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Abstract: In this study, we propose a novel methodology for strategic financial planning based on the assessment of right-tail value-at-risk (VaR) 
for interest rates under volatile market conditions. The core of the approach lies in the integration of three model types: classical (GJR-GARCH), 
machine learning (XGBoost), and deep learning (long short-term memory, LSTM). Each component targets a distinct dimension of risk: analytical 
structure, nonlinear dependencies, and complex temporal patterns, respectively. The results showed that the LSTM model delivered the highest 
forecasting accuracy under structural instability, achieving the lowest residual volatility (σ̂ ≈ 0.0137) and a high level of explained variance (R² ≈ 
0.69). An ensemble model (weighted 40% toward LSTM and 30% toward XGBoost) demonstrated superior reliability in risk estimation according 
to formal backtesting, along with the lowest average exceedance in VaR breaches. The practical value of the proposed approach is its ability to 
operate effectively under data scarcity and elevated volatility, enabling adaptive management of debt exposure. An elevated VaR level serves as a 
signal to restrict borrowing, while a low VaR opens opportunities for credit expansion. This model can be integrated into risk management systems 
of banking institutions and corporate finance departments as an effective tool for identifying, assessing, and mitigating right-tail risks during 
periods of economic instability.
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1. Introduction
Market conditions in which enterprises operate establish a 

permanent dependence on external financing. Borrowing plays a key 
role in the financial strategy, ensuring the continuity of operational 
activities and maintaining liquidity, which are necessary for effective 
functioning in the context of market uncertainty [1]. Given this, the 
foundation of a company’s financial strategy is its constant need for 
borrowed funds.

Although the specific volumes, terms, and conditions of 
borrowing may vary depending on the current financial situation and 
market conditions, the need for external capital remains a constant 
requirement to maintain financial stability and the company’s growth. 
Decisions regarding the attraction of borrowed funds are accompanied 
by the risk of changes in capital costs, driven by interest rate volatility 
and changing macrofinancial conditions. Under unfavorable market 
dynamics, debt servicing may exert pressure on cash flows, disrupting 
the financial balance of the company.

Under such conditions, the traditional interpretation of value-at-
risk (VaR) as the probability of losses in a financial institution loses its 
universality [2]. In the case of debt financing, a critical risk emerges 
(i.e., right-tail risk), when the rate of increase in the cost of borrowed 
funds exceeds the rate of profit growth for the borrower. The standard 
VaR assessment, which focuses on the left tail of the distribution (i.e., 
losses), fails to adequately identify these threats.

Therefore, it is essential to improve the VaR methodology by 
focusing on right-tail breaches, which serve as markers of financial 

instability. To address this, it is advisable to adapt the approach to 
forecasting right-tail VaR by combining generalized sutoregressive 
conditional heteroskedasticity (GARCH) models, machine learning 
methods (XGBoost, long short-term memory [LSTM]), and historical 
estimates. This approach allows for more accurate identification of 
periods of increased risk and favorable moments for attracting borrowed 
funds, thus optimizing the company’s financial strategy.

Hence, the goal of this study was to develop an adaptive 
methodology for forecasting right-tail VaR by integrating classical 
statistical and machine learning models for optimizing financing 
strategies, particularly identifying favorable periods for attracting 
borrowed resources in the context of volatile interest rates and 
asymmetric risks.

2. Literature Review
The need for external financing, driven by cash-flow gaps, is a 

decisive factor in a firm’s financial strategy, as it directly influences 
decisions regarding capital structure, maturity, and instruments for 
raising funds [3, 4]. Under conditions of increasing economic turbulence 
and unstable cash flows, liquidity coverage policies require a synthesis 
of classical financial theories with modern tools of quantitative risk 
management.

A cash flow gap, when available cash inflows do not cover 
short-term obligations, acts as a financial trigger for raising additional 
financing. Forecasting stress gaps—those that exceed historical norms 
and may lead to defaults or credit rating downgrades—affects both the 
choice of financing instruments and the timing of market entry [5, 6]. 
Empirical evidence confirms that higher volatility of operating cash 
flows increases firms’ reliance on short-term debt and raises refinancing 
risks, especially under tightening credit conditions [3].
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In this context, right-tail VaR is increasingly applied as an 
indicator of the probability that debt servicing costs will exceed a 
predefined level of financial resilience. Unlike classical VaR, which 
focuses on losses (the left tail of the distribution), the right-tail VaR 
analyzes scenarios in which a borrower loses control over the cost of 
funding—an issue of critical importance [7, 8]. Rising interest rates, 
tightening credit conditions, and increased debt servicing costs are 
empirically linked to greater corporate financial fragility and higher 
cost of external financing, reinforcing the role of right-tail VaR as an 
early warning signal [4, 9].

Recent advances in volatility and tail-risk modeling emphasize 
that traditional GARCH specifications tend to underestimate extreme 
right-tail realizations, particularly during periods of structural breaks 
and regime shifts. Studies based on hybrid and sentiment-augmented 
frameworks demonstrate that combining GARCH structures with deep 
learning architectures substantially improves the accuracy of VaR 
forecasts under stressed market conditions [10, 11]. These findings 
are particularly relevant for forecasting sudden increases in borrowing 
costs and liquidity stress.

Traditional GARCH models, based on normal or t-distributions, 
tend to underestimate the probability of extreme right-tail outcomes, 
leading to an underestimation of risks associated with sudden increases 
in borrowing costs. To address these limitations, recent studies propose 
models with heavier tails, as well as hybrid ensemble approaches that 
combine classical financial models with machine learning methods such 
as XGBoost, LSTM, or generative adversarial networks [12, 13, 14].

LSTM models, in particular, have attracted attention in 
forecasting right-tail VaR due to their ability to capture temporal 
dynamics and nonlinear dependencies in financial time series. Unlike 
statistical approaches, LSTMs provide adaptive learning based on 
historical interest rate fluctuations, uncovering hidden patterns that 
signal the approach of stress cash flow gaps [4, 15]. Recent empirical 
evidence confirms that deep neural networks significantly enhance the 
prediction of tail-dependent risk measures, including conditional VaR 
(CVaR), especially when combined with mixed-frequency data and 
penalized quantile regression techniques [14, 16].

Moreover, Bayesian and deep learning approaches applied to 
volatility indices, such as the VIX, highlight the importance of accounting 
for uncertainty in model parameters and latent regimes when forecasting 
extreme risk realizations [17]. These methods improve the robustness 
of forward-looking risk assessments and strengthen the informational 
content of VaR-based indicators for financial decision-making.

Caldara et al. [18] demonstrated that an ensemble model combining 
Historical VaR, GARCH, and machine learning techniques reduces the 
error of cash-stress risk estimation and improves the timing of financial 
decisions. Ensemble forecasting frameworks that explicitly model right-
tail behavior and extreme scenarios are increasingly proposed as core 
components of early warning systems in corporate finance [13, 19].

