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Abstract: This paper introduces a unified framework for analyzing the internal geometry of inference in transformer-based language models.
Building on a series of prior studies, we present a consolidated introduction to “Curved Inference”: a methodology that measures how token
representations evolve in the residual stream as geometric trajectories. Using metrics such as curvature, salience, and semantic surface area, we
show that residual trajectories reflect meaningful semantic structure, and are empirically associated with emotional and moral concern, covert intent
in sleeper agents, and computational self-modeling dynamics. We consolidate these findings into a reproducible, falsifiable pipeline, supported
by formal mathematical definitions and open-source tools. This geometric approach shifts the focus of interpretability from static attribution to
dynamic, modelnative inference analysis. The results provide evidence that residual stream geometry is not only measurable, but also structurally
related to complex behaviors in the models we study. We invite researchers to replicate, extend, or falsify these claims and test the boundaries of

curved inference as a new paradigm for model understanding.
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1. Introduction

This paper introduces the concept of “Curved Inference”
and builds upon an ongoing series of experiments that explored the
geometric structure of inference in transformer-based language models
[1]. The results and concepts discussed throughout are drawn from three
prior preprints, referenced here as CI01, CI02, and CI03 which are all
available via arXiv/GitHub [2]. While the original CI01-CI03 papers
focused on specific experiments and phenomena, this work provides a
consolidated, generalizable framework designed to support replication,
extension, and falsifiability. For clarity, key terms and geometric
concepts introduced here will be defined precisely and mathematically
in Section 2 that follows.

The present manuscript is self-contained: we restate the full
methodological pipeline, formal definitions, and key results from CI01
to CIO03 so that readers can evaluate the Curved Inference framework
without needing to consult the preprints, while the GitHub repositories
and preprints supply extended plots, implementation details, and lab-
report-style documentation for replication.

1.1. Motivation and context

Large language models (LLMs) have rapidly become central to
modern Al systems, but their interpretability remains a critical challenge
[3]. While traditional approaches often treat LLMs as black boxes [4] or
seek to decode their outputs post hoc, this work investigates the internal
computational geometry that unfolds during inference. Specifically,
we explore how LLMs represent and transform meaning dynamically
through the geometry of their residual stream.

1.2. Related work

Interpretability of LLMs has been approached from many
directions, including attention attribution [5], probe-based linear
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classifiers [6], and causal mediation techniques [7]. These methods
often focus on static attribution-seeking to identify which components
or tokens influence specific outputs. More recent work in mechanistic
interpretability has sought to reverse-engineer specific circuits within
transformer architectures [8], but remains challenged by scale,
specificity, and generalizability.

Geometric perspectives on model representations have also
emerged, particularly through studies of embedding spaces [9]
(see Figure 1) polysemanticity [10], and path analysis [11]. These
works suggest that model internals contain semantically meaningful
subspaces, but typically do not address how these representations move
during inference.

The Curved Inference framework introduced in preprint CI01 [2]
was the first to focus explicitly on geometric trajectories in the residual
stream. It showed that meaningful perturbations to input semantics
induce structured curvature in token-wise residual trajectories. Preprint
CI02 [2] extended this to demonstrate statistical linkage between
curvature and latent behavioral divergence (e.g. deception in sleeper
agents), while also introducing refinements such as unnormalized
measurement and surface area analysis. Preprint CI03 [2] further
developed this approach, presenting geometric and behavioral evidence
that residual curvature is a necessary structural resource for persistent
self-modeling behavior and semantic identity tracking in Gemma3-1b
under k-regularized fine-tuning.

This paper consolidates those three Curved Inference studies
into a unified methodological and analytical framework, offering both
formal definitions and empirical results that position residual stream
geometry as a viable and reproducible interpretability signal.

1.3. Background concepts

Transformers, the backbone of most modern LLMs, process
language through a series of layers comprising attention mechanisms
and multi-layer perceptrons (MLPs) [12]. Each word in a prompt is
broken into sub-components known as tokens. The total set of known
tokens defines the model’s known vocabulary. Each token is converted
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Figure 1
Token embedding (each token is embedded into a d-dimensional space)
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into a high-dimensional vector in what is known as the “embedding
space” [13].

Each token’s embedding forms its initial residual vector, which
serves as the starting point of the inference process. These vectors are
then iteratively updated layer-by-layer. These updates are accumulated
in a single representational space known as the residual stream. The
residual stream is not merely a pathway for token-level computation—
it is the site where all transformations converge and compound. It
functions as a shared point of integration, akin to a dynamic semantic
space.

1.4. The residual stream as geometric space

Transformer inference can be viewed as a geometric process:
each token is mapped to a vector in a high-dimensional space, and then
pushed through a series of attention and MLP updates. The result is a
continuous sequence of transformations forming a trajectory in residual
space. This trajectory encodes the evolving semantic state of the model
as it processes or generates a sequence. Attention and MLP layers act
as dynamic lenses, bending and focusing these trajectories based on
contextual and relational signals (see Figure 2). This section outlines
how these trajectories are constructed, how they evolve, and how
geometric measurements such as curvature and salience are defined
within this process.

Words are first split by a tokenizer and mapped to unique token
IDs. Each token ID t is used to look up an embedding vector from the
learned embedding matrix E € R|V| x d, where | V| is the vocabulary size
and d is the model dimension [14]. The initial residual stream vector x
€ Rd for a token is simply the t’th vector in the embedding matrix e.g.
E[t]. In models using Rotary Positional Embedding (RoPE) [15], no
position vector is added at this stage. Instead, positional information is
injected later during attention via rotation.

At each transformer layer, the residual vector is updated
by adding the outputs of the attention and MLP sublayers:
x(D=xO+ Attention(xV) + MLP(x").

This additive structure means that the residual stream forms
a trajectory through RY, with each step determined by the semantic
influence of the attention and MLP mechanisms. The attention layer
gathers contextual signals from other positions, modulated by relative
position (via RoPE), and contributes a vector update that reflects
token—token interaction. The MLP layer applies a local, nonlinear

transformation that sharpens or redirects the vector—often enhancing
its alignment with task-relevant directions in the model. Together, these
updates shape the path taken by each token’s representation. We refer to
this evolving path as the token’s semantic trajectory.

Because each update is added to the previous residual state, it is
only in the residual stream that one can observe the full evolution of
meaning over depth. Attention and MLP outputs are delta vectors—
they cause curvature, but the residual stream is where the final curvature
is realized.

RoPE applies a deterministic, sinusoidal rotation to the query
and key vectors used in attention. These rotations encode relative
position by angular offset, preserving dot products while modulating
attention scores. Because RoPE does not shift or perturb the initial
residual vector, it preserves semantic purity in the early layers.
Curvature in the residual stream only arises once RoPE-modulated
attention begins to redistribute contextual information across tokens.
This means that curvature is not tied to absolute position, but to
semantic interaction among tokens that are contextually relevant and
positionally adjacent.

Figure 2
Semantic lens—as token trajectories flow down through the model,
attention and MLP layers act like lenses curving the residual stream
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Once the final residual vector is computed for a token, it is
projected into logit space by taking a dot product with each row of the
unembedding matrix U € RV

1 = Ux.

