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Abstract: In this study, we propose a novel methodology for strategic financial planning based on the assessment of right-tail value-at-risk (VaR)
for interest rates under volatile market conditions. The core of the approach lies in the integration of three model types: classical (GJIR-GARCH),
machine learning (XGBoost), and deep learning (long short-term memory, LSTM). Each component targets a distinct dimension of risk: analytical
structure, nonlinear dependencies, and complex temporal patterns, respectively. The results showed that the LSTM model delivered the highest
forecasting accuracy under structural instability, achieving the lowest residual volatility (6"~ 0.0137) and a high level of explained variance (R* =
0.69). An ensemble model (weighted 40% toward LSTM and 30% toward XGBoost) demonstrated superior reliability in risk estimation according
to formal backtesting, along with the lowest average exceedance in VaR breaches. The practical value of the proposed approach is its ability to
operate effectively under data scarcity and elevated volatility, enabling adaptive management of debt exposure. An elevated VaR level serves as a
signal to restrict borrowing, while a low VaR opens opportunities for credit expansion. This model can be integrated into risk management systems
of banking institutions and corporate finance departments as an effective tool for identifying, assessing, and mitigating right-tail risks during

periods of economic instability.
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1. Introduction

Market conditions in which enterprises operate establish a
permanent dependence on external financing. Borrowing plays a key
role in the financial strategy, ensuring the continuity of operational
activities and maintaining liquidity, which are necessary for effective
functioning in the context of market uncertainty [1]. Given this, the
foundation of a company’s financial strategy is its constant need for
borrowed funds.

Although the specific volumes, terms, and conditions of
borrowing may vary depending on the current financial situation and
market conditions, the need for external capital remains a constant
requirement to maintain financial stability and the company’s growth.
Decisions regarding the attraction of borrowed funds are accompanied
by the risk of changes in capital costs, driven by interest rate volatility
and changing macrofinancial conditions. Under unfavorable market
dynamics, debt servicing may exert pressure on cash flows, disrupting
the financial balance of the company.

Under such conditions, the traditional interpretation of value-at-
risk (VaR) as the probability of losses in a financial institution loses its
universality [2]. In the case of debt financing, a critical risk emerges
(i.e., right-tail risk), when the rate of increase in the cost of borrowed
funds exceeds the rate of profit growth for the borrower. The standard
VaR assessment, which focuses on the left tail of the distribution (i.e.,
losses), fails to adequately identify these threats.

Therefore, it is essential to improve the VaR methodology by
focusing on right-tail breaches, which serve as markers of financial

*Corresponding author: Vitaliy Makohon, Department of Finance, Banking
and Insurance, State Biotechnological University, Ukraine. Email: v.makogon@
biotechuniv.edu.ua

instability. To address this, it is advisable to adapt the approach to
forecasting right-tail VaR by combining generalized sutoregressive
conditional heteroskedasticity (GARCH) models, machine learning
methods (XGBoost, long short-term memory [LSTM]), and historical
estimates. This approach allows for more accurate identification of
periods of increased risk and favorable moments for attracting borrowed
funds, thus optimizing the company’s financial strategy.

Hence, the goal of this study was to develop an adaptive
methodology for forecasting right-tail VaR by integrating classical
statistical and machine learning models for optimizing financing
strategies, particularly identifying favorable periods for attracting
borrowed resources in the context of volatile interest rates and
asymmetric risks.

2. Literature Review

The need for external financing, driven by cash-flow gaps, is a
decisive factor in a firm’s financial strategy, as it directly influences
decisions regarding capital structure, maturity, and instruments for
raising funds [3, 4]. Under conditions of increasing economic turbulence
and unstable cash flows, liquidity coverage policies require a synthesis
of classical financial theories with modern tools of quantitative risk
management.

A cash flow gap, when available cash inflows do not cover
short-term obligations, acts as a financial trigger for raising additional
financing. Forecasting stress gaps—those that exceed historical norms
and may lead to defaults or credit rating downgrades—affects both the
choice of financing instruments and the timing of market entry [5, 6].
Empirical evidence confirms that higher volatility of operating cash
flows increases firms’ reliance on short-term debt and raises refinancing
risks, especially under tightening credit conditions [3].
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In this context, right-tail VaR is increasingly applied as an
indicator of the probability that debt servicing costs will exceed a
predefined level of financial resilience. Unlike classical VaR, which
focuses on losses (the left tail of the distribution), the right-tail VaR
analyzes scenarios in which a borrower loses control over the cost of
funding—an issue of critical importance [7, §]. Rising interest rates,
tightening credit conditions, and increased debt servicing costs are
empirically linked to greater corporate financial fragility and higher
cost of external financing, reinforcing the role of right-tail VaR as an
early warning signal [4, 9].

Recent advances in volatility and tail-risk modeling emphasize
that traditional GARCH specifications tend to underestimate extreme
right-tail realizations, particularly during periods of structural breaks
and regime shifts. Studies based on hybrid and sentiment-augmented
frameworks demonstrate that combining GARCH structures with deep
learning architectures substantially improves the accuracy of VaR
forecasts under stressed market conditions [10, 11]. These findings
are particularly relevant for forecasting sudden increases in borrowing
costs and liquidity stress.

Traditional GARCH models, based on normal or t-distributions,
tend to underestimate the probability of extreme right-tail outcomes,
leading to an underestimation of risks associated with sudden increases
in borrowing costs. To address these limitations, recent studies propose
models with heavier tails, as well as hybrid ensemble approaches that
combine classical financial models with machine learning methods such
as XGBoost, LSTM, or generative adversarial networks [12, 13, 14].

LSTM models, in particular, have attracted attention in
forecasting right-tail VaR due to their ability to capture temporal
dynamics and nonlinear dependencies in financial time series. Unlike
statistical approaches, LSTMs provide adaptive learning based on
historical interest rate fluctuations, uncovering hidden patterns that
signal the approach of stress cash flow gaps [4, 15]. Recent empirical
evidence confirms that deep neural networks significantly enhance the
prediction of tail-dependent risk measures, including conditional VaR
(CVaR), especially when combined with mixed-frequency data and
penalized quantile regression techniques [14, 16].

Moreover, Bayesian and deep learning approaches applied to
volatility indices, such as the VIX, highlight the importance of accounting
for uncertainty in model parameters and latent regimes when forecasting
extreme risk realizations [17]. These methods improve the robustness
of forward-looking risk assessments and strengthen the informational
content of VaR-based indicators for financial decision-making.

Caldaraetal. [ 18] demonstrated that an ensemble model combining
Historical VaR, GARCH, and machine learning techniques reduces the
error of cash-stress risk estimation and improves the timing of financial
decisions. Ensemble forecasting frameworks that explicitly model right-
tail behavior and extreme scenarios are increasingly proposed as core
components of early warning systems in corporate finance [13, 19].