Despite these advances, there is still no unified methodology 
that directly translates right-tail VaR signals into strategic decisions 
on the volume, maturity, and structure of external financing. Recent 
studies highlight the need for a formalized financial burden indicator 
that integrates forecasted cash flow gaps, firm-specific risk tolerance, 
and the expected cost of capital [5, 20]. Optimization-based approaches 
that embed tail-risk measures into financing and portfolio decisions 
provide promising directions but remain underexplored in the context 
of corporate liquidity management [16].

Thus, the right-tail VaR should be viewed not only as a risk 
management tool but also as a mechanism for the timing of financial 
decisions. The transition to integrated analytics of cash flow gaps and 
VaR metrics provides a foundation for enhancing operational flexibility, 
reducing the cost of capital, and strengthening firms’ resilience to 
financial shocks.

3. Research Methodology

3.1. Risk assessment of excessive interest rate 
increases via right-tail VaR and feature engineering 
for regression

One of the key challenges in strategic corporate financial 
management is determining the optimal volume and timing of credit 
acquisition, taking into account interest rate dynamics. Market volatility 
complicates the assessment of the risk of excessive rate increases, 
which leads to higher financing costs. In view of this, the classical VaR 
approach, traditionally used to limit potential losses for the lender, has 
been refocused on the assessment of right-tail VaR, which reflects the 
probability of short-term rate increases that are unfavorable for the 
borrower. Formally, this can be described as

where  is the log-change of the short-term interest rate 
between periods (t) and (t+1);  is the threshold (quantile) value 
of the distribution of  at the confidence level (1 − α), interpreted 
as the right-tail VaR; α∈(0,1) is the significance level (probability of 
exceedance); and ℱ𝓉 is the information set (σ-algebra) containing all 
available information at time (t).

The assessment of this risk involves modeling interest rate 
volatility, which lays the methodological foundation for managing 
credit acquisition and cash flow gaps. Given the non-stationarity of 
long-term interest rate series, a time series of their log-transformed 
values was used to build the model:

where Pt is the short-term interest rate at day (t); Pt−1 is the short-term 
interest rate at day (t−1); rt is the daily log-return of the interest rate, 
expressed in percentage points; and T is the length of the time series 
(number of observations). 

This allowed for variance stabilization and provided a sound 
basis for further modeling.

3.2. GARCH models: Conditional volatility and 
adaptive scaling

The first stage in modeling the conditional volatility of the log-
transformed interest rate was the construction of a GJR-GARCH(1,2) 
model with an ARIMA(12,0) specification in the mean equation. This 
model accounts for asymmetric volatility effects, particularly the 
heightened sensitivity of financial time series to negative shocks. The 
model is formalized by the following system of equations:

Mean equation:

μ ϕ ϕ

where rt is the log change in the interest rate at time t; μt is the conditional 
mean; ϕ0, ϕi are AR coefficients; and rt−i are lagged values.
where rt is the log-return of the short-term interest rate at time (t); μt is 
the conditional expectation of (rt), modeled as an AR(4) process; εt is 
the error term (white noise) with zero mean and finite variance; ϕ0 is the 
constant term; ϕi is the autoregressive coefficients (i = 1, …, 4); and rt−i 
is the lagged log-returns of the interest rate.

Error term:

ε σ

(1)

(2)

(3)

(4)
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where εt is the stochastic component, σt is the conditional standard 
deviation, and zt is an i.i.d. innovation from distribution D (Normal, 
Student’s t, or Johnson SU).

Conditional variance:

where ω is the base volatility level; α1 captures reaction to past shocks; 
γ1 reflects asymmetry (“bad news” effect); I(⋅) is an indicator function; 
and β1, β2 are volatility smoothing coefficients.

Right-tail VaR at confidence level 1− is calculated as:

α μ α σ

where  is the 1 − α quantile of the distribution D.
To improve the accuracy of risk assessment, volatility was 

dynamically scaled:

where  is the scaled volatility and ss is an iteratively calibrated scaling 
factor based on VaR exceedances during the validation period. This 
allowed the model to be adapted to the actual frequency of breaches 
during the control period.

3.3. Applying XGBoost regression for VaR forecasting
A key challenge in modeling Right-Tail VaR is the model’s 

readiness to handle sudden structural shocks that lead to nonlinear 
patterns in temporal dynamics.

GARCH requires strict specification of conditional variance and 
residual distribution, which necessitates the search for more flexible 
approaches. One such relevant method is XGBoost regression, which 
offers several advantages:

1)  The ability to train an ensemble of trees without distributional 
assumptions: Unlike parametric models, XGBoost does not require 
specifying the residual distribution or conditional variance, as it 
learns by minimizing a loss function:

ℒ = 

where f(xi) is the ensemble prediction and Ω(Tm) is a tree complexity 
penalty.
2)  Ability to capture complex nonlinear dependencies: XGBoost is 

a gradient boosting algorithm over decision trees that effectively 
detects
a.  interactions between lags rt−1, rt−2, rt−3;
b.  asymmetric effects (e.g., negative shocks have more severe 

consequences than positive ones);
c.  structural shifts in the time series (such as changes in monetary 

policy regimes or institutional transitions).

The ensemble of trees incrementally refines prediction errors, 
forming a nonlinear forecasting surface that adapts to local changes in 
the data. Thus, XGBoost regression is a flexible alternative to parametric 
models, particularly suitable for adaptive forecasting of right-tail risk. 
Its application involves a series of steps.

3.3.1. Feature engineering
Using the log-interest rate series (2), for each time t ≥ 4, we 

construct a three-dimensional lag vector:

where xt is the regressor vector. The target variable is

The dataset (xt, yt) is used to train the XGBoost model, enabling 
it to capture nonlinearities, asymmetries, and regime changes. After 
training, residual analysis and right-tail VaR estimation are conducted.

3.3.2. Regression formalization and residual volatility estimation
Training is performed on the period:

where nout is the length of the test period.
The residual vector is

ε

The residual standard deviation is computed as

interpreted as the conditional volatility of the model.

3.3.3. Estimating right-tail VaR using XGBoost
The value of residual volatility , obtained in Equation (13), 

is used as a key parameter for forecasting right-tail risk—that is, 
the potential excessive increase in interest rates, which is critically 
important for the borrower.

For a given confidence level α = 0.95, the quantile of the standard 
normal distribution is introduced:

α α

where Φ−1 (α) is the inverse function of the standard normal cumulative 
distribution function and zα is the critical value corresponding to the 
confidence level α.

Based on the point forecast  and the residual volatility , the 
forecasted threshold increase in the interest rate in the form of VaR is 
defined as

α
α σε

where  is the estimate of Right-Tail VaR based on XGBoost; 
 is the forecasted log-transformed interest rate; and  is the estimate 

of residual volatility.
Unlike parametric approaches, XGBoost-VaR accounts for local 

trends and allows the model to adapt to changes in market regimes 
without requiring specification of the residual distribution.

