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Abstract: Since the global spread of COVID-19 pandemic in January 2020, residents in the United Kingdom (UK) have altered their daily routines
due to the transmissibility of the virus. Sanitisation, quarantine, contact tracing, mass testing, and vaccination are implemented, affecting virus
control, quality of life, resources, and economic development. From January 2020 to January 2021, data from repositories from the Office for
National Statistics, NHS England, and the WHO provided statistics on confirmed cases, recoveries, and mortality. Wikipedia and Our World In
Data provided the UK lockdown and travel restriction timelines. Deep reinforcement learning, a Dueling Q-learning algorithm, and a well-defined
reward function determined the optimal lockdown and travel restriction timings. Initially, our agent (model) suggested strict lockdown and travel
restrictions. By mid-March, advisories decreased significantly. In late March, key public health initiatives were introduced. Over the initial three
months, the recommendations of our agent had gained support, which proposed slightly smaller lockdown measures than the public health policy
but stricter travel restrictions. Our agent advised lockdown and travel limitations, generally suggesting measures before public health authorities
or the government approved them. Our agent recommended implementing policies in late January, while authorities delayed until late March.

Furthermore, our agent (model) advised against postponing UK policy implementation.
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1. Introduction

Since the World Health Organization (WHO) reported SARS-
CoV-2 in late December 2019, the United Kingdom (UK) has taken at least
143 steps to halt its spread [ 1]. Some research analysed these interventions
using [2] the classification framework and Oxford Stringency index. The
policy classification system displays a spectrum of COVID-19 pandemic
intervention options that intensify and then diminish as governments
scale back on response efforts [2]. These classifications are essential for
harm reduction and healthcare improvement through containment and
mitigation. This area includes economic and health technology initiatives.
In 2020, English pubs and restaurants reopened on July 4, but the Scottish
waited until July 15. Northern Ireland allowed indoor restaurants and
pubs to reopen on July 3, but Wales waited until August 3. The UK
government initially focused on viral containment [3]. During this
lockdown, people had to stay at home and work remotely, with limited
exceptions for exercise, food shopping, and prescription retrieval, under
strict social distancing guidelines. The number of daily COVID-19 case
confirmations in the UK surged, plateaued, and reduced. The number
of laboratory-confirmed cases peaked on May 1, while the number of
symptomatic patients peaked on April 1. As confirmed cases decreased
after this peak, the rules were relaxed [4].

Also in 2020, social distancing procedures and penalties escalated
the scale and intensity of measures, resulting in severe restrictions on non-
essential services on March 16 and a statewide lockdown on March 23.
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The UK government prioritised emergency planning for influenza over
coronaviruses, resulting in inadequate reserves, testing procedures, and
lockdown protocols when COVID-19 struck. This discrepancy rendered
the country unprepared for the magnitude and characteristics of the actual
pandemic [5]. The culture of groupthink and a convoluted distribution of
responsibility between departments impeded decision-making, resulting
in delays in essential activities. The absence of decisive leadership and the
failure to question established assumptions undermined the urgency and
efficacy of the response [6]. However, some policies recorded success:
The UK Health Security Agency was created to consolidate responses to
health hazards and enhance data-driven decision-making, replacing the
less-responsive Public Health England. By 2024, it improved the nation’s
ability to identify outbreaks and respond to them with greater speed
and efficacy [7]. A new Cabinet-level committee has been established
to oversee civil emergency planning, facilitating swifter and more
coordinated government responses. This structural modification was
intended to avert the disjointed leadership observed during COVID-19 [8].

2. Literature Review

COVID-19 has numerous challenges. Vaccinations in the UK do
not fully prevent the virus. Enhanced testing and immunisation, despite
their laborious nature, typically stop transmission. Disease control and
economic recovery are challenges for governments [9, 10]. Increasing
sanitisation in densely populated areas to sterilise public spaces and
reduce transmission is another common method, although it is resource-
intensive and difficult to implement globally [10]. Lockdown and
quarantine demand fewer medical and physical resources. Pandemic
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strains worldwide healthcare systems. Travel restrictions and lockdowns
have reduced tension. Study [11] investigated how these methods boost
healthcare capacity and treat viruses. Although crucial for public health,
these methods raise ethical issues [12, 13]. Lockdowns and travel
restrictions need ethical decision-making that balances community
health and individual rights with openness, equity, and compassion.
Study [10] found that these constraints harm mental health and access to
non-COVID medical care and general well-being, even if they prevent
viral spread. Trade-offs are assessed and minimised using this paradigm.
In the current economy, it is unreasonable to stop all economic activities
and rely on government handouts. Serious infections require ventilators,
while mild infections require critical supplies.