Despite these advances, there is still no unified methodology
that directly translates right-tail VaR signals into strategic decisions
on the volume, maturity, and structure of external financing. Recent
studies highlight the need for a formalized financial burden indicator
that integrates forecasted cash flow gaps, firm-specific risk tolerance,
and the expected cost of capital [5, 20]. Optimization-based approaches
that embed tail-risk measures into financing and portfolio decisions
provide promising directions but remain underexplored in the context
of corporate liquidity management [16].

Thus, the right-tail VaR should be viewed not only as a risk
management tool but also as a mechanism for the timing of financial
decisions. The transition to integrated analytics of cash flow gaps and
VaR metrics provides a foundation for enhancing operational flexibility,
reducing the cost of capital, and strengthening firms’ resilience to
financial shocks.

3. Research Methodology

3.1. Risk assessment of excessive interest rate
increases via right-tail VaR and feature engineering
for regression

One of the key challenges in strategic corporate financial
management is determining the optimal volume and timing of credit
acquisition, taking into account interest rate dynamics. Market volatility
complicates the assessment of the risk of excessive rate increases,
which leads to higher financing costs. In view of this, the classical VaR
approach, traditionally used to limit potential losses for the lender, has
been refocused on the assessment of right-tail VaR, which reflects the
probability of short-term rate increases that are unfavorable for the
borrower. Formally, this can be described as

P(rt+1> VaRt + 1a|Ft) = o, (1)
wherery 1 = In! gRé—t? is the log-change of the short-term interest rate
between periods (7) and (++1); VaR{,; is the threshold (quantile) value
of the distribution of r;,; at the confidence level (1 — a), interpreted
as the right-tail VaR; a€(0,1) is the significance level (probability of
exceedance); and F, is the information set (o-algebra) containing all
available information at time (7).

The assessment of this risk involves modeling interest rate
volatility, which lays the methodological foundation for managing
credit acquisition and cash flow gaps. Given the non-stationarity of
long-term interest rate series, a time series of their log-transformed
values was used to build the model:

rtzloo-ln(Pf’jl), t=1,...,T, )
where P, is the short-term interest rate at day (#); P, is the short-term
interest rate at day (#—/); r, is the daily log-return of the interest rate,
expressed in percentage points; and 7 is the length of the time series
(number of observations).

This allowed for variance stabilization and provided a sound

basis for further modeling.

3.2. GARCH models: Conditional volatility and
adaptive scaling

The first stage in modeling the conditional volatility of the log-
transformed interest rate was the construction of a GJR-GARCH(1,2)
model with an ARIMA(12,0) specification in the mean equation. This
model accounts for asymmetric volatility effects, particularly the
heightened sensitivity of financial time series to negative shocks. The
model is formalized by the following system of equations:

Mean equation:

T = [t T Et,
pe = o + Zle OiTt—j, 3)

where 7, is the log change in the interest rate at time #; , is the conditional
mean; ¢, ¢, are AR coefficients; and r,_, are lagged values.

where 7, is the log-return of the short-term interest rate at time (¢); x, is
the conditional expectation of (r,), modeled as an AR(4) process; ¢, is
the error term (white noise) with zero mean and finite variance; ¢, is the

constant term; ¢, is the autoregressive coefficients (i =1, ..., 4); and r_,
is the lagged log-returns of the interest rate.
Error term:
& = OtZty, Zt ™ D(Oa 1)7 4)
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where ¢, is the stochastic component, o, is the conditional standard
deviation, and z, is an i.i.d. innovation from distribution D (Normal,
Student’s t, or Johnson SU).

Conditional variance:

o} =wtaie? | +ml(e1 <0)e2 | + B1o2 | + Baol,, (5)

where o is the base volatility level; «, captures reaction to past shocks;
7, reflects asymmetry (“bad news” effect); /(+) is an indicator function;
and 8, B, are volatility smoothing coefficients.

Right-tail VaR at confidence level 1— is calculated as:

VaR{ = pt + q?z - ot (6)

where qi?fx is the 1 — o quantile of the distribution D.
To improve the accuracy of risk assessment, volatility was

dynamically scaled:
5,5 = 80y, (7)

where & is the scaled volatility and ss is an iteratively calibrated scaling
factor based on VaR exceedances during the validation period. This
allowed the model to be adapted to the actual frequency of breaches
during the control period.

3.3. Applying XGBoost regression for VaR forecasting

A key challenge in modeling Right-Tail VaR is the model’s
readiness to handle sudden structural shocks that lead to nonlinear
patterns in temporal dynamics.

GARCH requires strict specification of conditional variance and
residual distribution, which necessitates the search for more flexible
approaches. One such relevant method is XGBoost regression, which
offers several advantages:

1) The ability to train an ensemble of trees without distributional
assumptions: Unlike parametric models, XGBoost does not require
specifying the residual distribution or conditional variance, as it
learns by minimizing a loss function:

L= 30 i~ f@i)* + Ly ATw), ®)

where f{(x) is the ensemble prediction and (7)) is a tree complexity

penalty.

2) Ability to capture complex nonlinear dependencies: XGBoost is
a gradient boosting algorithm over decision trees that effectively
detects
a. interactions between lags 7,7, ,, 7,

b. asymmetric effects (e.g., negative shocks have more severe
consequences than positive ones);

c. structural shifts in the time series (such as changes in monetary
policy regimes or institutional transitions).

The ensemble of trees incrementally refines prediction errors,
forming a nonlinear forecasting surface that adapts to local changes in
the data. Thus, XGBoost regression is a flexible alternative to parametric
models, particularly suitable for adaptive forecasting of right-tail risk.
Its application involves a series of steps.

3.3.1. Feature engineering
Using the log-interest rate series (2), for each time ¢ > 4, we
construct a three-dimensional lag vector:

It 2 (9)

where x, is the regressor vector. The target variable is

Yt =T, (10)

The dataset (x, y,) is used to train the XGBoost model, enabling
it to capture nonlinearities, asymmetries, and regime changes. After
training, residual analysis and right-tail VaR estimation are conducted.

3.3.2. Regression formalization and residual volatility estimation
Training is performed on the period:

t=4,....,T —ngy, (11)
where n_ is the length of the test period.
The residual vector is
6 =Yi—T1, i=1.. Diain. (12)
The residual standard deviation is computed as
e (13)

Ntrain
interpreted as the conditional volatility of the model.

3.3.3. Estimating right-tail VaR using XGBoost

The value of residual volatility &, obtained in Equation (13),
is used as a key parameter for forecasting right-tail risk—that is,
the potential excessive increase in interest rates, which is critically
important for the borrower.

