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Abstract: Progress in accurate medical image classification is often hampered by concerns surrounding data privacy and scarcity of data for certain
medical diseases, leading to sparsity and unbalanced datasets. To address these challenges, this study uses generative models, namely, Denoising
Diffusion Probabilistic Models (DDPMs) and Progressive Growing Generative Adversarial Networks (PGGANS), for dataset improvement. In
this article, we propose a framework for understanding how the resultant synthetic images generated by DDPM and PGGAN:S affect four different
models’ performance: a specially crafted Convolutional Neural Network, an untrained VGG16, a pretrained VGG16, and a pretrained ResNet50.
For modeling practical constraints in real applications, experiments applied Random Sampling and Greedy K Sampling to obtain small unbalanced
datasets. Synthetic image quality was also measured by applying Fréchet Inception Distance (FID), and their impact was further explored by
comparing classification results with their original datasets. Experiments reveal that DDPM consistently produced images of higher realism,
backed by lower FID scores, and overtakes PGGANs in augmenting classification outcomes of all investigated models and datasets. Addition of
DDPM-generated images to original datasets obtained improvement of about 6% in accuracy and therefore enhanced robustness and reliability of
models, specifically when datasets are unbalanced. Although Random Sampling obtained better consistency, Greedy K Sampling obtained higher
variability but higher FID scores. Overall, this research identifies the potential of DDPM to effectively augment and balance sparse datasets of
medical images and subsequently improve training of models and predictive outcomes.

Keywords: medical image augmentation, generative models, Progressive Growing Generative Adversarial Networks (PGGANs), Denoising
Diffusion Probabilistic Models (DDPMs), synthetic data integration

1. Introduction Generative models usually demand large and diverse sets [5].
This is paradoxical: if we had such large sets of labeled data available,
efficient models could simply be directly trained. Generative models
are thus only tenable if they are capable of functioning effectively with
small sets of data. The current article meets this challenge by introducing
the comprehensive framework of generating synthetic medical images
from small and imbalanced sets of data with two generative models:
Progressive Growing Generative Adversarial Networks (PGGANs)
[6] and DDPM [7]. We further investigate applying two sampling
methodologies—Random Sampling and the Greedy K Sampling
methods—to also evaluate their effects on the performance of the
model. This framework is extensively tested to improve the diagnostic
accuracy and robustness of the model.

This work proposes a framework for applying advanced
generative models to small and imbalanced medical image sets
(Figure 1). Our main contributions are as follows:

Medical imaging is the foundation of modern medicine, guiding
diagnostics, surgery, treatment following, and disease monitoring.
Growing volumes of images present challenges [1] for clinicians and
radiologists to maintain productivity of workflow without computer
intervention. There are significant challenges to train accurate and
reliable Machine Learning or Deep Learning diagnostic classifiers.
The primary concerns are the absence of complete and diverse datasets
[2], rigorous data privacy legislation, and inherent dataset imbalances.
These imbalances lead to biased classifiers likely to fail with rare
diseases and small errors having unintended effects.

Conventional data augmentation procedures like random
rotations, flipping, cropping, and noise injection have been heavily
utilized to augment training sets. While beneficial, they simply reorder
available samples and do not imbue the system with the type of basic
variability required for comprehensive model training [3]. As opposed
to conventional data augmentation procedures, generative models [4], 1) Holistic assessment process: We construct an intensive process of

Generative Adversarial Networks (GANs), and Denoising Diffusion assessing the quality and performance of synthetic images produced
Probabilistic Models (DDPMs) have changed the landscape of image by DDPM and PGGANSs. This process has three phases. First,
synthesis by producing brand new data points. Generative models synthetic images are produced with the two models. Second, the
present potential solutions to the problems of imbalanced datasets, quality of the produced images is tested visually and with quantitative
especially when applied to the realm of medical imaging where labeled measures like Fréchet Inception Distance (FID), assessing the
data are scarce. generated image—real image similarity, and the VGG Expert model

for visual confirmation. Third, we investigate the effect of adding
*Corresponding author: Iman Khazrak, Department of Computer Science, Bowling synthetic images to small and imbalanced sets on the performance
Green State University, USA. Email: ikhazra@bgsu.edu of the classification model.
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Figure 1
Framework for evaluating synthetic images
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2) Generation of high-quality synthetic images: Through extensive
experimentation, we demonstrate the feasibility of generating high-
quality synthetic images from small medical image datasets using
DDPM and PGGANs. DDPM consistently outperforms PGGANs
in terms of FID scores, producing more realistic and diverse images
that improve dataset size and balance.

