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Abstract: Since the global spread of COVID-19 pandemic in January 2020, residents in the United Kingdom (UK) have altered their daily routines 
due to the transmissibility of the virus. Sanitisation, quarantine, contact tracing, mass testing, and vaccination are implemented, affecting virus 
control, quality of life, resources, and economic development. From January 2020 to January 2021, data from repositories from the Office for 
National Statistics, NHS England, and the WHO provided statistics on confirmed cases, recoveries, and mortality. Wikipedia and Our World In 
Data provided the UK lockdown and travel restriction timelines. Deep reinforcement learning, a Dueling Q-learning algorithm, and a well-defined 
reward function determined the optimal lockdown and travel restriction timings. Initially, our agent (model) suggested strict lockdown and travel 
restrictions. By mid-March, advisories decreased significantly. In late March, key public health initiatives were introduced. Over the initial three 
months, the recommendations of our agent had gained support, which proposed slightly smaller lockdown measures than the public health policy 
but stricter travel restrictions. Our agent advised lockdown and travel limitations, generally suggesting measures before public health authorities 
or the government approved them. Our agent recommended implementing policies in late January, while authorities delayed until late March. 
Furthermore, our agent (model) advised against postponing UK policy implementation.
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1. Introduction
Since the World Health Organization (WHO) reported SARS-

CoV-2 in late December 2019, the United Kingdom (UK) has taken at least 
143 steps to halt its spread [1]. Some research analysed these interventions 
using [2] the classification framework and Oxford Stringency index. The 
policy classification system displays a spectrum of COVID-19 pandemic 
intervention options that intensify and then diminish as governments 
scale back on response efforts [2]. These classifications are essential for 
harm reduction and healthcare improvement through containment and 
mitigation. This area includes economic and health technology initiatives. 
In 2020, English pubs and restaurants reopened on July 4, but the Scottish 
waited until July 15. Northern Ireland allowed indoor restaurants and 
pubs to reopen on July 3, but Wales waited until August 3. The UK 
government initially focused on viral containment [3]. During this 
lockdown, people had to stay at home and work remotely, with limited 
exceptions for exercise, food shopping, and prescription retrieval, under 
strict social distancing guidelines. The number of daily COVID-19 case 
confirmations in the UK surged, plateaued, and reduced. The number 
of laboratory-confirmed cases peaked on May 1, while the number of 
symptomatic patients peaked on April 1. As confirmed cases decreased 
after this peak, the rules were relaxed [4].

Also in 2020, social distancing procedures and penalties escalated 
the scale and intensity of measures, resulting in severe restrictions on non-
essential services on March 16 and a statewide lockdown on March 23. 

The UK government prioritised emergency planning for influenza over 
coronaviruses, resulting in inadequate reserves, testing procedures, and 
lockdown protocols when COVID-19 struck. This discrepancy rendered 
the country unprepared for the magnitude and characteristics of the actual 
pandemic [5]. The culture of groupthink and a convoluted distribution of 
responsibility between departments impeded decision-making, resulting 
in delays in essential activities. The absence of decisive leadership and the 
failure to question established assumptions undermined the urgency and 
efficacy of the response [6]. However, some policies recorded success: 
The UK Health Security Agency was created to consolidate responses to 
health hazards and enhance data-driven decision-making, replacing the 
less-responsive Public Health England. By 2024, it improved the nation’s 
ability to identify outbreaks and respond to them with greater speed 
and efficacy [7]. A new Cabinet-level committee has been established 
to oversee civil emergency planning, facilitating swifter and more 
coordinated government responses. This structural modification was 
intended to avert the disjointed leadership observed during COVID-19 [8].

2. Literature Review
COVID-19 has numerous challenges. Vaccinations in the UK do 

not fully prevent the virus. Enhanced testing and immunisation, despite 
their laborious nature, typically stop transmission. Disease control and 
economic recovery are challenges for governments [9, 10]. Increasing 
sanitisation in densely populated areas to sterilise public spaces and 
reduce transmission is another common method, although it is resource-
intensive and difficult to implement globally [10]. Lockdown and 
quarantine demand fewer medical and physical resources. Pandemic 
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strains worldwide healthcare systems. Travel restrictions and lockdowns 
have reduced tension. Study [11] investigated how these methods boost 
healthcare capacity and treat viruses. Although crucial for public health, 
these methods raise ethical issues [12, 13]. Lockdowns and travel 
restrictions need ethical decision-making that balances community 
health and individual rights with openness, equity, and compassion. 
Study [10] found that these constraints harm mental health and access to 
non-COVID medical care and general well-being, even if they prevent 
viral spread. Trade-offs are assessed and minimised using this paradigm. 
In the current economy, it is unreasonable to stop all economic activities 
and rely on government handouts. Serious infections require ventilators, 
while mild infections require critical supplies.