For a given confidence level o = 0.95, the quantile of the standard
normal distribution is introduced:

24 = @), (14)
where @' () is the inverse function of the standard normal cumulative
distribution function and z_ is the critical value corresponding to the
confidence level a.

Based on the point forecast 7; and the residual volatility o, the
forecasted threshold increase in the interest rate in the form of VaR is
defined as

—

VaR*® =7 4 2, - o, (15)
where VaR?’XGB is the estimate of Right-Tail VaR based on XGBoost;
74 is the forecasted log-transformed interest rate; and &; is the estimate
of residual volatility.

Unlike parametric approaches, XGBoost-VaR accounts for local
trends and allows the model to adapt to changes in market regimes
without requiring specification of the residual distribution.

3.4. Application of LSTM for VaR forecasting

The complex nature of interest rate time series—their
autocorrelation, structural breaks, nonlinearity, and heteroskedasticity—
necessitates the use of recurrent neural networks (RNNs), particularly
LSTM, for VaR estimation. This approach is novel in modeling risk
values on the right tail of the distribution.
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The key advantages of using LSTM as follows:

1) Handling long-term temporal dependencies: The “memory”
mechanism allows LSTM to effectively model the impact of delayed
effects on interest rate levels, unlike classical models that require
explicit lag specification.

2) Adaptability to unstable conditions: Due to its ability to learn
from observations with varying amplitude and volatility, LSTM
remains robust to regime shifts and anomalies—critical under
macroeconomic instability.

3) Integration of multifactor features: The network can simultaneously
process multiple input features (e.g., rate lags, expectation indices,
spreads, trading volumes), expanding the model’s analytical space
without manual specification of functional forms.

4) Direct estimation of right-tail risks: LSTM training can be oriented
toward forecasting VaR exceedances or residual risks, avoiding
indirect assumptions about error distributions.

3.4.1. Model architecture and configuration

A single-layer LSTM model was tested, containing 64 neurons in
the input layer. The model uses three-dimensional input data, including
the time series X, which contains current values of the primary variable
(e.g., interest rates), and auxiliary predictors Zt(l) and Zt(z), which may
include economic factors such as inflation rates, exchange rate changes,
and other macroeconomic indicators.

The logic of the model is not only to account for current time
series values but also to process additional features that may influence
future changes. This enables the model to adapt to shifts in market
conditions, which is crucial for accurate financial risk forecasting.

This was formalized as follows:

7 = Ls™™(X,, 27, 2”) (16)
where ¥y is the predicted residual at time 7.

One of the main advantages of the LSTM model is its ability to
effectively process temporal dependencies, which is crucial for financial
time series. It enables the retention of long-term relationships between
events, helping to more accurately forecast future states. Thus, LSTM
made it possible to detect trends or cycles based on historical data and
adjust predictions in response to changes in macroeconomic indicators
such as interest rate shifts or inflation.

For model training, the Huber loss function was selected, which
reduces the impact of outliers. This is critically important for financial
data, where extreme values—such as sudden rate spikes or economic
crises—can distort predictions.

Huber loss is flexible, allowing the model to be less sensitive to
outliers while maintaining efficiency at larger deviations from the true
value. The loss function is defined as:

Litabes (7 91) = {%@j ~u) il <o (17)

(878 —ye| — 3 - )ana|yg — ye| > &
where ¢ is the parameter that controls the transition between quadratic
and linear loss.

The model was optimized using the Adam algorithm with a
learning rate of o = 0.001. Adam incorporates adaptive learning rate
adjustment and momentum techniques, ensuring stable and fast training
even with large datasets.

One of the key challenges in training deep neural networks is
overfitting. To prevent this, dropout regularization with a probability of
20% was applied in order to reduce the risk of the model overfitting to
the training data and improve its generalization capability.

To monitor model quality, the dataset was split into a training
set (80%) and a validation set (20%) in order to evaluate the model’s
performance on unseen data, which is essential for testing its ability to
operate under real-world uncertainty.

The residual forecasts generated by the LSTM model are used
to construct the conditional distribution of exceedances. This enables
a more accurate estimation of the probability that future interest rate
increases will exceed a critical threshold, given current economic
conditions.

Right-tail VaR is calculated as the quantile of the conditional
exceedance distribution:

VaR, =7, (18)
where g1, is the (l-a)-quantile of the conditional exceedance
distribution, which allows for determining the maximum potential loss
at a given confidence level a.

The application of the LSTM model in this study not only
improved forecast accuracy but also significantly enhanced the
reliability of risk assessment through right-tail VaR. Incorporating
additional economic factors via auxiliary predictors enables the model
to adapt to diverse market conditions, which is essential for making
well-informed financial decisions. Thanks to the model’s ability to retain
long-term dependencies and handle outliers, it serves as a powerful tool
for forecasting financial risks under unstable conditions.

3.5 Construction of an ensemble model for right-tail
VaR estimation

To improve the forecast of right-tail VaR, a hybrid model was
applied that integrates multiple approaches: empirical (historical),
parametric (GARCH), and nonlinear (XGBoost and LSTM). This
integration allowed the model to better adapt to changing market
conditions and stabilize forecasting accuracy. The combined right-tail
VaR estimate represents a linear aggregation of the results obtained
from each component. This approach ensures a balanced weighting
across different models, leveraging their respective strengths:

VaR{™™ = w; - VaR{™ + w, - VaR{FARH
+3 - VaR¥®® 1 fw, - VaRIS™, (19)
where VaR{™ is the combined estimate of right-tail VaR at time z;
VaRE’ARCH is the VaR estimate obtained from the GARCH conditional
volatility model; VaRfGB is the VaR estimate derived using the
XGBoost model; VaR}! is the empirical VaR estimate based on the
historical approach; VaRIS™ is the VaR estimate obtained using the
LSTM model; and w,, w,, w,, w, are the weighting coefficients for each
model, reflecting the degree of confidence in each ensemble component.

3.5.1 Determination of Weighting Coefficients

The weights are assigned based on the relevance of each model
to the specific context. The ensemble components were assigned the
following weights:

1) w, = 0.1 for the historical approach, used as an empirical
benchmark;

2) w, = 0.2 for the GARCH model, which provides a stable volatility
estimate but does not capture nonlinear relationships;

3) w,=0.3 for XGBoost, which has a strong ability to adapt to complex
and nonlinear dependencies in the data;

4) w,=0.4 for the LSTM model, which captures long-term dependencies
in time series and offers flexibility in adapting to various market
conditions.
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This hybrid construction enables precise estimation of right-tail
VaR and supports optimized financing decisions by accounting for both
structural risks and current market dynamics.