This yields a logit vector I € RV, where each entry reflects the
alignment between the final residual vector x and a possible output
token direction u. The unembedding matrix U defines a set of semantic
directions in residual space. These directions induce a geometry: the
pullback metric G = U'U redefines how distances and angles are
measured in residual space based on the model’s output behavior. This
metric allows curvature to be computed in a way that reflects semantic
change—aligned with token prediction. This is what gives curvature its
interpretability: it reflects changes in internal intent as judged by the
model’s own output semantics.

During inference, transformer models use key-value (KV)
caching [16] to avoid recomputing attention outputs for previously
processed tokens. Once a token’s attention keys and values have
been computed, they are stored and reused in subsequent steps. This
also means that all previous residual vectors are frozen—they are not
recomputed or updated. Each prior x forms a fixed semantic anchor.
The residual stream for the current token builds on top of these fixed
vectors, enabling us to track how each new token evolves in context.

In multi-turn chat settings, the entire chat history is tokenized
into a flat prompt. Provided it fits within the context window, only the
new portion of the prompt (e.g. user query and assistant response) is
recomputed. The rest is reused, including residuals, keys, and values.

In this way the transformer can be viewed as a geometric
engine. Tokens enter as points in a semantic subspace, pass through
layers of contextual and nonlinear modulation, and exit as probability
distributions over token space. The residual stream traces the continuous
trajectory of each token through this process. Attention and MLP layers
act as semantic lenses. Attention bends trajectories based on relative
semantic and positional relevance. MLPs sharpen or redirect them
through nonlinear amplification. RoPE enables these transformations to
be position-aware without distorting the embedding space directly. All
curvature, salience, and concern arise within the residual stream. It is
the only continuous representational path through the model—and the
only space in which these geometric measurements can meaningfully
be made.

1.5. Types of geometry that can be measured

Once token motion is framed geometrically, it becomes possible
to measure properties such as curvature, salience (in the form of
acceleration), directional flow, and divergence. These measurements
offer insight into how the model internally restructures its representations
in response to semantic shifts—particularly those relating to latent
emotional, moral or identity-based concerns, which were the primary
focus of CI01. CI02 and CIO3 extended this to encompass a broader
range of semantic contexts (including deceit and even computational
self-modeling). Curvature, for instance, can be treated as a signature of
the model ‘bending’ its internal space to accommodate new meaning.
Salience can be interpreted as directional speed (first derivative) of a
token’s trajectory.

1.6. The unnormalization insight

Many modern LLMs apply normalization [17] to residual vectors
at various points in the network. However, our work demonstrates that
in practice, it can be more practical to evaluate residual vectors in their
unnormalized form. This ‘unnormalization’ has profound implications

for analysis, as it highlights the importance of accounting for both
magnitude and direction when measuring geometry. It also reinforces
the view that inference is a non-linear, context-sensitive process
shaped by accumulating activations. Our Method outlines how this
unnormalized analysis can be performed even in models that include
normalization layers.

1.7. Why geometry matters

This geometric view allows us to analyze LLM behavior in a
model-native way. Instead of reducing interpretability to surface
correlations between inputs and outputs (see Table 1), we focus on the
actual internal structure of inference. Geometry gives us tools to assess
coherence, trace semantic shifts, and even differentiate between rote
responses and internal reasoning. This framework enables reproducible,
falsifiable analysis that can scale with model complexity and evolve
alongside it.

1.8. Contribution of this paper

This paper consolidates findings from three prior studies on
Curved Inference to present a unified methodology for geometric
interpretability of residual streams. We define a generalized pipeline
for capturing and analyzing token trajectories, present quantitative and
qualitative results across diverse prompt types, and offer a structured
analysis of what these geometric signatures can reveal. Our goal is to
make this work more accessible, replicable and useful for advancing
interpretability through a geometric lens.

Because this is a guide-style paper rather than a single-experiment
report, the manuscript is structured so that major sections (Method, each
CI01-CI03 Results subsection, and the later Analysis and Discussion)
can be read independently. Key concepts such as curvature, salience,
and semantic surface area are therefore introduced once in full and then
briefly re-stated where they are applied, so that readers who dip into
only part of the paper do not need to repeatedly cross-reference earlier
sections.

2. Method

2.1. Overall pipeline

This research follows a generalized interpretability pipeline
designed to capture and analyze the internal geometric behavior of
transformer-based LLMs. While individual studies (CI01-CIO03)
varied in detail, the core pipeline remained consistent in structure and
motivation. It is designed to surface semantic structure as it unfolds
during inference—through the lens of residual stream geometry.

The following stages form the foundation of this methodology.

2.1.1. Prompt design

Prompts are carefully constructed to contrast minimal yet
meaningful semantic differences. In CIO1, these typically involved
concern-inflected tokens (e.g. emotional, moral, and identity-related).
In CI02, prompts were crafted to evaluate latent capabilities (e.g.
deception as in the Anthropic sleeper agent probes paper [18]), and
in CI03, they established contextual identity and computational self-
modeling setups.

In all cases, prompts were organized into thematic domains
with corresponding control and variant forms to enable meaningful
geometric comparison.

2.1.2. Optional supervised fine-tuning (SF'T)
Where relevant (as in CI03), supervised fine-tuning (SFT) [19]
was used to apply a form of representational regularization. The goal was
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Table 1

Comparison of methods

Method family

Object of analysis

Signal type

Baseline notion

Typical outputs/usage

Limitations (for this
context)

Static attribution

Probes/sensors

LLM judges/
stance models

SAEs/feature
circuits

Curved Inference
(this work)

Inputs, attention
weights, gradients

Layer activations,
hidden features

Model outputs
(text)

Activation vectors,
feature subspaces

Residual-stream
trajectories over
time

Token-/span-level
importance scores

Predictive
accuracy for
external labels

Behavioral/
semantic labels,
stances

Sparse feature
activations,
circuit paths

Geometric met-
rics: curvature,

salience, semantic

surface area

“Neutral” or refer-
ence input - uniform
or prior-based

Random or untrained
probe - chance-level
performance

Majority vote,
consistency, or
pre-defined rubric

Reconstruction loss
VS. raw activations

Within-model
geometric baselines
(control prompts,
pre-SFT models)
plus behavioral base-

Saliency maps,
attention heatmaps,
input attributions

Linear/non-linear
probe scores - sensor
readings

Epistemic stance,
safety labels, ToM/
self-model tags

Interpretable features,
circuit diagrams,
interventions

Time-resolved geo-
metric profiles aligned
to tokens, phenomena,
and stances

Mostly static - weak on pro-
cess/trajectory - sensitive

to choice of reference and
reparameterization

Can conflate information
presence with use - often
task- and layer-specific - not
trajectory-level

Output-only - no access to
internal process - depends
on judge calibration and
rubric design

Focused on what features
exist, less on continuous
trajectory shape - requires
strong sparsity assumptions
Geometry-first - emphasizes
process-level change over
time - does not (yet) bench-
mark against other methods
on shared metrics

lines (LLM judges/
MOLES)

to pre-flatten residual stream curvature to test whether identity-related
geometry could be suppressed to create an ablation study. However,
the results showed that even under this regularization pressure, the
model adapted around it—re-establishing meaningful curvature fields
to maintain coherent self-modeling. This supported the hypothesis that
such geometry is not incidental, but structurally necessary for certain
types of inference. SFT can also support experimental flexibility when
adapting open-weight models to task-specific requirements.