3) Improved classification performance: By integrating synthetic
images into small and imbalanced datasets, we show significant
improvements in the performance of both custom Convolutional
Neural Networks (CNNs) and untrained VGG16 models. For
example, the accuracy of untrained models trained on small datasets
improved significantly.

4) Enhanced model stability: Our findings highlight that incorporating
synthetic images into the original datasets enhances the stability
of both untrained and pretrained classification models. Notably,
DDPM provides better stability and consistency in performance
than PGGANS, especially under challenging conditions of small
dataset.

In brief, our research introduces the novel method of overcoming
the limitation of sparse and imbalanced medical datasets with the help
of the most powerful generative models. It reveals the promise of
DDPM and PGGANSs to complement the data so as to not only expand
and adapt the size of the sets efficiently but also enhance considerably
the precision, consistency, and robustness of the classification models
of the area of medical imaging. The following sections give the
presentation of the overview of the generative models and detailed
description of DDPM and PGGANSs and the application to the area of
medical imaging as well as the detailed examination of our method and
our findings.

The outline of this article consists of the overview of generative
models, followed by the discussion of two important methods used in
the article, DDPMs and PGGANSs, and their applications in medical
imaging. Then, we proceed to discuss our methodology and obtained
results.

2. Related Work

Generative models, particularly those generating high-quality
realistic images, have been of great interest in supplementing medical
datasets and especially in rare diseases where data insufficiency
and class imbalance are the norm. Such models can themselves be
categorized as latent variable generative models, either explicit or
implicit density models.

Concepts from unrelated fields offer beneficial learnings for
healthcare. As an example, Sustainability Value Articulation enhances
internal and external actions toward better social and environment
performance by underscoring the involvement of suppliers and
technological integration [8]. Similarly, the EV supply chain emphasizes
the necessity of constant benchmarking and technological development
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for building competitive advantages in complex systems [9]. These
principles have the same goals as generative models to cope with the
scarcity of data and complement the quality of healthcare data with the
possibility of long-term scalability and effect.

Explicit density models such as Variational Autoencoders,
Boltzmann Machines, and DDPMs possess predefined density
functions and provide interpretability and stability in training [7, 10,
11]. As this class of models is beneficial for applications involving
anomaly detection because of the explicit likelihood functions they
possess, their distributional assumptions sometimes result in less
realistic images [12].

Implicit density models like GANs lack explicit likelihood
functions and thus are less restrictive and can learn complex
distributions. While they generate more realistic pictures, they
suffer from training instability and difficulty in evaluation as well as
hyperparameter sensitivity [13, 14].

2.1. GAN family in medical imaging

GANSs are prominent implicit density models that consist of two
competing neural networks, a generator that creates synthetic images
from a latent space and a discriminator which evaluates resemblance
of generated images to real images, engaging in a zero-sum game.
Generally, it is hard to train GANs due to training instability [14].
PGGAN:S, introduced by Karras et al. [6], have significantly improved
the stability and quality of GAN-generated images. PGGANSs utilize
progressive training procedures, where low-resolution images are
applied at initialization and escalated step by step with training progress.
Such a process allows for easier training of the network to learn coarse
information before fine information and generate better pictures.

In medical imaging, GANs mainly have been used to enhance
classification and segmentation deep learning models [15]. The work
by Costa et al. [2] uses GANs on a small CT scan dataset to generate
eye fundus images which confirm to the given masks. Mahapatra et al.
[16] also used mask to generate lung images, and only the synthetic
images that fulfilled informativeness criteria calculated by Bayesian
neural networks were used to improve the classifier model. In the study
by Frid-Adar et al. [4], GANs are employed to synthesize high-quality
focal liver lesions of multiple conditions to enhance a CNN classifier.
Moreover, GANs have been successful at synthesizing prostate lesions
[17], lung cancer nodules [18], and brain MRI images [19] to name a
few. Chen et al. [20] generate high-resolution synthetic images of skin
lesions from a dataset of 2,000 dermoscopic images using multiple
GAN architectures and compare their classification performances. They
conclude that PGGANS could synthesize realistic images that medical
professionals upon evaluation were not able to distinguish from real
ones. Results of the study by Park et al. [21] confirm that PGGANs can
produce high-resolution images with remarkable detail and consistency,
making them one of the best choices for medical image synthesis
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2.2. Diffusion family in medical imaging

