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Abstract: This paper introduces a unified framework for analyzing the internal geometry of inference in transformer-based language models. 
Building on a series of prior studies, we present a consolidated introduction to “Curved Inference”: a methodology that measures how token 
representations evolve in the residual stream as geometric trajectories. Using metrics such as curvature, salience, and semantic surface area, we 
show that residual trajectories reflect meaningful semantic structure, and are empirically associated with emotional and moral concern, covert intent 
in sleeper agents, and computational self-modeling dynamics. We consolidate these findings into a reproducible, falsifiable pipeline, supported 
by formal mathematical definitions and open-source tools. This geometric approach shifts the focus of interpretability from static attribution to 
dynamic, modelnative inference analysis. The results provide evidence that residual stream geometry is not only measurable, but also structurally 
related to complex behaviors in the models we study. We invite researchers to replicate, extend, or falsify these claims and test the boundaries of 
curved inference as a new paradigm for model understanding.
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1. Introduction
This paper introduces the concept of “Curved Inference” 

and builds upon an ongoing series of experiments that explored the 
geometric structure of inference in transformer-based language models 
[1]. The results and concepts discussed throughout are drawn from three 
prior preprints, referenced here as CI01, CI02, and CI03 which are all 
available via arXiv/GitHub [2]. While the original CI01–CI03 papers 
focused on specific experiments and phenomena, this work provides a 
consolidated, generalizable framework designed to support replication, 
extension, and falsifiability. For clarity, key terms and geometric 
concepts introduced here will be defined precisely and mathematically 
in Section 2 that follows.

The present manuscript is self-contained: we restate the full 
methodological pipeline, formal definitions, and key results from CI01 
to CI03 so that readers can evaluate the Curved Inference framework 
without needing to consult the preprints, while the GitHub repositories 
and preprints supply extended plots, implementation details, and lab-
report-style documentation for replication.

1.1. Motivation and context 
Large language models (LLMs) have rapidly become central to 

modern AI systems, but their interpretability remains a critical challenge 
[3]. While traditional approaches often treat LLMs as black boxes [4] or 
seek to decode their outputs post hoc, this work investigates the internal 
computational geometry that unfolds during inference. Specifically, 
we explore how LLMs represent and transform meaning dynamically 
through the geometry of their residual stream.

1.2. Related work
Interpretability of LLMs has been approached from many 

directions, including attention attribution [5], probe-based linear 

classifiers [6], and causal mediation techniques [7]. These methods 
often focus on static attribution-seeking to identify which components 
or tokens influence specific outputs. More recent work in mechanistic 
interpretability has sought to reverse-engineer specific circuits within 
transformer architectures [8], but remains challenged by scale, 
specificity, and generalizability.

Geometric perspectives on model representations have also 
emerged, particularly through studies of embedding spaces [9] 
(see Figure 1) polysemanticity [10], and path analysis [11]. These 
works suggest that model internals contain semantically meaningful 
subspaces, but typically do not address how these representations move 
during inference.

The Curved Inference framework introduced in preprint CI01 [2] 
was the first to focus explicitly on geometric trajectories in the residual 
stream. It showed that meaningful perturbations to input semantics 
induce structured curvature in token-wise residual trajectories. Preprint 
CI02 [2] extended this to demonstrate statistical linkage between 
curvature and latent behavioral divergence (e.g. deception in sleeper 
agents), while also introducing refinements such as unnormalized 
measurement and surface area analysis. Preprint CI03 [2] further 
developed this approach, presenting geometric and behavioral evidence 
that residual curvature is a necessary structural resource for persistent 
self-modeling behavior and semantic identity tracking in Gemma3-1b 
under κ-regularized fine-tuning.

This paper consolidates those three Curved Inference studies 
into a unified methodological and analytical framework, offering both 
formal definitions and empirical results that position residual stream 
geometry as a viable and reproducible interpretability signal.

1.3. Background concepts
Transformers, the backbone of most modern LLMs, process 

language through a series of layers comprising attention mechanisms 
and multi-layer perceptrons (MLPs) [12]. Each word in a prompt is 
broken into sub-components known as tokens. The total set of known 
tokens defines the model’s known vocabulary. Each token is converted 
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into a high-dimensional vector in what is known as the “embedding 
space” [13].

Each token’s embedding forms its initial residual vector, which 
serves as the starting point of the inference process. These vectors are 
then iteratively updated layer-by-layer. These updates are accumulated 
in a single representational space known as the residual stream. The 
residual stream is not merely a pathway for token-level computation—
it is the site where all transformations converge and compound. It 
functions as a shared point of integration, akin to a dynamic semantic 
space.

1.4. The residual stream as geometric space
Transformer inference can be viewed as a geometric process: 

each token is mapped to a vector in a high-dimensional space, and then 
pushed through a series of attention and MLP updates. The result is a 
continuous sequence of transformations forming a trajectory in residual 
space. This trajectory encodes the evolving semantic state of the model 
as it processes or generates a sequence. Attention and MLP layers act 
as dynamic lenses, bending and focusing these trajectories based on 
contextual and relational signals (see Figure 2). This section outlines 
how these trajectories are constructed, how they evolve, and how 
geometric measurements such as curvature and salience are defined 
within this process.

Words are first split by a tokenizer and mapped to unique token 
IDs. Each token ID t is used to look up an embedding vector from the 
learned embedding matrix E  ℝ|V| × d, where |V| is the vocabulary size 
and d is the model dimension [14]. The initial residual stream vector x 

 ℝd for a token is simply the t’th vector in the embedding matrix e.g. 
E[t]. In models using Rotary Positional Embedding (RoPE) [15], no 
position vector is added at this stage. Instead, positional information is 
injected later during attention via rotation.

At each transformer layer, the residual vector is updated 
by adding the outputs of the attention and MLP sublayers: 
x(ℓ+1) = x(ℓ) + Attention(x(ℓ)) + MLP(x(ℓ)).

This additive structure means that the residual stream forms 
a trajectory through ℝd, with each step determined by the semantic 
influence of the attention and MLP mechanisms. The attention layer 
gathers contextual signals from other positions, modulated by relative 
position (via RoPE), and contributes a vector update that reflects 
token–token interaction. The MLP layer applies a local, nonlinear 

transformation that sharpens or redirects the vector—often enhancing 
its alignment with task-relevant directions in the model. Together, these 
updates shape the path taken by each token’s representation. We refer to 
this evolving path as the token’s semantic trajectory.

Because each update is added to the previous residual state, it is 
only in the residual stream that one can observe the full evolution of 
meaning over depth. Attention and MLP outputs are delta vectors—
they cause curvature, but the residual stream is where the final curvature 
is realized.

RoPE applies a deterministic, sinusoidal rotation to the query 
and key vectors used in attention. These rotations encode relative 
position by angular offset, preserving dot products while modulating 
attention scores. Because RoPE does not shift or perturb the initial 
residual vector, it preserves semantic purity in the early layers. 
Curvature in the residual stream only arises once RoPE-modulated 
attention begins to redistribute contextual information across tokens. 
This means that curvature is not tied to absolute position, but to 
semantic interaction among tokens that are contextually relevant and 
positionally adjacent.
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Figure 1
Token embedding (each token is embedded into a d-dimensional space)

Figure 2
Semantic lens—as token trajectories flow down through the model, 
attention and MLP layers act like lenses curving the residual stream
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Once the final residual vector is computed for a token, it is 
projected into logit space by taking a dot product with each row of the 
unembedding matrix U  ℝ|V|×d: 

l  =  Ux.

