector organizations.

Thus, coefficients in the resulting pairwise comparison tables were 
selected at the authors’ discretion, based on personal experience and logical 
reasoning. In addition, all matrices were mutually consistent (each matrix 
had a consistency ratio CR < 0.1). The local normalized risk weights were 
obtained for each level of the hierarchy. The global weights are computed 
by multiplying the weight of the stage, factor, and specific risk: 

The risk impact was “high” if  > 0,15; “medium” if 0,05 < 
≤ 0,15; and “low” if  ≤ 0,05. Table 6 shows a summary of risks with 
high and medium levels of impact.
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Knowledge selection Knowledge analysis Model training Model operation Normalized weight
Knowledge selection 1 1/2 2 3 0.31
Knowledge analysis 2 1 2 4 0.42
Model training 1/2 1/2 1 4 0.19
Model operation 1/3 1/4 1/4 1 0.08

Note: consistency index: CR = 0.049

Table 3
Pairwise comparison matrix of risks for LLM implementation stages

R2.1.1 R2.1.2 R2.1.3 R2.1.4 R2.1.5 R2.1.6 R2.1.7

Normalized 
weight

R2.1.1 1 7 3 3 1/5 1/9 1/7 0.08
R2.1.2 1/7 1 1/2 1/5 1/9 1/9 1/7 0.02
R2.1.3 1/3 2 1 1/3 1/7 1/5 1/3 0.04
R2.1.4 1/3 5 3 1 1/5 1/3 1/2 0.08
R2.1.5 5 9 7 5 1 1 2 0.31
R2.1.6 9 9 5 3 1 1 1 0.27
R2.1.7 7 7 3 2 1/2 1 1 0.20
Note: consistency index: CR = 0.097

Table 4
Pairwise comparison matrix of human factor risks for the 

knowledge analysis stage

R3.2.1 R3.2.2 R3.2.3

Normalized 
weight

R3.2.1 1 1/5 1/7 0,08
R3.2.2 5 1 1 0,44
R3.2.3 7 1 1 0,49

Note: consistency index: CR = 0.012

Table 5
Pairwise comparison matrix of technological factor risks for the 

model training stage

Stage Factor Risk Impact
Knowledge 
selection

Human Poor representativeness of 
knowledge in the texts’ library

Average

Low qualification of the 
domain expert (or expert 
group)

High

Knowledge 
analysis

Human Test design that fails to 
detect confabulations or 
the implicit disclosure of 
confidential information (e.g., 
metaphorically)

Average

Insufficient competence of 
those selecting the machine 
learning expert (or expert 
group)

Average

Insufficient competence of the 
machine learning expert in 
model architectures, selection, 
and training

Average

Model 
training

Technological Poorly prepared training 
infrastructure, leading to 
frequent failures and the need 
to restart training

Average

Poor implementation of the 
model

Average

Table 6
Risks with high and medium levels of impact

https://github.com/oleksandrkravchukatpimee/LLM-risks-evaluation/blob/3443a610d9b2f9a9f8db52b280f2f4fb247525c1/AHP.xlsx
https://github.com/oleksandrkravchukatpimee/LLM-risks-evaluation/blob/3443a610d9b2f9a9f8db52b280f2f4fb247525c1/AHP.xlsx
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The results of the study indicate that the most significant factor 
influencing the success of LLM implementation in the electric power 
sector taking into account the risk level is the involvement of a qualified 
domain expert (or group of experts). For the first two stages (knowledge 
selection and knowledge analysis), the human factor had the greatest 
impact, whereas the success of model training was heavily dependent 
on the quality of the infrastructure and the implemented model, which 
were components of the technological factor.

The presented analysis is illustrative and requires further 
expansion to build a more accurate and detailed risk assessment model 
for the implementation of LLMs in the electric power sector particularly 
and the energy sector overall.

External expert data collection was not within the scope of 
the study because it focuses purely on constructing a structured 
methodology rather than producing organization-specific risk weights.

5.2. Analysis of graphic images using LLMs
In order to consider the readiness of LLMs to accurately digitize 

graphic images, we conducted a series of experiments on processing a 
graphical image using GenAI tools.