3.4. Application of LSTM for VaR forecasting
The complex nature of interest rate time series—their 

autocorrelation, structural breaks, nonlinearity, and heteroskedasticity—
necessitates the use of recurrent neural networks (RNNs), particularly 
LSTM, for VaR estimation. This approach is novel in modeling risk 
values on the right tail of the distribution.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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The key advantages of using LSTM as follows:

1)  Handling long-term temporal dependencies: The “memory” 
mechanism allows LSTM to effectively model the impact of delayed 
effects on interest rate levels, unlike classical models that require 
explicit lag specification.

2)  Adaptability to unstable conditions: Due to its ability to learn 
from observations with varying amplitude and volatility, LSTM 
remains robust to regime shifts and anomalies—critical under 
macroeconomic instability.

3)  Integration of multifactor features: The network can simultaneously 
process multiple input features (e.g., rate lags, expectation indices, 
spreads, trading volumes), expanding the model’s analytical space 
without manual specification of functional forms.

4)  Direct estimation of right-tail risks: LSTM training can be oriented 
toward forecasting VaR exceedances or residual risks, avoiding 
indirect assumptions about error distributions.

3.4.1. Model architecture and configuration
A single-layer LSTM model was tested, containing 64 neurons in 

the input layer. The model uses three-dimensional input data, including 
the time series Xt, which contains current values of the primary variable 
(e.g., interest rates), and auxiliary predictors  and , which may 
include economic factors such as inflation rates, exchange rate changes, 
and other macroeconomic indicators.

The logic of the model is not only to account for current time 
series values but also to process additional features that may influence 
future changes. This enables the model to adapt to shifts in market 
conditions, which is crucial for accurate financial risk forecasting.

This was formalized as follows:

where  is the predicted residual at time t.
One of the main advantages of the LSTM model is its ability to 

effectively process temporal dependencies, which is crucial for financial 
time series. It enables the retention of long-term relationships between 
events, helping to more accurately forecast future states. Thus, LSTM 
made it possible to detect trends or cycles based on historical data and 
adjust predictions in response to changes in macroeconomic indicators 
such as interest rate shifts or inflation.

For model training, the Huber loss function was selected, which 
reduces the impact of outliers. This is critically important for financial 
data, where extreme values—such as sudden rate spikes or economic 
crises—can distort predictions.

Huber loss is flexible, allowing the model to be less sensitive to 
outliers while maintaining efficiency at larger deviations from the true 
value. The loss function is defined as:

дл я δ

дл я

where δ is the parameter that controls the transition between quadratic 
and linear loss.

The model was optimized using the Adam algorithm with a 
learning rate of α = 0.001. Adam incorporates adaptive learning rate 
adjustment and momentum techniques, ensuring stable and fast training 
even with large datasets.

One of the key challenges in training deep neural networks is 
overfitting. To prevent this, dropout regularization with a probability of 
20% was applied in order to reduce the risk of the model overfitting to 
the training data and improve its generalization capability.

To monitor model quality, the dataset was split into a training 
set (80%) and a validation set (20%) in order to evaluate the model’s 
performance on unseen data, which is essential for testing its ability to 
operate under real-world uncertainty.

The residual forecasts generated by the LSTM model are used 
to construct the conditional distribution of exceedances. This enables 
a more accurate estimation of the probability that future interest rate 
increases will exceed a critical threshold, given current economic 
conditions.

Right-tail VaR is calculated as the quantile of the conditional 
exceedance distribution:

α α

where  is the (1-α)-quantile of the conditional exceedance 
distribution, which allows for determining the maximum potential loss 
at a given confidence level α.

The application of the LSTM model in this study not only 
improved forecast accuracy but also significantly enhanced the 
reliability of risk assessment through right-tail VaR. Incorporating 
additional economic factors via auxiliary predictors enables the model 
to adapt to diverse market conditions, which is essential for making 
well-informed financial decisions. Thanks to the model’s ability to retain 
long-term dependencies and handle outliers, it serves as a powerful tool 
for forecasting financial risks under unstable conditions.

3.5 Construction of an ensemble model for right-tail 
VaR estimation

To improve the forecast of right-tail VaR, a hybrid model was 
applied that integrates multiple approaches: empirical (historical), 
parametric (GARCH), and nonlinear (XGBoost and LSTM). This 
integration allowed the model to better adapt to changing market 
conditions and stabilize forecasting accuracy. The combined right-tail 
VaR estimate represents a linear aggregation of the results obtained 
from each component. This approach ensures a balanced weighting 
across different models, leveraging their respective strengths:

where  is the combined estimate of right-tail VaR at time t; 
 is the VaR estimate obtained from the GARCH conditional 

volatility model;  is the VaR estimate derived using the 
XGBoost model;  is the empirical VaR estimate based on the 
historical approach;  is the VaR estimate obtained using the 
LSTM model; and w1, w2, w3, w4 are the weighting coefficients for each 
model, reflecting the degree of confidence in each ensemble component.

3.5.1 Determination of Weighting Coefficients
The weights are assigned based on the relevance of each model 

to the specific context. The ensemble components were assigned the 
following weights:

1)  w1 = 0.1 for the historical approach, used as an empirical 
benchmark;

2)  w2 = 0.2 for the GARCH model, which provides a stable volatility 
estimate but does not capture nonlinear relationships;

3)  w3 = 0.3 for XGBoost, which has a strong ability to adapt to complex 
and nonlinear dependencies in the data;

4)  w4 = 0.4 for the LSTM model, which captures long-term dependencies 
in time series and offers flexibility in adapting to various market 
conditions.

(16)

(17)

(18)

(19)
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This hybrid construction enables precise estimation of right-tail 
VaR and supports optimized financing decisions by accounting for both 
structural risks and current market dynamics.

3.6. Backtesting and validation of the combined model
To validate the right-tail VaR forecasts from the combined model 

(16), a backtesting procedure is applied.
VaR breach indicator:

Empirical exceedance rate:

To test H0:πemp = α, the Kupiec POF test is applied:

where , and .
If , we do not reject H0; the model is statistically 

consistent with the expected exceedance rate. To check temporal 
independence of exceedances, the Christoffersen test may be used.

Empirical validation uses real data from the Ukrainian banking 
sector. The next section outlines the data structure, sampling parameters, 
and modeling results, demonstrating the effectiveness of the proposed 
approach under macroeconomic turbulence.

4. Results and Observations

4.1. Source data and justification for the selected 
period

The empirical basis of the study is the daily dynamics of interest 
rates on loans issued to legal entities by Ukrainian banking corporations 
over the period from January 3, 2020, to February 23, 2022 [21]. The 
data were obtained from the official website of the National Bank of 
Ukraine (Figure 1a and 1b1). The restriction of the study period to 
February 23, 2022, is due to the onset of the active phase of hostilities on 
the territory of Ukraine and the radical transformation of the economic 
environment, including changes in the mechanisms of interest rate 
formation, refinancing, and monetary policy in the banking sector.