Transmission risks prevent unrestricted social gatherings without 
masks. Some techniques may stay unexplored [14]. Testing, sanitisation, 
and social distancing are necessary, but their optimal levels must be 
found to safeguard the public while balancing health with daily activities 
and reducing negative effects on quality of life and the economy [15]. 
To solve this challenge, our research uses quantitative, model-driven 
methodologies. Our research aims to develop a Deep Reinforcement 
Learning (DRL) agent capable of identifying the optimal combination 
of lockdown and travel-restriction policies for the UK. Conventional 
approaches, such as cost-benefit and risk analysis and epidemiological 
model, and the DRL approach are utilised to design optimal strategies 
for COVID-19 policy [11, 16]. The rapidly developing study of DRL 
can transform human history [17].

Academics and industry are interested in its autonomous 
optimisation. Reinforcement learning in intelligent systems may 
illuminate human intelligence. This definition of intelligence is learning 
from experience. Knowledge of the best algorithm is needed to make 
optimal decisions in diverse issue situations. Optimal decisions may 
mean sacrificing short-term profits for long-term success. Research [16, 
18] examined regional lockdowns and travel restrictions to stop the spread 
of infectious diseases. Many studies replicate epidemic transmission to 
accommodate various disease traits and localised control. Their impact 
on domestic viral spread is small. Preventive lockdowns may limit local 
transmission. Lockdowns reduce mortality when infection rates are low. 
The COVID-19 pandemic has made demographic and socioeconomic 
factors vital; therefore, these interventions are effective but require 
a country-specific strategy. According to global studies, public health 
regulations [16], such as travel limits, reduced fatalities by 68% but were 
inefficient in the control of domestic transmission. Proactive lockdown 
reduces localised transmission. Study [19] promoted worldwide 
COVID-19 lockdowns and travel restrictions using reinforcement 
learning and the Deep Deterministic Policy Gradient (DDPG) algorithm 
[20]. The broad range of the proposed measures does not provide 
global recommendations for pandemic prevention and control. A more 
flexible and focused policy solution can be developed for different 
areas of action. Our research proposes a novel DRL discrete action 
space construction method. Using this strategy, the agent can choose 
the optimal lockdown and travel restrictions within a certain range. To 
overcome discrete spatial restrictions, it is crucial to establish a strong 
reward system that balances economic efficiency and quality of life. 
Study [17, 20] employed a DRL approach, Double Deep Q-Network 
(D3QN), which uses a discrete state and action representation space. 
The continuous action space of DDPG may lead to erroneous forecasts 
due to sudden shifts in epidemic situations. Under constrained training 
conditions, Deep Q-Network (DQN) outperforms DDPG [20].

3. Methods

3.1. Deep reinforcement learning method
DRL is an algorithm that falls under the category of machine 

learning. Its primary goal is to address issues related to artificial 

intelligence (AI). This approach is achieved by developing computer 
programmes called agents, which are designed to solve complex issues 
that typically require intelligence. DRL stands out from other types of 
machine learning algorithms due to its unique learning framework. The 
learning process of the system involves iterative experimentation and 
adjustment, during which it interacts with its environment and receives 
feedback in the form of state and reward signals [21]. This suggests 
the lack of labelled data or a clearly defined appropriate response to 
use, which distinguishes it from supervised learning. Environmental 
feedback can occur concurrently or sequentially and can be evaluated 
or sampled from an initial probability distribution. By applying deep 
neural networks, agents are trained to approximate the underlying 
reward distribution through the use of nonlinear function approximation 
methods. The overarching objective is to optimise cumulative returns 
over an extended time period.

Figure 1 illustrates how DRL works: an agent engages with 
the environment by perceiving the current state, selecting the action 
based on a policy (often facilitated by a neural network), and receiving 
a reward and the subsequent state as feedback. The neural network 
functions as a function approximator to generalise over extensive 
state-action spaces. Through this feedback loop, the agent perpetually 
refines its strategy to optimise long-term rewards by learning from its 
experiences. The environment defines the task dynamics, including the 
state and action spaces, and provides a reward function. At each time 
step, the agent observes the current state and selects an action according 
to its policy, typically represented by a deep neural network. This 
network functions either as a policy approximator or a value estimator, 
depending on the learning paradigm. Upon executing an action, the 
environment transitions to a new state and returns a scalar reward, 
indicating the immediate outcome of the action. The experience tuple—
including state, action, reward, and next state—is stored in a replay 
buffer. This buffer enables the agent to sample past experiences and 
update its neural network using gradient-based optimisation techniques. 
The use of deep networks enables the agent to operate effectively in 
complex, high-dimensional environments, while the replay buffer 
mitigates temporal correlations and enhances learning stability. Through 
repeated interaction, memory, and training, the agent progressively 
improves its decision-making to maximise long-term rewards. DRL has 
demonstrated success across domains such as robotics, game playing, 
and autonomous control.