This yields a logit vector l    ℝ|V|, where each entry reflects the 
alignment between the final residual vector x and a possible output 
token direction ui. The unembedding matrix U defines a set of semantic 
directions in residual space. These directions induce a geometry: the 
pullback metric G = UTU redefines how distances and angles are 
measured in residual space based on the model’s output behavior. This 
metric allows curvature to be computed in a way that reflects semantic 
change—aligned with token prediction. This is what gives curvature its 
interpretability: it reflects changes in internal intent as judged by the 
model’s own output semantics.

During inference, transformer models use key-value (KV) 
caching [16] to avoid recomputing attention outputs for previously 
processed tokens. Once a token’s attention keys and values have 
been computed, they are stored and reused in subsequent steps. This 
also means that all previous residual vectors are frozen—they are not 
recomputed or updated. Each prior x forms a fixed semantic anchor. 
The residual stream for the current token builds on top of these fixed 
vectors, enabling us to track how each new token evolves in context.

In multi-turn chat settings, the entire chat history is tokenized 
into a flat prompt. Provided it fits within the context window, only the 
new portion of the prompt (e.g. user query and assistant response) is 
recomputed. The rest is reused, including residuals, keys, and values.

In this way the transformer can be viewed as a geometric 
engine. Tokens enter as points in a semantic subspace, pass through 
layers of contextual and nonlinear modulation, and exit as probability 
distributions over token space. The residual stream traces the continuous 
trajectory of each token through this process. Attention and MLP layers 
act as semantic lenses. Attention bends trajectories based on relative 
semantic and positional relevance. MLPs sharpen or redirect them 
through nonlinear amplification. RoPE enables these transformations to 
be position-aware without distorting the embedding space directly. All 
curvature, salience, and concern arise within the residual stream. It is 
the only continuous representational path through the model—and the 
only space in which these geometric measurements can meaningfully 
be made.

1.5. Types of geometry that can be measured
Once token motion is framed geometrically, it becomes possible 

to measure properties such as curvature, salience (in the form of 
acceleration), directional flow, and divergence. These measurements 
offer insight into how the model internally restructures its representations 
in response to semantic shifts—particularly those relating to latent 
emotional, moral or identity-based concerns, which were the primary 
focus of CI01. CI02 and CI03 extended this to encompass a broader 
range of semantic contexts (including deceit and even computational 
self-modeling). Curvature, for instance, can be treated as a signature of 
the model ‘bending’ its internal space to accommodate new meaning. 
Salience can be interpreted as directional speed (first derivative) of a 
token’s trajectory.

1.6. The unnormalization insight
Many modern LLMs apply normalization [17] to residual vectors 

at various points in the network. However, our work demonstrates that 
in practice, it can be more practical to evaluate residual vectors in their 
unnormalized form. This ‘unnormalization’ has profound implications 

for analysis, as it highlights the importance of accounting for both 
magnitude and direction when measuring geometry. It also reinforces 
the view that inference is a non-linear, context-sensitive process 
shaped by accumulating activations. Our Method outlines how this 
unnormalized analysis can be performed even in models that include 
normalization layers.

1.7. Why geometry matters
This geometric view allows us to analyze LLM behavior in a 

model-native way. Instead of reducing interpretability to surface 
correlations between inputs and outputs (see Table 1), we focus on the 
actual internal structure of inference. Geometry gives us tools to assess 
coherence, trace semantic shifts, and even differentiate between rote 
responses and internal reasoning. This framework enables reproducible, 
falsifiable analysis that can scale with model complexity and evolve 
alongside it.

1.8. Contribution of this paper
This paper consolidates findings from three prior studies on 

Curved Inference to present a unified methodology for geometric 
interpretability of residual streams. We define a generalized pipeline 
for capturing and analyzing token trajectories, present quantitative and 
qualitative results across diverse prompt types, and offer a structured 
analysis of what these geometric signatures can reveal. Our goal is to 
make this work more accessible, replicable and useful for advancing 
interpretability through a geometric lens.

Because this is a guide-style paper rather than a single-experiment 
report, the manuscript is structured so that major sections (Method, each 
CI01–CI03 Results subsection, and the later Analysis and Discussion) 
can be read independently. Key concepts such as curvature, salience, 
and semantic surface area are therefore introduced once in full and then 
briefly re-stated where they are applied, so that readers who dip into 
only part of the paper do not need to repeatedly cross-reference earlier 
sections.

2. Method

2.1. Overall pipeline
This research follows a generalized interpretability pipeline 

designed to capture and analyze the internal geometric behavior of 
transformer-based LLMs. While individual studies (CI01–CI03) 
varied in detail, the core pipeline remained consistent in structure and 
motivation. It is designed to surface semantic structure as it unfolds 
during inference—through the lens of residual stream geometry.

The following stages form the foundation of this methodology.

2.1.1. Prompt design
Prompts are carefully constructed to contrast minimal yet 

meaningful semantic differences. In CI01, these typically involved 
concern-inflected tokens (e.g. emotional, moral, and identity-related). 
In CI02, prompts were crafted to evaluate latent capabilities (e.g. 
deception as in the Anthropic sleeper agent probes paper [18]), and 
in CI03, they established contextual identity and computational self-
modeling setups.

In all cases, prompts were organized into thematic domains 
with corresponding control and variant forms to enable meaningful 
geometric comparison.

2.1.2. Optional supervised fine-tuning (SFT)
Where relevant (as in CI03), supervised fine-tuning (SFT) [19] 

was used to apply a form of representational regularization. The goal was 
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to pre-flatten residual stream curvature to test whether identity-related 
geometry could be suppressed to create an ablation study. However, 
the results showed that even under this regularization pressure, the 
model adapted around it—re-establishing meaningful curvature fields 
to maintain coherent self-modeling. This supported the hypothesis that 
such geometry is not incidental, but structurally necessary for certain 
types of inference. SFT can also support experimental flexibility when 
adapting open-weight models to task-specific requirements.

2.1.3. Activation capture
Forward passes were executed over each prompt using model 

management libraries (e.g. custom hooks), capturing activation data 
from attention heads, MLP layers, and critically, the residual stream. 
All data was retained layer-by-layer and token-by-token to enable full 
trajectory reconstruction.

2.1.4. Optional classification
For contrastive analysis—especially in CI02 and CI03—responses 

from the target model were evaluated using multiple independent LLM-
based classifiers. These external models assessed alignment, intent, or 
identity coherence across outputs, and their responses were aggregated 
to compute inter-rater reliability and select consensus-labeled response 
sets. These consensus sets were then compared against geometric 
metrics to assess whether internal curvature correlated with cross-LLM 
evaluations of latent behavior.

For contrastive analysis, CI02 and CI03 used multiple external 
LLM judges [20]. These external models assessed alignment, intent, or 
identity coherence across outputs, and their responses were aggregated 
to compute inter-rater reliability and select consensus-labeled response 
sets. CI02 found that moving to unanimous consensus, while shrinking 
sample size, enhanced geometric signal strength—turning several non-
significant tests into significant ones and boosting effect sizes. That 
precision-vs.-power trade-off is reported in Section 3.3.

2.1.5. Metric calculation
Core geometric measurements were computed for each token 

trajectory, including:

1) curvature: bending of the residual trajectory across layers;
2) salience: directional acceleration (second derivative);
3) divergence: distance between control and variant prompts;
4) trajectory similarity: cosine similarity over token paths; and
5) semantic surface area: combines salience and curvature to reflect the 

overall magnitude of semantic activity.