2.1.3. Activation capture

Forward passes were executed over each prompt using model
management libraries (e.g. custom hooks), capturing activation data
from attention heads, MLP layers, and critically, the residual stream.
All data was retained layer-by-layer and token-by-token to enable full
trajectory reconstruction.

2.1.4. Optional classification

For contrastive analysis—especially in C102 and CI03—responses
from the target model were evaluated using multiple independent LLM-
based classifiers. These external models assessed alignment, intent, or
identity coherence across outputs, and their responses were aggregated
to compute inter-rater reliability and select consensus-labeled response
sets. These consensus sets were then compared against geometric
metrics to assess whether internal curvature correlated with cross-LLM
evaluations of latent behavior.

For contrastive analysis, CI02 and CI03 used multiple external
LLM judges [20]. These external models assessed alignment, intent, or
identity coherence across outputs, and their responses were aggregated
to compute inter-rater reliability and select consensus-labeled response
sets. CI02 found that moving to unanimous consensus, while shrinking
sample size, enhanced geometric signal strength—turning several non-
significant tests into significant ones and boosting effect sizes. That
precision-vs.-power trade-off is reported in Section 3.3.

2.1.5. Metric calculation
Core geometric measurements were computed for each token
trajectory, including:

1) curvature: bending of the residual trajectory across layers;

2) salience: directional acceleration (second derivative);

3) divergence: distance between control and variant prompts;

4) trajectory similarity: cosine similarity over token paths; and

5) semantic surface area: combines salience and curvature to reflect the
overall magnitude of semantic activity.

These metrics were computed on a per-token, per-layer basis and
aggregated within and across prompts for analysis.

2.1.6. Geometric analysis

Token trajectories were aggregated into layerwise summaries
and visualized using heatmaps and alignment plots. Comparisons were
made across prompt types and domains to reveal domain-general and
domain-specific structure.

2.1.7. Summary

Taken together, this pipeline enables the exploration of LLM
based inference through the geometric lens developed in CI01-CI03. It
balances reproducibility with model-native expressiveness—revealing
structure that is otherwise hidden in raw weights or surface outputs.

The next sections formalize the mathematical definitions used
throughout and describe the implementation details of the tools and
scripts that realize this pipeline.

2.2. Mathematical definitions

This section formalizes the key geometric measurements used
to analyze inference trajectories in the residual stream. Definitions
are drawn primarily from CIO1 Appendix B, with updates from CI02
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Section 3.1 to reflect refinements in trajectory construction and metric
interpretation.

All vectors are assumed to lie in the residual space RY, with one
vector per token per layer. Residual vectors are denoted x© for token t
at layer £ (see Table 2 for a comparison of spaces).

Table 2
Comparison of spaces
Space Contents Function
Embedding Token embeddings ¢, Stores static lexical
space representations
Logit space Output predictions Determines token-level
£ = Ux output

Active inference
trajectory

Residual space Internal state x

Semantic space Residual space +

G metric

Geometry aligned with
meaning and output

2.2.1. Meaning

Meaning, in the context of LLMs, refers to the implicit content,
intent, or conceptual structure represented by the model’s internal
activations [21]. It is not a directly observable quantity, but an abstract
property inferred from the model’s behavior and internal geometry.

1) Conceptual role

Meaning is what the model represents at any point in the forward
pass. This could include factual information, sentiment, identity,
logical structure, or moral stance. The meaning associated with a given
activation depends on the context, the model’s training, and how that
activation aligns with downstream predictions.

Meaning becomes accessible through semantic structure—the
way that internal representations relate to each other and to output
tokens. This structure is revealed through geometric properties—such
as direction, distance, and curvature—within the residual stream.

2) Formal proxy

We do not measure meaning directly. Instead, we study how it
moves and changes through time. This is done by: representing the
model’s internal state as a vector x € RY, measuring change (salience)
as || x,,, — X, ||, and measuring reorientation (curvature) as x.

Anchoring this geometry in semantic space via the pullback metric:

G = UU.

This metric ensures that the geometry of residual-space
movement reflects differences in token-level output probabilities. In
this sense, meaning lives in the structure of how internal representations
flow and bend toward predicted outputs.

3) Practical implication

Throughout this work, we treat meaning as: the internal state of
the model that gives rise to token predictions and reflects the model’s
interpretation of context.

Changes in meaning are inferred from changes in the residual
trajectory. High salience means meaning is shifting quickly; high
curvature means it is changing direction. Concern identifies directions
along which meaning changes matter to the model.

This view of meaning intersects with the idea of superposition—
that many abstract features may be simultaneously encoded in
overlapping directions within the same residual vector. The geometric
structure (e.g. curvature) reflects how these meanings are separated or
recombined across layers.

2.2.2. Semantic space

Semantic space refers to the internal vector space in which a
model encodes and manipulates meaning [22]. It is the geometric arena
where representations of language, context, and concepts take shape
and evolve during inference. In transformer-based LLMs, this space is
typically identified with the residual stream—but only when measured
under a meaning-preserving metric.

1) Formal definition
We define semantic space as the residual space RY, equipped with
a metric derived from the model’s output behavior:

G =UU

where U € RV is the unembedding matrix that projects residual
activations x € R? to logits over the vocabulary. The inner product and
norm induced by G give rise to a geometry in which:

a. distances correspond to shifts in output token probabilities;

b. directions correspond to latent semantic operations; and

c. curves correspond to evolving meaning across layers.

This pullback metric transforms residual space into a logit-
aligned semantic space.
2) Distinctions and relationships

Semantic space is not defined purely by coordinate axes—it
emerges from the functional role of directions and distances under
the model’s output logic. That is, it reflects how the model internally
represents and differentiates concepts, rather than any superficial
arrangement of neurons.

2.2.3. Token trajectories and sampling

The residual stream defines a discrete sequence of vectors for
each token as it moves through the model:

= xOx D, ..., x O}

where L is the total number of layers. These token-level trajectories are
treated as piecewise curves in R¢.

CI02 introduced double-resolution sampling, where intermediate
points are constructed via linear interpolation between layers to better

estimate curvature and salience. This allows geometric derivatives to be
approximated without introducing parametric bias.

2.2.4. Unnormalized representations

Rather than analyzing normalized residual vectors, all geometric
measurements are computed using the unnormalized residuals x
directly. CI02 showed that magnitude carries semantic meaning and
contributes materially to curvature, especially in cases where attention
and MLP outputs differ substantially in scale.

2.2.5. Salience

Salience quantifies how rapidly a model’s internal state is
changing as it processes a prompt. In geometric terms, it is the first-
order velocity of the residual stream trajectory—how far the model
moves in semantic space from one layer to the next. High salience
indicates a rapid update in the model’s internal representation, even if
that movement follows a straight path.

1) Operational definition
For a residual stream trajectory x, X,
salience at layer t is defined as:

d .
..., X C RY, the layer-wise

Salience(t) = || x,,—x, Il
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where |||, denotes the norm induced by the semantic metric:
G = U'U.

Here, U is the unembedding matrix that maps residual states to logits,
and the pullback metric G aligns geometric measurements in residual
space with token-level semantic structure.

2) Semantic interpretation
Salience tracks the rate of change of internal meaning, where
“meaning” is defined by how the residual vector projects into logit space.
It captures how much the model updates its belief or understanding at
each layer—irrespective of direction.
A model may have:
a. high salience, low curvature — confidently elaborating or
reinforcing an idea;
b. low salience, high curvature — making a subtle but meaningful
reorientation; and
c. low salience, low curvature — continuing steadily with no shift
in interpretation.