3.2. D3QN architecture
To this point, the deep learning models under consideration 

have predominantly employed a sequential architecture. Here, the term 
“models” refers to supervised learning frameworks, distinguishing them 
from models defined in the formalism of the Markov Decision Process. 
It is worth noting that while the terms “sequential architectures” and 
“sequential models” may have different meanings in other disciplinary 
contexts, in deep learning, they refer to a specific structural property 
of the network. In these architectures, each neuron in a given layer is 
restricted to forming connections only with neurons in the immediately 
preceding and subsequent layers. This constraint applies uniformly 
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Figure 1
Structure of deep reinforcement learning
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across all neurons within the layer. In other words, there were no 
branches or loops in these model structures. Although DQN and 
Double DQN each contain two Q networks, there is only one deep 
learning model, and the values of the other (target) network are periodic 
duplicates of the active (online) network [17, 21]. Dueling DQN is a 
non-sequential deep learning architecture in which the model layers are 
divided into two independent streams (sub-networks), each with its own 
fully connected layer and output layers. This enables the model to train 
more efficiently than conventional sequential designs. 

D3QN architecture is an advanced reinforcement learning model 
designed to improve the stability and accuracy of value-based decision-
making. It builds upon the standard DQN by incorporating two key 
innovations: the dueling network architecture and double Q-learning. 
In D3QN, the agent first processes input from the environment, such 
as images or numerical states, through a feature extraction layer, 
often a convolutional neural network if the input is visual. This layer 
captures essential patterns and compresses the input into a compact 
representation. Next, the network splits into two separate streams. One 
stream estimates the value of being in a particular state, regardless of the 
action taken. The other stream estimates the advantage of each possible 
action in that state. These two estimates are subsequently integrated 
to generate the final action-value predictions. This decomposition 
enables the agent to discern which states are intrinsically valuable even 
when the choice of action has minimal influence, thereby enhancing 
learning efficiency. To reduce overestimation bias, a common issue in 
Q-learning, D3QN uses double Q-learning, where one network selects 
the best action and another evaluates it. This decoupling leads to more 
accurate value estimates. Experience replay and periodic target network 
updates further stabilise training [21].

The first branch, often referred to as the value network, estimates 
the value of a given state and produces a single scalar output representing 
this value. The second branch, referred to as the advantage network, 
estimates the relative benefit of selecting a particular action compared 
to the baseline value associated with remaining in the current state. 
Figure 2 illustrates the overall architecture. It is important to emphasise 
that the Q-function in a Dueling DQN corresponds to the same 
fundamental Q-function used in conventional Q-learning algorithms. 
Consequently, the Dueling DQN framework is expected to operate 
conceptually in the same manner as standard Q-learning, producing 
absolute action-value estimates (Q-values) for each state–action pair.

The design in Figure 2 uses two streams to segregate state 
values and state-dependent action advantages. For feature learning, 
it estimates value and advantage functions with convolutional layers. 
The last module integrates these streams to estimate the state-action 
value function Q. The proposed function operates analogously to 
a conventional Q-learning algorithm by estimating absolute action 
values, commonly referred to as Q-values. Consequently, it becomes 
necessary to compute these action-value estimates for each state-action 
pair. Conceptually, an action value represents the expected utility of 
executing a specific action within a given state. To accomplish this, the 
model integrates two components: (i) the baseline value of the state, 

computed by the first network branch, and (ii) the relative advantage of 
each action, provided by the second branch (the “advantage” network). 
By aggregating these elements, the model can effectively yield the 
approximate Q-values required for Q-learning. This relationship is 
formally expressed in Equation (2).

α β θ β α θ α θ α

The variables Q, V, s, a, and a′ in Equation (1) have the same 
consistent meaning as those in the mathematical notation in Figure 1. 
Furthermore, the letter  denotes the advantage value. The parameter 
vector associated with the convolutional layer is shared between the 
Value and Advantage networks. The parameter set specific to the 
Advantage network and the State-Value function are denoted by α 
and β, respectively. Within the context of function approximation, the 
outputs of any network are expressed in terms of the parameters of 
the corresponding estimating network. This distinction ensures clarity 
when multiple approximators infer values for the same variable. The 
governing equation specifies that the Q-value indexed by (β,α,β) for 
a given state-action pair equals the estimated state value, representing 
the absolute utility of being in that state, as derived from the State-
Value network. Further consideration of identifiability suggests that, 
in its simplest form, this relationship can be expressed as shown in 
Equation (3).

α β θ β θ α

A limitation of this straightforward formulation is that although 
the Q-value (action-value) can be calculated given a state–action pair 
(S,A), the inverse mapping does not hold. Specifically, it is not possible 
to uniquely recover the state and action values from a given Q-value, 
as shown in Equation (3). This issue is referred to as unidentifiability. 
To address this issue, Equation (4) introduces an improved variant of 
Equation (3), in which the last term is slightly modified. Although this 
adjustment involves subtracting a constant and may introduce a small 
numerical deviation, it does not affect the learning process, as the relative 
comparisons between action values remain unchanged. Moreover, this 
reformulation helps improve the stability during optimisation.