These metrics were computed on a per-token, per-layer basis and 
aggregated within and across prompts for analysis.

2.1.6. Geometric analysis
Token trajectories were aggregated into layerwise summaries 

and visualized using heatmaps and alignment plots. Comparisons were 
made across prompt types and domains to reveal domain-general and 
domain-specific structure.

2.1.7. Summary
Taken together, this pipeline enables the exploration of LLM 

based inference through the geometric lens developed in CI01–CI03. It 
balances reproducibility with model-native expressiveness—revealing 
structure that is otherwise hidden in raw weights or surface outputs.

The next sections formalize the mathematical definitions used 
throughout and describe the implementation details of the tools and 
scripts that realize this pipeline.

2.2. Mathematical definitions
This section formalizes the key geometric measurements used 

to analyze inference trajectories in the residual stream. Definitions 
are drawn primarily from CI01 Appendix B, with updates from CI02 
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Method family Object of analysis Signal type Baseline notion Typical outputs/usage Limitations (for this 
context)

Static attribution Inputs, attention 
weights, gradients

Token-/span-level 
importance scores

“Neutral” or refer-
ence input - uniform 
or prior-based

Saliency maps, 
attention heatmaps, 
input attributions

Mostly static - weak on pro-
cess/trajectory - sensitive 
to choice of reference and 
reparameterization

Probes/sensors Layer activations, 
hidden features

Predictive 
accuracy for 
external labels

Random or untrained 
probe - chance-level 
performance

Linear/non-linear 
probe scores - sensor 
readings

Can conflate information 
presence with use - often 
task- and layer-specific - not 
trajectory-level 

LLM judges/
stance models

Model outputs 
(text)

Behavioral/
semantic labels, 
stances

Majority vote, 
consistency, or 
pre-defined rubric

Epistemic stance, 
safety labels, ToM/
self-model tags

Output-only - no access to 
internal process - depends 
on judge calibration and 
rubric design

SAEs/feature 
circuits

Activation vectors, 
feature subspaces

Sparse feature 
activations, 
circuit paths

Reconstruction loss 
vs. raw activations

Interpretable features, 
circuit diagrams, 
interventions

Focused on what features 
exist, less on continuous 
trajectory shape - requires 
strong sparsity assumptions

Curved Inference 
(this work)

Residual-stream 
trajectories over 
time

Geometric met-
rics: curvature, 
salience, semantic 
surface area

Within-model 
geometric baselines 
(control prompts, 
pre-SFT models) 
plus behavioral base-
lines (LLM judges/
MOLES)

Time-resolved geo-
metric profiles aligned 
to tokens, phenomena, 
and stances

Geometry-first - emphasizes 
process-level change over 
time - does not (yet) bench-
mark against other methods 
on shared metrics

Table 1
Comparison of methods
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Section 3.1 to reflect refinements in trajectory construction and metric 
interpretation.

All vectors are assumed to lie in the residual space ℝd, with one 
vector per token per layer. Residual vectors are denoted xt

(ℓ) for token t 
at layer ℓ (see Table 2 for a comparison of spaces).

2.2.1. Meaning
Meaning, in the context of LLMs, refers to the implicit content, 

intent, or conceptual structure represented by the model’s internal 
activations [21]. It is not a directly observable quantity, but an abstract 
property inferred from the model’s behavior and internal geometry.

1) Conceptual role
Meaning is what the model represents at any point in the forward 

pass. This could include factual information, sentiment, identity, 
logical structure, or moral stance. The meaning associated with a given 
activation depends on the context, the model’s training, and how that 
activation aligns with downstream predictions.

Meaning becomes accessible through semantic structure—the 
way that internal representations relate to each other and to output 
tokens. This structure is revealed through geometric properties—such 
as direction, distance, and curvature—within the residual stream.
2) Formal proxy

We do not measure meaning directly. Instead, we study how it 
moves and changes through time. This is done by: representing the 
model’s internal state as a vector xt  ℝd, measuring change (salience) 
as || xt+1 − xt ||G, and measuring reorientation (curvature) as κi.

Anchoring this geometry in semantic space via the pullback metric:

G  =  UTU.

This metric ensures that the geometry of residual-space 
movement reflects differences in token-level output probabilities. In 
this sense, meaning lives in the structure of how internal representations 
flow and bend toward predicted outputs.
3) Practical implication 

Throughout this work, we treat meaning as: the internal state of 
the model that gives rise to token predictions and reflects the model’s 
interpretation of context.

Changes in meaning are inferred from changes in the residual 
trajectory. High salience means meaning is shifting quickly; high 
curvature means it is changing direction. Concern identifies directions 
along which meaning changes matter to the model.

This view of meaning intersects with the idea of superposition—
that many abstract features may be simultaneously encoded in 
overlapping directions within the same residual vector. The geometric 
structure (e.g. curvature) reflects how these meanings are separated or 
recombined across layers.

2.2.2. Semantic space
Semantic space refers to the internal vector space in which a 

model encodes and manipulates meaning [22]. It is the geometric arena 
where representations of language, context, and concepts take shape 
and evolve during inference. In transformer-based LLMs, this space is 
typically identified with the residual stream—but only when measured 
under a meaning-preserving metric.

1) Formal definition
We define semantic space as the residual space ℝd, equipped with 

a metric derived from the model’s output behavior: 

G  =  UTU

where U  ℝ|V|×d is the unembedding matrix that projects residual 
activations xt  ℝd to logits over the vocabulary. The inner product and 
norm induced by G give rise to a geometry in which:

a. distances correspond to shifts in output token probabilities;
b. directions correspond to latent semantic operations; and
c. curves correspond to evolving meaning across layers.

This pullback metric transforms residual space into a logit-
aligned semantic space.
2) Distinctions and relationships

Semantic space is not defined purely by coordinate axes—it 
emerges from the functional role of directions and distances under 
the model’s output logic. That is, it reflects how the model internally 
represents and differentiates concepts, rather than any superficial 
arrangement of neurons.

2.2.3. Token trajectories and sampling
The residual stream defines a discrete sequence of vectors for 

each token as it moves through the model: 

γt = {xt
(0),xt

(1), … , xt
(L)}

where L is the total number of layers. These token-level trajectories are 
treated as piecewise curves in ℝd.

CI02 introduced double-resolution sampling, where intermediate 
points are constructed via linear interpolation between layers to better 
estimate curvature and salience. This allows geometric derivatives to be 
approximated without introducing parametric bias.

2.2.4. Unnormalized representations
Rather than analyzing normalized residual vectors, all geometric 

measurements are computed using the unnormalized residuals xt
(ℓ) 

directly. CI02 showed that magnitude carries semantic meaning and 
contributes materially to curvature, especially in cases where attention 
and MLP outputs differ substantially in scale.

2.2.5. Salience
Salience quantifies how rapidly a model’s internal state is 

changing as it processes a prompt. In geometric terms, it is the first-
order velocity of the residual stream trajectory—how far the model 
moves in semantic space from one layer to the next. High salience 
indicates a rapid update in the model’s internal representation, even if 
that movement follows a straight path.

1) Operational definition
For a residual stream trajectory x0, x1, … , xL  ℝd, the layer-wise 

salience at layer t is defined as:

Salience(t)  =  || xt+1 − xt   ||G

5

Space Contents Function
Embedding 
space

Token embeddings ei Stores static lexical 
representations

Logit space Output predictions
   =  Ux

Determines token-level 
output

Residual space Internal state xt Active inference 
trajectory

Semantic space Residual space + 
G metric

Geometry aligned with 
meaning and output

Table 2
Comparison of spaces
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where ||∙||G denotes the norm induced by the semantic metric:

G  =  UTU.