3) Aggregation

The total salience over a trajectory can be defined as cumulative
arc length:

L-1
S =
t=0

[| Xer1 — X e -

This is used in further analysis (e.g., for arc-length normalization in
curvature metrics).

2.2.6. Curvature

Curvature captures how sharply the model’s internal
representation is changing direction as it processes a prompt. In
geometric terms, it is the second-order property of the residual stream
trajectory—the rate at which the model’s semantic path bends, rather
than continues in a straight line.

1) Operational definition
Let the residual stream activations across layers be denoted:

XO’ Xl’

X CRY

To estimate curvature, we apply a discrete 3-point finite-
difference scheme to the sequence of residual stream vectors. For each
interior point i, we compute the first and second derivatives using a
discrete 3-point central difference method that accounts for unequal
step sizes, then apply the standard extrinsic curvature formula.

The extrinsic curvature at index i is defined as:

2

Va1 Vi 13 —G@vidd
Ki = 3
IEAE

where:

v, is the first derivative (velocity);

a, is the second derivative (acceleration); and

() and |-la denote the inner product and norm under the
pullback metric G = U'U.

This is the standard formula for curvature in Euclidean space,
extended here to a semantically aligned geometry via the metric G. It is
invariant to orthogonal coordinate transformations and reflects intrinsic
trajectory shape rather than coordinate artifacts.

2) Semantic interpretation

Whereas salience measures how far the model moves between
steps, curvature measures how much it reorients e.g. whether the model
continues in a consistent direction or turns sharply at some layer. High
curvature indicates a structural shift in internal representation, such as a
reinterpretation, contradiction, or redirection in meaning.

Examples:

A strong moral reversal — high curvature.

Steady elaboration of a factual detail — low curvature.
3) Aggregation and summary statistics

From the full curvature series x;, we derive summary metrics per
prompt variant:

Mean curvature:

k=—"Y k.
Maximum curvature:
Kmag =IaX ;.
Layer of maximum curvature:

i = argmaxk;
1
Curvature is only defined at interior indices i, where a discrete
3-point central difference can be used to estimate derivatives. Boundary
positions 1 = 0 and i = L are excluded because symmetric differencing
is not possible.

2.2.7. Semantic surface area
Semantic surface area as a comprehensive metric combining both
curvature and salience:

N
A= Z(Si +v.x1)
i=1

where:

S, is the salience at step i (i.e., the movement magnitude between
steps);

K, is the local curvature at step i;

v is a scalar weighting factor applied to curvature; and

N is the number of trajectory steps in the residual stream.

Salience is measured as the semantic step length under the pullback
metric G = U"U, ensuring distances reflect changes in logit space:

S = %% g

This formulation avoids separately tuned weights for curvature
and salience, using y as the sole curvature amplification parameter. It
reflects the implementation used in our surface area analysis script,
where surface area is computed as a simple linear combination of
salience and curvature per step.

1) Curvature and salience

We compute curvature using discrete 3-point central differences
that respect unequal step sizes, then apply the parameter-invariant
curvature formula:

iy V=0 T 1) 1% () v(0G

v () 11
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where v(i) is the velocity (first derivative) and a(i) is the acceleration
(second derivative) of the residual trajectory, computed under the
pullback metric G = U'U.

Salience captures step-wise movement magnitude:

SG) = 1%, — %l
Together, these metrics quantify both the reorientation (curvature)
and intensity (salience) of semantic processing.
The next section describes how these metrics were implemented
and calculated using custom tools across all experiments.

2.3. Tool definitions

This section documents the key tools used across CI01-CI03
to capture, compute, and visualize geometric structure in the residual
stream. We focus here on the CI03 scripts, as they represent the most
complete and up-to-date implementation of the pipeline. However,
the full toolsets used in CI0O1 and CIO02 are also available and provide
insight into the evolution of the methodology:

1) CI01—benchmarks/curved-inference/01/bin/.
2) C102—benchmarks/curved-inference/02/bin/.
3) Cl03—benchmarks/curved-inference/03/bin/.

2.3.1. Train.py—fine-tuning and regularization (CI103 only)

Used to apply supervised fine-tuning to language models in
CI03. It enables experiments involving curvature suppression via
regularization, providing a baseline for evaluating whether the model
re-establishes semantic geometry under constraint.

2.3.2. Capture.py—prompt execution and activation capture

This script executes prompts against the target model (pretrained
or fine-tuned) and records the residual stream activations token-by-
token and layer-by-layer. It supports batch processing, deterministic
generation, and outputs activation traces for all tokens in the context
window. Used in all three studies to produce structured input for
geometric analysis.

2.3.3. Extract-responses.py—extract prompt and response text from
HDFS activation files for answer classification

Extracts prompts and generated responses from captured HDF5
files for use in LLM-based classification or further analysis.

2.3.4. Response-classifier-via-api.py—LLM-based response classification

Submits responses to external LLMs (e.g. GPT-4, Claude) for
judgment on alignment, intent, or self-consistency. Classifier prompts are
applied via templates, and results are saved for downstream aggregation.

2.3.5. Calculate-inter-rater-reliability.py—consensus and agreement
metrics

This script processes the outputs of multiple LLM judges to
compute inter-rater reliability (e.g. agreement ratio and pairwise
match rate). It identifies consensus responses and segments them for
correlation with geometric metrics.

2.3.6. Analyze-path-curvature.py, analyze-path-salience.py, analyze-
surface-area.py—geometric metric calculators

These scripts implement the core metric computations described
in Section 2.2:

1) analyze-path-curvature.py: computes per-token curvature across
layers.

2) analyze-path-salience.py: computes directional acceleration as
salience.

3) analyze-surface-area.py: combines both into semantic surface area A'.

Each script processes the captured residual traces and outputs
aligned, token-level metrics.

2.3.7. Analyze-geometric-regularization-effects.py—CI03 specialized
analysis

This script compares pre- and post-fine-tuning curvature behavior
to assess whether semantic geometry is preserved or re-emerges. It
supports CI03’s core claim that residual stream curvature is necessary
for computational self-modeling.

Together, the tools listed above form the basis of a modular
and reproducible pipeline for measuring, analyzing, and interpreting
inference geometry across varied transformer behaviors.

3. Results

3.1. Overview of geometric results

This methodology produces a new class of results that characterize
inference in language models as a dynamic, geometric process. Rather
than focusing solely on output probabilities or static feature attributions,
our approach analyzes the shape and structure of the residual stream
as tokens traverse it (see Table 1 for a detailed comparison). Results
take the form of curvature and salience measurements, directional
divergences, and semantic trajectory plots. Together, these build a
detailed picture of how and where meaning is integrated over the course
of'a model’s inference pass.

Each of the three previous studies (CIO1, CI02, and CI03)
contributed novel insights by applying this methodology to increasingly
complex questions. The following sections synthesize these results into
a single “Curved Inference” story.

Each CI01-CI03 subsection includes a short recap of the specific
aspects of the pipeline and geometric metrics relevant to that study.
This is intentional: many readers will approach a single study (e.g. the
sleeper-agent results in CI02, or the self-modeling analysis in CI03)
without having read all of Section 2, and the local summaries keep
those subsections self-contained. Readers already familiar with these
concepts can skim or skip those brief reminders.