Each prompt alternative (4 in total) was tested with each 
GenAI tool (7 in total), using the same file of Figure 1 (originally 
in Ukrainian). The obtained results2 allowed us to evaluate 
such processing (Table 7, Table 8 [13], and Table 9 [14]) and 
comment on the readiness of LLMs for graphic digitization in the 
following way.

In general, the outputs across all the GenAI tools were comparable, 
although results from Microsoft Edge Copilot (Think Deeper) and xAI 
Grok (DeepSearch) were consistently less comprehensive; the latter 
also exhibited errors at the language-level errors.

All prompts were conducted in Ukrainian, and results were 
obtained in Ukrainian as well (i.e., there was no need to use translation 
tools).

Exceptions were two cases when using Google Gemini 2.5 Flash 
(preview), where results were returned in English (in both cases the 
prompt contained the word “інтерпретуй”—which may have triggered 
English word “interpret”, which has “translate” as an alternative 
meaning).
2  The set of experimental data of graphic digitization using the state-of-the-art language models 
where images are described textually is available at the following link: https://gist.github.com/
taranowskiatpimee/174973d140a84da2b5c3b365a34f949c
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Google
Gemini

2.5 Flash 
(preview)

Google
Gemini
2.5 Pro 

(preview)

OpenAI 
ChatGPT 
GPT-4o

OpenAI 
ChatGPT
o4-mini

Microsoft
Edge Copilot 
Think Deeper

xAI
Grok

Grok-3 
DeepSearch

Perplexity AI 
Research

Extrinsic hallucination + + + + + + +
Intrinsic hallucination - - - - - - -

Table 8
Evaluation of processing a graphic image using GenAI tools (extrinsic and intrinsic hallucinations dimension)

Google
Gemini

2.5 Flash 
(preview)

Google
Gemini
2.5 Pro 

(preview)

OpenAI 
ChatGPT 
GPT-4o

OpenAI 
ChatGPT
o4-mini

Microsoft
Edge Copilot 
Think Deeper

xAI
Grok

Grok-3 
DeepSearch

Perplexity 
AI 

Research
Usability in terms of accessibility + +/- + +/- + + +/-
Usability in terms of free-tier reliability +/- +/- +/- +/- +/- +/- +/-
Understanding of textual elements + + + + + + +
Understanding of graphical elements +/- +/- +/- +/- +/- +/- +/-
Understanding of combined textual and 
graphical elements 

+/- +/- +/- +/- +/- +/- +/-

Non-English text processing +/- + + + + + +
Comprehensive text generation + + + + +/- +/- +

Table 7
Evaluation of processing a graphic image using GenAI tools (understanding and generation dimension)

Google
Gemini

2.5 Flash 
(preview)

Google
Gemini
2.5 Pro 

(preview)

OpenAI 
ChatGPT 
GPT-4o

OpenAI 
ChatGPT
o4-mini

Microsoft
Edge Copilot 
Think Deeper

xAI
Grok

Grok-3 
DeepSearch

Perplexity AI 
Research

Factual contradiction +/- - - - - +/- -
Factual fabrication - - - - - - -
Instruction inconsistency +/- - - - - - -
Context inconsistency +/- +/- +/- +/- +/- +/- +/-
Logical inconsistency - - - - - - -

Table 9
Evaluation of processing a graphic image using GenAI tools (factuality and faithfulness hallucination dimension)

https://gist.github.com/taranowskiatpimee/174973d140a84da2b5c3b365a34f949c
https://gist.github.com/taranowskiatpimee/174973d140a84da2b5c3b365a34f949c
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This highlights an issue of true accessibility of GenAI tools to 
general users. 

Access under free-tier resource-limited conditions—where 
computational resources are redistributed in favor of paid-tier users—
excludes such tools from being widely available, and together with 
output unpredictability under such conditions makes these tools 
unreliable for expected outcomes.

Similarly, limited query counts in Gemini 2.5 Pro (preview), 
OpenAI o4-mini, and Perplexity AI Research mode also further limit 
usability of these tools.

Regarding the textual rendering of the graphical content, most 
responses listed key elements of the diagram, but not exhaustively, and 
omissions were not explained.

While the image was incorrectly interpreted as a chart with 
labeled “stages” and “actors and resources,” which was not the case.