Transmission risks prevent unrestricted social gatherings without
masks. Some techniques may stay unexplored [14]. Testing, sanitisation,
and social distancing are necessary, but their optimal levels must be
found to safeguard the public while balancing health with daily activities
and reducing negative effects on quality of life and the economy [15].
To solve this challenge, our research uses quantitative, model-driven
methodologies. Our research aims to develop a Deep Reinforcement
Learning (DRL) agent capable of identifying the optimal combination
of lockdown and travel-restriction policies for the UK. Conventional
approaches, such as cost-benefit and risk analysis and epidemiological
model, and the DRL approach are utilised to design optimal strategies
for COVID-19 policy [11, 16]. The rapidly developing study of DRL
can transform human history [17].

Academics and industry are interested in its autonomous
optimisation. Reinforcement learning in intelligent systems may
illuminate human intelligence. This definition of intelligence is learning
from experience. Knowledge of the best algorithm is needed to make
optimal decisions in diverse issue situations. Optimal decisions may
mean sacrificing short-term profits for long-term success. Research [16,
18] examined regional lockdowns and travel restrictions to stop the spread
of infectious diseases. Many studies replicate epidemic transmission to
accommodate various disease traits and localised control. Their impact
on domestic viral spread is small. Preventive lockdowns may limit local
transmission. Lockdowns reduce mortality when infection rates are low.
The COVID-19 pandemic has made demographic and socioeconomic
factors vital; therefore, these interventions are effective but require
a country-specific strategy. According to global studies, public health
regulations [16], such as travel limits, reduced fatalities by 68% but were
inefficient in the control of domestic transmission. Proactive lockdown
reduces localised transmission. Study [19] promoted worldwide
COVID-19 lockdowns and travel restrictions using reinforcement
learning and the Deep Deterministic Policy Gradient (DDPG) algorithm
[20]. The broad range of the proposed measures does not provide
global recommendations for pandemic prevention and control. A more
flexible and focused policy solution can be developed for different
areas of action. Our research proposes a novel DRL discrete action
space construction method. Using this strategy, the agent can choose
the optimal lockdown and travel restrictions within a certain range. To
overcome discrete spatial restrictions, it is crucial to establish a strong
reward system that balances economic efficiency and quality of life.
Study [17, 20] employed a DRL approach, Double Deep Q-Network
(D3QN), which uses a discrete state and action representation space.
The continuous action space of DDPG may lead to erroneous forecasts
due to sudden shifts in epidemic situations. Under constrained training
conditions, Deep Q-Network (DQN) outperforms DDPG [20].

3. Methods

3.1. Deep reinforcement learning method

DRL is an algorithm that falls under the category of machine
learning. Its primary goal is to address issues related to artificial

intelligence (AI). This approach is achieved by developing computer
programmes called agents, which are designed to solve complex issues
that typically require intelligence. DRL stands out from other types of
machine learning algorithms due to its unique learning framework. The
learning process of the system involves iterative experimentation and
adjustment, during which it interacts with its environment and receives
feedback in the form of state and reward signals [21]. This suggests
the lack of labelled data or a clearly defined appropriate response to
use, which distinguishes it from supervised learning. Environmental
feedback can occur concurrently or sequentially and can be evaluated
or sampled from an initial probability distribution. By applying deep
neural networks, agents are trained to approximate the underlying
reward distribution through the use of nonlinear function approximation
methods. The overarching objective is to optimise cumulative returns
over an extended time period.

Figure 1 illustrates how DRL works: an agent engages with
the environment by perceiving the current state, selecting the action
based on a policy (often facilitated by a neural network), and receiving
a reward and the subsequent state as feedback. The neural network
functions as a function approximator to generalise over extensive
state-action spaces. Through this feedback loop, the agent perpetually
refines its strategy to optimise long-term rewards by learning from its
experiences. The environment defines the task dynamics, including the
state and action spaces, and provides a reward function. At each time
step, the agent observes the current state and selects an action according
to its policy, typically represented by a deep neural network. This
network functions either as a policy approximator or a value estimator,
depending on the learning paradigm. Upon executing an action, the
environment transitions to a new state and returns a scalar reward,
indicating the immediate outcome of the action. The experience tuple—
including state, action, reward, and next state—is stored in a replay
buffer. This buffer enables the agent to sample past experiences and
update its neural network using gradient-based optimisation techniques.
The use of deep networks enables the agent to operate effectively in
complex, high-dimensional environments, while the replay buffer
mitigates temporal correlations and enhances learning stability. Through
repeated interaction, memory, and training, the agent progressively
improves its decision-making to maximise long-term rewards. DRL has
demonstrated success across domains such as robotics, game playing,
and autonomous control.