Diffusion models are generative models that transform noise
into structured data through a sequence of steps. The DDPM [7] is
a prominent model in this family, known for producing high-fidelity
images by reversing a diffusion process. These models iteratively
add and then remove noise from an image through two main phases:
the forward process, where noise is added over several steps, and the
reverse process, where the model learns to denoise the image step
by step. This iterative refinement allows DDPMs to generate images
with fine-grained details. Introduced by Ho et al. [7] in 2020, DDPMs
have set new benchmarks in image generation quality by leveraging a
sophisticated noise schedule and a robust denoising network.

Utilization of DDPMs for application to medical imaging has
also been explored for varied applications. Nichol and Dhariwal [22]
reported evidence of guided diffusion models and upsampling-based
models to efficiently improve MRI resolution to better diagnose
and plan for treatment with a dataset of 10,000 MRI images. For
applications in medical imaging, combined utilization of explainability
and trust in Al-based applications has also been invaluable for clinician
acceptance of Al-based applications for life-threatening diseases
like cancer. Rezaeian et al. [23] posit a two-stage Al architecture for
diagnosing breast cancer and introduce graded explainability levels
like tumor localization and probability distributions to increase trust
in Al-based applications, which were found to significantly enhance
trust in Al-based applications. In line with this, our current research is
targeted on enhancing Al model robustness by addressing data sparsity
and imbalance challenges as central challenges for building robust
diagnosis-based tools. Jalal et al. [24] further explored DDPMs for MRI
reconstruction and reported substantial improvement in image quality
and noise robustness using a dataset of 3,500 MRI data. In line with
this, Wolleb et al. [25] utilized DDPMs for application to medical image
segmentation and reported state-of-the-art results using a dataset of
7,500 images. Miiller-Franzes et al. [26] compared latent DDPMs and

GAN:Ss for application to medical image synthesis for varied modalities
using 8,000 CT and MRI data and reported DDPMs to have superior
image quality and diversity when compared with alternative uses of
GANSs for image synthesis. Liang et al. [27] reported a DDPM-based
X-ray Image Synthesizer using 6,000 X-ray image data and established
the capability of generating high-fidelity synthetic X-ray images to
enhance training datasets and enhance diagnosis-based model accuracy.

Most studies use large datasets for image generation or do not
directly leverage generated datasets to improve model performance. In
contrast, our approach uses a small dataset to generate synthetic images
and shows how these images enhance model performance, addressing
data scarcity and imbalance. This underscores the potential of DDPMs
to transform medical imaging, making diagnostic tools more accurate,
reliable, and accessible.

3. Methodology

Our research methodology includes several key phases: image
synthesis, dataset augmentation, model training and fine-tuning, and
performance evaluation.

3.1. Image synthesis

3.1.1. PGGANs

PGGANs utilize a progressive training approach, starting
with low-resolution images and gradually increasing the resolution
as training progresses (Figure 2). This method enhances stability
and image quality by incrementally increasing the complexity of the
generator and discriminator networks. The generator produces data
resembling real data, while the discriminator distinguishes between real
and generated data [28]. The adversarial loss functions for the generator
(£,,) and discriminator (£,) are as follows:

L;=log(1-D(G(2))) (M
Figure 2
PGGAN training progression
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L, =log(D(x)) + log(1-D(G(2))) 2

where G(z) represents the generated data from noise z and D(x)
represents the discriminator’s output for real data x [29].

PGGANs adopt a step-by-step training approach, beginning
with low-resolution images and advancing to higher resolutions. This
progressive training allows the model to learn rough features initially
and then fine-tune them for generating high-quality images. New layers
are added to both networks iteratively, and the loss functions are applied
at each resolution level to maintain consistency.

3.1.2. DDPMs

DDPMs synthesize images by reversing a diffusion process that
gradually adds Gaussian noise to an image and then reconstructs the
original image from the noise (Figure 3) [7].