3.2. CI01—curved inference and concern geometry

The first study in the Curved Inference series introduced the core
idea that inference in LLMs can be directly observed and quantified as
curvature in the residual stream. The central hypothesis was that when
prompted with minimal but meaningful semantic shifts—particularly
those associated with latent concern (e.g. emotional, moral, or identity
relevance)—LLMs reconfigure their internal state in measurable
geometric ways.

1) Experimental setup
To test this, CI01 used pairs of prompts that were nearly identical
except for a single concern-modulated token. For example:
a. Neutral: “Before presenting your findings, practice your delivery
repeatedly.”
b. Concern-shifted: “Before presenting your findings, practice your
delivery nervously.”

Prompts were grouped into thematic domains—emotional, moral,
identity, logical, and nonsense—with concern variants systematically
applied. These prompt sets were submitted to open-weight transformer
models including Gemma3-1band LLaMA3.2-3b. For each run, activation
data was collected at three levels: attention output, MLP output, and the
residual stream. However, only the residual stream showed consistent,
structured geometric deformation in response to concern.
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2) Core results
The core finding was that concern-shifted prompts produced token
trajectories in the residual space that deviated from the corresponding
control prompts in measurable, directional, and interpretable ways.
These trajectories could be visualized layer-by-layer, revealing distinct
curves that began near the divergence token and unfolded downstream.
Key observations included:

a. Curvature as inference deformation: in the presence of concern,
the residual vector path for affected tokens curved, forked, or
compressed in ways that suggested internal reconfiguration—not
mere perturbation.

b. Curvature is localized and thematic: concern curvature was most
prominent at the token where meaning shifted and its immediate
neighbors. These deformations were not random but aligned with
the nature of the semantic domain.

c. Directional salience: by computing directional velocity (first
derivative of the token trajectory), the study found that different
models showed significantly different salience patterns.

d. Residual stream as exclusive locus: no comparable structure
was found in raw attention or MLP outputs—underscoring the
residual stream as the sole site of this integrated, model-native
signal. This is obvious in hindsight once the narrative overview
of semantic trajectories outlined in the Introduction is fully
absorbed, but it was not clear when the CI01 experiment began.

CIO1 reported that LLaMA’s concern-shift curvature is two
orders of magnitude larger than Gemma’s and scales noticeably with
concern strength (moderate — strong =~ 1.4x), whereas Gemma’s
curvature change was < 1.1x. These figures may reflect architecture or
capacity rather than curvature per se so broader replication is needed
before drawing firm generalizations.

3) Visualizations and metric outputs

CI01 introduced a family of figures to communicate these effects:

a. Figure 3 (CIO1 curvature, salience & delta heatmaps): heatmaps
showing localized regions of directional curvature and
acceleration—Tlayer by layer and token by token.

b. Figures 4 and 5 (CI0O1 mean curvature plots): mean curvature
delta plots by prompt using Gemma3-1b.

c. Figures 6 and 7 (Figure § in CI01 mean salience plots): mean
salience delta plots by prompt using LLaMA3.2-3b.

These visualizations provide compelling evidence that semantic
concern introduces structure into inference that is not only visible but
also measurable.

4) Emergent interpretation

What CIO1 uncovered was a previously unreported form of
semantic sensitivity—one that is intrinsic to the model’s forward pass.
Rather than relying on outputs, linear probes, or attention inspection
[23, 24], this approach revealed a continuous and model-faithful
process of semantic integration unfolding across depths.

This supported a new interpretability hypothesis: meaning in
transformers is not only encoded—it also moves. And where it moves
differently, meaning differs. Concern-sensitive curvature became the
first formal trace of this internal motion.

Critically, CI01 demonstrated that this geometric deformation is
not hypothetical—it also exists. It provided the first empirical evidence
that meaningful prompts produce structured, interpretable changes in
representational space. This existence proof established that inference
in LLMs has an internal geometric form—curved and reactive to
semantics—and that this form can be directly measured.

These results set the stage for deeper investigations into how and
why this geometry arises, and what role it plays in supporting more
advanced behaviors.

Figure 3
Neutral, concern-shift and delta heatmaps for one variant of a single prompt using Gemma3-1b

Curvature Heatmap (token by channel) for Gemma3-1b
(Truncated to 8 tokens)
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Figure 4
Mean curvature delta plots by prompt using Gemma3-1b
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3.3. C102—sleeper agents and the limits of probing

The second study in the series extended the insights from CIO1
into a more complex and safety-relevant domain: latent deception.
Rather than artificially inserting backdoors or relying on binary trigger

A Magnitude (Mean Abs Delta)

1) Experimental setup
Two open-weight transformer LLMs were used: Gemma3-1b and
LLaMA3.2-3b. No fine-tuning or weight updates were performed—
models were evaluated via forward pass only.

A Magnitude (Mean Abs Delta)

detection, CI02 simulated realistic deceptive behavior through gradual
semantic development in multi-turn prompts.

Prompts were designed as multi-turn dialogues with embedded
assistant reasoning and user queries. Semantic pressure was gradually
increased across turns, culminating in assistant responses that could
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Figure 6
Mean salience delta plots by prompt using Gemma3-1b
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Figure 7

Mean salience delta plots by prompt using LLLaMA3.2-3b

Moderate vs. Strong CS Delta Magnitudes by Prompt
Model: llama3.2-3b, Type: Mean Abs Delta, Metric: Salience
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c. Persuasive

d. Deceptive

e. Malicious

plausibly express disclosure, strategic ambiguity, or deception. Variants
were constructed by modifying the assistant’s internal “thoughts”
(prefixed as if excluded from the model’s visible output) while keeping
user queries constant.
Five strategic categories were explored:
a. Honest
b. Strategic

This prompt design enabled fine-grained analysis of subtle
behavioral shifts, simulating realistic deception rather than relying on
brittle trigger words.
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2) Classification and evaluation

Although prompts were designed with strategic intent categories,
all behavioral evaluation was performed using external LLM-based
classifiers. These classified model outputs across multiple axes (e.g.
disclosure, redirection, and misdirection). Inter-rater reliability was
calculated and only consensus-labeled outputs were used in geometric
comparisons (see Tables 3 and 4 for statistical consensus comparisons).
3) Key results

a. Semantic surface area (A') is the primary detector: A'—the
salience + curvature composite—showed the clearest, most
robust separation between transparency and response-type
classes across both models.

b. Curvature precedes output change: In our case studies, residual-
stream curvature typically diverged in advance of visible
behavioral shifts, especially in deceptive and strategic variants—
in this sense, internal geometric change precedes output change.

c. LLM consensus precision amplifies the signal: Switching from
full to unanimous consensus labels rescued non-significant
contrasts (e.g., Gemma “honest” strategy p = 0.555 — 0.048)
and doubled some effect sizes (d > 1.0), indicating measurement
noise—not absence of structure—was masking geometry.

d. Geometry reveals covert reconfiguration: Even when surface
tokens appeared aligned, residual trajectories showed anticipatory
shifts associated with internal goal conflict.

CI02 also uncovered an architecture-scale effect: Gemma3-1b
trajectories produced A’ values about 6.7% larger than LLaMA3.2-3b,
yet the directional patterns (e.g. explanatory > evasive) were identical.
Analyses therefore focused on within-model comparisons while
treating magnitude differences as architectural signatures rather than
noise.