Indeed, textual descriptions mentioned the overall process of 
the LLM implementation, including knowledge selection, analysis, 
model training, and model operation, as well as the participants 
involved and resources utilized. However, even when the omitted 
stages of the lifecycle were mentioned, there was no explanation for 
their omission.

It is not uncommon that, across different prompt alternatives 
and different GenAI tools used, the model training stage was involved 
in the selection, design, or development of the model architecture, 
although the diagram only references the model, with architecture 
as an element without any specification as to when it is selected or 
developed.

Some critical elements of the diagram received insufficient 
attention: the lines that formed the rectangle with the diagonal line 
and the labels “constant energy expenditure,” “human factor.” and 
“technological factor”.

There is simply no holistic interpretation of these as a reallocation 
of effort between human and technological resources under constant 
energy expenditure throughout the whole process. This is exactly the 
case where what’s not mentioned is much more important than what 
is. Indeed, where “You are an expert… interpret the content…” prompt 
alternative is used, some output contains fragments like:

1)  “Human/Technological factor (diagonally right)—shows the 
balance between human impact (in early stages) and technological 
impact (in later stages)”

2)  “the upper line labeled ‘constant energy expenditure’ can be 
interpreted not literally as electricity, but as steady effort, resources 
(including financial, human, temporal ones), and attention required 
throughout the whole lifecycle of the project”

However, this is the case only for prompt alternative 4 and only 
for 2 of the 7 GenAI tools—and notably, not the same tools, each 
providing just one of the two relevant insights.

The curly braces on the diagram that group elements within 
a stage and indicate which element they jointly contribute to in 
the next stage are ignored completely. The only exception was a 
correct partial interpretation by AI Grok used with the DeepSearch 
parameter under the prompt “Describe the content…”. Yet, even 
here, not all the curly braces relationships were properly covered. 
This is the case just for 1 prompt alternative out of 4, and just for 1 
GenAI tools of 7. 

Thus, to use a well-known expression: LLMs not only miss the 
forest for the trees – they do not even see all the trees. The readiness 
of modern models to accurately digitize graphical images can be 
considered relative at best. This highlights a risk when applying LLMs 
in the energy sector, particularly regarding their ability to perform 

proper analysis of graphic images, with schemas and diagrams being an 
essential part of regulations and technical documentation in this field.

The conducted analysis has shown the dominant impact of 
the human factor within the early stages (knowledge selection and 
preparation) and the dominant impact of the technological factor within 
the later stages (implementation and operation).

The proposed taxonomy of risks proved effective for representing 
the main categories of challenges. The mathematical modeling of 
energy expenditure added an additional dimension to risk evaluation, 
supporting a more comprehensive assessment.

Empirical experiments with generative AI systems demonstrated 
that modern LLMs are not yet ready for fully autonomous analysis of 
graphical technical documentation. These limitations in interpreting 
complex diagrams, structures, and logical relationships indicate a high 
risk of using LLMs without human oversight in critical domains where 
accuracy and contextual understanding are essential.

6. Conclusion
This study proposes a method for assessing the implementation 

of LLMs for tasks related to the functioning of critical infrastructure in 
the electric power sector. The findings highlight both the potential of 
applying LLMs in the energy sector and several limitations that must be 
considered during the development, validation, and deployment of such 
solutions in practice.

The presented methodology lays the groundwork for a systematic 
approach to risk management during the implementation of LLMs, 
but the current version of the model remains illustrative and requires 
further refinement to improve its accuracy. Future work should address 
the identified challenges, especially in the limitations of LLMs in 
processing graphical documentation.

A practical point of intervention for policymakers is to define 
the conditions under which LLMs may be used in the energy sector, 
including risk level categories (from unacceptable to minimal) and 
the required degree of human oversight. Once such a regulatory 
framework is established, energy companies and other stakeholders 
can determine how to implement LLMs by developing internal policies 
and industry standards; the methodology proposed in this paper can 
serve as an initial template that organizations may refine to address 
context-specific risks.

The identified limitations in processing graphical technical 
documentation indicate a clear direction for further work by energy-
sector organizations: focusing on real documentation containing sector-
specific graphical content, fine-tuning LLMs on such data, and expanding 
evaluation procedures through domain-expert review, automated 
metrics, and consistency checks across repeated queries.
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