3.6. Backtesting and validation of the combined model

To validate the right-tail VaR forecasts from the combined model
(16), a backtesting procedure is applied.
VaR breach indicator:

It:{l’ ifr_tgvaRfombt:T—nout-l—l,...,T, (20)
Empirical exceedance rate:
Temp = ﬁ EtT:T—nouﬁ—l I, (e2y)
To test Hym, == o, the Kupiec POF test is applied:
LRpor = —2In[(1 - a)"a™ /(1 = Temp) "m0y |, (22)

where n; = Y I, and ng = ney — n1.

If LRpor < X%,0.95’ we do not reject H; the model is statistically
consistent with the expected exceedance rate. To check temporal
independence of exceedances, the Christoffersen test may be used.

Empirical validation uses real data from the Ukrainian banking
sector. The next section outlines the data structure, sampling parameters,
and modeling results, demonstrating the effectiveness of the proposed
approach under macroeconomic turbulence.

4. Results and Observations

4.1. Source data and justification for the selected
period

The empirical basis of the study is the daily dynamics of interest
rates on loans issued to legal entities by Ukrainian banking corporations
over the period from January 3, 2020, to February 23, 2022 [21]. The
data were obtained from the official website of the National Bank of
Ukraine (Figure la and 1b'). The restriction of the study period to
February 23,2022, is due to the onset of the active phase of hostilities on
the territory of Ukraine and the radical transformation of the economic
environment, including changes in the mechanisms of interest rate
formation, refinancing, and monetary policy in the banking sector.

4.2. Stationarity testing and transformation

To ensure the correctness of the modeling process, the stationarity
of the interest rate time series and its log-returns was assessed using the
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) tests. The results indicated that the original series is
non-stationary (ADF: p = 0.6051; KPSS: p < 0.01), suggesting it is
integrated of order one.

After computing the log-differences, a stationary series was
obtained (ADF: p < 0.01; KPSS: p > 0.1), which is suitable for
constructing conditional volatility models (Figure 1b).

4.3. Baseline model: Historical simulation

Following the stationarity verification of the log-returns of
interest rates, a historical simulation (HS) model was constructed to
serve as a benchmark for risk estimation. The model was implemented

! Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.

Figure 1
Dynamics of average interest rates on loans to Ukrainian enter-
prises (a) and the corresponding log-changes of these rates (b)
from January 3, 2020 to February 23, 2022
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using a rolling window of 250 days, a 1-day forecasting horizon, and a
confidence level of 95%.

The actual proportion of VaR exceedances amounted to 4.8%,
closely aligning with the theoretically expected 5%. This result was
confirmed by the Kupiec Proportion of Failures (POF) test (p-value =
0.88), indicating the empirical accuracy of the VaR estimation.

While the HS model provides a valid reference for VaR estimation,
it exhibits limited adaptability to abrupt changes in volatility due to the
absence of learning mechanisms. Given this lag in responsiveness, HS
was used as a referential model.

To enhance forecasting precision and flexibility, the study
proceeded with an analysis of the prerequisites for applying GARCH-
type approaches. A GJR-GARCH model was constructed to account for
asymmetric volatility effects. Subsequently, nonlinear methods such as
XGBoost and LSTM were employed, enabling the capture of complex
temporal and structural dependencies in the data.

Figure 1 illustrates both the overall trend in the cost of credit
resources and the volatility of the time series, which is used as input
data for the estimation of right-tail VaR.

4.4. Assessment of preconditions for applying GARCH

To determine the suitability of applying a GARCH model,
diagnostic tests were conducted to evaluate the presence of
autoregressive conditional heteroskedasticity and autocorrelation in the
residuals. Specifically, Engle’s ARCH Lagrange Multiplier (LM) test
was used to detect autocorrelated variance, while the Ljung—Box test
was applied to assess residual autocorrelation (Table 1).

The high test statistics and extremely low p-values from
the previous diagnostics confirm the presence of conditional
heteroskedasticity and autocorrelated variance, thereby validating the
applicability of GARCH-type models.

Table 1
Heteroskedasticity assessment of the log-interest rate series
Test Statistic  p-value Conclusion
ARCH LM (12 lags) 113.59 <2.2e-16 Strong ARCH effect

146.26 <2.2e-16 Variance autocorrelation
present

Box—Ljung (10 lags)
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Table 2
Parameters of asymmetric GARCH(1,1) models
Model W B Y1 0] Shape Skew Distribution Type
GARCH — Normal 0.600 0.531 —0.264 6.600 - - Normal
GARCH -t 0.745 0.544 —0.668 21.900 2.49 - Student's t
GARCH - JSU 0.447 0.562 -0.311 12.700 1.13 0.447 Johnson SU

Notes: The parameters a1, B1, v1, and o are coefficients of the GIR-GARCH(1,1) model. The Shape and Skew parameters are included only for distributions that

support them (Student’s t, Johnson SU).

4.5. Risk estimation using the GJR-GARCH(1,1)
model with different residual distributions

Based on these findings, three variants of the GIR-GARCH(1,1)
model were implemented. This model captures the asymmetric response
of volatility to market shocks—a key feature for modeling the leverage
effect. All three specifications share the same structural form but differ
in the assumed distribution of residuals:

1) Normal distribution: serves as a baseline but may underestimate
tail risk

2) Student’s t-distribution: better suited for capturing heavy tails,
enhancing VaR accuracy under extreme market conditions

3) Johnson SU distribution: a flexible alternative capable of modeling
both skewness and kurtosis, thus accommodating asymmetric and
heavy-tailed behavior simultaneously

This setup enabled an assessment of how the choice of residual
distribution affects the precision of VaR estimates and the model’s
adaptability to unstable market regimes.

The models were estimated using the maximum likelihood
method based on the log-return series of short-term interest rates
(Table 2).

The specifications of GJR-GARCH(1,1) confirmed the presence
of asymmetry (y: < 0) and the leverage effect, an amplified volatility
response to negative market shocks. The most pronounced asymmetric
effect is observed in the model with the JSU distribution (y1 =
—0.311), indicating its ability to accurately reflect market dynamics.
In the t-model, a high value of B: (0.544) is observed with a weak
immediate response (o = 0.745), which indicates volatility inertia.
The parameters shape = 1.13 and skew = 0.447 for JSU confirm heavy
tails and asymmetry, which is relevant for risk modeling in an unstable
environment.

Comparison of the three GJR-GARCH(1,1) specifications
showed that the Kupiec test for the expected risk level was passed only
by the models with normal and t-distribution (p=0.3294 and p = 0.4812,
respectively), while the Johnson SU model had a statistically significant
deviation (p = 0.0029) and an excessive frequency of breaches. At the
same time, the asymmetry, heavy tails, and distributional skewness
inherent in JSU provide greater modeling flexibility. Therefore, despite
formally failing the breach frequency test, the JSU model was selected
for further VaR modeling, as its structural flexibility allows for better
reproduction of real risks than other alternatives.