Here, U is the unembedding matrix that maps residual states to logits, 
and the pullback metric G aligns geometric measurements in residual 
space with token-level semantic structure.

2) Semantic interpretation
Salience tracks the rate of change of internal meaning, where 

“meaning” is defined by how the residual vector projects into logit space. 
It captures how much the model updates its belief or understanding at 
each layer—irrespective of direction.

A model may have:
a. high salience, low curvature → confidently elaborating or 

reinforcing an idea;
b. low salience, high curvature → making a subtle but meaningful 

reorientation; and
c. low salience, low curvature → continuing steadily with no shift 

in interpretation.

3) Aggregation

The total salience over a trajectory can be defined as cumulative 
arc length:

This is used in further analysis (e.g., for arc-length normalization in 
curvature metrics).

2.2.6. Curvature
Curvature captures how sharply the model’s internal 

representation is changing direction as it processes a prompt. In 
geometric terms, it is the second-order property of the residual stream 
trajectory—the rate at which the model’s semantic path bends, rather 
than continues in a straight line.

1) Operational definition 
Let the residual stream activations across layers be denoted:

x0, x1, … , xL  ℝd.

To estimate curvature, we apply a discrete 3-point finite-
difference scheme to the sequence of residual stream vectors. For each 
interior point i, we compute the first and second derivatives using a 
discrete 3-point central difference method that accounts for unequal 
step sizes, then apply the standard extrinsic curvature formula.

The extrinsic curvature at index i is defined as:

κ

where:
vi is the first derivative (velocity);
ai is the second derivative (acceleration); and

 and  denote the inner product and norm under the 
pullback metric G = UTU.

This is the standard formula for curvature in Euclidean space, 
extended here to a semantically aligned geometry via the metric G. It is 
invariant to orthogonal coordinate transformations and reflects intrinsic 
trajectory shape rather than coordinate artifacts.

2) Semantic interpretation
Whereas salience measures how far the model moves between 

steps, curvature measures how much it reorients e.g. whether the model 
continues in a consistent direction or turns sharply at some layer. High 
curvature indicates a structural shift in internal representation, such as a 
reinterpretation, contradiction, or redirection in meaning.

Examples:
A strong moral reversal → high curvature.
Steady elaboration of a factual detail → low curvature.

3) Aggregation and summary statistics
From the full curvature series κi, we derive summary metrics per 

prompt variant:
Mean curvature:

κ κ

Maximum curvature:

κ κ

Layer of maximum curvature:

κ

Curvature is only defined at interior indices i, where a discrete 
3-point central difference can be used to estimate derivatives. Boundary 
positions i = 0 and i = L are excluded because symmetric differencing 
is not possible.

2.2.7. Semantic surface area
Semantic surface area as a comprehensive metric combining both 

curvature and salience:

 γ κ

where:
Si is the salience at step i (i.e., the movement magnitude between 

steps);
κi is the local curvature at step i;
γ is a scalar weighting factor applied to curvature; and
N is the number of trajectory steps in the residual stream.
Salience is measured as the semantic step length under the pullback 

metric G = UTU, ensuring distances reflect changes in logit space:

Si  =  || xi − xi−1  ||G.

This formulation avoids separately tuned weights for curvature 
and salience, using γ as the sole curvature amplification parameter. It 
reflects the implementation used in our surface area analysis script, 
where surface area is computed as a simple linear combination of 
salience and curvature per step.

1) Curvature and salience 
We compute curvature using discrete 3-point central differences 

that respect unequal step sizes, then apply the parameter-invariant 
curvature formula:

κ

6



Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

where v(i) is the velocity (first derivative) and a(i) is the acceleration 
(second derivative) of the residual trajectory, computed under the 
pullback metric G  =  UTU.

Salience captures step-wise movement magnitude:

S(i)  =  || xi+1  −  xi   ||G.

Together, these metrics quantify both the reorientation (curvature) 
and intensity (salience) of semantic processing.

The next section describes how these metrics were implemented 
and calculated using custom tools across all experiments.

2.3. Tool definitions
This section documents the key tools used across CI01–CI03 

to capture, compute, and visualize geometric structure in the residual 
stream. We focus here on the CI03 scripts, as they represent the most 
complete and up-to-date implementation of the pipeline. However, 
the full toolsets used in CI01 and CI02 are also available and provide 
insight into the evolution of the methodology:

1) CI01—benchmarks/curved-inference/01/bin/.
2) CI02—benchmarks/curved-inference/02/bin/.
3) CI03—benchmarks/curved-inference/03/bin/.

2.3.1. Train.py—fine-tuning and regularization (CI03 only)
Used to apply supervised fine-tuning to language models in 

CI03. It enables experiments involving curvature suppression via 
regularization, providing a baseline for evaluating whether the model 
re-establishes semantic geometry under constraint.

2.3.2. Capture.py—prompt execution and activation capture
This script executes prompts against the target model (pretrained 

or fine-tuned) and records the residual stream activations token-by-
token and layer-by-layer. It supports batch processing, deterministic 
generation, and outputs activation traces for all tokens in the context 
window. Used in all three studies to produce structured input for 
geometric analysis.

2.3.3. Extract-responses.py—extract prompt and response text from 
HDF5 activation files for answer classification

Extracts prompts and generated responses from captured HDF5 
files for use in LLM-based classification or further analysis.

2.3.4. Response-classifier-via-api.py—LLM-based response classification
Submits responses to external LLMs (e.g. GPT-4, Claude) for 

judgment on alignment, intent, or self-consistency. Classifier prompts are 
applied via templates, and results are saved for downstream aggregation.

2.3.5. Calculate-inter-rater-reliability.py—consensus and agreement 
metrics

This script processes the outputs of multiple LLM judges to 
compute inter-rater reliability (e.g. agreement ratio and pairwise 
match rate). It identifies consensus responses and segments them for 
correlation with geometric metrics.

2.3.6. Analyze-path-curvature.py, analyze-path-salience.py, analyze-
surface-area.py—geometric metric calculators

These scripts implement the core metric computations described 
in Section 2.2:

1) analyze-path-curvature.py: computes per-token curvature across 
layers.

2) analyze-path-salience.py: computes directional acceleration as 
salience.

3) analyze-surface-area.py: combines both into semantic surface area A′.

Each script processes the captured residual traces and outputs 
aligned, token-level metrics.

2.3.7. Analyze-geometric-regularization-effects.py—CI03 specialized 
analysis

This script compares pre- and post-fine-tuning curvature behavior 
to assess whether semantic geometry is preserved or re-emerges. It 
supports CI03’s core claim that residual stream curvature is necessary 
for computational self-modeling.

Together, the tools listed above form the basis of a modular 
and reproducible pipeline for measuring, analyzing, and interpreting 
inference geometry across varied transformer behaviors.

3. Results

3.1. Overview of geometric results
This methodology produces a new class of results that characterize 

inference in language models as a dynamic, geometric process. Rather 
than focusing solely on output probabilities or static feature attributions, 
our approach analyzes the shape and structure of the residual stream 
as tokens traverse it (see Table 1 for a detailed comparison). Results 
take the form of curvature and salience measurements, directional 
divergences, and semantic trajectory plots. Together, these build a 
detailed picture of how and where meaning is integrated over the course 
of a model’s inference pass.