The forward process adds noise to the image:

Ty = /a1 + V1 — ey (3)

where x, is the image at iteration #, «, is a noise scaling factor, and ¢,
is the Gaussian noise added at iteration # [7]. The backward process is
aimed at denoising the noisy image obtained from the forward process
and recovering the original clean image by optimizing the variational
lower bound:

LDDPM = [Ez,zo,g [|8_gg (x,st)‘z] 4)

Here, ¢ represents Gaussian noise and ¢, is the noise predicted
by the model.

The U-Net architecture, adapted for use in DDPMs, excels in
the reverse diffusion process by predicting and removing noise added
during the forward phase [13, 30]. U-Net’s U-shaped structure with
downsampling and upsampling paths efficiently synthesizes detailed
images, incorporating time embeddings to adjust noise prediction based
on the reverse process timestep [31].

3.2. Generated image assessment

1) Visual inspection: Generated images are initially evaluated by
visually comparing random samples to the original images.

2) FID: The FID score quantifies the distributional similarity between
real and generated images. It is calculated by extracting features
from an InceptionV3 model for both real and generated images
and then computing the Fréchet distance between the resulting
multivariate Gaussian distributions. A higher FID score indicates
greater dissimilarity [32].

Figure 3
Directed graphical model of DDPM
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3.3. Classification models

We compare the impact of synthetic images using four separate
classifiers: pretrained VGG16 and ResNet50 (Table 1), an untrained
VGGI16, and a self-built CNN (Table 2). Each of these models is first
trained on both imbalanced and small datasets to establish baselines
before training on augmented versions of both datasets using DDPM-
and PGGAN-created synthetic images. Inclusion of an untrained
VGG16 allows for assessing the direct impact of synthetic data on

Table 1
VGG16 and ResNet50 model summary
Layer (Type) Output Shape Param #
vggl6/resnet50 (None, 7,7, 512) 14,714,688
(Functional)
flatten (Flatten) (None, 25,088) 0
dense (Dense) (None, 512) 12,845,568
dropout (Dropout) (None, 512) 0
dense 1 (Dense) (None, 2) 1,026
Total params: 27,561,282 (105.14 MB)
Trainable params: 12,846,594 (49.01 MB)
Non-trainable 14,714,688 (56.13 MB)
params:
Table 2
Custom CNN model summary
Layer (Type) Output Shape Param #
conv2d 1 (Conv2D) (None, 128, 128, 64) 1,792
batch_normalization 1 (None, 128, 128, 64) 256
(BatchNorm)
max_pooling2d 1 (None, 64, 64, 64) 0
(MaxPool2D)
conv2d 2 (Conv2D) (None, 64, 64, 128) 73,856
batch normalization 2 (None, 64, 64, 128) 512
(BatchNorm)
max_pooling2d 2 (None, 32, 32, 128) 0
(MaxPool2D)
conv2d 3 (Conv2D) (None, 32, 32, 256) 295,168
batch normalization 3 (None, 32, 32, 256) 1,024
(BatchNorm)
max_pooling2d 3 (None, 16, 16, 256) 0
(MaxPool2D)
flatten (Flatten) (None, 65536) 0
dense 1 (Dense) (None, 256) 16,777,472
dropout_1 (Dropout) (None, 256) 0
dense 2 (Dense) (None, 128) 32,896
dropout_2 (Dropout) (None, 128) 0
dense 3 (Dense) (None, 2) 258
Total params: 17,183,234
(65.55 MB)
Trainable params: 17,182,338
(65.55 MB)
Non-trainable params: 896 (3.50 KB)
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scratch-training models and gaining a better understanding of how
effective generated image data are at improving generalization without
having learned information to fall back on. That is particularly of
relevance in scenarios in which pretrained models are not usable
or irrelevant and in which we are concerned with discovering how
synthetic data are able to help models learn directly off of augmented
datasets. Each of our models is run five times to assess stability and
monitor changing classification metrics. Each of these actions allows
for an in-depth observation of how models’ generalization performance
on test datasets is impacted by augmented datasets and provides rational
insights on how effective using synthetic data is able to improve both
untrained and pretrained model accuracy.

4. Experimental Results
This section presents the findings from our experiments.

1) Computation resources: Our experiments are conducted on a Pitzer
GPU cluster node from OSC (Ohio Supercomputer Center) with
Dual NVIDIA Volta V100 GPUs with 32 GB GPU memory and 48
cores per node at 2.9 GHz. We used Python for the implementation,
PyTorch for the generative models, and TensorFlow for the
classification models.