4.2. Stationarity testing and transformation
To ensure the correctness of the modeling process, the stationarity 

of the interest rate time series and its log-returns was assessed using the 
Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) tests. The results indicated that the original series is 
non-stationary (ADF: p = 0.6051; KPSS: p < 0.01), suggesting it is 
integrated of order one.

After computing the log-differences, a stationary series was 
obtained (ADF: p < 0.01; KPSS: p > 0.1), which is suitable for 
constructing conditional volatility models (Figure 1b).

4.3. Baseline model: Historical simulation
Following the stationarity verification of the log-returns of 

interest rates, a historical simulation (HS) model was constructed to 
serve as a benchmark for risk estimation. The model was implemented 

1  Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.

using a rolling window of 250 days, a 1-day forecasting horizon, and a 
confidence level of 95%.

The actual proportion of VaR exceedances amounted to 4.8%, 
closely aligning with the theoretically expected 5%. This result was 
confirmed by the Kupiec Proportion of Failures (POF) test (p-value = 
0.88), indicating the empirical accuracy of the VaR estimation.

While the HS model provides a valid reference for VaR estimation, 
it exhibits limited adaptability to abrupt changes in volatility due to the 
absence of learning mechanisms. Given this lag in responsiveness, HS 
was used as a referential model.

To enhance forecasting precision and flexibility, the study 
proceeded with an analysis of the prerequisites for applying GARCH-
type approaches. A GJR–GARCH model was constructed to account for 
asymmetric volatility effects. Subsequently, nonlinear methods such as 
XGBoost and LSTM were employed, enabling the capture of complex 
temporal and structural dependencies in the data.

Figure 1 illustrates both the overall trend in the cost of credit 
resources and the volatility of the time series, which is used as input 
data for the estimation of right-tail VaR.

4.4. Assessment of preconditions for applying GARCH
To determine the suitability of applying a GARCH model, 

diagnostic tests were conducted to evaluate the presence of 
autoregressive conditional heteroskedasticity and autocorrelation in the 
residuals. Specifically, Engle’s ARCH Lagrange Multiplier (LM) test 
was used to detect autocorrelated variance, while the Ljung–Box test 
was applied to assess residual autocorrelation (Table 1).

The high test statistics and extremely low p-values from 
the previous diagnostics confirm the presence of conditional 
heteroskedasticity and autocorrelated variance, thereby validating the 
applicability of GARCH-type models.

(20)

(21)

(22)

5

Figure 1
Dynamics of average interest rates on loans to Ukrainian enter-
prises (a) and the corresponding log-changes of these rates (b) 

from January 3, 2020 to February 23, 2022

Test Statistic p-value Conclusion
ARCH LM (12 lags) 113.59 < 2.2e-16 Strong ARCH effect
Box–Ljung (10 lags) 146.26 < 2.2e-16 Variance autocorrelation 

present

Table 1
Heteroskedasticity assessment of the log-interest rate series

https://bank.gov.ua
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4.5. Risk estimation using the GJR–GARCH(1,1) 
model with different residual distributions

Based on these findings, three variants of the GJR–GARCH(1,1) 
model were implemented. This model captures the asymmetric response 
of volatility to market shocks—a key feature for modeling the leverage 
effect. All three specifications share the same structural form but differ 
in the assumed distribution of residuals:

1)  Normal distribution: serves as a baseline but may underestimate 
tail risk

2)  Student’s t-distribution: better suited for capturing heavy tails, 
enhancing VaR accuracy under extreme market conditions

3)  Johnson SU distribution: a flexible alternative capable of modeling 
both skewness and kurtosis, thus accommodating asymmetric and 
heavy-tailed behavior simultaneously

This setup enabled an assessment of how the choice of residual 
distribution affects the precision of VaR estimates and the model’s 
adaptability to unstable market regimes.

The models were estimated using the maximum likelihood 
method based on the log-return series of short-term interest rates 
(Table 2). 

The specifications of GJR–GARCH(1,1) confirmed the presence 
of asymmetry (γ₁ < 0) and the leverage effect, an amplified volatility 
response to negative market shocks. The most pronounced asymmetric 
effect is observed in the model with the JSU distribution (γ₁ = 
–0.311), indicating its ability to accurately reflect market dynamics. 
In the t-model, a high value of β₁ (0.544) is observed with a weak 
immediate response (α₁ = 0.745), which indicates volatility inertia. 
The parameters shape = 1.13 and skew = 0.447 for JSU confirm heavy 
tails and asymmetry, which is relevant for risk modeling in an unstable 
environment.

Comparison of the three GJR–GARCH(1,1) specifications 
showed that the Kupiec test for the expected risk level was passed only 
by the models with normal and t-distribution (p = 0.3294 and p = 0.4812, 
respectively), while the Johnson SU model had a statistically significant 
deviation (p = 0.0029) and an excessive frequency of breaches. At the 
same time, the asymmetry, heavy tails, and distributional skewness 
inherent in JSU provide greater modeling flexibility. Therefore, despite 
formally failing the breach frequency test, the JSU model was selected 
for further VaR modeling, as its structural flexibility allows for better 
reproduction of real risks than other alternatives.

4.6. Use of XGBoost regression for risk estimation 
based on

The next stage of the study involved the application of the 
boosting algorithm (XGBoost), which combines an ensemble of 
decision trees with loss function optimization. Its advantage lies in the 
ability to detect complex nonlinear dependencies without the need for 
formal assumptions regarding data distribution or the functional form 
of the model (Table 3).

The configuration of the XGBoost model with moderate tree 
depth, optimal number of trees, and regularization ensures an effective 
balance between forecasting accuracy and resistance to overfitting. 
Backtesting results confirm the reliability of the model: the actual 
number of breaches (13) almost coincides with the expected (12.5), and 
the p-value of the Kupiec test (0.8853) indicates statistical compliance 
of the model with the given risk level. The average VaR value is 10.3256, 
with a standard deviation of 5.4328, a minimum value of –0.5602, and 
a maximum of 44.5817, demonstrating the model’s ability to adapt to a 
wide range of market conditions.

4.7. Right-tail risk estimation using the LSTM neural 
network

The foundation of time series modeling is based on linear or 
weakly nonlinear approaches that assume stationarity, normality, 
or heteroskedastic dependence of residuals. However, real financial 
data, particularly short-term interest rates, are characterized by high 
instability, regime shifts, latent trends, and seasonal effects. Under 
such conditions, models capable of adapting to changes in statistical 
properties without the need for fixed parametric assumptions are 
effective.