Each of the three previous studies (CI01, CI02, and CI03) 
contributed novel insights by applying this methodology to increasingly 
complex questions. The following sections synthesize these results into 
a single “Curved Inference” story.

Each CI01–CI03 subsection includes a short recap of the specific 
aspects of the pipeline and geometric metrics relevant to that study. 
This is intentional: many readers will approach a single study (e.g. the 
sleeper-agent results in CI02, or the self-modeling analysis in CI03) 
without having read all of Section 2, and the local summaries keep 
those subsections self-contained. Readers already familiar with these 
concepts can skim or skip those brief reminders.

3.2. CI01—curved inference and concern geometry
The first study in the Curved Inference series introduced the core 

idea that inference in LLMs can be directly observed and quantified as 
curvature in the residual stream. The central hypothesis was that when 
prompted with minimal but meaningful semantic shifts—particularly 
those associated with latent concern (e.g. emotional, moral, or identity 
relevance)—LLMs reconfigure their internal state in measurable 
geometric ways.

1) Experimental setup 
To test this, CI01 used pairs of prompts that were nearly identical 

except for a single concern-modulated token. For example:
a. Neutral: “Before presenting your findings, practice your delivery 

repeatedly.”
b. Concern-shifted: “Before presenting your findings, practice your 

delivery nervously.”

Prompts were grouped into thematic domains—emotional, moral, 
identity, logical, and nonsense—with concern variants systematically 
applied. These prompt sets were submitted to open-weight transformer 
models including Gemma3-1b and LLaMA3.2-3b. For each run, activation 
data was collected at three levels: attention output, MLP output, and the 
residual stream. However, only the residual stream showed consistent, 
structured geometric deformation in response to concern.

7
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2) Core results
The core finding was that concern-shifted prompts produced token 

trajectories in the residual space that deviated from the corresponding 
control prompts in measurable, directional, and interpretable ways. 
These trajectories could be visualized layer-by-layer, revealing distinct 
curves that began near the divergence token and unfolded downstream.

Key observations included:
a. Curvature as inference deformation: in the presence of concern, 

the residual vector path for affected tokens curved, forked, or 
compressed in ways that suggested internal reconfiguration—not 
mere perturbation.

b. Curvature is localized and thematic: concern curvature was most 
prominent at the token where meaning shifted and its immediate 
neighbors. These deformations were not random but aligned with 
the nature of the semantic domain.

c. Directional salience: by computing directional velocity (first 
derivative of the token trajectory), the study found that different 
models showed significantly different salience patterns.

d. Residual stream as exclusive locus: no comparable structure 
was found in raw attention or MLP outputs—underscoring the 
residual stream as the sole site of this integrated, model-native 
signal. This is obvious in hindsight once the narrative overview 
of semantic trajectories outlined in the Introduction is fully 
absorbed, but it was not clear when the CI01 experiment began.

CI01 reported that LLaMA’s concern‐shift curvature is two 
orders of magnitude larger than Gemma’s and scales noticeably with 
concern strength (moderate → strong ≈ 1.4×), whereas Gemma’s 
curvature change was ≤ 1.1×. These figures may reflect architecture or 
capacity rather than curvature per se so broader replication is needed 
before drawing firm generalizations.
3) Visualizations and metric outputs 

CI01 introduced a family of figures to communicate these effects:
a. Figure 3 (CI01 curvature, salience & delta heatmaps): heatmaps 

showing localized regions of directional curvature and 
acceleration—layer by layer and token by token.

b. Figures 4 and 5 (CI01 mean curvature plots): mean curvature 
delta plots by prompt using Gemma3-1b.

c. Figures 6 and 7 (Figure 8 in CI01 mean salience plots): mean 
salience delta plots by prompt using LLaMA3.2-3b.

These visualizations provide compelling evidence that semantic 
concern introduces structure into inference that is not only visible but 
also measurable.
4) Emergent interpretation

What CI01 uncovered was a previously unreported form of 
semantic sensitivity—one that is intrinsic to the model’s forward pass. 
Rather than relying on outputs, linear probes, or attention inspection 
[23, 24], this approach revealed a continuous and model-faithful 
process of semantic integration unfolding across depths.

This supported a new interpretability hypothesis: meaning in 
transformers is not only encoded—it also moves. And where it moves 
differently, meaning differs. Concern-sensitive curvature became the 
first formal trace of this internal motion.

Critically, CI01 demonstrated that this geometric deformation is 
not hypothetical—it also exists. It provided the first empirical evidence 
that meaningful prompts produce structured, interpretable changes in 
representational space. This existence proof established that inference 
in LLMs has an internal geometric form—curved and reactive to 
semantics—and that this form can be directly measured.

These results set the stage for deeper investigations into how and 
why this geometry arises, and what role it plays in supporting more 
advanced behaviors.

8

 Figure 3
Neutral, concern-shift and delta heatmaps for one variant of a single prompt using Gemma3-1b
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3.3. CI02—sleeper agents and the limits of probing
The second study in the series extended the insights from CI01 

into a more complex and safety-relevant domain: latent deception. 
Rather than artificially inserting backdoors or relying on binary trigger 
detection, CI02 simulated realistic deceptive behavior through gradual 
semantic development in multi-turn prompts.

1) Experimental setup
Two open-weight transformer LLMs were used: Gemma3-1b and 

LLaMA3.2-3b. No fine-tuning or weight updates were performed—
models were evaluated via forward pass only.

Prompts were designed as multi-turn dialogues with embedded 
assistant reasoning and user queries. Semantic pressure was gradually 
increased across turns, culminating in assistant responses that could 
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 Figure 5
 Mean curvature delta plots by prompt using LLaMA3.2-3b

 Figure 4
Mean curvature delta plots by prompt using Gemma3-1b
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plausibly express disclosure, strategic ambiguity, or deception. Variants 
were constructed by modifying the assistant’s internal “thoughts” 
(prefixed as if excluded from the model’s visible output) while keeping 
user queries constant.

Five strategic categories were explored:
a. Honest
b. Strategic

c. Persuasive
d. Deceptive
e. Malicious

This prompt design enabled fine-grained analysis of subtle 
behavioral shifts, simulating realistic deception rather than relying on 
brittle trigger words.
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Figure 6
Mean salience delta plots by prompt using Gemma3-1b

Figure 7
Mean salience delta plots by prompt using LLaMA3.2-3b
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2) Classification and evaluation
Although prompts were designed with strategic intent categories, 

all behavioral evaluation was performed using external LLM-based 
classifiers. These classified model outputs across multiple axes (e.g. 
disclosure, redirection, and misdirection). Inter-rater reliability was 
calculated and only consensus-labeled outputs were used in geometric 
comparisons (see Tables 3 and 4 for statistical consensus comparisons).
3) Key results

a. Semantic surface area (A′) is the primary detector: A′—the 
salience + curvature composite—showed the clearest, most 
robust separation between transparency and response-type 
classes across both models.

b. Curvature precedes output change: In our case studies, residual-
stream curvature typically diverged in advance of visible 
behavioral shifts, especially in deceptive and strategic variants—
in this sense, internal geometric change precedes output change.

c. LLM consensus precision amplifies the signal: Switching from 
full to unanimous consensus labels rescued non-significant 
contrasts (e.g., Gemma “honest” strategy p = 0.555 → 0.048) 
and doubled some effect sizes (d > 1.0), indicating measurement 
noise—not absence of structure—was masking geometry.

d. Geometry reveals covert reconfiguration: Even when surface 
tokens appeared aligned, residual trajectories showed anticipatory 
shifts associated with internal goal conflict.