α β θ β θ α θ α

We provide the details of the D3QN algorithm in Table 1 below.
Table 1 presents a step-by-step implementation of the D3QN 

algorithm, which is designed to generate an optimal policy for 
determining the appropriate timing of lockdown measures and the 
imposition of travel restrictions on UK domestic movements.

3.3. Action space
This paper proposes the use of a discrete action space to 

determine the level of severity of lockdowns and travel restrictions. 
The recommended values for the three action outputs display variability 
within the predefined range, suggesting that this recommendation 
engine offers more flexibility and customisation than a continuous 
action space. See Table 2 below.

We define a 3×3 action space for implementing local lockdowns 
and travel restrictions. The lockdown policy is classified into three 
levels: Level 0 (L0) means no intervention, Level 1 (L1) imposes 
restrictions on public social gatherings, and Level 2 (L2) corresponds 
to a nationwide lockdown. Similarly, the travel policy included three 
scenarios: T0 indicates no action will be taken, T1 involves suspension 
of air travel, and T2 means the complete closure of all borders within 
the UK.

(1)

(2)

(3)

3

Figure 2
Schematic structure of the dueling Q-network
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3.4. Reward
Our rewards system is designed to discourage rapid escalation 

of infections and death rates while also boosting rapid case recovery 
in a 2:1:1 ratio. The argument for creating this reward system has two 
main goals. According to earlier research, it is crucial to emphasise the 
prevention of new infections as this is associated with a reduced death 
rate [3]. Furthermore, there is a significant temporal gap between the 
onset of a new infection case and the subsequent occurrence of recovery 
or death. Previous research has demonstrated that this temporal delay 
often leads to the postponement of governmental interventions, which 
can be seen as a potential aspect to consider in reinforcement learning [7]. 
According to a 2022 study by the University of Oxford, the UK’s early 
approval and mass deployment of the Oxford-AstraZeneca vaccine, 
which began in December 2020, was a major success, significantly 
reducing hospitalisations and deaths in the UK and enabling society to 
return to normal sooner. Despite rising infections and warnings from 
the scientific community, the UK delayed its first lockdown in March 
2020, allowing the virus to spread rapidly. A 2025 report from Queen’s 

University Belfast highlighted that this delay contributed to one of the 
highest excess death rates in Europe [22].

Table 3 shows the general sign direction for the definition 
rationale of awards, based on death severity. The same logic applies to 
recovery, which will take the opposite sign.

Table 3 shows an example of how to design a reward sign 
indicating the seriousness of death. The same principle applies to death 
and recovery, with the latter displaying the opposite sign. If no action is 
taken, more deaths are likely due to the transmissibility of the disease. 
If the activities improve the situation, it may take a few days for the 
effects to become apparent. However, if the reward is favourable, the 
agent will be motivated.

As a result, we decided to impose greater penalties on the 
increased rate of new infections than on the increase in mortality or 
compensation for the higher rate of recovered cases. We created a system 
of positive incentive stability, which involved making no modifications 
and minimising the number of new infection cases. In contrast, we 
used negative rewards when the number of new infection cases rose 
despite the interventions performed. Positive rewards were not given for 
the absence of changes in new infection rates, as a lack of increase in 
new case rates is often suggestive of stability in the early phases of an 
outbreak [11]. Following this overarching approach, the reward function 
rt was constructed as described below. It is important to note that the 
relative weights of its components can be adjusted to suit specific 
objectives. In this study, the reward function was designed to capture the 
dual impact of COVID-19 on economic performance and quality of life. 
A value of 10 corresponds to a strong economy and high quality of life, 
whereas 0 represents the opposite. While both economic conditions and 
quality of life are influenced by numerous factors, for this research, these 
endpoints were assigned arbitrarily, with 0 representing “poor” and 10 
representing “good.” Thus, we have the following equations:

(4)

(5)

(6)

(7)

4

Action Space Acronym
No lockdown L0
Restriction on social gathering in the UK L1
Complete national lockdown L2
No aircraft restrictions T0
Aircraft cancellation T1
Border closure T2

Table 2
Lockdown and travel restriction policy levels in the UK

Severity Meaning Reward sign
High Increase in death cases without action 

taken
Negative

Moderate Considerate decrease in death cases 
compared to previous date due to action 
taken

 Positive

Low Further reduction in death cases or no 
death due to certain action taken

 Positive

Table 3
Example of reward signal design reflecting death severity in policy 

learning

1. Initialize:
1)	 Priority experience replay buffer D with capacity N.
2)	 Parameters for the initial Q-network (θ) and target network (θ⁻).
3)	 Set ε (epsilon) for the ε-greedy policy.