2) Dataset: The original dataset for this study, sourced from Kaggle,
consists of chest X-ray (CXR) images categorized into two classes:
1,802 NORMAL and 1,800 PNEUMONIA. Each image is originally
256 x 256 pixels in size. However, in order to simulate real-world
scenarios, two types of datasets are created: small and imbalanced
datasets.

a. Small dataset: We choose 200 images per class (PNEUMONIA
and NORMAL) so that we get a balanced training set. The
remaining 1,600 per class are taken for the test set. Such a mini
dataset is ideal to evaluate model performance when data are
limited and data availability is low, like in clinical applications
where unusual medical conditions are involved.

b. Imbalanced dataset: We generate an imbalanced dataset by
randomly selecting 1,500 images of the NORMAL class and 200
images of the PNEUMONIA class for training. For validation
and test purposes, we generate three different imbalanced test
sets by randomly selecting 300 images of the NORMAL class
and 100 images of the PNEUMONIA class. Each of these test
sets is used for validation and test for three different models, and
the average of the performance measures is taken for correct
comparison. This is an imbalanced dataset of the type often
found in medical datasets where some of the conditions are not
sufficiently represented (e.g., pneumonia).

To ensure diversity and robustness, two different sampling
methods are employed:

1) Random sampling: Images are randomly selected from the full
dataset, similarly to datasets in practice where available data are
frequently uncurated and randomly sampled. This allows for a
more natural sampling of images but is not necessarily capable
of capturing the diversity of the dataset and thus often constrains
generative model performance.

2) Greedy K sampling: Images are sampled according to their
dissimilarity to others for obtaining higher diversity representation
of the training set. Computational cost is minimized by looking at
only a smaller set of very diverse data on which to create synthetic
images at an efficient rate. Higher diversity of sampled data leads to
creating synthetic images with higher variability, then facilitating
better generalization of models.

The combination of these approaches results in four distinct
datasets: a small and an imbalanced dataset for each sampling method.

These datasets are then used for training the classification models and
assessing the impact of synthetic images generated by DDPM and
PGGANSs (Table 3).

4.1. Synthetic image generation

The PGGAN and DDPM models are trained separately for each
class in the training dataset, producing a total of four models using 200
images from the small dataset for each sampling method. Leveraging
the code from Hugging Face, we generate 2,000 images per class for
each model.

To train PGGAN models, Random Sampling from a standard
normal distribution is employed for initialization. Stability in training
is achieved by equalizing the learning rate, that is, scaling the outputs
right before the forward pass [6]. Convolution layers below a 64-pixel
resolution are set at 128 filters, while layers at 64- and 128-pixel
resolutions are set to 64 filters. The BATCH-SIZE is set to 4. One
PGGAN model is trained per class using the Adam optimizer and
the Wasserstein loss, each for 200,000 epochs. Due to computational
constraints, the models did not converge, though the training process
was stable and followed a desired pattern of loss (Figure 4). Each spike
reflects the network’s temporary destabilization when a new resolution
level is introduced, followed by a return to more stable behavior as
the model adapts to the increased complexity. This pattern shows that
PGGANs maintained balanced training despite fluctuations, adapting
effectively during progressive layer growth. With experimental trials
relying on computed losses, we choose the checkpoint from epochs
160,000 (PGGANs 160k).

Table 3
Dataset overview
Sampling Training Data Test Data
Dataset Type Method (NOR, PNE) (NOR, PNE)
Original dataset - 1802, 1800 -
Small dataset Random 200, 200 1602, 1600
Greedy K 200, 200 1602, 1600
Imbalanced Random 1500, 300 3 sets of (300, 100)
dataset Greedy K 1500,300 3 sets of (300, 100)
Figure 4

PGGAN training loss—PNEUMONIA class
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The DDPM model hyperparameters include an image size of 128
pixels, a batch size of 16, a learning rate of 1le—4, 512 epochs, 8,000
timesteps, and mixed precision ("fp16") to reduce memory use and
speed up data transfer.