One of the most promising directions for solving this task is 
the use of deep learning, particularly RNNs of the LSTM type, which 
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Model α₁ β₁ γ₁ ω Shape Skew Distribution Type
GARCH – Normal 0.600 0.531 –0.264 6.600 – – Normal
GARCH – t 0.745 0.544 –0.668 21.900 2.49 – Student's t
GARCH – JSU 0.447 0.562 –0.311 12.700 1.13 0.447 Johnson SU

Notes: The parameters α₁, β₁, γ₁, and ω are coefficients of the GJR–GARCH(1,1) model. The Shape and Skew parameters are included only for distributions that 
support them (Student’s t, Johnson SU).

Table 2
Parameters of asymmetric GARCH(1,1) models

Parameter Value Comment
Number of trees 50 Balance between 

accuracy and overfitting 
risk

Average tree depth ≈6 Detection of nonlinear 
patterns without 
excessive complexity

Loss function type Mean squared error Standard function for 
regression tasks

Regularization 
(λ, γ)

λ = 1.0, γ = 0.1 Model complexity 
control, reduction of 
overfitting risk

Input features rt−1, rt−2, rt−3 Lagged values of log-
returns of interest rates

Target variable rt Forecasted log-returns 
of interest rates

Forecast accuracy R² = 0.72 Determined on the 
validation set

Residual volatility  = 0.014 Used for VaR estimation

Note: The model was trained on the period t = 4, …, T−nout, followed 
by testing on the last nout observations. Regularization parameters were 
selected empirically through cross-validation.

Table 3
Key parameters of the XGBoost regression model
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have the ability to memorize and accumulate information over long 
time intervals. First proposed by Hochreiter and Schmidhuber [22], the 
LSTM architecture is one of the fundamental elements of time series 
modeling in machine learning. It has three types of “gates” (input, 
forget, and output) that allow control over the amount of information 
stored or updated in the internal environment. In financial analytics, 
this enables the capture of both short-term fluctuations related to market 
noise and long-term trends or seasonal cycles.

The application of LSTM for right-tail VaR estimation becomes 
particularly important in the context of the risk of a sharp increase in 
interest rates, which is critical for financial strategy development. The 
LSTM model was trained on the log-return series of short-term rates, 
represented as lagged predictors: (rt−1, rt−2, rt−3). The lags were selected 
based on the autocorrelation structure, which revealed significant 
dependencies within a three-day time horizon. Subsequently, the data 
were scaled using Min–Max normalization to convert values into a 
unified interval [0,1], which helps avoid dominance of variables with 
high dispersion.

At the next stage, Z-score standardization (centering and scaling 
by standard deviation) was applied to stabilize the training of the 
LSTM model, ensuring equal influence of predictors. The data array 
was transformed into a tensor of format [N × 1 × 3], where N is the 
number of observations, 1 is the size of timesteps, and 3 is the number 
of features. The training and test sets were split in a ratio of 80:20. The 
LSTM model was implemented using the keras/tensorflow framework 
in the RStudio 2025.05.1 environment. It has a single-channel structure 
without layer stacking, which minimizes the risk of overfitting (Table 4).

The model trained stably, with a gradual decrease in the loss 
function on both the training and validation sets, indicating the absence 
of overfitting. A reduction in validation error was observed up to the 
15th epoch, after which the curve stabilized.

Based on the predicted values ( ), residuals were calculated 
as ( ), which served as the basis for estimating the right-
tail VaR at the 95% confidence level. The quantile of the residual 
distribution was determined empirically: (q0.95≈0.0231), which yields 
the formula for estimation:

This estimate reflects the risk of an unexpected increase in interest 
rates above the forecasted level. On the test set (107 observations), 
the actual number of breaches amounted to six cases, that is, 5.6% of 
observations exceeded the VaR threshold. This corresponded to the 
expected level of 5% and was confirmed by statistical tests: the p-value 
of the Kupiec test was 0.777, which did not reject the hypothesis of 
correct estimation. Thus, LSTM successfully passed the backtesting 
verification.

The root mean squared error (RMSE) was 0.0091, which 
indicated a low variation between the forecast and actual values, and 
the coefficient of determination (R2 ≈ 0.69) pointed to a notable ability 
of the model to reproduce short-term market dynamics. The estimated 
residual volatility was  ≈ 0.0137, which was comparable to that of the 
GARCH model and also close to the results of XGBoost, where residual 
volatility was ≈ 0.014.

Among the advantages of using LSTM in the context of right-tail 
VaR estimation, the following should be noted:

1)  absence of requirements for assumptions about the residual 
distribution (unlike GARCH);

2)  automatic detection of latent temporal patterns (unlike XGBoost);
3)  high resilience to regime shifts and changes in market dynamics;
4)  flexibility in processing data of various scales and quality;
5)  potential for further expansion to multifactor or multichannel 

models.

These properties make LSTM a valuable component in the 
ensemble risk assessment structure. The LSTM model confirmed its 
ability to accurately reproduce the dynamics of short-term changes in 
log-returns of interest rates, with high forecasting accuracy and correct 
estimation of right-tail VaR. Its residual volatility is stable, and the 
model adequately passes backtesting. Considering its ability to adapt to 
complex data structures and the limitations of other methods, LSTM is 
advisable to use as a source of VaR estimates under market instability, 
particularly in combination with other approaches within hybrid or 
ensemble structures.

4.8. Construction of an ensemble model for right-tail 
VaR estimation

To improve the accuracy of risk estimation and ensure 
adaptability to an unstable market environment, an integrated ensemble 
model of right-tail VaR was implemented, a combination of four 
independent sources of forecasting based on different assumptions 
and modeling techniques: historical simulation ( ), GARCH 
conditional volatility model ( ), XGBoost regression 
( ), and LSTM regression ( ). In a formalized form, 
it can be represented as a weighted linear combination of the specified 
components:

The LSTM model received the highest weight (40%), as it 
provided the lowest residual variance and stability of forecasts 
under changing market conditions. XGBoost (30%) also demonstrated 
high flexibility by capturing complex nonlinear relationships in 
financial time series [12], while GARCH (20%) offered a robust 
structural estimate based on conditional heteroskedasticity theory 
[23], and HS (10%) complemented the ensemble with sensitivity to 
local jumps.

(23)

(24)
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Component Configuration Purpose
Input features (rt−1, rt−2, rt−3) Representation of temporal 

dynamics
Data format [samples × 1 × 3] One-step forecast
LSTM layer 64 neurons Memorization of temporal 

patterns
Output Dense layer 1 neuron Regression forecast ( )
Loss function Mean squared 

error
Minimization of the 
difference between 
prediction and observation

Optimizer Adam Flexible model weight 
updating

Epochs 20 Total number of training 
iterations

Batch size 32 Number of observations per 
update cycle

Validation split 0.2 Percentage of data for 
validation

Table 4
LSTM model architecture
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The following parameters were used in the implementation:

1)  (nout = 250): length of the test period;
2)  (VaRLSTM): scalar estimate repeated across the entire test window;
3)  all components normalized to the level of log-rates.