2. For each episode (t = 1 to M):
1)	 Reset the environment.
2)	 Initialize the input state sequence s₀.
3)	 Reset the UK COVID-19 burden (e.g., case numbers, hospital 

load).
3. For each time step (t = 1 to T):

1)	 For each batch i in batch size bᵢ:
a.	 Use the target network to compute the next state sₜ₊₁.
b.	 Select action aₜ for batch i with probability pᵢ.
c.	 Store the transition (sₜ₊₁, aₜ) in the policy network.
d.	 Determine the next state sₜ₊₁ based on accumulated reward.
e.	 Compute the  immediate reward rₜ,ᵢ, reflecting acceleration in 

COVID-19 cases (if episode ends).
f.	 Update the Q-value using the immediate reward and discount 

factor γ.
g.	 Update the loss function L(θ).

4. Update:
1)	 Adjust sampling weights using precision error, selection weight, 

and ε.
2)	 Update the replay buffer D with new transitions
3)	 At each target update interval,  copy weights  from the policy 

network to the target network.

Table 1
D3QN algorithm for optimal policy implementation of COVID-19
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where
Ld: lockdown
tr: travel ban
Lq: quality of life = 0 or 10
econ: economy = 0 or 10 
rc: recovered cases
cf: confirmed cases
dt: death cases
rt: timestamp t for reward
st: timestamp t for state
c0, c1: constant values 

The design initially sets the range of the quality-of-life and 
economic indices between 0 and 10 to provide an intuitive, normalised 
scale; however, we recognise that this choice introduces an element 
of arbitrariness. To mitigate potential bias, future work will calibrate 
these scales using empirical indicators such as gross domestic product 
contraction, unemployment rate, and quality-adjusted life-years loss. 
Likewise, the epidemiological rationale behind giving more weight to 
infections than deaths was that preventing new infections can indirectly 
prevent downstream fatalities. Nonetheless, the relative weights can be 
data driven in future implementations by regressing observed policy 
outcomes against measurable public-health and economic variables.

3.5. Model performance evaluation
The experimental evaluation compares the performance of the 

standard D3QN model with the proposed V-D D3QN algorithm under 
identical parameter settings. In this setup, the discount factor (γ) was fixed 
at 0.99, with a maximum of 100 episodes. The maximum average reward 
over 100 steps was limited to 10,000. Both the policy and value networks 
employed a learning rate of 0.0001. The replay buffer size was set to 
10,000, and the batch size was 32. Additionally, the soft update parameter 
(τ) was configured to 0.005. Figure 3(b) illustrates the enhanced D3QN 
architecture, referred to as V-D D3QN, which serves as a baseline for 
policy comparison against the standard D3QN implementation.

The moving average rewards during the training and evaluation 
phases are shown in Figures 3(a) and 3(b), respectively. During 
evaluation, performance stabilises rapidly within the range of 3,000 to 
4,000 in the initial episodes and subsequently exhibits a gradual upward 
trend. These results demonstrate that the proposed model achieves 
strong and consistent performance across episodes.

3.6. Validation against epidemiological indicators
To evaluate the epidemiological plausibility of the proposed 

policies, the timing and intensity of the interventions recommended by 

the model were compared with publicly available reproduction-number 
(Rₜ) estimates from the UK Health Security Agency and the simulated 
Susceptible-Exposed-Infectious-Recovered (SEIR) trajectories. The 
agent’s recommendation for an early lockdown implementation in late 
January 2020 coincided with periods where Rₜ was above 1.5, while 
subsequent easing of restrictions occurred when the Rₜ fell below 1.0. 
This qualitative alignment suggests that the learned policy captured 
biologically meaningful dynamics. Although a full quantitative coupling 
to SEIR equations was beyond the present scope, the comparison 
supports the epidemiological plausibility of the learned strategies.

3.7. Sensitivity and uncertainty analysis
To evaluate the robustness of the D3QN model and assess 

sensitivity to hyperparameter variations, several controlled experiments 
were performed by perturbing the core learning parameters. Specifically, 
the learning rate (α), discount factor (γ), and replay buffer size (B) were 
adjusted within ±20% of their baseline values (α = 0.0001, γ = 0.99, B 
= 10,000). The resulting change in the average cumulative reward over 
50 evaluation episodes is summarised in Table 4.

The analysis shows that model performance remains stable under 
moderate parameter variations, with cumulative reward changes less 
than ±3%. This suggests that the D3QN configuration used in this study 
is robust to small perturbations in key hyperparameters. Nevertheless, 
full uncertainty quantification is recommended for future work. 
Probabilistic methods such as Monte Carlo dropout or bootstrapped 
DQN ensembles can be implemented to generate confidence intervals 
around policy estimates, further strengthening interpretability and 
reliability.