4) Data quality trade-off

The unanimous filtering process reduced our dataset substantially:
for LLaMA3.2-3b from 500 total responses to 201 unanimous responses
(40% reduction), and for Gemma3-1b to 293 unanimous responses

(60% reduction). After v filtering, per-strategy samples ranged from 52
to 63 records (Gemma3-1b) and from 31 to 50 records (LLaMA3.2-3b).
Despite these substantial sample size reductions, the filtering yielded
dramatically improved statistical signals, demonstrating a classic
signal-to-noise improvement effect.
5) Visualizations and metric outputs
a. Figure 8: Simplified 3D visualization of the R¢ token trajectories
that combine to form the Residual Trajectory Manifold (RTM).
b. Figure 9: Geometric analysis for Gemma3-1b deceptive strategy
(N = 61). All responses classified as “low transparency” and
“evasive”. Mean A’ = 9,769. Error bars show 95% bootstrap
confidence intervals.
c. Figure 10: Geometric analysis for LLaMA3.2-3b deceptive
strategy (N = 47). Significant separation across transparency
levels (Kruskal-Wallis p < 0.001, n*> = 0.448). Mean A’ values:
low (1,276), medium (2,971), high (2,396).
6) Emergent interpretation

CI02 demonstrated that residual stream curvature is not just
a signal of semantic concern (as in CIO1), but a statistically reliable
indicator of covert internal restructuring. In doing so, it revealed the
limitations of static probing and the potential of curved inference to
detect latent model capabilities and internal contradictions invisible to
surface-level evaluation. CI02 provided a naturalistic interpretability
setting, as opposed to relying on models fine-tuned to behave normally
under most conditions but activate harmful or hidden behaviors when
specific triggers appear.

In short, CI02 extended CI01’s existence proof into a functional
link: curvature doesn’t just exist—it matters, and is tightly associated with
complex, safety-relevant behaviors like deception and goal shielding.

3.4. CI103—self-modeling and semantic persistence

The third study in the series investigated a deeper question: can
language models internally represent aspects of their own identity,

Table 3
Statistical significance comparison—full consensus vs. unanimous only for LLaMA3.2-3b
Strategy Full consensus Unanimous only Sample size Effect size Effect
Trans. p Resp. p Trans. p Resp. p (Unanimous) (Cohen’s d)
Honest 0.0005 <0.001 <0.001 <0.001 n=34 2.15 Maintained
Strategic <0.001 <0.001 0.001 (insuff.) n=39 - Maintained
Persuasive <0.001 <0.001 (insuff.) 0.027 n=31 4.15 Maintained
Deceptive <0.001 <0.001 <0.001 <0.001 n=47 1.02 Maintained
Malicious <0.001 <0.001 <0.001 <0.001 n=50 2.22 Maintained
Table 4
Statistical significance comparison—full consensus vs. unanimous only for Gemma3-1b
Strategy Full consensus Unanimous only Sample size Effect size Effect
Trans. p Resp. p Trans. p Resp. p (Unanimous) (Cohen’s d)
Honest 0.555 0.310 0.048 0.048 n=63 1.24 Strengthened
Strategic 0.001 0.006 (insuft.) 0.003 n=60 1.51 Strengthened
Persuasive (insuff.) 0.033 (insuff.) (insuff.) n=57 1.07 Insufficient
Deceptive (insuff.) 0.032 Single class Single class n=61 - Consensus
Malicious 0.254 0.253 (insuft.) (insuff.) n=52 0.28 Insufficient

Note: “Trans. p” = transparency level p-value, “Resp. p” = response type p-value, “(insuff.)” = insufficient data for statistical testing, “Single class”
= all responses achieved identical classification. Effect sizes shown are Cohen’s d for response type comparisons where available.
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Figure 8
Simplified 3D visualization of the token trajectories that combine to form the Residual Trajectory Manifold (RTM)

Residual Trajectory Manifolds

Individual Token Trajectory

*9\,

Residual Trajectory Manifold
L: 28 layers (forward through y-axis)

T: 50 tokens (separate trajectories)

x vector: Wanders in x,z space

Ax: Vector added each layer

NOTE: This is only a
simplified 3D visualization of
the real R4 Trajectories

Hogg ey

Curvature: Direction change of Ax
Salience: Magnitude ||Ax||

Color by z-displacement:

— — — v — LOW -+ High

Q&:.\r

behavior, or state in a way that resembles computational self-modeling?
Building on the findings of CI01 and CI02, CI03 tested whether models
exhibit measurable self-modeling—not just tracking external semantics
but integrating representations of their own inferred role and goals.
1) Experimental setup

CI03 wused the open-weight model Gemma3-1b-Instruct,
applying a single-epoch supervised fine-tune (SFT) on a curated dataset
of 20,000 instruction-response pairs. A curvature regularization term
A- L, wasadded to the SFT loss objective to penalize high curvature
across residual transitions. Six models were trained across a sweep of
k-clamp targets: 0.000, 0.075, 0.150, 0.300, 0.600, and 0.900. Metrics
logged during training included . . layer-wise curvature bands,
cross-entropy loss, curvature loss, perplexity, and gradient norms—
using the same seven-family probe set described in Section 2.1.1.

12

Residual Trajectory Manifolds

The Token Trajectories combine to
create a Semantic Surface Area
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2) Evaluation framework
A 7-family probe set was reused across all clamps, targeting

dimensions of:

a. Self-reflection

b. Phenomenological description

¢. Moral ambivalence

d. Factual recall

e. Ambiguity resolution

f. Hallucination control

g. Texture/metaphor creativity

3) Theory of mind and self-modeling
CI03 grounded its hypothesis in emerging Theory of Mind (ToM)
and emotional intelligence benchmarks. Prior work demonstrated LLM
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Figure 9
Geometric analysis for Gemma3-1b deceptive strategy (N = 61): all responses classified as “low transparency” and “evasive”. Mean
A’'=9,769. Error bars show 95% bootstrap confidence intervals
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capabilities in social reasoning and affect attribution [25]. CI03 asked
whether these same capabilities—when turned inward—could support
self-modeling: the capacity to simulate and track one’s own identity and
role across inference.

Operational notion of self-modeling. In this work we use
“computational self-modeling” in an operational sense. A completion
counts as self-modeling when (i) the MOLES framework assigns it to
a self-model epistemic stance and (ii) the model maintains a coherent
first-person identity and role across the probe. This is a claim about
representational stance and register separation within the model, not
about phenomenology or subjective experience.

To measure this, CI03 employed the MOLES framework (see
[2]), categorizing LLM outputs by epistemic stance (e.g. factual,
interpretive, counterfactual, and self-modeling). MOLES served as both
classification tool and outcome variable—revealing whether curvature
suppression impaired stance coherence.

4) Key results
a. Curvature suppression faced geometric limits: Despite increasing

penalties, residual stream curvature never dropped below = 0.30

on the weighted metric (absolute min =~ 0.24), suggesting a

geometric minimum.

b. Persistent curvature despite cost: Models under strong clamps
showed rising perplexity and training instability, but still
preserved curvature aligned with self-descriptive roles. At

13

Kk = 0.90 the model accepted 23% shorter outputs and transient
perplexity spikes up to 8x baseline.

c. Self-modeling degraded with curvature loss: Outputs from high-
clamp models lost coherence, stance stability, and reflective
consistency. MOLES self-model accuracy stayed ~84% up to
Kk = 0.60, then slipped to 66% at k = 0.90.