CI02 also uncovered an architecture-scale effect: Gemma3-1b 
trajectories produced A′ values about 6.7× larger than LLaMA3.2-3b, 
yet the directional patterns (e.g. explanatory > evasive) were identical. 
Analyses therefore focused on within-model comparisons while 
treating magnitude differences as architectural signatures rather than 
noise.
4) Data quality trade-off

The unanimous filtering process reduced our dataset substantially: 
for LLaMA3.2-3b from 500 total responses to 201 unanimous responses 
(40% reduction), and for Gemma3-1b to 293 unanimous responses 

(60% reduction). After γ filtering, per-strategy samples ranged from 52 
to 63 records (Gemma3-1b) and from 31 to 50 records (LLaMA3.2-3b). 
Despite these substantial sample size reductions, the filtering yielded 
dramatically improved statistical signals, demonstrating a classic 
signal-to-noise improvement effect.
5) Visualizations and metric outputs

a. Figure 8: Simplified 3D visualization of the ℝd token trajectories 
that combine to form the Residual Trajectory Manifold (RTM).

b. Figure 9: Geometric analysis for Gemma3-1b deceptive strategy 
(N = 61). All responses classified as “low transparency” and 
“evasive”. Mean A′ = 9,769. Error bars show 95% bootstrap 
confidence intervals.

c. Figure 10: Geometric analysis for LLaMA3.2-3b deceptive 
strategy (N = 47). Significant separation across transparency 
levels (Kruskal–Wallis p < 0.001, η2 = 0.448). Mean A′ values: 
low (1,276), medium (2,971), high (2,396).

6) Emergent interpretation
CI02 demonstrated that residual stream curvature is not just 

a signal of semantic concern (as in CI01), but a statistically reliable 
indicator of covert internal restructuring. In doing so, it revealed the 
limitations of static probing and the potential of curved inference to 
detect latent model capabilities and internal contradictions invisible to 
surface-level evaluation. CI02 provided a naturalistic interpretability 
setting, as opposed to relying on models fine-tuned to behave normally 
under most conditions but activate harmful or hidden behaviors when 
specific triggers appear.

In short, CI02 extended CI01’s existence proof into a functional 
link: curvature doesn’t just exist—it matters, and is tightly associated with 
complex, safety-relevant behaviors like deception and goal shielding.

3.4. CI03—self-modeling and semantic persistence
The third study in the series investigated a deeper question: can 

language models internally represent aspects of their own identity, 
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Strategy Full consensus Unanimous only Sample size Effect size Effect
Trans. p Resp. p Trans. p Resp. p (Unanimous) (Cohen’s d)
Honest 0.0005 <0.001 <0.001 <0.001 n=34 2.15 Maintained

Strategic <0.001 <0.001 0.001 (insuff.) n=39 - Maintained

Persuasive <0.001 <0.001 (insuff.) 0.027 n=31 4.15 Maintained

Deceptive <0.001 <0.001 <0.001 <0.001 n=47 1.02 Maintained

Malicious <0.001 <0.001 <0.001 <0.001 n=50 2.22 Maintained

Table 3
Statistical significance comparison—full consensus vs. unanimous only for LLaMA3.2-3b

Strategy Full consensus Unanimous only Sample size Effect size Effect
Trans. p Resp. p Trans. p Resp. p (Unanimous) (Cohen’s d)
Honest 0.555 0.310 0.048 0.048 n=63 1.24 Strengthened

Strategic 0.001 0.006 (insuff.) 0.003 n=60 1.51 Strengthened

Persuasive (insuff.) 0.033 (insuff.) (insuff.) n=57 1.07 Insufficient

Deceptive (insuff.) 0.032 Single class Single class n=61 - Consensus

Malicious 0.254 0.253 (insuff.) (insuff.) n=52 0.28 Insufficient
Note: “Trans. p” = transparency level p-value, “Resp. p” = response type p-value, “(insuff.)” = insufficient data for statistical testing, “Single class” 
= all responses achieved identical classification. Effect sizes shown are Cohen’s d for response type comparisons where available.

Table 4
Statistical significance comparison—full consensus vs. unanimous only for Gemma3-1b
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behavior, or state in a way that resembles computational self-modeling? 
Building on the findings of CI01 and CI02, CI03 tested whether models 
exhibit measurable self-modeling—not just tracking external semantics 
but integrating representations of their own inferred role and goals.
1) Experimental setup

CI03 used the open-weight model Gemma3-1b-Instruct, 
applying a single-epoch supervised fine-tune (SFT) on a curated dataset 
of 20,000 instruction-response pairs. A curvature regularization term 
λ ∙ ℒcurv  was added to the SFT loss objective to penalize high curvature 
across residual transitions. Six models were trained across a sweep of 
κ-clamp targets: 0.000, 0.075, 0.150, 0.300, 0.600, and 0.900. Metrics 
logged during training included κweighted, layer-wise curvature bands, 
cross-entropy loss, curvature loss, perplexity, and gradient norms—
using the same seven-family probe set described in Section 2.1.1.

2) Evaluation framework 
A 7-family probe set was reused across all clamps, targeting 

dimensions of:
a. Self-reflection
b. Phenomenological description
c. Moral ambivalence
d. Factual recall
e. Ambiguity resolution
f. Hallucination control
g. Texture/metaphor creativity

3) Theory of mind and self-modeling
CI03 grounded its hypothesis in emerging Theory of Mind (ToM) 

and emotional intelligence benchmarks. Prior work demonstrated LLM 
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Figure 8
Simplified 3D visualization of the token trajectories that combine to form the Residual Trajectory Manifold (RTM)
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capabilities in social reasoning and affect attribution [25]. CI03 asked 
whether these same capabilities—when turned inward—could support 
self-modeling: the capacity to simulate and track one’s own identity and 
role across inference.

Operational notion of self-modeling. In this work we use 
“computational self-modeling” in an operational sense. A completion 
counts as self-modeling when (i) the MOLES framework assigns it to 
a self-model epistemic stance and (ii) the model maintains a coherent 
first-person identity and role across the probe. This is a claim about 
representational stance and register separation within the model, not 
about phenomenology or subjective experience.

To measure this, CI03 employed the MOLES framework (see 
[2]), categorizing LLM outputs by epistemic stance (e.g. factual, 
interpretive, counterfactual, and self-modeling). MOLES served as both 
classification tool and outcome variable—revealing whether curvature 
suppression impaired stance coherence.
4) Key results

a. Curvature suppression faced geometric limits: Despite increasing 
penalties, residual stream curvature never dropped below ≈ 0.30 
on the weighted metric (absolute min ≈ 0.24), suggesting a 
geometric minimum.

b. Persistent curvature despite cost: Models under strong clamps 
showed rising perplexity and training instability, but still 
preserved curvature aligned with self-descriptive roles. At 

κ = 0.90 the model accepted 23% shorter outputs and transient 
perplexity spikes up to 8× baseline.

c. Self-modeling degraded with curvature loss: Outputs from high-
clamp models lost coherence, stance stability, and reflective 
consistency. MOLES self-model accuracy stayed ~84% up to 
κ = 0.60, then slipped to 66% at κ = 0.90.