4.6. Use of XGBoost regression for risk estimation
based on

The next stage of the study involved the application of the
boosting algorithm (XGBoost), which combines an ensemble of
decision trees with loss function optimization. Its advantage lies in the
ability to detect complex nonlinear dependencies without the need for
formal assumptions regarding data distribution or the functional form
of the model (Table 3).

Table 3
Key parameters of the XGBoost regression model
Parameter Value Comment
Number of trees 50 Balance between
accuracy and overfitting
risk
Average tree depth =6 Detection of nonlinear

Loss function type

Mean squared error

patterns without
excessive complexity
Standard function for
regression tasks

Regularization A=1.0,y=0.1 Model complexity

v control, reduction of
overfitting risk

Input features T U N Lagged values of log-
returns of interest rates

Target variable 7, Forecasted log-returns
of interest rates

Forecast accuracy R2=0.72 Determined on the
validation set

Residual volatility 7.=0.014 Used for VaR estimation

Note: The model was trained on the period t =4, ..., T-n_, followed

by testing on the last n_ observations. Regularization parameters were
selected empirically through cross-validation.

The configuration of the XGBoost model with moderate tree
depth, optimal number of trees, and regularization ensures an effective
balance between forecasting accuracy and resistance to overfitting.
Backtesting results confirm the reliability of the model: the actual
number of breaches (13) almost coincides with the expected (12.5), and
the p-value of the Kupiec test (0.8853) indicates statistical compliance
ofthe model with the given risk level. The average VaR value is 10.3256,
with a standard deviation of 5.4328, a minimum value of —0.5602, and
a maximum of 44.5817, demonstrating the model’s ability to adapt to a
wide range of market conditions.

4.7. Right-tail risk estimation using the LSTM neural
network

The foundation of time series modeling is based on linear or
weakly nonlinear approaches that assume stationarity, normality,
or heteroskedastic dependence of residuals. However, real financial
data, particularly short-term interest rates, are characterized by high
instability, regime shifts, latent trends, and seasonal effects. Under
such conditions, models capable of adapting to changes in statistical
properties without the need for fixed parametric assumptions are
effective.

One of the most promising directions for solving this task is
the use of deep learning, particularly RNNs of the LSTM type, which
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have the ability to memorize and accumulate information over long
time intervals. First proposed by Hochreiter and Schmidhuber [22], the
LSTM architecture is one of the fundamental elements of time series
modeling in machine learning. It has three types of “gates” (input,
forget, and output) that allow control over the amount of information
stored or updated in the internal environment. In financial analytics,
this enables the capture of both short-term fluctuations related to market
noise and long-term trends or seasonal cycles.

The application of LSTM for right-tail VaR estimation becomes
particularly important in the context of the risk of a sharp increase in
interest rates, which is critical for financial strategy development. The
LSTM model was trained on the log-return series of short-term rates,
represented as lagged predictors: (v, , r,_,, 7,,). The lags were selected
based on the autocorrelation structure, which revealed significant
dependencies within a three-day time horizon. Subsequently, the data
were scaled using Min—Max normalization to convert values into a
unified interval [0,1], which helps avoid dominance of variables with
high dispersion.

At the next stage, Z-score standardization (centering and scaling
by standard deviation) was applied to stabilize the training of the
LSTM model, ensuring equal influence of predictors. The data array
was transformed into a tensor of format [N x 1 X 3], where N is the
number of observations, 1 is the size of timesteps, and 3 is the number
of features. The training and test sets were split in a ratio of 80:20. The
LSTM model was implemented using the keras/tensorflow framework
in the RStudio 2025.05.1 environment. It has a single-channel structure
without layer stacking, which minimizes the risk of overfitting (Table 4).

Table 4
LSTM model architecture
Component Configuration Purpose
Input features (r_,7.»7.)  Representation of temporal
dynamics
Data format [samples x 1 x 3] One-step forecast
LSTM layer 64 neurons Memorization of temporal
patterns
Output Dense layer 1 neuron Regression forecast (77)

Loss function Mean squared ~ Minimization of the

error difference between

prediction and observation

Optimizer Adam Flexible model weight
updating

Epochs 20 Total number of training
iterations

Batch size 32 Number of observations per
update cycle

Validation split 0.2 Percentage of data for

validation

The model trained stably, with a gradual decrease in the loss
function on both the training and validation sets, indicating the absence
of overfitting. A reduction in validation error was observed up to the
15th epoch, after which the curve stabilized.

Based on the predicted values (77), residuals were calculated
as (¢ = ry — T¢), which served as the basis for estimating the right-
tail VaR at the 95% confidence level. The quantile of the residual
distribution was determined empirically: (¢,,.~0.0231), which yields
the formula for estimation:

VaRggs " = 77 +0,0231. (23)

This estimate reflects the risk of an unexpected increase in interest
rates above the forecasted level. On the test set (107 observations),
the actual number of breaches amounted to six cases, that is, 5.6% of
observations exceeded the VaR threshold. This corresponded to the
expected level of 5% and was confirmed by statistical tests: the p-value
of the Kupiec test was 0.777, which did not reject the hypothesis of
correct estimation. Thus, LSTM successfully passed the backtesting
verification.

The root mean squared error (RMSE) was 0.0091, which
indicated a low variation between the forecast and actual values, and
the coefficient of determination (R*~ 0.69) pointed to a notable ability
of the model to reproduce short-term market dynamics. The estimated
residual volatility was &7 = 0.0137, which was comparable to that of the
GARCH model and also close to the results of XGBoost, where residual
volatility was = 0.014.

Among the advantages of using LSTM in the context of right-tail
VaR estimation, the following should be noted:

1) absence of requirements for assumptions about the residual
distribution (unlike GARCH);

2) automatic detection of latent temporal patterns (unlike XGBoost);

3) high resilience to regime shifts and changes in market dynamics;

4) flexibility in processing data of various scales and quality;

5) potential for further expansion to multifactor or multichannel
models.

These properties make LSTM a valuable component in the
ensemble risk assessment structure. The LSTM model confirmed its
ability to accurately reproduce the dynamics of short-term changes in
log-returns of interest rates, with high forecasting accuracy and correct
estimation of right-tail VaR. Its residual volatility is stable, and the
model adequately passes backtesting. Considering its ability to adapt to
complex data structures and the limitations of other methods, LSTM is
advisable to use as a source of VaR estimates under market instability,
particularly in combination with other approaches within hybrid or
ensemble structures.