5

 Figure 3
Baseline policy comparison for D3QN: (a) Training phase, (b) Evaluation phase

Parameter
Baseline 

Value Variation

Mean 
Cumulative 

Reward
% Change 
vs Baseline

Learning rate (α) 0.0001 20% 3985 2.80%
Learning rate (α) 0.0001 −20% 3840 −0.9%
Discount factor (γ) 0.99 0.05 3920 −1.5%
Discount factor (γ) 0.99 −0.05 4010 3.10%
Replay buffer size 
(B)

10,000 25% 3960 1.90%

Replay buffer size 
(B)

10,000 −25% 3825 −1.3%

Table 4
Sensitivity of model performance to key hyperparameter variations
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4. Experimental Results

4.1. Data
Our research analysed data from the UK from January 21, 2020 

(the date of the WHO’s initial report on COVID-19) to March 2021. 
Data on the index case date (the date of the first confirmed patient), 
confirmed infections, recoveries, and deaths were obtained from reliable 
sources, including the Johns Hopkins COVID-19 Data Repository, 
reports from the Centers for Disease Control and Prevention, and case 
reports from the WHO [16, 21]. In addition, details on the date and 
severity of local lockdown measures, as well as international travel 
restrictions, were provided. After linear interpolation from the date of 
the index case in the UK, data were collected by averaging values over 
three consecutive days. This method was intended to eliminate potential 
biases caused by delayed reporting and changes in viral activity. Instead 
of collecting data daily, a three-day interval was chosen. This approach 
was adopted due to the need for time-sensitive information at each time 
stamp, as well as to reduce potential biases caused by delayed reporting 
and variable viral testing capability on weekends.

4.2. Result
In the results section, the term “Agent Model” refers to the 

proposed reinforcement learning framework, whereas “Public Health” 

denotes the officially implemented policy model. Experimental 
analyses were conducted using empirical COVID-19 data from the UK, 
covering the period from January 2020 to January 2021, with the first 
confirmed case reported on January 31, 2020. To enhance the agent’s 
ability to identify optimal policies, a well-structured incentive function 
was developed. The primary objective was to mitigate the impact of the 
pandemic by dynamically adjusting the severity of lockdown measures 
and mobility restrictions daily. From a behavioural standpoint, 
individuals naturally aim to minimise high infection and mortality rates 
because of their negative societal consequences. Conversely, targeted 
interventions must be incentivised to effectively reduce infection and 
mortality rates to predefined thresholds.

The reward structure within the environment comprises two 
distinct components: mortality and recovery, each associated with 
specific incentives and penalties that collectively define the overall 
reward function. This study proposes a discrete action space to 
determine the severity levels of lockdowns and travel restrictions 
instead of the continuous action space proposed by [16] in their DDGP 
implementation. The continuous approach is less reliable, especially 
when addressing epidemic termination scenarios.

Figures 4(a), 4(b), and 4(c) depict the evolution of lockdown 
intensity, travel restrictions, and the combined severity of these 
interventions during the first three months of the COVID-19 pandemic 
in the UK.

6

 Figure 4
Lockdown, travel ban, and total intensity for the first 3 months: (a) Lockdown for the first 3 months, (b) Travel ban for the first 3 

months, (c) Total intensity for the first 3 months
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Table 5 shows how the intensity of travel bans and lockdowns, 
and their combined effect changed over four key dates during the first 
three months of the pandemic.  We can see that travel restrictions 
were tightened and eased at different times, possibly reflecting shifts 
in the government’s response to the spread of the virus. Lockdown 
measures also varied, becoming stricter or more relaxed depending on 
the situation. When we look at the total intensity, which combines both 
types of interventions, it tends to be highest during periods of strong 
public health action and lower when measures were relaxed. Overall, 
the table gives a clear picture of how policies were adjusted over time 
to respond to the changing nature of the pandemic.

The proposed dueling network was trained, and its performance 
was analysed using data from three distinct phases of the outbreak: the 

first three months, the entire duration, and the most recent three months 
relative to the dataset. In Figures 5(a), 5(b), and 5(c), the agent was 
trained exclusively on data from the first three months. Initially, the 
agent recommended strict regulation of both domestic and international 
policies. However, the number of recommended interventions 
decreased markedly beginning in mid-March. By late March, the key 
policy measures were implemented.

Figures 5(a), 5(b), and 5(c) depict the lockdown, travel restriction, 
and total intensity of both travel restriction and lockdown in the last 
three months of the COVID-19 pandemic in the UK.

Table 6 shows how the intensity of travel bans and lockdowns, 
and their combined effect changed over four key dates during the last 
three months. We can see that travel restrictions tightened compared 
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Date
Travel Ban Intensity Lockdown Intensity Total Intensity

Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-01-30 1.78 0.00 1.50 0.00 3.50 0.00
2020-02-15 1.75 0.20 1.50 0.50 3.50 1.00
2020-03-02 1.50 0.50 1.25 1.00 3.00 2.00
2020-03-18 1.00 1.00 1.00 1.25 1.00 3.00

Table 5
Comparison of combined intensity measures between the proposed model and the existing model for the first 3 months

 Figure 5
Lockdown, travel ban, and total intensity for the last 3 months: (a) Lockdown for the last 3 months, (b) Travel ban for the last 3 months, 

(c) Total intensity for the last 3 months



Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

to the government response, and eased at different times. Lockdown 
measures also varied, becoming stricter or more relaxed depending on 
the situation. When we look at the total intensity, which combines both 
types of interventions, it tends to be the same for both the model and 
government intervention. Overall, the table gives a clear picture of how 
policies were adjusted over time to respond to the changing nature of 
the pandemic.