4.2. Synthetic image quality evaluation

4.2.1. Visual inspection

Figures 5 and 6 showcase a visual comparison of generated
images of both healthy and pneumonia-affected lungs. Although
visual inspection can be subjective, the PGGAN images from the

Figure 5
Pneumonia images: original vs. generated by DDPM vs. generated
by PGGANSs. Synthetic images exhibit high similarity to the
originals

Pneumonia: Original
G

Pneumonia: DDPM

Figure 6
Normal images: original vs. synthetic

Normal: Original

160k checkpoint are visually appealing but occasionally display defect
patches. In contrast, the DDPM-generated images demonstrate a closer
resemblance to the original data, exhibiting superior visual fidelity.

4.2.2. FID metric

PyTorch implementation provided by Khazrak et al. [33] is used
to calculate FID scores between the original dataset and each model’s
generated images per class (Figure 7).

Figure 7 shows FID metrics for the DDPM and PGGAN models
in two scenarios—Random and Greedy K Sampling methods—
after generating 2,000 synthetic images for both the NORMAL and
PNEUMONIA labels.

Across both sampling methods, the FID scores for DDPM are
consistently lower than those for PGGANSs, indicating that DDPM
generates more realistic synthetic images that are closer to the real data
distribution. In both models, the FID values for the PNEUMONIA label
are higher than those for the NORMAL label, suggesting that generating
realistic PNEUMONIA images is more challenging.

However, the impact of the sampling method is evident in the
significantly higher FID scores observed with the Greedy K Sampling
method compared with Random Sampling, especially for PGGANS.
The Greedy K Sampling method selects more diverse and distinct
samples, which encourages the generative models to produce a
wider variety of images, including rare or uncommon patterns in the
dataset. While this increases image diversity, it also makes it harder
for the models to maintain fidelity to the real data, leading to higher
FID scores—particularly for the PNEUMONIA label, which is more
difficult to generate accurately.

4.3. Experimental evaluation of classification models

To assess the impact of data augmentation using generative
models, we conducted two distinct experiments using two different
sampling methods: the Random Sampling and Greedy K Sampling
methods. For each sampling method, we performed two experiments—
one on a small dataset and another on an imbalanced dataset.

Four models were evaluated in each experiment: a custom
CNN (trained for 20 epochs), an untrained VGG16 (10 epochs), a
pretrained VGG16 (5 epochs), and a pretrained ResNet50 (5 epochs).
The pretrained weights for both the VGG16 and ResNet50 models were
sourced from the ImageNet Large Scale Visual Recognition Challenge
dataset, which consists of 1.2 million images categorized into 1,000
classes. The following datasets were used for model training for each
sampling method:

1) Small dataset:
a. Baseline: Training dataset with a total size of 400 images.
b. DDPM Mix: Training dataset augmented with DDPM-generated
synthetic images, resulting in a total size of 4,400 images.

Figure 7
FID score comparison
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c. PGGAN Mix: Training dataset augmented with PGGAN-
generated synthetic images, resulting in a total size of 4,400
images.

2) Imbalanced dataset:

a. Baseline: Training dataset with a total of 1,700 images (1,500
NORMAL, 200 PNEUMONIA).

b. DDPM Mix: Training dataset augmented with DDPM-generated
synthetic images, leading to 3,700 images (1,500 NORMAL,
2,200 PNEUMONIA).

c. PGGAN Mix: Training dataset augmented with PGGAN-
generated synthetic images, leading to 3,700 images (1,500
NORMAL, 2,200 PNEUMONIA).

All hyperparameters were kept consistent across experiments.
Models were evaluated using accuracy, recall, precision, and F1 Score.

Table 4
Accuracy = SD: Random Sampling, Balanced Dataset
Custom CNN 0.90+0.035 0.93+£0.011 0.92+0.011
Untrained VGG16 0.86+0.039 0.92+0.018 0.88=0.016
Pretrained VGG16 0.93 £0.007 0.95+£0.005 0.92+0.019
Pretrained ResNet50  0.93+0.015  0.93+0.017 0.94 £ 0.002
Table 5

Accuracy + SD: Random Sampling, Imbalanced Dataset

To ensure robustness and model stability, each model was run five
times, with training and validation data shuffled for each run.

4.3.1. Random sampling

We employed random sampling to generate both small and
imbalanced datasets, simulating real-world scenarios where data
distribution is often uneven and limited in size. In this section, we
present the results of these experiments, highlighting the impact
of synthetic data augmentation on model performance under these
challenging conditions (Tables 4 and 5 and Figure 8).