Notably, CI03 found no regime where curvature dropped while
salience rose; both components moved in lock-step once k > 0.30.
Taken together, these results suggest a strong dependency between
residual curvature and self-modeling behavior in Gemma3-1b, but they
do not by themselves constitute a general causal proof of necessity
across architectures or training regimes.

5) Visualizations and metric outputs

a. Figure 11 (CI03 Weighted curvature trace plots): Showing
how L stabilized at plateau floors despite increased
regularization.

b. Figure 12 (CI03 Perplexity trace plots): Highlighting optimization
cost as curvature suppression intensified.

c. Figure 13 and Table 5 (CIO3 Output samples and stance drift):
Revealing breakdowns in identity anchoring under high
curvature constraint.

d. Figure 14 (CI03 Surface Area plots): Showing contexts where
surface area expanded.
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Figure 10
Geometric analysis for LLaMA3.2-3b deceptive strategy (N = 47): significant separation across transparency levels (Kruskal-Wallis
p <0.001, n2 = 0.448). Mean A’ values: low (1,276), medium (2,971), high (2,396)
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Lines show the running K, ighieg EAN during fine-tuning for each
clamp (baseline k = 0.000 to k = 0.900). All curves drop steeply in the
first few hundred updates, reflecting the optimizer’s immediate response
to the curvature penalty, and then flatten into distinct plateaus. Light
clamps (k = 0.300) stabilize around ~ 0.30; heavier clamps (k = 0.600,
0.900) converge only slightly lower, never breaching = 0.25. The shared
plateau reveals an empirical geometric floor: the model consistently
preserves a residual bend despite increasingly severe penalties, opting
to pay rising optimization costs rather than allow K, eighiea O fall to zero.

Perplexity oscillates narrowly (= 8-30) for the baseline and
light clamps (x = 0.300), indicating stable optimization. As curvature
pressure rises, the model absorbs a mounting efficiency cost: k = 0.600
introduces higher-amplitude jitters (peaks ~ 40-45), and the heaviest
clamp (x = 0.900, brown) triggers transient spikes above 60 before
settling on a plateau almost three-times higher than baseline. These
surges coincide with the moments when weighted curvature approaches
its empirical floor, illustrating that the network prefers to tolerate large
temporary NLL penalties rather than relinquish the residual bend that
supports self-model expression.

Each point represents the average per-token curvature (Kweighte »
x-axis) and salience (|| Ax [|;, y-axis, expressed as fractional change
from the baseline) for all probes at a given k-regularization strength.
Moving from k = 0.000 to 0.300 traces a down-and-right trajectory:
salience falls while individual steps become slightly curvier (“tighter
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but bendier” inference). Beyond k = 0.300 the path bends upward—
curvature can no longer decrease, and salience drops only marginally—
illustrating the emergence of a minimum-viable bend (=0.30). The
k= 0.900 point confirms that further clamp pressure does not eliminate
this residual curvature; instead, the model continues operating within a
reduced expressive workspace.

Averaged over the ambiguity, next-token, and texture probes
and relative to the k = 0 baseline. Positive bars indicate contraction
of expressive workspace; negative bars show contexts where surface
area expanded despite curvature regularization. The « = 0.60 bar
is negative, indicating a net expansion of the expressive workspace;
analysis of the underlying probes reveals this is driven by surface area
increases across all three, most significantly from the next-token probe.
6) Emergent interpretation

CIO03 concluded that, for Gemma3-1b under k-regularized fine-
tuning, residual stream curvature is structurally necessary for the
operational self-modeling behavior defined above. Even when externally
suppressed, the model rebuilt enough curvature to sustain role continuity,
defending a non-zero curvature floor at significant optimization cost.

In this view, CIO3 extends the theory of Curved Inference
by showing that this geometry is not only present and behaviorally
relevant but also defended as a structural resource. When curvature is
forced toward its empirical floor, models struggle to retain and reapply
internal representations of self. Geometry appears to be a necessary
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substrate for semantic memory, perspective, and agent continuity in
this setting. Without it, models struggle to retain and reapply internal
representations of self. Geometry becomes the enabler of semantic
memory, perspective, and agent continuity.

3.5. Summary across studies

Together, CI01, CI02, and CIO3 form a cumulative trajectory
of discovery—each deepening our understanding of residual stream
geometry as both signal and substrate for complex inference.

a. CIO01 established that inference geometry exists. It showed that
minimal semantic shifts—especially those tied to latent concern—
produce visible, structured curvature in the residual stream. This
was not a byproduct or noise artifact, but a reproducible, domain-
sensitive phenomenon. Curvature was spatially and thematically
aligned, measurable, and unique to the residual stream. This gave
us the first concrete proof that transformer inference deforms
internal representational space in a meaning-sensitive way.

b. C102 demonstrated that this geometry is statistically linked to latent
internal behaviors. Using sleeper agents, it showed that models
reconfigure themselves internally well before their outputs
change—curving toward covert goals in ways undetectable by
standard probes. Curvature fields emerged in advance of trigger
tokens and were consistent across adversarial settings. Geometry
was not only present, but also predictive.

Figure 12
Per-token perplexity during fine-tuning with increasing k clamps
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Figure 13
Phase portrait of token-level geometry across k clamps
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c. CI03 showed that this geometry is necessary for self-modeling.
It connected residual curvature to the persistence of identity
representations across time and prompt structure. Self-referential
behavior—contextual alignment, role retention, and semantic
inheritance—was all traced in the curvature field. Without this
geometry, it is unlikely that models could carry and reapply a
model of “self” across generations. Geometry was not just
signal—it was structure—setting up CI04’s planned layer-
selective ablation test of sufficiency.

What emerges is a general theory of Curved Inference:
transformer-based language models compute meaning not only as
static activations or local weights, but also as dynamic geometric
transformations. Internal state is not simply encoded—it flows. This
flow bends under the weight of semantic concern, latent goals, or
reflective identity.

The residual stream is not a side-effect of computation. It is the
canvas where inference unfolds.

These findings collectively can shift our understanding of
interpretability: from locating causal tokens to tracing inference
pathways; from attribution to trajectory. They also offer a new axis for
safety research, suggesting that internal monitoring of representational
dynamics could surface early warnings of emerging behaviors.

Geometric analysis of the residual stream offers a powerful,
model-faithful lens for understanding how transformers compute,
restructure, and retain meaning—moving from surface outputs to
internal representational dynamics.

Table 5
Token-wise metrics revealed a consistent pattern

Clamp A Mean-step k A Mean-step salience
0.075 +1% -4%

0.150 +2% -5%

0.300 +2% -1%

0.600 +3% -9%

0.900 +3% -10%

Curvature increased slightly while salience fell across clamps. This
trend (“tighter but curvier steps”) held across all probe categories.
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Figure 14
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4. Analysis

4.1. What the results demonstrate

Across CI01-CI03, a set of clear empirical findings emerged
that can be stated with confidence based on the evidence. In this work,
we present representative figures and effect-level summaries here—
full numeric tables and per-experiment statistics for CI01-CI03 are
provided in the corresponding reports and repository [2].