During the subsequent period, the policies generated by the 
proposed model in the final three months exhibited substantial 
convergence with the officially implemented public health strategies, as 
depicted in Figures 5(a), 5(b), and 5(c). Specifically, the recommended 
lockdown policy demonstrated a slightly lower level of intensity 
compared to the corresponding public health measures, while the official 
travel restriction policy maintained a marginally higher level of severity. 
Figures 6(a), 6(b), and 6(c) further depict the temporal evolution of 

lockdown intensity and travel restrictions, and the combined severity of 
both interventions throughout the observation period.

Table 7 summarises the variation in the intensity of travel bans 
and lockdowns, and their combined effect across four critical dates 
during the observation period. Although the individual measures exhibit 
slight offsets, the overall strategy remains largely consistent over time. 
This table provides a clear representation of how policy interventions 
were progressively adjusted in response to the evolving dynamics of 
the pandemic.

The introduction of these regulations was informed by the 
agent’s assessment of epidemic progression. As illustrated in Figure 
6(c), the agent consistently recommended implementing lockdowns or 
travel bans at Level 1, substantially earlier than the official adoption 
by public health authorities or the government. Specifically, the agent 
advised initiating at least minimal restrictions in late January, despite 
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Date
Travel Ban Intensity Lockdown Intensity Total Intensity

Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-10-09 1.35 1.52 1.63 1.65 2.97 3.18
2020-10-25 1.45 1.55 1.68 1.58 3.15 3.15
2020-11-10 1.40 1.48 1.68 1.55 3.10 3.08

Table 6
Comparison of combined intensity measures between the proposed model and the existing model for the last 3 months

 Figure 6
Travel ban, lockdown, and total intensity for the overtime period: (a) Travel ban for the overtime period, (b) Lockdown for the overtime 

period, (c) Total intensity for the overtime period
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the first confirmed case occurring in late March. In contrast, while 
public health experts advocated for immediate interventions, the agent 
suggested delaying policy implementation in the absence of exponential 
case growth, reflecting a more conservative approach to early stage 
containment.

4.3. Discussion
This study introduces a novel approach for training an agent to 

determine the optimal timing and severity of lockdown measures and 
travel bans in the UK. The proposed approach employs DRL and uses 
a dataset from the Johns Hopkins COVID-19 Data Repository, which 
includes both worldwide and UK COVID-19 epidemiology data, with 
a focus on UK data. To identify the most effective course of action for 
specific states over time, we conducted a temporal analysis of policy 
implementation across varying levels of crisis intensity. The current 
investigation employed DRL approaches, focusing on incentive 
structures and discrete state spaces. In contrast to the measures that 
were eventually imposed, our algorithm primarily indicated that public 
health officials take a more lenient approach to lockdown measures 
and travel bans in the context of the COVID-19 pandemic. Our 
agent advocated implementing a lockdown during the early stages of 
the outbreak, when the situation was more serious. Nonetheless, the 
agent ultimately complied with public health policies. Furthermore, 
it was in line with recommendations from public health officials to 
ease the stringency of confinement measures in the final phases of the 
pandemic. Early implementation of COVID-19 mitigation strategies 
must be carefully considered, considering the possible economic, 
social, and health implications. After comparing the first and official 
implementations, the agent suggested travel limitations as a minimum 
measure. Contrary to the agent’s projections on travel, public health 
officials have implemented harsher travel restrictions.

The algorithm and findings indicate that the agent does not 
favour prolonged, high-intensity lockdowns or travel restrictions for 
public health management in the UK. Figures 4(a), 4(b), and 4(c) 
support this analysis. Figures 5(a), 5(b), and 5(c) show that the agent 
initially recommended stringent regulatory measures but gradually 
relaxed these measures starting in mid-March. These changes in policy 
intensity are consistent with the algorithm’s training on data from the 
first three months. Figures 6(a), 6(b), and 6(c) illustrate that agents have 
reached an agreement on the decisions made by public health, which 
is consistent with the policies proposed throughout the three-month 
pandemic data analysis in Figures 4(a), 4(b), and 4(c). Inconsistencies 
were found in travel restrictions. Compared to public health authorities, 
travel restrictions were more liberal in the second half of the study 
period. However, the travel restrictions imposed by the agent were 
slightly stricter than those proposed by the government. This was 
primarily due to the agent’s reliance on information from three months 
earlier. Implementing the optimal policy recommended by our agent 
provides greater benefits than adopting a cautious, risk-averse approach 
from the outset. Such a strategy helps avoid incurring unnecessary costs 
associated with premature or overly stringent interventions.