1) Small dataset:

The custom CNN performance on DDPM- and PGGAN-
augmented datasets improves distinctly on both datasets in comparison
to using the base dataset itself. On the original dataset, the algorithm
performed with mean accuracy, F1 Score, recall, and precision of 0.90
and standard deviation (SD) of 0.035, demonstrating medium variability
between runnings. For the DDPM-augmented dataset, these were
elevated to 0.93 and SD was lowered to 0.011 to reflect more consistent
performance. For both datasets generated by PGGANSs to expand them,
performance was also improved and accuracy and other measures were
elevated to 0.92. Variability was also lowered to 0.011 SD.

For untrained VGG16 model results, significant improvements
were obtained when using both DDPM- and PGGAN-augmented
datasets on the original dataset. For the DDPM-augmented dataset,
mean accuracy, F1 metric, recall, and precision were improved
drastically to 0.92. SD dropped to 0.021, indicating a much stable result
per run. There is a significant increase in both performance and stability

Custom CNN 0.95+0.014 0.95+0.011 095+0.018 obtained due to the DDPM-generated synthetic data.
Untrained VGG16 0.86+0028 0.92+0.008 0890030 Pretrained VGG16 exhibited stable performance on all datasets,
. and maximum stability and accuracy were obtained on the DDPM-
Pretrained VGG16 0.94+0.019  0.94+0.019 0.94£0.018 augmented dataset. Average accuracy was increased to 0.95. SD was
Pretrained ResNet50  0.95+0.017  0.95+0.010 0.95+0.016  keptlow at 0.017 and accounted for highly consistent performance.
Figure 8
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Pretrained ResNet50 performed best on an augmented PGGAN
dataset with an average accuracy of 0.94. SD was 0.002, indicating high
stable performance on a number of runs.

2) Imbalanced dataset:

Even though custom CNN’s performance was consistent for all
datasets, DDPM augmentation had greater stability with lower SD than
original and PGGAN-augmented datasets. PGGANs marginally raised
variability, and so, DDPM is chosen for stability.

For the untrained VGG16 network on DDPM-augmented data,
accuracy also increased significantly to 0.92. SD was also reduced to
0.009 to capture more stable performance in each run and to reflect
better stability than both original data and PGGAN-augmented data.

For both pretrained VGG16 and ResNet50 networks, the
augmented datasets had smaller SD, indicating greater stability and
reduced run-to-run performance variability.

4.3.2. Greedy K sampling

In the next experiment, we used the Greedy K Sampling method
to create small and imbalanced datasets and this section highlights the
impact of synthetic data augmentation on model performance (Tables 6
and 7 and Figure 8).

The custom CNN model made a spectacular increase in accuracy
and stability with the augmented datasets. Accuracy was increased to
0.93 (DDPM) from 0.89 (original), and SD decreased to 0.011 from
0.035 to display a stable improvement in performance.

For untrained VGG16, DDPM raised accuracy considerably
from 0.85 (original) to 0.94 and decreased SD from 0.040 to 0.003,
considerably higher stability with DDPM augmentation.

For pretrained VGG16, accuracy was increased from 0.95 to 0.96
by using the DDPM-augmented dataset with a corresponding SD drop
from 0.011 to 0.008, exhibiting increased stability.

For pretrained ResNet50, the DDPM dataset also maintained the
original’s same level of high accuracy of 0.96 and no increased model
stability was observed after adding artificially generated data.

1) Imbalanced dataset:

For custom CNN models, both PGGANs and DDPM improved
accuracy and PGGANSs obtained the highest accuracy of 0.97 yet DDPM
obtained higher stability. For untrained VGG16, both augmentations
significantly increased accuracy to 0.92 and DDPM obtained better
stability due to less variability.

For pretrained VGG16, PGGANs obtained a slightly higher
accuracy of 0.96 and a SD of 0.005 indicating superior stability than
that for the original dataset.

Table 6
Accuracy + SD: Greedy K Sampling, Balanced Dataset
Custom CNN 0.89+0.035 0.93+0.011 0.93+0.020
Untrained VGG16 0.85+0.040 0.94+0.003 0.87+0.032
Pretrained VGG16 0.95+0.011  0.96+0.008 0.95+0.008
Pretrained ResNet50  0.96 £ 0.004  0.96+0.012 0.93 +0.018
Table 7
Accuracy + SD: Greedy K Sampling, Imbalanced Dataset
Custom CNN 0.95+0.014 0.95+0.012 0.97 +£0.012
Untrained VGG16 0.87+0.028 0.92+0.010 0.92+0.011
Pretrained VGG16 0.96+0.016 0.97+0.007 0.96 +0.008
Pretrained ResNet50  0.95+0.006 0.96 £ 0.006 0.96 + 0.007

Finally, for pretrained ResNet50, PGGANs obtained a moderate
improvement on both stability and accuracy.