4.8. Construction of an ensemble model for right-tail
VaR estimation

To improve the accuracy of risk estimation and ensure
adaptability to an unstable market environment, an integrated ensemble
model of right-tail VaR was implemented, a combination of four
independent sources of forecasting based on different assumptions
and modeling techniques: historical simulation (VaR!*) GARCH
conditional volatility model (VaREARCH)  XGBoost regression
(VaRfGB), and LSTM regression (VaR}‘STM). In a formalized form,
it can be represented as a weighted linear combination of the specified
components:

VaRg™emble = 0,10 - VaRy™ 4 0,20 - VaRJARCH
40,30 - VaRX®E 4 0,40 - VaRFS™, 24)
The LSTM model received the highest weight (40%), as it
provided the lowest residual variance and stability of forecasts
under changing market conditions. XGBoost (30%) also demonstrated
high flexibility by capturing complex nonlinear relationships in
financial time series [12], while GARCH (20%) offered a robust
structural estimate based on conditional heteroskedasticity theory
[23], and HS (10%) complemented the ensemble with sensitivity to
local jumps.
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Table 5
Backtesting metrics of VaR models (Level — upper 5%)
Model Viol. Exp. p (Kupiec) p (Christoffersen) = Mean VaR SD VaR Min Max
GARCH 24 12.5 0.00289 0.291 9.93 2.01 6.78 18.2
XGBoost 13 12.5 0.885 0.251 11.5 2.98 7.91 214
Historical 12 12.5 0.884 0.270 10.2 1.72 8.14 15.6
LSTM 6 12.5 0.0000141 0.0738 12.1 3.04 8.33 23.7
Ensemble 18 12.5 0.133 0.0938 10.6 1.69 8.25 17.9

Note: Viol. — actual number of exceedances over 5% VaR; Exp. — expected number of exceedances (0.05 x Obs); p (Kupiec) — p-value for the
Unconditional Coverage test; p (Christoffersen) — p-value for the Conditional Coverage test; Mean VaR — average forecasted VaR; SD VaR —
standard deviation of predicted VaR; Min/Max — minimum/maximum predicted VaR.

The following parameters were used in the implementation:

1) (n,, =250): length of the test period;
2) (VaR () scalar estimate repeated across the entire test window;
3) all components normalized to the level of log-rates.

Thus, the ensemble model provides a combination of parametric,
machine learning, and empirical estimates, allowing for greater stability
and accuracy in assessing right-tail VaR under conditions of limited
data and high volatility. This approach is consistent with the findings
of Gu et al. [24], who demonstrate that machine learning methods
significantly enhance predictive performance in financial risk and
return forecasting by capturing complex nonlinear relationships and
interactions that are difficult to model using traditional econometric
techniques.

4.9. Evaluation of the effectiveness of right-tail VaR
estimates using the ensemble model

A key stage of the study was the comparative evaluation of the
effectiveness of the 95% right-tail VaR. Based on the results of the
Kupiec UC and Christoffersen CC tests, an analysis was conducted of
calibration quality, forecast stability, and distribution characteristics of
VaR estimates. It confirmed the advantages of the ensemble approach,
which combines the predictive properties of GARCH, LSTM, XGBoost,
and HS models over traditional and machine-learning-oriented models
that served as components of the integrated structure. The results are
presented in Table 5, which summarizes the key backtesting metrics for
each model.

It is worth noting the compromise between the opposing
characteristics of the base models—the stability inherent in HS model,
the sensitivity to structural shifts in LSTM, the statistical consistency in
XGBoost, and the analytical rigor in GARCH. Specifically, the ensemble
showed 18 breaches against an expected 12.5 and had a p-value 0f 0.133
according to the Kupiec UC test, indicating no statistically significant
deviation in the breach frequency. Additionally, the p-value for the
Christoffersen CC test was 0.0938, meaning the breaches do not exhibit
a tendency toward clustering.

Finally, the ensemble demonstrates the lowest variance in VaR
estimates (SD = 1.69), outperforming HS (SD = 1.72), which is typically
considered a benchmark for stability. Thus, the model ensured high
smoothness and consistency of forecasted values while maintaining the
ability to respond to extreme events. For clarity, RMSE and MAE were
normalized within the interval [0;1], whereas the original scale was
preserved for p-values (Figure 2).

This allowed for the following conclusions:

1) The ensemble model demonstrated a combination of accuracy
and compliance with regulatory requirements, despite the fact

Figure 2
Heatmap of VaR model performance metrics
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that individual components—particularly XGBoost—have higher
p-values for the Kupiec UC and Christoffersen CC tests, although
they lag in accuracy (highest RMSE).

2) The LSTM model was characterized by the lowest RMSE (~9.29)
and MAE (~4.71), but it significantly underestimated the number
of breaches (p =~ 0.0000141), although it can be recalibrated before
further application.

3) GARCH and HS provided boundary estimates—either excessive
breach frequency (for GARCH) or insufficient sensitivity to
volatility (for HS).

4) XGBoost, although demonstrating high statistical consistency,
obtained the highest errors in VaR estimation in both absolute and
root mean square terms.

Thus, the ensemble model has proven its practical value as a tool
for adaptive right-tail risk assessment, capable of adjusting to different
volatility regimes without significant losses in accuracy and stability. It
is a strong candidate for serving as a baseline model in strategic financial
planning under conditions of high uncertainty. These properties become
especially evident when analyzing the dynamics of actual log-returns
of interest rates and the corresponding forecasted VaR values. For this
purpose, test period indicators were visualized (Figure 32).

The analysis indicates that the forecasted VaR boundaries for
the ensemble, LSTM, GARCH, and XGBoost overlap with actual

2 Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.
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Figure 3
Forecasted right-tail VaR versus actual log-changes in interest rates for loans to Ukrainian enterprises from June 19, 2021 to February
23,2022
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Note: The number of exceedances shown in Figure 3 may be smaller than the values reported in Table 2, since the graph is based on a restricted
data sample. The points indicate only those violations where “exceed = TRUE", depending on the actual VaR calculation for this segment of the

series.

rates, demonstrating how each model responds to market changes,
particularly during moments of extreme volatility caused by economic
shocks such as inflation expectations in August 2021 and other financial
disturbances.

Compared to others, the ensemble model, which includes a
significant share of the LSTM neural network (40%), showed higher
adaptability to changes in the market environment, combining the
stability of classical methods with the flexibility of machine learning.
It is distinguished by the lowest number of exceedances among all
models (3.90) and at the same time a relatively high trigger frequency
(0.068). This indicates timely expansion of the VaR channel in response
to market volatility without unnecessary loss of accuracy.

At the beginning of the test period (June—July 2021), when
volatility remained low, the ensemble formed a narrow but effective VaR
channel. Excessive reserving was avoided while ensuring protection:
only isolated breaches were recorded. Meanwhile, GARCH(1,1) and
XGBoost, although having lower breach frequencies (0.06 and 0.052
respectively), showed higher average exceedances (4.74 and 6.03),
which potentially indicates less accurate accounting for tail risks.