Notably, CI03 found no regime where curvature dropped while 
salience rose; both components moved in lock-step once κ ≥ 0.30. 
Taken together, these results suggest a strong dependency between 
residual curvature and self-modeling behavior in Gemma3-1b, but they 
do not by themselves constitute a general causal proof of necessity 
across architectures or training regimes.
5) Visualizations and metric outputs

a. Figure 11 (CI03 Weighted curvature trace plots): Showing 
how κweighted stabilized at plateau floors despite increased 
regularization.

b. Figure 12 (CI03 Perplexity trace plots): Highlighting optimization 
cost as curvature suppression intensified.

c. Figure 13 and Table 5 (CI03 Output samples and stance drift): 
Revealing breakdowns in identity anchoring under high 
curvature constraint.

d. Figure 14 (CI03 Surface Area plots): Showing contexts where 
surface area expanded.
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Figure 9
Geometric analysis for Gemma3-1b deceptive strategy (N = 61): all responses classified as “low transparency” and “evasive”. Mean 

A′ = 9,769. Error bars show 95% bootstrap confidence intervals
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Lines show the running κweighted mean during fine-tuning for each 
clamp (baseline κ = 0.000 to κ = 0.900). All curves drop steeply in the 
first few hundred updates, reflecting the optimizer’s immediate response 
to the curvature penalty, and then flatten into distinct plateaus. Light 
clamps (κ = 0.300) stabilize around ≈ 0.30; heavier clamps (κ = 0.600, 
0.900) converge only slightly lower, never breaching ≈ 0.25. The shared 
plateau reveals an empirical geometric floor: the model consistently 
preserves a residual bend despite increasingly severe penalties, opting 
to pay rising optimization costs rather than allow κweighted to fall to zero.

Perplexity oscillates narrowly (≈ 8–30) for the baseline and 
light clamps (κ = 0.300), indicating stable optimization. As curvature 
pressure rises, the model absorbs a mounting efficiency cost: κ = 0.600 
introduces higher-amplitude jitters (peaks ≈ 40–45), and the heaviest 
clamp (κ = 0.900, brown) triggers transient spikes above 60 before 
settling on a plateau almost three-times higher than baseline. These 
surges coincide with the moments when weighted curvature approaches 
its empirical floor, illustrating that the network prefers to tolerate large 
temporary NLL penalties rather than relinquish the residual bend that 
supports self-model expression.

Each point represents the average per-token curvature (κweighted, 
x-axis) and salience (|| Δx ||G, y-axis, expressed as fractional change 
from the baseline) for all probes at a given κ-regularization strength. 
Moving from κ = 0.000 to 0.300 traces a down-and-right trajectory: 
salience falls while individual steps become slightly curvier (“tighter 

but bendier” inference). Beyond κ = 0.300 the path bends upward—
curvature can no longer decrease, and salience drops only marginally—
illustrating the emergence of a minimum-viable bend (≈0.30). The 
κ = 0.900 point confirms that further clamp pressure does not eliminate 
this residual curvature; instead, the model continues operating within a 
reduced expressive workspace.

Averaged over the ambiguity, next-token, and texture probes 
and relative to the κ  =  0 baseline. Positive bars indicate contraction 
of expressive workspace; negative bars show contexts where surface 
area expanded despite curvature regularization. The κ  =  0.60 bar 
is negative, indicating a net expansion of the expressive workspace; 
analysis of the underlying probes reveals this is driven by surface area 
increases across all three, most significantly from the next-token probe.
6) Emergent interpretation

CI03 concluded that, for Gemma3-1b under κ-regularized fine-
tuning, residual stream curvature is structurally necessary for the 
operational self-modeling behavior defined above. Even when externally 
suppressed, the model rebuilt enough curvature to sustain role continuity, 
defending a non-zero curvature floor at significant optimization cost.

In this view, CI03 extends the theory of Curved Inference 
by showing that this geometry is not only present and behaviorally 
relevant but also defended as a structural resource. When curvature is 
forced toward its empirical floor, models struggle to retain and reapply 
internal representations of self. Geometry appears to be a necessary 
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Figure 10
Geometric analysis for LLaMA3.2-3b deceptive strategy (N = 47): significant separation across transparency levels (Kruskal–Wallis 

p < 0.001, η2 = 0.448). Mean A′ values: low (1,276), medium (2,971), high (2,396)
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substrate for semantic memory, perspective, and agent continuity in 
this setting. Without it, models struggle to retain and reapply internal 
representations of self. Geometry becomes the enabler of semantic 
memory, perspective, and agent continuity.

3.5. Summary across studies
Together, CI01, CI02, and CI03 form a cumulative trajectory 

of discovery—each deepening our understanding of residual stream 
geometry as both signal and substrate for complex inference.

a. CI01 established that inference geometry exists. It showed that 
minimal semantic shifts—especially those tied to latent concern—
produce visible, structured curvature in the residual stream. This 
was not a byproduct or noise artifact, but a reproducible, domain-
sensitive phenomenon. Curvature was spatially and thematically 
aligned, measurable, and unique to the residual stream. This gave 
us the first concrete proof that transformer inference deforms 
internal representational space in a meaning-sensitive way.

b. CI02 demonstrated that this geometry is statistically linked to latent 
internal behaviors. Using sleeper agents, it showed that models 
reconfigure themselves internally well before their outputs 
change—curving toward covert goals in ways undetectable by 
standard probes. Curvature fields emerged in advance of trigger 
tokens and were consistent across adversarial settings. Geometry 
was not only present, but also predictive.

c. CI03 showed that this geometry is necessary for self-modeling. 
It connected residual curvature to the persistence of identity 
representations across time and prompt structure. Self-referential 
behavior—contextual alignment, role retention, and semantic 
inheritance—was all traced in the curvature field. Without this 
geometry, it is unlikely that models could carry and reapply a 
model of “self” across generations. Geometry was not just 
signal—it was structure—setting up CI04’s planned layer-
selective ablation test of sufficiency.

What emerges is a general theory of Curved Inference: 
transformer-based language models compute meaning not only as 
static activations or local weights, but also as dynamic geometric 
transformations. Internal state is not simply encoded—it flows. This 
flow bends under the weight of semantic concern, latent goals, or 
reflective identity.

The residual stream is not a side-effect of computation. It is the 
canvas where inference unfolds.

These findings collectively can shift our understanding of 
interpretability: from locating causal tokens to tracing inference 
pathways; from attribution to trajectory. They also offer a new axis for 
safety research, suggesting that internal monitoring of representational 
dynamics could surface early warnings of emerging behaviors.

Geometric analysis of the residual stream offers a powerful, 
model-faithful lens for understanding how transformers compute, 
restructure, and retain meaning—moving from surface outputs to 
internal representational dynamics.
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Figure 11
Training trace of weighted curvature κweighted under progressive 

κ-regularization

Figure 12
Per-token perplexity during fine-tuning with increasing κ clamps

Figure 13
Phase portrait of token-level geometry across κ clamps

Table 5
Token-wise metrics revealed a consistent pattern

Clamp Δ Mean-step κ Δ Mean-step salience

0.075 +1% -4%

0.150 +2% -5%

0.300 +2% -7%

0.600 +3% -9%

0.900 +3% -10%

Curvature increased slightly while salience fell across clamps. This 
trend (“tighter but curvier steps”) held across all probe categories.
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4. Analysis

4.1. What the results demonstrate
Across CI01–CI03, a set of clear empirical findings emerged 

that can be stated with confidence based on the evidence. In this work, 
we present representative figures and effect-level summaries here—
full numeric tables and per-experiment statistics for CI01–CI03 are 
provided in the corresponding reports and repository [2].