Figure 1
Structure of deep reinforcement learning
| Reward |
Agent DNN  Policy
O
State Take _|Environment
action
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3.2. D3QN architecture

To this point, the deep learning models under consideration
have predominantly employed a sequential architecture. Here, the term
“models” refers to supervised learning frameworks, distinguishing them
from models defined in the formalism of the Markov Decision Process.
It is worth noting that while the terms “sequential architectures” and
“sequential models” may have different meanings in other disciplinary
contexts, in deep learning, they refer to a specific structural property
of the network. In these architectures, each neuron in a given layer is
restricted to forming connections only with neurons in the immediately
preceding and subsequent layers. This constraint applies uniformly
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across all neurons within the layer. In other words, there were no
branches or loops in these model structures. Although DQN and
Double DQN each contain two Q networks, there is only one deep
learning model, and the values of the other (target) network are periodic
duplicates of the active (online) network [17, 21]. Dueling DQN is a
non-sequential deep learning architecture in which the model layers are
divided into two independent streams (sub-networks), each with its own
fully connected layer and output layers. This enables the model to train
more efficiently than conventional sequential designs.

D3QN architecture is an advanced reinforcement learning model
designed to improve the stability and accuracy of value-based decision-
making. It builds upon the standard DQN by incorporating two key
innovations: the dueling network architecture and double Q-learning.
In D3QN, the agent first processes input from the environment, such
as images or numerical states, through a feature extraction layer,
often a convolutional neural network if the input is visual. This layer
captures essential patterns and compresses the input into a compact
representation. Next, the network splits into two separate streams. One
stream estimates the value of being in a particular state, regardless of the
action taken. The other stream estimates the advantage of each possible
action in that state. These two estimates are subsequently integrated
to generate the final action-value predictions. This decomposition
enables the agent to discern which states are intrinsically valuable even
when the choice of action has minimal influence, thereby enhancing
learning efficiency. To reduce overestimation bias, a common issue in
Q-learning, D3QN uses double Q-learning, where one network selects
the best action and another evaluates it. This decoupling leads to more
accurate value estimates. Experience replay and periodic target network
updates further stabilise training [21].

The first branch, often referred to as the value network, estimates
the value of a given state and produces a single scalar output representing
this value. The second branch, referred to as the advantage network,
estimates the relative benefit of selecting a particular action compared
to the baseline value associated with remaining in the current state.
Figure 2 illustrates the overall architecture. It is important to emphasise
that the Q-function in a Dueling DQN corresponds to the same
fundamental Q-function used in conventional Q-learning algorithms.
Consequently, the Dueling DQN framework is expected to operate
conceptually in the same manner as standard Q-learning, producing
absolute action-value estimates (Q-values) for each state—action pair.

The design in Figure 2 uses two streams to segregate state
values and state-dependent action advantages. For feature learning,
it estimates value and advantage functions with convolutional layers.
The last module integrates these streams to estimate the state-action
value function Q. The proposed function operates analogously to
a conventional Q-learning algorithm by estimating absolute action
values, commonly referred to as Q-values. Consequently, it becomes
necessary to compute these action-value estimates for each state-action
pair. Conceptually, an action value represents the expected utility of
executing a specific action within a given state. To accomplish this, the
model integrates two components: (i) the baseline value of the state,

Figure 2
Schematic structure of the dueling Q-network
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computed by the first network branch, and (i) the relative advantage of
each action, provided by the second branch (the “advantage” network).
By aggregating these elements, the model can effectively yield the
approximate Q-values required for Q-learning. This relationship is
formally expressed in Equation (2).

Q(s,3; 0,B) = V(s; 0,B) + (A(s, 40, 0) — max;, € |A[A(s,a;0,a)) (1)

The variables Q, V, s, a, and a’ in Equation (1) have the same
consistent meaning as those in the mathematical notation in Figure 1.
Furthermore, the letter denotes the advantage value. The parameter
vector associated with the convolutional layer is shared between the
Value and Advantage networks. The parameter set specific to the
Advantage network and the State-Value function are denoted by a
and B, respectively. Within the context of function approximation, the
outputs of any network are expressed in terms of the parameters of
the corresponding estimating network. This distinction ensures clarity
when multiple approximators infer values for the same variable. The
governing equation specifies that the Q-value indexed by (B,a,p) for
a given state-action pair equals the estimated state value, representing
the absolute utility of being in that state, as derived from the State-
Value network. Further consideration of identifiability suggests that,
in its simplest form, this relationship can be expressed as shown in
Equation (3).

Q5,85 0, ) = V(s: 0,p) + A(s, 250, ) @

A limitation of this straightforward formulation is that although
the Q-value (action-value) can be calculated given a state—action pair
(S,A), the inverse mapping does not hold. Specifically, it is not possible
to uniquely recover the state and action values from a given Q-value,
as shown in Equation (3). This issue is referred to as unidentifiability.
To address this issue, Equation (4) introduces an improved variant of
Equation (3), in which the last term is slightly modified. Although this
adjustment involves subtracting a constant and may introduce a small
numerical deviation, it does not affect the learning process, as the relative
comparisons between action values remain unchanged. Moreover, this
reformulation helps improve the stability during optimisation.

Q5,2 ,8) = V(55 0,) + (Als,20,0) = 1 T, AGa0,0))  (3)

We provide the details of the D3QN algorithm in Table 1 below.