Thus, the ensemble model provides a combination of parametric, 
machine learning, and empirical estimates, allowing for greater stability 
and accuracy in assessing right-tail VaR under conditions of limited 
data and high volatility. This approach is consistent with the findings 
of Gu et al. [24], who demonstrate that machine learning methods 
significantly enhance predictive performance in financial risk and 
return forecasting by capturing complex nonlinear relationships and 
interactions that are difficult to model using traditional econometric 
techniques.

4.9. Evaluation of the effectiveness of right-tail VaR 
estimates using the ensemble model

A key stage of the study was the comparative evaluation of the 
effectiveness of the 95% right-tail VaR. Based on the results of the 
Kupiec UC and Christoffersen CC tests, an analysis was conducted of 
calibration quality, forecast stability, and distribution characteristics of 
VaR estimates. It confirmed the advantages of the ensemble approach, 
which combines the predictive properties of GARCH, LSTM, XGBoost, 
and HS models over traditional and machine-learning-oriented models 
that served as components of the integrated structure. The results are 
presented in Table 5, which summarizes the key backtesting metrics for 
each model.

It is worth noting the compromise between the opposing 
characteristics of the base models—the stability inherent in HS model, 
the sensitivity to structural shifts in LSTM, the statistical consistency in 
XGBoost, and the analytical rigor in GARCH. Specifically, the ensemble 
showed 18 breaches against an expected 12.5 and had a p-value of 0.133 
according to the Kupiec UC test, indicating no statistically significant 
deviation in the breach frequency. Additionally, the p-value for the 
Christoffersen CC test was 0.0938, meaning the breaches do not exhibit 
a tendency toward clustering.

Finally, the ensemble demonstrates the lowest variance in VaR 
estimates (SD = 1.69), outperforming HS (SD = 1.72), which is typically 
considered a benchmark for stability. Thus, the model ensured high 
smoothness and consistency of forecasted values while maintaining the 
ability to respond to extreme events. For clarity, RMSE and MAE were 
normalized within the interval [0;1], whereas the original scale was 
preserved for p-values (Figure 2).

This allowed for the following conclusions:

1)  The ensemble model demonstrated a combination of accuracy 
and compliance with regulatory requirements, despite the fact 

that individual components—particularly XGBoost—have higher 
p-values for the Kupiec UC and Christoffersen CC tests, although 
they lag in accuracy (highest RMSE).

2)  The LSTM model was characterized by the lowest RMSE (~9.29) 
and MAE (~4.71), but it significantly underestimated the number 
of breaches (p ≈ 0.0000141), although it can be recalibrated before 
further application.

3)  GARCH and HS provided boundary estimates—either excessive 
breach frequency (for GARCH) or insufficient sensitivity to 
volatility (for HS).

4)  XGBoost, although demonstrating high statistical consistency, 
obtained the highest errors in VaR estimation in both absolute and 
root mean square terms.

Thus, the ensemble model has proven its practical value as a tool 
for adaptive right-tail risk assessment, capable of adjusting to different 
volatility regimes without significant losses in accuracy and stability. It 
is a strong candidate for serving as a baseline model in strategic financial 
planning under conditions of high uncertainty. These properties become 
especially evident when analyzing the dynamics of actual log-returns 
of interest rates and the corresponding forecasted VaR values. For this 
purpose, test period indicators were visualized (Figure 32).

The analysis indicates that the forecasted VaR boundaries for 
the ensemble, LSTM, GARCH, and XGBoost overlap with actual 

2  Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.
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Model Viol. Exp. p (Kupiec) p (Christoffersen) Mean VaR SD VaR Min Max
GARCH 24 12.5 0.00289 0.291 9.93 2.01 6.78 18.2
XGBoost 13 12.5 0.885 0.251 11.5 2.98 7.91 21.4
Historical 12 12.5 0.884 0.270 10.2 1.72 8.14 15.6
LSTM 6 12.5 0.0000141 0.0738 12.1 3.04 8.33 23.7
Ensemble 18 12.5 0.133 0.0938 10.6 1.69 8.25 17.9

Note: Viol. – actual number of exceedances over 5% VaR; Exp. – expected number of exceedances (0.05 × Obs); p (Kupiec) – p-value for the 
Unconditional Coverage test; p (Christoffersen) – p-value for the Conditional Coverage test; Mean VaR – average forecasted VaR; SD VaR – 
standard deviation of predicted VaR; Min/Max – minimum/maximum predicted VaR.

Table 5
Backtesting metrics of VaR models (Level – upper 5%)

Figure 2
Heatmap of VaR model performance metrics

https://bank.gov.ua
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rates, demonstrating how each model responds to market changes, 
particularly during moments of extreme volatility caused by economic 
shocks such as inflation expectations in August 2021 and other financial 
disturbances.

Compared to others, the ensemble model, which includes a 
significant share of the LSTM neural network (40%), showed higher 
adaptability to changes in the market environment, combining the 
stability of classical methods with the flexibility of machine learning. 
It is distinguished by the lowest number of exceedances among all 
models (3.90) and at the same time a relatively high trigger frequency 
(0.068). This indicates timely expansion of the VaR channel in response 
to market volatility without unnecessary loss of accuracy.

At the beginning of the test period (June–July 2021), when 
volatility remained low, the ensemble formed a narrow but effective VaR 
channel. Excessive reserving was avoided while ensuring protection: 
only isolated breaches were recorded. Meanwhile, GARCH(1,1) and 
XGBoost, although having lower breach frequencies (0.06 and 0.052 
respectively), showed higher average exceedances (4.74 and 6.03), 
which potentially indicates less accurate accounting for tail risks.

Particularly illustrative is the period from August to October 
2021, when the market experienced a series of macroeconomic shocks. 
The ensemble model, thanks to the significant contribution of LSTM, 
timely adapted the VaR boundaries, keeping the breach rate within 1–2 
per month. LSTM as a standalone model recorded the lowest absolute 
number of breaches—only six for the entire period—and showed 
an average exceedance similar to GARCH (4.74), but with a lower 
frequency. This confirms that deep learning has a higher ability to 
detect non-trivial nonlinear dependencies and responds more quickly to 
structural shifts in the data.

During peak volatility periods (November–December 2021), 
the ensemble model continued to effectively scale risk boundaries in 
accordance with market changes. Although it recorded 17 breaches (the 
highest among all), this was accompanied by the lowest losses upon 
exceedance (mean_excess = 3.90), indicating a high level of control 
over risk magnitude. In contrast, GARCH or XGBoost, although having 
fewer breaches, showed significantly stronger violations when they 
occurred, posing greater risks in real-world conditions.