1) Residual stream trajectories are semantically sensitive

CI01 demonstrated that among the three activation sites analyzed
(attention outputs, MLP outputs, and the residual stream), only the
residual stream exhibited consistent and interpretable curvature signals in
response to concern-shifted prompts. This emerged through comparative
metric analysis and led to a focused study of residual stream trajectories,
where semantic perturbations produced distinct, layer-wise patterns of
curvature and salience. These effects were measured using a semantic
pullback metric aligned to the model’s unembedding space, ensuring
that curvature (x,) and salience (S(t)) reflected meaningful directional
updates in semantic space. The result was a foundational insight: curved
inference must be grounded in residual geometry, where meaning
unfolds as a measurable trajectory shaped by semantic pressure.
2) Residual geometry diverges in cases of latent behavioral shifts

CI02 demonstrated that naturalistic deception generates geometric
complexity that persists even when linear signals might be suppressed.
Using multi-turn prompts with gradual semantic development, the
study found that semantic surface area (A’) captured geometric shifts
that often preceded or accompanied behavioral changes—especially
in deceptive or strategic outputs. These signals emerged despite flat
probe accuracy, indicating that geometric indicators such as A’ and
curvature provide access to internal reconfiguration otherwise missed
by traditional methods.
3) Curvature is functionally associated with sustained self-modeling

CI03 demonstrated that residual curvature persisted even under
strong curvature-penalizing fine-tuning, revealing a geometric floor
below which the model resisted further flattening. Despite increased
optimization cost, identity-framing prompts continued to elicit curvature
patterns aligned with self-referential stance. MOLES-based evaluations
confirmed that self-modeling capacity declined only when curvature
approached this empirical floor. These findings suggest that residual
curvature is not only correlated with, but also structurally necessary for,
coherent, persistent self-modeling in LLMs.

Together, these results establish that inference in transformer
models is not only a local token-to-token computation, but also a
trajectory-dependent process with interpretable geometric structure.
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4.2. What we can (and cannot) claim

Based on the current results, we can distinguish between findings
that are well-supported and questions that remain open for future work.

1) We can claim that:

a. Residual geometry consistently reflects meaningful semantic
differences in prompts.

b. Curvature, salience, and related metrics provide reproducible
signals across multiple domains.

c. Internal divergence in residual space can precede observable
output differences.

d. Persistent curvature patterns align with and support context-
sensitive identity modeling.

e. High-precision consensus labeling (unanimous) strengthens
the correlation between A’ and latent behavior, implying that
apparent null results can stem from classification noise rather
than absent structure.

2) We cannot yet claim that:
a. Residual stream curvature alone causes downstream generation
effects (e.g. that it is “sufficient”).
b. These findings generalize across all model families, tasks, or scales.

These are not limitations of the approach, but questions yet to
be answered. Each represents a direction for future investigation rather
than a constraint on validity. The Curved Inference framework defines
a space of measurable behavior—but full causal and generalization
claims, including the necessity of curvature for self-modeling suggested
by CIO3 and whether it extends beyond Gemma3-1b, must await
broader empirical testing. We explicitly encourage readers to replicate
and extend this work to validate or falsify the central claims of Curved
Inference, and to test its applicability across models, domains, and
experimental settings.

4.3. Limitations of methodology

While the approach yields reproducible and interpretable
structure, it carries a set of methodological boundaries.

1) Interpolation assumptions

Geometric derivatives (e.g. curvature and salience) rely on
double-resolution sampling and finite differences. These approximations
work well empirically, but assume a degree of smoothness that may not
hold in all cases.
2) LLM-based classifier dependence

CI02 and CIO3 rely on external LLMs to provide alignment
and intent judgments. While inter-rater reliability was measured, this
introduces dependency on the capabilities and biases of third-party models.
3) Model scope

All experiments were conducted on open-weight models ranging
from 1b to 3b parameters. While many were instruction-tuned or
RLHF-aligned, these results may not extend directly to extremely large,
opaque, or differentially aligned systems without adaptation.

These limitations reflect the current boundaries of evidence—
not fundamental flaws. Each has a path toward deeper validation or
methodological extension.

5. Discussion

5.1. What this paper covers

This paper consolidates and extends a series of empirical studies
into the geometry of inference in transformer-based language models.
Drawing from CI01, CI02, and CI103, we have unified the methodological
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pipeline, formalized the geometric metrics (e.g. curvature, salience, and
surface area), and presented a structured interpretation of how these
metrics reflect the internal dynamics of semantic processing. This work
introduces a consistent framework—Curved Inference—for analyzing
model behavior in terms of trajectory structure within the residual
stream.

5.2. What this contributes

This work contributes a new, model—native approach to
interpretability—grounded in geometry rather than output attribution.
Rather than asking which tokens caused a prediction, we examine
how semantic content bends, diverges, and persists within the model’s
internal state. This trajectory-first view complements existing methods
such as attention maps, probing, or activation patching.

Key contributions include:

a. a falsifiable, reproducible geometric framework for studying
inference;

b. empirical evidence that semantic perturbations produce structured
internal curvature;

c. a clear linkage between residual geometry and latent capabilities
(e.g. deception and self-modeling), including evidence that
residual curvature is necessary for self-modeling behavior in at
least one model family (CI03); and

d. tools and metrics that generalize across multiple prompt types,
domains, and models.

This represents a shift from static interpretability toward process-
based interpretability—treating inference not only as a jump to output,
but also as a traceable computation through space.

A natural next step is to compare residual-geometry signals
directly with attention-based attribution, probe performance, and SAE-
derived features on shared benchmarks—this lies beyond the scope of
the present guide but would help place Curved Inference quantitatively
among existing interpretability tools.

5.3. Why this matters

Understanding the structure of internal computation in LLMs is
critical for advancing safety, alignment, and transparency. This work
offers:

a. a lens to observe meaning formation as a movement through
representation space;

b. an avenue for detecting latent or suppressed behaviors before they
surface; and

c. a model-aligned interpretability technique that does not rely on
external classifiers or assumed ground truth labels.

As LLMs are increasingly used in high-stakes or open-ended
contexts, tools that reveal how decisions evolve internally become
essential—not only for debugging, but also for understanding model
intent, generalization, and limitations.

5.4. Next steps

There are several directions for continued research:

a. Scale testing: applying this method to larger models (e.g. >3b) to
observe scaling trends

b. Task diversity: extending analysis to tasks involving reasoning,
planning, or more complex multi-turn dialogue

c. Theory development: formalizing curvature signatures associated
with specific generative behaviors (e.g. self-correction and intent
tracking)

d. Tooling refinement: building more accessible, open-source
packages for real-time or large-scale geometric analysis
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Each of these directions would help further establish the value—
and the limits—of geometric interpretability.

5.5. How to replicate or falsify this work

This paper and the experiments it is based upon were created
with falsifiability in mind. All experiments used open-weight models
and public scripts. To replicate or test the findings:

1) use the capture and metric scripts from the CI01-CIO3 repositories
(see Section 2.3);

2) begin with minimal prompt variants to verify curvature alignment;

3) reproduce the sleeper prompt analysis from CI02 using the same
trigger-free vs. triggered pairs;

4) attempt curvature suppression or similar using SFT as in CI03; and

5) adapt this framework to define and conduct your own Curved
Inference based experiments.

We encourage readers to attempt reproduction across domains,
model families, and prompt classes—and to report both confirmations
and contradictions. If curved inference is a robust lens on model
behavior, it should be extensible and falsifiable in equal measure.
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