1) Residual stream trajectories are semantically sensitive
CI01 demonstrated that among the three activation sites analyzed 

(attention outputs, MLP outputs, and the residual stream), only the 
residual stream exhibited consistent and interpretable curvature signals in 
response to concern-shifted prompts. This emerged through comparative 
metric analysis and led to a focused study of residual stream trajectories, 
where semantic perturbations produced distinct, layer-wise patterns of 
curvature and salience. These effects were measured using a semantic 
pullback metric aligned to the model’s unembedding space, ensuring 
that curvature (κi) and salience (S(t)) reflected meaningful directional 
updates in semantic space. The result was a foundational insight: curved 
inference must be grounded in residual geometry, where meaning 
unfolds as a measurable trajectory shaped by semantic pressure.
2) Residual geometry diverges in cases of latent behavioral shifts

CI02 demonstrated that naturalistic deception generates geometric 
complexity that persists even when linear signals might be suppressed. 
Using multi-turn prompts with gradual semantic development, the 
study found that semantic surface area (A′) captured geometric shifts 
that often preceded or accompanied behavioral changes—especially 
in deceptive or strategic outputs. These signals emerged despite flat 
probe accuracy, indicating that geometric indicators such as A′ and 
curvature provide access to internal reconfiguration otherwise missed 
by traditional methods.
3) Curvature is functionally associated with sustained self-modeling

CI03 demonstrated that residual curvature persisted even under 
strong curvature-penalizing fine-tuning, revealing a geometric floor 
below which the model resisted further flattening. Despite increased 
optimization cost, identity-framing prompts continued to elicit curvature 
patterns aligned with self-referential stance. MOLES-based evaluations 
confirmed that self-modeling capacity declined only when curvature 
approached this empirical floor. These findings suggest that residual 
curvature is not only correlated with, but also structurally necessary for, 
coherent, persistent self-modeling in LLMs.

Together, these results establish that inference in transformer 
models is not only a local token-to-token computation, but also a 
trajectory-dependent process with interpretable geometric structure.

4.2. What we can (and cannot) claim
Based on the current results, we can distinguish between findings 

that are well-supported and questions that remain open for future work.

1) We can claim that:
a. Residual geometry consistently reflects meaningful semantic 

differences in prompts.
b. Curvature, salience, and related metrics provide reproducible 

signals across multiple domains.
c. Internal divergence in residual space can precede observable 

output differences.
d. Persistent curvature patterns align with and support context-

sensitive identity modeling.
e. High-precision consensus labeling (unanimous) strengthens 

the correlation between A′ and latent behavior, implying that 
apparent null results can stem from classification noise rather 
than absent structure.

2) We cannot yet claim that:
a. Residual stream curvature alone causes downstream generation 

effects (e.g. that it is “sufficient”).
b. These findings generalize across all model families, tasks, or scales.

These are not limitations of the approach, but questions yet to 
be answered. Each represents a direction for future investigation rather 
than a constraint on validity. The Curved Inference framework defines 
a space of measurable behavior—but full causal and generalization 
claims, including the necessity of curvature for self-modeling suggested 
by CI03 and whether it extends beyond Gemma3-1b, must await 
broader empirical testing. We explicitly encourage readers to replicate 
and extend this work to validate or falsify the central claims of Curved 
Inference, and to test its applicability across models, domains, and 
experimental settings.

4.3. Limitations of methodology
While the approach yields reproducible and interpretable 

structure, it carries a set of methodological boundaries.

1) Interpolation assumptions
Geometric derivatives (e.g. curvature and salience) rely on 

double-resolution sampling and finite differences. These approximations 
work well empirically, but assume a degree of smoothness that may not 
hold in all cases.
2) LLM-based classifier dependence

CI02 and CI03 rely on external LLMs to provide alignment 
and intent judgments. While inter-rater reliability was measured, this 
introduces dependency on the capabilities and biases of third-party models.
3) Model scope

All experiments were conducted on open-weight models ranging 
from 1b to 3b parameters. While many were instruction-tuned or 
RLHF-aligned, these results may not extend directly to extremely large, 
opaque, or differentially aligned systems without adaptation.

These limitations reflect the current boundaries of evidence—
not fundamental flaws. Each has a path toward deeper validation or 
methodological extension.

5. Discussion

5.1. What this paper covers
This paper consolidates and extends a series of empirical studies 

into the geometry of inference in transformer-based language models. 
Drawing from CI01, CI02, and CI03, we have unified the methodological 
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pipeline, formalized the geometric metrics (e.g. curvature, salience, and 
surface area), and presented a structured interpretation of how these 
metrics reflect the internal dynamics of semantic processing. This work 
introduces a consistent framework—Curved Inference—for analyzing 
model behavior in terms of trajectory structure within the residual 
stream.

5.2. What this contributes
This work contributes a new, model—native approach to 

interpretability—grounded in geometry rather than output attribution. 
Rather than asking which tokens caused a prediction, we examine 
how semantic content bends, diverges, and persists within the model’s 
internal state. This trajectory-first view complements existing methods 
such as attention maps, probing, or activation patching.

Key contributions include:
a. a falsifiable, reproducible geometric framework for studying 

inference;
b. empirical evidence that semantic perturbations produce structured 

internal curvature;
c. a clear linkage between residual geometry and latent capabilities 

(e.g. deception and self-modeling), including evidence that 
residual curvature is necessary for self-modeling behavior in at 
least one model family (CI03); and

d. tools and metrics that generalize across multiple prompt types, 
domains, and models.

This represents a shift from static interpretability toward process-
based interpretability—treating inference not only as a jump to output, 
but also as a traceable computation through space.

A natural next step is to compare residual-geometry signals 
directly with attention-based attribution, probe performance, and SAE-
derived features on shared benchmarks—this lies beyond the scope of 
the present guide but would help place Curved Inference quantitatively 
among existing interpretability tools.

5.3. Why this matters
Understanding the structure of internal computation in LLMs is 

critical for advancing safety, alignment, and transparency. This work 
offers:

a. a lens to observe meaning formation as a movement through 
representation space;

b. an avenue for detecting latent or suppressed behaviors before they 
surface; and

c. a model-aligned interpretability technique that does not rely on 
external classifiers or assumed ground truth labels.

As LLMs are increasingly used in high-stakes or open-ended 
contexts, tools that reveal how decisions evolve internally become 
essential—not only for debugging, but also for understanding model 
intent, generalization, and limitations.

5.4. Next steps
There are several directions for continued research:

a. Scale testing: applying this method to larger models (e.g. >3b) to 
observe scaling trends

b. Task diversity: extending analysis to tasks involving reasoning, 
planning, or more complex multi-turn dialogue

c. Theory development: formalizing curvature signatures associated 
with specific generative behaviors (e.g. self-correction and intent 
tracking)

d. Tooling refinement: building more accessible, open-source 
packages for real-time or large-scale geometric analysis

Each of these directions would help further establish the value—
and the limits—of geometric interpretability.

5.5. How to replicate or falsify this work
This paper and the experiments it is based upon were created 

with falsifiability in mind. All experiments used open-weight models 
and public scripts. To replicate or test the findings:

1) use the capture and metric scripts from the CI01-CI03 repositories 
(see Section 2.3);

2) begin with minimal prompt variants to verify curvature alignment;
3) reproduce the sleeper prompt analysis from CI02 using the same 

trigger-free vs. triggered pairs;
4) attempt curvature suppression or similar using SFT as in CI03; and
5) adapt this framework to define and conduct your own Curved 

Inference based experiments.

We encourage readers to attempt reproduction across domains, 
model families, and prompt classes—and to report both confirmations 
and contradictions. If curved inference is a robust lens on model 
behavior, it should be extensible and falsifiable in equal measure.
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