Table 1 presents a step-by-step implementation of the D3QN
algorithm, which is designed to generate an optimal policy for
determining the appropriate timing of lockdown measures and the
imposition of travel restrictions on UK domestic movements.

3.3. Action space

This paper proposes the use of a discrete action space to
determine the level of severity of lockdowns and travel restrictions.
The recommended values for the three action outputs display variability
within the predefined range, suggesting that this recommendation
engine offers more flexibility and customisation than a continuous
action space. See Table 2 below.

We define a 3x3 action space for implementing local lockdowns
and travel restrictions. The lockdown policy is classified into three
levels: Level 0 (LO) means no intervention, Level 1 (L1) imposes
restrictions on public social gatherings, and Level 2 (L2) corresponds
to a nationwide lockdown. Similarly, the travel policy included three
scenarios: TO indicates no action will be taken, T1 involves suspension
of air travel, and T2 means the complete closure of all borders within
the UK.
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Table 1
D3QN algorithm for optimal policy implementation of COVID-19

1. Initialize:
1) Priority experience replay buffer D with capacity N.
2) Parameters for the initial Q-network (0) and target network (6°).
3) Set ¢ (epsilon) for the e-greedy policy.
2. For each episode (t =1 to M):
1) Reset the environment.
2) Initialize the input state sequence so.
3) Reset the UK COVID-19 burden (e.g., case numbers, hospital
load).
3. For each time step (t =1 to T):
1) For each batch i in batch size b;:
Use the target network to compute the next state s;+1.
Select action a, for batch i with probability p;.
Store the transition (si+1, a;) in the policy network.
Determine the next state ss+1 based on accumulated reward.
Compute the immediate reward r,;, reflecting acceleration in
COVID-19 cases (if episode ends).
Update the Q-value using the immediate reward and discount
factor v.
g. Update the loss function L(0).
4. Update:
1) Adjust sampling weights using precision error, selection weight,
and &.
2) Update the replay buffer D with new transitions
3) At each target update interval, copy weights from the policy
network to the target network.

oao ow

el

Table 2
Lockdown and travel restriction policy levels in the UK
Action Space Acronym
No lockdown Lo
Restriction on social gathering in the UK L1
Complete national lockdown L2
No aircraft restrictions TO
Aircraft cancellation T1
Border closure T2

3.4. Reward

Our rewards system is designed to discourage rapid escalation
of infections and death rates while also boosting rapid case recovery
in a 2:1:1 ratio. The argument for creating this reward system has two
main goals. According to earlier research, it is crucial to emphasise the
prevention of new infections as this is associated with a reduced death
rate [3]. Furthermore, there is a significant temporal gap between the
onset of a new infection case and the subsequent occurrence of recovery
or death. Previous research has demonstrated that this temporal delay
often leads to the postponement of governmental interventions, which
canbe seen as a potential aspect to consider in reinforcement learning [ 7].
According to a 2022 study by the University of Oxford, the UK’s early
approval and mass deployment of the Oxford-AstraZeneca vaccine,
which began in December 2020, was a major success, significantly
reducing hospitalisations and deaths in the UK and enabling society to
return to normal sooner. Despite rising infections and warnings from
the scientific community, the UK delayed its first lockdown in March
2020, allowing the virus to spread rapidly. A 2025 report from Queen’s

University Belfast highlighted that this delay contributed to one of the
highest excess death rates in Europe [22].

Table 3 shows the general sign direction for the definition
rationale of awards, based on death severity. The same logic applies to
recovery, which will take the opposite sign.

Table 3 shows an example of how to design a reward sign
indicating the seriousness of death. The same principle applies to death
and recovery, with the latter displaying the opposite sign. If no action is
taken, more deaths are likely due to the transmissibility of the disease.
If the activities improve the situation, it may take a few days for the
effects to become apparent. However, if the reward is favourable, the
agent will be motivated.

Table 3
Example of reward signal design reflecting death severity in policy
learning
Severity Meaning Reward sign
High Increase in death cases without action ~ Negative
taken
Moderate  Considerate decrease in death cases Positive
compared to previous date due to action
taken
Low Further reduction in death cases or no Positive

death due to certain action taken

As a result, we decided to impose greater penalties on the
increased rate of new infections than on the increase in mortality or
compensation for the higher rate of recovered cases. We created a system
of positive incentive stability, which involved making no modifications
and minimising the number of new infection cases. In contrast, we
used negative rewards when the number of new infection cases rose
despite the interventions performed. Positive rewards were not given for
the absence of changes in new infection rates, as a lack of increase in
new case rates is often suggestive of stability in the early phases of an
outbreak [11]. Following this overarching approach, the reward function
rt was constructed as described below. It is important to note that the
relative weights of its components can be adjusted to suit specific
objectives. In this study, the reward function was designed to capture the
dual impact of COVID-19 on economic performance and quality of life.
A value of 10 corresponds to a strong economy and high quality of life,
whereas 0 represents the opposite. While both economic conditions and
quality of life are influenced by numerous factors, for this research, these
endpoints were assigned arbitrarily, with 0 representing “poor” and 10
representing “good.” Thus, we have the following equations:

1 1 1 1
Co=c+ i Co=Cc+ i, Ct=C+ g, CL=Cr+ “)
re =1 i +rff )

—co—c1 x (st —si) if (st,; > si) and (si > 0)
—0.5zco + c1 x (si, —si) if (st =s!) and (s} #0)

i = ¢ and ((alkd"™ > 0) or (aﬁﬂf{’eu’a“ >0)) for ¢ in rc and dt (6)
co—c1 x (st —si) if (si,; <si)

—0.5zc; x (st —si) otherwise

co+cr X (sf+1 — s%) if (.si_*_1 > sz) and (si > 0)
0.5 x cg+c1 x (st —st) if (st =s!) and (s} #0)

ri = ¢ and ((al°%d™® > 0) or (al®->™ > 0)) for i in cf @)
—coter X (sp,y —sy) if (sf,, < sf)

—c1 X (st+1 — st) otherwise
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where
Ld: lockdown
tr: travel ban
Lg: quality of life =0 or 10
econ: economy =0 or 10
rc: recovered cases
cf: confirmed cases
dt: death cases
r,: timestamp t for reward
s,: timestamp t for state

¢, ¢,: constant values

The design initially sets the range of the quality-of-life and
economic indices between 0 and 10 to provide an intuitive, normalised
scale; however, we recognise that this choice introduces an element
of arbitrariness. To mitigate potential bias, future work will calibrate
these scales using empirical indicators such as gross domestic product
contraction, unemployment rate, and quality-adjusted life-years loss.
Likewise, the epidemiological rationale behind giving more weight to
infections than deaths was that preventing new infections can indirectly
prevent downstream fatalities. Nonetheless, the relative weights can be
data driven in future implementations by regressing observed policy
outcomes against measurable public-health and economic variables.

3.5. Model performance evaluation

The experimental evaluation compares the performance of the
standard D3QN model with the proposed V-D D3QN algorithm under
identical parameter settings. In this setup, the discount factor (y) was fixed
at 0.99, with a maximum of 100 episodes. The maximum average reward
over 100 steps was limited to 10,000. Both the policy and value networks
employed a learning rate of 0.0001. The replay buffer size was set to
10,000, and the batch size was 32. Additionally, the soft update parameter
(t) was configured to 0.005. Figure 3(b) illustrates the enhanced D3QN
architecture, referred to as V-D D3QN, which serves as a baseline for

the model were compared with publicly available reproduction-number
(R estimates from the UK Health Security Agency and the simulated
Susceptible-Exposed-Infectious-Recovered (SEIR) trajectories. The
agent’s recommendation for an early lockdown implementation in late
January 2020 coincided with periods where R, was above 1.5, while
subsequent easing of restrictions occurred when the R, fell below 1.0.
This qualitative alignment suggests that the learned policy captured
biologically meaningful dynamics. Although a full quantitative coupling
to SEIR equations was beyond the present scope, the comparison
supports the epidemiological plausibility of the learned strategies.

3.7. Sensitivity and uncertainty analysis

To evaluate the robustness of the D3QN model and assess
sensitivity to hyperparameter variations, several controlled experiments
were performed by perturbing the core learning parameters. Specifically,
the learning rate (o), discount factor (y), and replay buffer size (B) were
adjusted within £20% of their baseline values (a0 = 0.0001, y =0.99, B
=10,000). The resulting change in the average cumulative reward over
50 evaluation episodes is summarised in Table 4.

The analysis shows that model performance remains stable under
moderate parameter variations, with cumulative reward changes less
than £3%. This suggests that the D3QN configuration used in this study
is robust to small perturbations in key hyperparameters. Nevertheless,
full uncertainty quantification is recommended for future work.
Probabilistic methods such as Monte Carlo dropout or bootstrapped
DQN ensembles can be implemented to generate confidence intervals
around policy estimates, further strengthening interpretability and
reliability.