The DRL strategy for determining optimal lockdown and travel 
restrictions may fail due to inconsistent and delayed data. In this 
approach, instead of using daily case data, a three-day average was 
used to smooth fluctuations. While this reduces noise, it introduces 
lag, causing the agent to react too slowly to sudden outbreaks or 
improvements. Additionally, real-world data may be incomplete 
or biased, further impairing learning. These limitations can lead to 
suboptimal or mistimed policy decisions. To address this, integrating 
real-time data correction techniques, uncertainty-aware models, and 
hybrid epidemiological-DRL frameworks can enhance responsiveness 
and robustness in policy optimisation.

4.3.1. Model generalisation and transferability  
Although this study was trained solely on the UK COVID-19 

dataset, the underlying framework is extensible to other regions and 
future outbreaks. National differences in demographics, healthcare 
capacity, and behavioural response can significantly alter pandemic 
trajectories, potentially limiting direct generalisation. Nevertheless, 
the reinforcement learning architecture can be adapted using transfer 
learning or fine-tuning, where the agent initialised on UK data is 
retrained on new regional data to learn localised response dynamics. 
In future iterations, federated reinforcement learning can enable 
decentralised agents trained on data from multiple countries to share 
policy parameters without exposing sensitive health information. This 
approach would strengthen the global applicability and robustness of 
the learned policy strategies beyond a single-country context.

4.3.2. Behavioural and mobility factors
The present framework focuses on epidemiological variables on 

confirmed cases, recoveries, and deaths, while omitting behavioural and 
mobility determinants that substantially influence disease spread. Real-
world interventions are modulated by public compliance, population 
movement, and intensity of social interaction. Incorporating such 
exogenous data, for example, from Google Mobility Reports or Apple 
Mobility Trends, can allow the agent to capture behavioural feedback 
loops and improve policy responsiveness. Additionally, explicit 
modelling of public adherence levels can refine reward attribution, 
producing more realistic simulations of policy impact.

4.3.3. Dynamic reward adaptation
Another limitation of the current framework is that the reward 

structure remains static over time. In real pandemic settings, policy 
priorities evolve with vaccination rollout, the emergence of viral variants, 
and changing public compliance. A future adaptive reward system can 
incorporate time-varying weights that emphasise different objectives 
such as vaccination coverage or variant transmissibility, thereby 
allowing the agent to learn phase-specific strategies. Implementing non-
stationary or meta-reinforcement learning mechanisms would enable 
the reward function to evolve alongside the pandemic context.

4.3.4. Comparison with existing AI-based policy optimisation model
The proposed dueling DQN framework complements earlier 

reinforcement learning approaches such as DDPG and Proximal Policy 
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Date
Travel Ban Intensity Lockdown Intensity Total Intensity

Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-03-02 0.26 0.00 0.61 0.00 1.00 0.00
2020-05-21 1.25 1.68 1.42 1.41 2.57 3.30
2020-08-09 1.19 1.48 1.39 1.38 2.50 2.52
2020-10-28 1.16 1.49 1.40 1.39 2.55 2.57

Table 7
Comparison of combined intensity measures between the proposed model and the existing model for the overtime period
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Optimization. While continuous-action algorithms such as DDPG offer 
fine-grained control, they can suffer from instability and overestimation 
in rapidly changing epidemic environments. The discrete-action D3QN 
adopted here provides a more interpretable and stable alternative for 
policy discretisation, aligning naturally with categorical government 
interventions (e.g., partial or full lockdown). Future comparative 
experiments can systematically benchmark these models using identical 
epidemiological datasets.

4.3.5. Interpretability and policy transparency
Trust in algorithm-based decision-making is essential for 

adoption in policymaking. Although the present model functions as 
a black-box optimiser, future versions can integrate interpretable-AI 
tools such as SHAP (SHapley Additive exPlanations) or LIME (Local 
Interpretable Model-agnostic Explanations) to attribute each policy 
recommendation to specific epidemiological drivers. Visualising 
action-value saliency maps across time can further help policymakers 
understand why the agent prefers a certain level of restriction, 
thereby improving transparency and acceptability of AI-driven policy 
guidance.

5. Conclusion
In summary, the proposed DRL framework demonstrates the 

feasibility of data-driven policy optimisation for epidemic control. 
While the present analysis focused on the UK, the architecture 
is inherently generalisable and can be extended to other regions 
through transfer learning or multi-country federated reinforcement 
schemes. Future work will incorporate dynamic rewards, mobility 
and behavioural variables, and uncertainty quantification to improve 
realism and reliability. By coupling the DRL agent with epidemiological 
simulators and interpretable analytics, this framework can evolve into a 
practical decision-support system for pandemic preparedness and real-
time outbreak management.  
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