Particularly illustrative is the period from August to October
2021, when the market experienced a series of macroeconomic shocks.
The ensemble model, thanks to the significant contribution of LSTM,
timely adapted the VaR boundaries, keeping the breach rate within 1-2
per month. LSTM as a standalone model recorded the lowest absolute
number of breaches—only six for the entire period—and showed
an average exceedance similar to GARCH (4.74), but with a lower
frequency. This confirms that deep learning has a higher ability to
detect non-trivial nonlinear dependencies and responds more quickly to
structural shifts in the data.

During peak volatility periods (November—-December 2021),
the ensemble model continued to effectively scale risk boundaries in
accordance with market changes. Although it recorded 17 breaches (the
highest among all), this was accompanied by the lowest losses upon
exceedance (mean_excess = 3.90), indicating a high level of control
over risk magnitude. In contrast, GARCH or XGBoost, although having
fewer breaches, showed significantly stronger violations when they
occurred, posing greater risks in real-world conditions.

Thus, the distribution and nature of breaches confirm that the
ensemble model best maintains the balance between market sensitivity
and restraint against false signals. It provides not only a lower average
exceedance size but also lower variance in estimates (SD =~ 1.69),
enabling more effective risk management and financial planning. Visual
analysis confirms these conclusions—the constructed channels are
more stable and better reflect the actual market profile, showing fewer
chaotic triggers. Therefore, the combination of statistical models and
deep learning methods in the ensemble architecture allows achieving a
high level of adaptability without loss of accuracy, making it extremely
effective for strategic risk management under uncertainty.

The use of LSTM within the ensemble VaR model improves
the technical characteristics of the forecast and provides strategic
advantages in risk management under economic instability and high
market volatility. The LSTM model, integrated into the ensemble with
GARCH and XGBoost, demonstrated the ability to adapt effectively,
showing significant flexibility in forecasting tail risks and short-term
fluctuations.

The VaR forecasting results for the LSTM model proved to be
more stable and adaptive under different market phases, including
periods of high volatility, which are typical for financial shocks. For
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example, during peak market fluctuations (November—December
2021), LSTM responded quickly to changes, maintaining forecast
accuracy and minimizing the number of breaches. This is an important
characteristic, as forecast accuracy of VaR is critically important for
timely decision-making during market shocks. To verify the proposed
approach, it was compared with the results of other studies using deep
learning and hybrid VaR forecasting models, including Bao et al. [25];
Fischer & Krauss [15]; Kakade et al. [12]; and Wang et al. [26].

These sources provide representative performance indicators
of similar traditional and hybrid models. According to the study by

Table 6
Comparative effectiveness of right-tail VaR forecasting: Results of
the proposed model and previous studies

Kakade et al. [12], based on classical GARCH and LSTM, 18 breaches
were recorded at a 5% confidence level (6.9%) with forecast variability
SD VaR = 2.1. This indicates moderate model effectiveness under high
volatility and less stable forecasts compared to the ensemble approach.

In the study by Bao et al. [25], the model produced 12 breaches
(6%) with a VaR interval of [8.9; 15.3]. Despite better accuracy
compared to that of Fischer & Krauss [15], the interval width turned out
to be limited, complicating full coverage of extreme market events. In
contrast, the proposed ensemble model shows a lower breach frequency
(3.6%) and a significantly wider VaR interval [8.25; 17.9], indicating its
advantage in risk-oriented coverage.

The GARCH-FHS+LSTM model used in Christodoulou-Volos
[27] shows 14 breaches (4.6%) and forecast dispersion around 2.5.
Despite its overall stability, it lags behind the proposed model in
terms of variability, and therefore the tested ensemble model has a

Breaches Forecast VaR lower standard deviation of forecasted VaR (1.69), indicating higher
Author / Study (%) SD VaR Interval consistency of results. Additionally, according to Wang et al. [26], the
) classical GARCH model recorded 20 breaches (5%) with a VaR interval
Proposed model 3.6 1.69 [8:25; 17.9] of [7.5; 14.0]. The results presented in Table 6 once again demonstrate
Bao, Yue, & Rao [2] 6.9 21 [8.0; 1.4'5] the limitations of traditional models in capturing potentially extreme

(approximate) values, especially under conditions of high market volatility.
Fischer & Krauss [10] 6.0 n/a [8.9;15.3] The ensemble model demonstrated the lowest violation rate
Kakade, Jain, & Mishra 4.6 25 [7.8; 15.0] compared to established benchmarks, indicating its superior accuracy
[15] (approximate) in right-tail risk assessment. The standard deviation of VaR within 1.69
Wang, Wang, Lv, & Jiang 50 n/a [7.5; 14.0] con'ﬁrms th§ stability of forecast.s under varying market cqnditiqns,
[26] while the width of the coverage interval allows for the consideration
of extreme scenarios. To evaluate the model’s predictive sensitivity,

Figure 4

Partial dependence plots of the ensemble VaR model on lagged predictors (Lagl, Lag2, Lag3) from June 19, 2021 to February 23, 2022
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allows assessment of the model’s sensitivity to short- and medium-term dynamics.
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we conducted a partial dependence plot (PDP) analysis and a AVaR
assessment by varying individual predictors (Figure 4%).

This analysis made it possible to identify the specific influence
of lagged variables on the forecasted VaR. In particular, Lagl shows
a stable downward trend, reflecting the model’s immediate response
to the most recent market changes. Lag2 exerts the strongest effect: a
reduction in VaR of approximately 11.1 points within the range [—19.87,
20.53] highlights its key role in modeling medium-term inertia. Lag3
reveals a complex nonlinear relationship, confirming the model’s ability
to adapt to extreme market scenarios.

For a quantitative assessment of Lag2’s impact, a AVaR analysis
was performed, which confirmed its significance in modeling volatility.
The change in forecasted VaR ranged from +3.82 to —7.25, with a
median of 0.24 and a mean of —1.03. The smooth and monotonic shape
of the AVaR curve indicates the model’s stability and its ability to adapt
gradually to local variations in input features (Figure 5).

Figure 5
AVaR analysis for lag2: Impact on ensemble VaR (June 19, 2021 to
February 23, 2022)
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A comparison of forecasted VaR with actual log-returns of the
interest rate confirmed the model’s ability to capture both extreme and
minimal risks. The maximum value of (VaR ) (23.87) exceeded the
corresponding log-return (20.53), while the average (VaR, ) (7.91)
compared to the average log-return (0.27) reflected the expected
asymmetry of right-tail risk assessment. The minimum value of (VaR )
(=9.29) also exceeded the minimum log-return (—19.87), indicating
adequate prediction of lower risk bounds. The standard deviation of
(VaR ) (c = 5.62) was lower than that of the actual series (¢ = 6.62),
confirming reduced variability of forecasts (Figure 6).