Table 4
Sensitivity of model performance to key hyperparameter variations

Mean
policy comparison against the standard D3QN implementation. Baseline Cumulative % Change
The moving average rewards during the training and evaluation  parameter Value Variation Reward vs Baseline
phases are shown in Figures 3(a) and 3(b), respectively. During - " o
evaluation, performance stabilises rapidly within the range of 3,000 to Learn%ng rate (@) 0.0001 20% 3985 2.80%
4,000 in the initial episodes and subsequently exhibits a gradual upward ~ Learning rate (o) 0.0001 —20% 3840 —0.9%
trend. These results demonstrate that the proposed model achieves  Discount factor (y)  0.99 0.05 3920 -1.5%
strong and consistent performance across episodes. Discount factor (y) 0.9 ~0.05 4010 3.10%
A . . . . e . Replay buffer size 10,000 25% 3960 1.90%
3.6. Validation against epidemiological indicators (B)p Y ’ ’
To evaluate the epidemiological plausibility of the proposed  Replay buffer size 10,000 —25% 3825 -1.3%
policies, the timing and intensity of the interventions recommended by  (B)
Figure 3
Baseline policy comparison for D3QN: (a) Training phase, (b) Evaluation phase
(a) o . (b) | |
oving Avg. Reward (Training) Moving Avg. Reward (Evaluation)
6000 6000
5000+ 5000 1
© 40001 4000
S ©
3 N———— ]
o 3000 3 3000
o
2000 2000 1
10001 . . . . : 10001 . . ; ; :
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4. Experimental Results

4.1. Data

Our research analysed data from the UK from January 21, 2020
(the date of the WHO’s initial report on COVID-19) to March 2021.
Data on the index case date (the date of the first confirmed patient),
confirmed infections, recoveries, and deaths were obtained from reliable
sources, including the Johns Hopkins COVID-19 Data Repository,
reports from the Centers for Disease Control and Prevention, and case
reports from the WHO [16, 21]. In addition, details on the date and
severity of local lockdown measures, as well as international travel
restrictions, were provided. After linear interpolation from the date of
the index case in the UK, data were collected by averaging values over
three consecutive days. This method was intended to eliminate potential
biases caused by delayed reporting and changes in viral activity. Instead
of collecting data daily, a three-day interval was chosen. This approach
was adopted due to the need for time-sensitive information at each time
stamp, as well as to reduce potential biases caused by delayed reporting
and variable viral testing capability on weekends.

4.2. Result

In the results section, the term “Agent Model” refers to the
proposed reinforcement learning framework, whereas “Public Health”

denotes the officially implemented policy model. Experimental
analyses were conducted using empirical COVID-19 data from the UK,
covering the period from January 2020 to January 2021, with the first
confirmed case reported on January 31, 2020. To enhance the agent’s
ability to identify optimal policies, a well-structured incentive function
was developed. The primary objective was to mitigate the impact of the
pandemic by dynamically adjusting the severity of lockdown measures
and mobility restrictions daily. From a behavioural standpoint,
individuals naturally aim to minimise high infection and mortality rates
because of their negative societal consequences. Conversely, targeted
interventions must be incentivised to effectively reduce infection and
mortality rates to predefined thresholds.

The reward structure within the environment comprises two
distinct components: mortality and recovery, each associated with
specific incentives and penalties that collectively define the overall
reward function. This study proposes a discrete action space to
determine the severity levels of lockdowns and travel restrictions
instead of the continuous action space proposed by [16] in their DDGP
implementation. The continuous approach is less reliable, especially
when addressing epidemic termination scenarios.

Figures 4(a), 4(b), and 4(c) depict the evolution of lockdown
intensity, travel restrictions, and the combined severity of these
interventions during the first three months of the COVID-19 pandemic
in the UK.

Figure 4

Lockdown, travel ban, and total intensity for the first 3 months:

(a) Lockdown for the first 3 months, (b) Travel ban for the first 3

months, (¢) Total intensity for the first 3 months
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Table 5 shows how the intensity of travel bans and lockdowns,
and their combined effect changed over four key dates during the first
three months of the pandemic. We can see that travel restrictions
were tightened and eased at different times, possibly reflecting shifts
in the government’s response to the spread of the virus. Lockdown
measures also varied, becoming stricter or more relaxed depending on
the situation. When we look at the total intensity, which combines both
types of interventions, it tends to be highest during periods of strong
public health action and lower when measures were relaxed. Overall,
the table gives a clear picture of how policies were adjusted over time
to respond to the changing nature of the pandemic.

The proposed dueling network was trained, and its performance
was analysed using data from three distinct phases of the outbreak: the

first three months, the entire duration, and the most recent three months
relative to the dataset. In Figures 5(a), 5(b), and 5(c), the agent was
trained exclusively on data from the first three months. Initially, the
agent recommended strict regulation of both domestic and international
policies. However, the number of recommended interventions
decreased markedly beginning in mid-March. By late March, the key
policy measures were implemented.

Figures 5(a), 5(b), and 5(c) depict the lockdown, travel restriction,
and total intensity of both travel restriction and lockdown in the last
three months of the COVID-19 pandemic in the UK.