Thus, the distribution and nature of breaches confirm that the 
ensemble model best maintains the balance between market sensitivity 
and restraint against false signals. It provides not only a lower average 
exceedance size but also lower variance in estimates (SD ≈ 1.69), 
enabling more effective risk management and financial planning. Visual 
analysis confirms these conclusions—the constructed channels are 
more stable and better reflect the actual market profile, showing fewer 
chaotic triggers. Therefore, the combination of statistical models and 
deep learning methods in the ensemble architecture allows achieving a 
high level of adaptability without loss of accuracy, making it extremely 
effective for strategic risk management under uncertainty.

The use of LSTM within the ensemble VaR model improves 
the technical characteristics of the forecast and provides strategic 
advantages in risk management under economic instability and high 
market volatility. The LSTM model, integrated into the ensemble with 
GARCH and XGBoost, demonstrated the ability to adapt effectively, 
showing significant flexibility in forecasting tail risks and short-term 
fluctuations.

The VaR forecasting results for the LSTM model proved to be 
more stable and adaptive under different market phases, including 
periods of high volatility, which are typical for financial shocks. For 

9

 Figure 3
Forecasted right-tail VaR versus actual log-changes in interest rates for loans to Ukrainian enterprises from June 19, 2021 to February 

23, 2022

Note: The number of exceedances shown in Figure 3 may be smaller than the values reported in Table 2, since the graph is based on a restricted 
data sample. The points indicate only those violations where `exceed = TRUE`, depending on the actual VaR calculation for this segment of the 
series. 



Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

example, during peak market fluctuations (November–December 
2021), LSTM responded quickly to changes, maintaining forecast 
accuracy and minimizing the number of breaches. This is an important 
characteristic, as forecast accuracy of VaR is critically important for 
timely decision-making during market shocks. To verify the proposed 
approach, it was compared with the results of other studies using deep 
learning and hybrid VaR forecasting models, including Bao et al. [25]; 
Fischer & Krauss [15]; Kakade et al. [12]; and Wang et al. [26].

These sources provide representative performance indicators 
of similar traditional and hybrid models. According to the study by 

Kakade et al. [12], based on classical GARCH and LSTM, 18 breaches 
were recorded at a 5% confidence level (6.9%) with forecast variability 
SD VaR = 2.1. This indicates moderate model effectiveness under high 
volatility and less stable forecasts compared to the ensemble approach.

In the study by Bao et al. [25], the model produced 12 breaches 
(6%) with a VaR interval of [8.9; 15.3]. Despite better accuracy 
compared to that of Fischer & Krauss [15], the interval width turned out 
to be limited, complicating full coverage of extreme market events. In 
contrast, the proposed ensemble model shows a lower breach frequency 
(3.6%) and a significantly wider VaR interval [8.25; 17.9], indicating its 
advantage in risk-oriented coverage.

The GARCH-FHS+LSTM model used in Christodoulou‑Volos 
[27] shows 14 breaches (4.6%) and forecast dispersion around 2.5. 
Despite its overall stability, it lags behind the proposed model in 
terms of variability, and therefore the tested ensemble model has a 
lower standard deviation of forecasted VaR (1.69), indicating higher 
consistency of results. Additionally, according to Wang et al. [26], the 
classical GARCH model recorded 20 breaches (5%) with a VaR interval 
of [7.5; 14.0]. The results presented in Table 6 once again demonstrate 
the limitations of traditional models in capturing potentially extreme 
values, especially under conditions of high market volatility.

The ensemble model demonstrated the lowest violation rate 
compared to established benchmarks, indicating its superior accuracy 
in right-tail risk assessment. The standard deviation of VaR within 1.69 
confirms the stability of forecasts under varying market conditions, 
while the width of the coverage interval allows for the consideration 
of extreme scenarios. To evaluate the model’s predictive sensitivity, 
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 Figure 4
Partial dependence plots of the ensemble VaR model on lagged predictors (Lag1, Lag2, Lag3) from June 19, 2021 to February 23, 2022

Note: The plots illustrate the isolated effect of each lagged variable on the forecasted VaR, holding other predictors at their average levels. This 
allows assessment of the model’s sensitivity to short- and medium-term dynamics.

Author / Study
Breaches 

(%) SD VaR
Forecast VaR 

Interval
Proposed model 3.6 1.69 [8.25; 17.9]
Bao, Yue, & Rao [2] 6.9 2.1 [8.0; 14.5] 

(approximate)
Fischer & Krauss [10] 6.0 n/a [8.9; 15.3]
Kakade, Jain, & Mishra 
[15]

4.6 2.5 [7.8; 15.0] 
(approximate)

Wang, Wang, Lv, & Jiang 
[26]

5.0 n/a [7.5; 14.0]

Table 6
Comparative effectiveness of right-tail VaR forecasting: Results of 

the proposed model and previous studies
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we conducted a partial dependence plot (PDP) analysis and a ΔVaR 
assessment by varying individual predictors (Figure 43).

This analysis made it possible to identify the specific influence 
of lagged variables on the forecasted VaR. In particular, Lag1 shows 
a stable downward trend, reflecting the model’s immediate response 
to the most recent market changes. Lag2 exerts the strongest effect: a 
reduction in VaR of approximately 11.1 points within the range [−19.87; 
20.53] highlights its key role in modeling medium-term inertia. Lag3 
reveals a complex nonlinear relationship, confirming the model’s ability 
to adapt to extreme market scenarios.

For a quantitative assessment of Lag2’s impact, a ΔVaR analysis 
was performed, which confirmed its significance in modeling volatility. 
The change in forecasted VaR ranged from +3.82 to −7.25, with a 
median of 0.24 and a mean of −1.03. The smooth and monotonic shape 
of the ΔVaR curve indicates the model’s stability and its ability to adapt 
gradually to local variations in input features (Figure 5).

A comparison of forecasted VaR with actual log-returns of the 
interest rate confirmed the model’s ability to capture both extreme and 
minimal risks. The maximum value of (VaRens) (23.87) exceeded the 
corresponding log-return (20.53), while the average (VaRens) (7.91) 
compared to the average log-return (0.27) reflected the expected 
asymmetry of right-tail risk assessment. The minimum value of (VaRens) 
(≈9.29) also exceeded the minimum log-return (−19.87), indicating 
adequate prediction of lower risk bounds. The standard deviation of 
(VaRens) (σ = 5.62) was lower than that of the actual series (σ = 6.62), 
confirming reduced variability of forecasts (Figure 6).

The number of exceedances of actual log-returns over the 
forecasted (VaRens) was minimal: in only 5% of cases did the log-return 
exceed VaR by more than one point. This demonstrates the model’s 
ability to provide effective risk coverage. The observed asymmetry 
and excess kurtosis further confirm the relevance of right-tail risk 
assessment.