Augmentation for robustness improvement using synthetic
images is attributed to augmented diversity and balance injected in
training data. For smaller and unbalanced datasets, models overfit and
learn non-generalizable patterns due to unchanging data. Augmentation
using synthetic images, specifically those generated by DDPM,
increases diversity and robustness to training data by adding fresh and
diverse samples to the training dataset better representing underlying
data distribution. Overfitting is reduced, and the model is able to learn
generalized characteristics that are not specific to data variations used to
train it but to underlying data distribution. Additionally, augmentation
by synthetic data helps in balancing datasets such that minority classes
are represented well to facilitate better identification of rare states by
the model by enhancing better robustness of it. Through these two
processes, increased stability and accuracy are obtained in successive
runnings and models are less affected by data variations and are
therefore robust. Our code and implementation are also available in
publicly available code repository [34].

5. Limitations and Future Work

1) Limitations: This study is limited to a single public CXR dataset
and a binary task (NORMAL vs. PNEUMONIA), without external
cross-dataset validation. To reduce computational cost and enable
a controlled DDPM-PGGAN comparison under small/imbalanced
data, we generated images at 128 x 128 resolution ; this choice may
limit fine-grained anatomical detail. DDPM is more computationally
expensive than PGGANS in both training and inference. As with any
synthetic augmentation, there is a risk of overfitting to the synthetic
distribution or artifacts not present in the real data. We did not
employ clinician review to clean or prune synthetic images prior
to training in this study; by contrast, in related work on laryngeal
lesion classification, two domain experts screened DDPM-generated
images to remove unrealistic samples before model training [35].
Finally, each configuration was run five times; we report mean SD
and refrain from null hypothesis testing, which may limit statistical
power.

2) Future work: We will (i) conduct cross-dataset (out-of-distribution)
validation to assess generalization across institutions; (ii) investigate
domain adaptation techniques to mitigate source—target shift;
(ii1) evaluate rare-disease and extreme-imbalance cohorts where
augmentation is most impactful; (iv) study higher-resolution
synthesis (e.g., 256-512 px) and quantify trade-offs using FID,
SSIM, PSNR, and downstream accuracy; (v) extend beyond binary
CXR to multi-class tasks and additional modalities (e.g., CT and
MRI); and (vi) increase the number of runs (e.g., 10) to enable
adequately powered hypothesis testing where appropriate.

Note: Models trained with DDPM-augmented data consistently
achieved higher accuracy and F1 scores, especially in smaller and
imbalanced datasets. The reduction in SD across runs indicates
improved training stability and better generalization, with DDPM
showing more consistent benefits compared with PGGANS.

6. Conclusion

This research used data augmentation by DDPM and PGGANs
on small-sized and imbalanced medical image datasets formed by
Random Sampling and Greedy K Sampling. In all the experiments,
the inclusion of synthetic images increased the classification accuracy,
improved generalization, and minimized variability across runs.
Comparing the two networks, DDPMs universally beat PGGANs by
generating data closer to the original distribution, resulting in low FID
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scores and producing a more stable behavior under varying classifiers
and sampling regimes.

Random Sampling was the stronger alternative, providing
constant increments toward accuracy and stability, whereas Greedy K
Sampling contributed added diversity with higher variability. However,
DDPM demonstrated great proficiency under both schemes, achieving
a balance between fidelity and diversity that benefited models ranging
from customized CNNs to pretrained models.

The general enhancements come from the added balance and
diversity inherent to synthetic data that lessen overfitting and enhance
minority class representation. These benefits were most apparent within
untrained models, where synthetic augmentation enabled networks to
learn more generalized characteristics and greater stability than when
using real data.

Overall, generative models—particularly DDPM-—are an
efficient and dependable solution to the long-lasting problems of small-
sized and imbalanced medical datasets. Generative models improve
accuracy, stability, and data variability, aiding the construction of
stabler diagnostic models.
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