Table 6 shows how the intensity of travel bans and lockdowns,
and their combined effect changed over four key dates during the last
three months. We can see that travel restrictions tightened compared

Table 5
Comparison of combined intensity measures between the proposed model and the existing model for the first 3 months
Travel Ban Intensity Lockdown Intensity Total Intensity
Date Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-01-30 1.78 0.00 1.50 0.00 3.50 0.00
2020-02-15 1.75 0.20 1.50 0.50 3.50 1.00
2020-03-02 1.50 0.50 1.25 1.00 3.00 2.00
2020-03-18 1.00 1.00 1.00 1.25 1.00 3.00
Figure 5

Lockdown, travel ban, and total intensity for the last 3 months: (a) Lockdown for the last 3 months, (b) Travel ban for the last 3 months,
(c) Total intensity for the last 3 months
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Table 6
Comparison of combined intensity measures between the proposed model and the existing model for the last 3 months
Travel Ban Intensity Lockdown Intensity Total Intensity
Date Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-10-09 1.35 1.52 1.63 1.65 2.97 3.18
2020-10-25 1.45 1.55 1.68 1.58 3.15 3.15
2020-11-10 1.40 1.48 1.68 1.55 3.10 3.08

to the government response, and eased at different times. Lockdown
measures also varied, becoming stricter or more relaxed depending on
the situation. When we look at the total intensity, which combines both
types of interventions, it tends to be the same for both the model and
government intervention. Overall, the table gives a clear picture of how
policies were adjusted over time to respond to the changing nature of
the pandemic.

During the subsequent period, the policies generated by the
proposed model in the final three months exhibited substantial
convergence with the officially implemented public health strategies, as
depicted in Figures 5(a), 5(b), and 5(c). Specifically, the recommended
lockdown policy demonstrated a slightly lower level of intensity
compared to the corresponding public health measures, while the official
travel restriction policy maintained a marginally higher level of severity.
Figures 6(a), 6(b), and 6(c) further depict the temporal evolution of

lockdown intensity and travel restrictions, and the combined severity of
both interventions throughout the observation period.

Table 7 summarises the variation in the intensity of travel bans
and lockdowns, and their combined effect across four critical dates
during the observation period. Although the individual measures exhibit
slight offsets, the overall strategy remains largely consistent over time.
This table provides a clear representation of how policy interventions
were progressively adjusted in response to the evolving dynamics of
the pandemic.

The introduction of these regulations was informed by the
agent’s assessment of epidemic progression. As illustrated in Figure
6(c), the agent consistently recommended implementing lockdowns or
travel bans at Level 1, substantially earlier than the official adoption
by public health authorities or the government. Specifically, the agent
advised initiating at least minimal restrictions in late January, despite

Figure 6
Travel ban, lockdown, and total intensity for the overtime period: (a) Travel ban for the overtime period, (b) Lockdown for the overtime
period, (c) Total intensity for the overtime period
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Table 7
Comparison of combined intensity measures between the proposed model and the existing model for the overtime period
Travel Ban Intensity Lockdown Intensity Total Intensity

Date Proposed Model Existing Model Proposed Model Existing Model Proposed Model Existing Model
2020-03-02 0.26 0.00 0.61 0.00 1.00 0.00
2020-05-21 1.25 1.68 1.42 1.41 2.57 3.30
2020-08-09 1.19 1.48 1.39 1.38 2.50 2.52
2020-10-28 1.16 1.49 1.40 1.39 2.55 2.57

the first confirmed case occurring in late March. In contrast, while
public health experts advocated for immediate interventions, the agent
suggested delaying policy implementation in the absence of exponential
case growth, reflecting a more conservative approach to early stage
containment.

4.3. Discussion

This study introduces a novel approach for training an agent to
determine the optimal timing and severity of lockdown measures and
travel bans in the UK. The proposed approach employs DRL and uses
a dataset from the Johns Hopkins COVID-19 Data Repository, which
includes both worldwide and UK COVID-19 epidemiology data, with
a focus on UK data. To identify the most effective course of action for
specific states over time, we conducted a temporal analysis of policy
implementation across varying levels of crisis intensity. The current
investigation employed DRL approaches, focusing on incentive
structures and discrete state spaces. In contrast to the measures that
were eventually imposed, our algorithm primarily indicated that public
health officials take a more lenient approach to lockdown measures
and travel bans in the context of the COVID-19 pandemic. Our
agent advocated implementing a lockdown during the early stages of
the outbreak, when the situation was more serious. Nonetheless, the
agent ultimately complied with public health policies. Furthermore,
it was in line with recommendations from public health officials to
ease the stringency of confinement measures in the final phases of the
pandemic. Early implementation of COVID-19 mitigation strategies
must be carefully considered, considering the possible economic,
social, and health implications. After comparing the first and official
implementations, the agent suggested travel limitations as a minimum
measure. Contrary to the agent’s projections on travel, public health
officials have implemented harsher travel restrictions.