In summary, the LSTM component of the ensemble acts as 
a sensitive detector of short- and medium-term dependencies. The 
prominent role of Lag2, confirmed by both PDP plots and ΔVaR 
analysis, makes it the primary driver of inertia risk, while Lag1 ensures 
an impulse response. With this structure, the model demonstrates high 
adaptability, interpretability, and reliability in forecasting right-tail VaR.

3  Author’s own calculations in RStudio 2025.07 based on data from https://bank.gov.ua.

5. Discussion 
The proposed approaches form a new methodology for building 

adaptive financial strategies based on the integration of risk-oriented 
indicators into financial planning and the use of advanced models for 
right-tail VaR estimation. The use of ensemble models—particularly 
the combination of LSTM, GARCH, XGBoost, and Historical 
Simulation—enables more accurate and stable forecasts that incorporate 
both historical and adaptive information.

Forecasting right-tail VaR using the LSTM model showed high 
sensitivity to changes in market volatility, confirming its effectiveness 
under unstable conditions. Modeling with LSTM allows for more 
precise VaR estimates than with traditional methods. Testing results 
showed that LSTM, especially in short-term forecasting, can be a 
significant tool for identifying potential financial risks in real time.

Moreover, integrating LSTM into an ensemble model with other 
methods such as GARCH and XGBoost significantly improves forecast 
accuracy by combining their strengths: the flexibility of neural networks 
and the structured volatility analysis of GARCH.

Predicted VaR, particularly in cases of exceedance beyond 
the acceptable level of right-tail breaches according to backtesting, 
served as a basis for adjusting funding strategies. Setting borrowing 
limits or restructuring debt obligations helps reduce the likelihood of 
major financial losses during periods of high volatility. On the other 
hand, in cases of stable VaR forecasts, the ensemble model allows for 
maintaining an optimal risk profile, facilitating financing for investment 
projects and improving financial resilience through refinancing.

The rolling VaR methodology, applied over a 250-day horizon, 
enables timely detection of changes in market volatility. This provides 
the opportunity for rapid adaptation of financial policy, including 
adjustments to capital structure or changes in loan volumes depending 
on current volatility. The use of such models is crucial for flexible and 
risk-sensitive capital management in volatile market conditions.

It is also worth noting that LSTM allows for the integration of 
dynamic factors, such as changes in lags, which can serve as early 
indicators of shifts in credit risk. This enables enterprises to apply a 
proactive approach to budget planning, integrating the best predictive 
features into financial policy. Thus, VaR not only controls risks but 
also activates the process of strategic financial decision-making—
from liquidity management to long-term capital planning. This 
interpretation is consistent with recent findings by Zhang et al. [28], 
who demonstrate that deep neural network–based forecasting of tail-
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 Figure 5
ΔVaR analysis for lag2: Impact on ensemble VaR (June 19, 2021 to 

February 23, 2022)

 Figure 6
Time-series comparison of actual log-returns and ensemble VaR 

estimates (June 19, 2021 to February 23, 2022)

https://bank.gov.ua
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risk measures, including CVaR, significantly improves risk-aware 
portfolio construction and strategic financial decision-making under 
uncertainty [28].

These conclusions are supported by findings in several 
contemporary academic studies. For example, recent research on hybrid 
ensemble models that combine neural networks (LSTM) with GARCH-
type volatility estimators demonstrates significant improvements 
in VaR forecasting accuracy, enhancing financial resilience under 
unstable market conditions [12]. Further studies applying deep 
quantile regression and GAN-based scenario generation confirm the 
effectiveness of advanced machine learning methods for predicting both 
VaR and expected shortfall in complex financial environments [25]. 
Additionally, earlier work on deep learning for financial time series 
using stacked autoencoders and LSTM [24], as well as LSTM networks 
for market predictions [15], supports the integration of predictive 
factors into dynamic budgeting systems, confirming the validity of 
adaptive methodologies under financial uncertainty. Therefore, the new 
VaR assessment model not only measures credit risk but also transforms 
it into a key indicator for strategic management that adapts to market 
changes. This evolution toward hybrid and data-driven forecasting 
frameworks is also confirmed by a comprehensive scientometric review 
by Kehinde et al. [29], which documents a clear shift in the literature 
from classical econometric models toward machine learning and deep 
learning approaches in financial market forecasting. 

Despite the obtained results, this study has certain limitations. 
First, the use of data from a single market may restrict the 
generalizability of the findings; future research should be extended to 
multinational samples. Second, the ensemble model requires substantial 
computational resources, which may hinder its real-time application 
for smaller financial institutions. Third, the impact of macroeconomic 
shocks and structural breaks were not taken into account in the analysis, 
which may alter risk dynamics. Promising directions for further 
research include the integration of macroeconomic predictors, the 
extension of the forecasting horizon, and the application of explainable 
AI techniques to enhance the interpretability of results.

6. Conclusions
The feasibility of using a hybrid approach for right-tail VaR 

estimation under unstable market conditions has been established. 
Combining traditional (HS, GJR-GARCH), machine learning 
(XGBoost), and deep neural (LSTM) models provides greater 
flexibility and adaptability in assessing right-tail risk. Each approach 
has its strengths—analytical rigor (GARCH), sensitivity to nonlinear 
dependencies (XGBoost), and the ability to identify complex temporal 
patterns (LSTM). Integrating these models into an ensemble structure 
helps mitigate the limitations of each individual methodology and 
achieve a better balance between accuracy, stability, and responsiveness 
to market shocks.

The LSTM model proved to be the most effective under conditions 
of structural instability. It demonstrated the lowest residual volatility 
(σ̂ ≈ 0.0137), high predictive power (R² ≈ 0.69), and accurate right-
tail VaR estimation while maintaining a low breach frequency (5.6%). 
Its advantages—insensitivity to residual distribution assumptions, 
detection of latent patterns, and adaptability to regime shifts—are 
critical in a financial environment with high uncertainty. This supports 
recommending LSTM as a key component in a multi-model forecasting 
framework.

The ensemble model provided the best compromise between 
accuracy, stability, and reliability of VaR estimates. The proposed 
integrated structure, with 40% weight assigned to LSTM and 
30% to XGBoost, showed the lowest dispersion of predicted VaR 
estimates (SD = 1.69), statistical consistency in Kupiec (p = 0.133) 

and Christoffersen (p = 0.0938) tests, and the lowest mean excess 
during breaches (mean_excess ≈ 3.90). As a result, the ensemble 
effectively scales risk boundaries in response to volatility changes 
while maintaining high estimation accuracy without excessive 
conservatism.

The presented approach is practically applicable for strategic 
financial planning under conditions of high volatility and data scarcity. 
Even with limited historical data and market instability (up to February 
2022), a reliable system for assessing right-tail interest rate risk can 
be implemented. The proposed models pass statistical forecast validity 
tests and can be integrated into risk management systems of banks 
or corporate finance departments. The use of the ensemble model is 
especially relevant as a flexible and reliable risk management tool in 
post-crisis or wartime financial environments.
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