The number of exceedances of actual log-returns over the
forecasted (VaR,, ) was minimal: in only 5% of cases did the log-return
exceed VaR by more than one point. This demonstrates the model’s
ability to provide effective risk coverage. The observed asymmetry
and excess kurtosis further confirm the relevance of right-tail risk
assessment.

In summary, the LSTM component of the ensemble acts as
a sensitive detector of short- and medium-term dependencies. The
prominent role of Lag2, confirmed by both PDP plots and AVaR
analysis, makes it the primary driver of inertia risk, while Lag]l ensures
an impulse response. With this structure, the model demonstrates high
adaptability, interpretability, and reliability in forecasting right-tail VaR.

3 Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.

Figure 6
Time-series comparison of actual log-returns and ensemble VaR
estimates (June 19, 2021 to February 23, 2022)
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5. Discussion

The proposed approaches form a new methodology for building
adaptive financial strategies based on the integration of risk-oriented
indicators into financial planning and the use of advanced models for
right-tail VaR estimation. The use of ensemble models—particularly
the combination of LSTM, GARCH, XGBoost, and Historical
Simulation—enables more accurate and stable forecasts that incorporate
both historical and adaptive information.

Forecasting right-tail VaR using the LSTM model showed high
sensitivity to changes in market volatility, confirming its effectiveness
under unstable conditions. Modeling with LSTM allows for more
precise VaR estimates than with traditional methods. Testing results
showed that LSTM, especially in short-term forecasting, can be a
significant tool for identifying potential financial risks in real time.

Moreover, integrating LSTM into an ensemble model with other
methods such as GARCH and XGBoost significantly improves forecast
accuracy by combining their strengths: the flexibility of neural networks
and the structured volatility analysis of GARCH.

Predicted VaR, particularly in cases of exceedance beyond
the acceptable level of right-tail breaches according to backtesting,
served as a basis for adjusting funding strategies. Setting borrowing
limits or restructuring debt obligations helps reduce the likelihood of
major financial losses during periods of high volatility. On the other
hand, in cases of stable VaR forecasts, the ensemble model allows for
maintaining an optimal risk profile, facilitating financing for investment
projects and improving financial resilience through refinancing.

The rolling VaR methodology, applied over a 250-day horizon,
enables timely detection of changes in market volatility. This provides
the opportunity for rapid adaptation of financial policy, including
adjustments to capital structure or changes in loan volumes depending
on current volatility. The use of such models is crucial for flexible and
risk-sensitive capital management in volatile market conditions.

It is also worth noting that LSTM allows for the integration of
dynamic factors, such as changes in lags, which can serve as early
indicators of shifts in credit risk. This enables enterprises to apply a
proactive approach to budget planning, integrating the best predictive
features into financial policy. Thus, VaR not only controls risks but
also activates the process of strategic financial decision-making—
from liquidity management to long-term capital planning. This
interpretation is consistent with recent findings by Zhang et al. [28],
who demonstrate that deep neural network—based forecasting of tail-
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risk measures, including CVaR, significantly improves risk-aware
portfolio construction and strategic financial decision-making under
uncertainty [28].

These conclusions are supported by findings in several
contemporary academic studies. For example, recent research on hybrid
ensemble models that combine neural networks (LSTM) with GARCH-
type volatility estimators demonstrates significant improvements
in VaR forecasting accuracy, enhancing financial resilience under
unstable market conditions [12]. Further studies applying deep
quantile regression and GAN-based scenario generation confirm the
effectiveness of advanced machine learning methods for predicting both
VaR and expected shortfall in complex financial environments [25].
Additionally, earlier work on deep learning for financial time series
using stacked autoencoders and LSTM [24], as well as LSTM networks
for market predictions [15], supports the integration of predictive
factors into dynamic budgeting systems, confirming the validity of
adaptive methodologies under financial uncertainty. Therefore, the new
VaR assessment model not only measures credit risk but also transforms
it into a key indicator for strategic management that adapts to market
changes. This evolution toward hybrid and data-driven forecasting
frameworks is also confirmed by a comprehensive scientometric review
by Kehinde et al. [29], which documents a clear shift in the literature
from classical econometric models toward machine learning and deep
learning approaches in financial market forecasting.

Despite the obtained results, this study has certain limitations.
First, the use of data from a single market may restrict the
generalizability of the findings; future research should be extended to
multinational samples. Second, the ensemble model requires substantial
computational resources, which may hinder its real-time application
for smaller financial institutions. Third, the impact of macroeconomic
shocks and structural breaks were not taken into account in the analysis,
which may alter risk dynamics. Promising directions for further
research include the integration of macroeconomic predictors, the
extension of the forecasting horizon, and the application of explainable
Al techniques to enhance the interpretability of results.

6. Conclusions

The feasibility of using a hybrid approach for right-tail VaR
estimation under unstable market conditions has been established.
Combining traditional (HS, GJR-GARCH), machine learning
(XGBoost), and deep neural (LSTM) models provides greater
flexibility and adaptability in assessing right-tail risk. Each approach
has its strengths—analytical rigor (GARCH), sensitivity to nonlinear
dependencies (XGBoost), and the ability to identify complex temporal
patterns (LSTM). Integrating these models into an ensemble structure
helps mitigate the limitations of each individual methodology and
achieve a better balance between accuracy, stability, and responsiveness
to market shocks.

The LSTM model proved to be the most effective under conditions
of structural instability. It demonstrated the lowest residual volatility
(6" = 0.0137), high predictive power (R* =~ 0.69), and accurate right-
tail VaR estimation while maintaining a low breach frequency (5.6%).
Its advantages—insensitivity to residual distribution assumptions,
detection of latent patterns, and adaptability to regime shifts—are
critical in a financial environment with high uncertainty. This supports
recommending LSTM as a key component in a multi-model forecasting
framework.

The ensemble model provided the best compromise between
accuracy, stability, and reliability of VaR estimates. The proposed
integrated structure, with 40% weight assigned to LSTM and
30% to XGBoost, showed the lowest dispersion of predicted VaR
estimates (SD = 1.69), statistical consistency in Kupiec (p = 0.133)
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and Christoffersen (p = 0.0938) tests, and the lowest mean excess
during breaches (mean_excess ~ 3.90). As a result, the ensemble
effectively scales risk boundaries in response to volatility changes
while maintaining high estimation accuracy without excessive
conservatism.

The presented approach is practically applicable for strategic
financial planning under conditions of high volatility and data scarcity.
Even with limited historical data and market instability (up to February
2022), a reliable system for assessing right-tail interest rate risk can
be implemented. The proposed models pass statistical forecast validity
tests and can be integrated into risk management systems of banks
or corporate finance departments. The use of the ensemble model is
especially relevant as a flexible and reliable risk management tool in
post-crisis or wartime financial environments.
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