The algorithm and findings indicate that the agent does not
favour prolonged, high-intensity lockdowns or travel restrictions for
public health management in the UK. Figures 4(a), 4(b), and 4(c)
support this analysis. Figures 5(a), 5(b), and 5(c) show that the agent
initially recommended stringent regulatory measures but gradually
relaxed these measures starting in mid-March. These changes in policy
intensity are consistent with the algorithm’s training on data from the
first three months. Figures 6(a), 6(b), and 6(c) illustrate that agents have
reached an agreement on the decisions made by public health, which
is consistent with the policies proposed throughout the three-month
pandemic data analysis in Figures 4(a), 4(b), and 4(c). Inconsistencies
were found in travel restrictions. Compared to public health authorities,
travel restrictions were more liberal in the second half of the study
period. However, the travel restrictions imposed by the agent were
slightly stricter than those proposed by the government. This was
primarily due to the agent’s reliance on information from three months
earlier. Implementing the optimal policy recommended by our agent
provides greater benefits than adopting a cautious, risk-averse approach
from the outset. Such a strategy helps avoid incurring unnecessary costs
associated with premature or overly stringent interventions.

The DRL strategy for determining optimal lockdown and travel
restrictions may fail due to inconsistent and delayed data. In this
approach, instead of using daily case data, a three-day average was
used to smooth fluctuations. While this reduces noise, it introduces
lag, causing the agent to react too slowly to sudden outbreaks or
improvements. Additionally, real-world data may be incomplete
or biased, further impairing learning. These limitations can lead to
suboptimal or mistimed policy decisions. To address this, integrating
real-time data correction techniques, uncertainty-aware models, and
hybrid epidemiological-DRL frameworks can enhance responsiveness
and robustness in policy optimisation.

4.3.1. Model generalisation and transferability

Although this study was trained solely on the UK COVID-19
dataset, the underlying framework is extensible to other regions and
future outbreaks. National differences in demographics, healthcare
capacity, and behavioural response can significantly alter pandemic
trajectories, potentially limiting direct generalisation. Nevertheless,
the reinforcement learning architecture can be adapted using transfer
learning or fine-tuning, where the agent initialised on UK data is
retrained on new regional data to learn localised response dynamics.
In future iterations, federated reinforcement learning can enable
decentralised agents trained on data from multiple countries to share
policy parameters without exposing sensitive health information. This
approach would strengthen the global applicability and robustness of
the learned policy strategies beyond a single-country context.

4.3.2. Behavioural and mobility factors

The present framework focuses on epidemiological variables on
confirmed cases, recoveries, and deaths, while omitting behavioural and
mobility determinants that substantially influence disease spread. Real-
world interventions are modulated by public compliance, population
movement, and intensity of social interaction. Incorporating such
exogenous data, for example, from Google Mobility Reports or Apple
Mobility Trends, can allow the agent to capture behavioural feedback
loops and improve policy responsiveness. Additionally, explicit
modelling of public adherence levels can refine reward attribution,
producing more realistic simulations of policy impact.

4.3.3. Dynamic reward adaptation

Another limitation of the current framework is that the reward
structure remains static over time. In real pandemic settings, policy
priorities evolve with vaccination rollout, the emergence of viral variants,
and changing public compliance. A future adaptive reward system can
incorporate time-varying weights that emphasise different objectives
such as vaccination coverage or variant transmissibility, thereby
allowing the agent to learn phase-specific strategies. Implementing non-
stationary or meta-reinforcement learning mechanisms would enable
the reward function to evolve alongside the pandemic context.

4.3.4. Comparison with existing Al-based policy optimisation model

The proposed dueling DQN framework complements earlier
reinforcement learning approaches such as DDPG and Proximal Policy



Artificial Intelligence and Applications Vol. 00

Iss. 00 2025

Optimization. While continuous-action algorithms such as DDPG offer
fine-grained control, they can suffer from instability and overestimation
in rapidly changing epidemic environments. The discrete-action D3QN
adopted here provides a more interpretable and stable alternative for
policy discretisation, aligning naturally with categorical government
interventions (e.g., partial or full lockdown). Future comparative
experiments can systematically benchmark these models using identical
epidemiological datasets.

4.3.5. Interpretability and policy transparency

Trust in algorithm-based decision-making is essential for
adoption in policymaking. Although the present model functions as
a black-box optimiser, future versions can integrate interpretable-Al
tools such as SHAP (SHapley Additive exPlanations) or LIME (Local
Interpretable Model-agnostic Explanations) to attribute each policy
recommendation to specific epidemiological drivers. Visualising
action-value saliency maps across time can further help policymakers
understand why the agent prefers a certain level of restriction,
thereby improving transparency and acceptability of Al-driven policy
guidance.

5. Conclusion

In summary, the proposed DRL framework demonstrates the
feasibility of data-driven policy optimisation for epidemic control.
While the present analysis focused on the UK, the architecture
is inherently generalisable and can be extended to other regions
through transfer learning or multi-country federated reinforcement
schemes. Future work will incorporate dynamic rewards, mobility
and behavioural variables, and uncertainty quantification to improve
realism and reliability. By coupling the DRL agent with epidemiological
simulators and interpretable analytics, this framework can evolve into a
practical decision-support system for pandemic preparedness and real-
time outbreak management.
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