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Abstract: Progress in accurate medical image classification is often hampered by concerns surrounding data privacy and scarcity of data for certain 
medical diseases, leading to sparsity and unbalanced datasets. To address these challenges, this study uses generative models, namely, Denoising 
Diffusion Probabilistic Models (DDPMs) and Progressive Growing Generative Adversarial Networks (PGGANs), for dataset improvement. In 
this article, we propose a framework for understanding how the resultant synthetic images generated by DDPM and PGGANs affect four different 
models’ performance: a specially crafted Convolutional Neural Network, an untrained VGG16, a pretrained VGG16, and a pretrained ResNet50. 
For modeling practical constraints in real applications, experiments applied Random Sampling and Greedy K Sampling to obtain small unbalanced 
datasets. Synthetic image quality was also measured by applying Fréchet Inception Distance (FID), and their impact was further explored by 
comparing classification results with their original datasets. Experiments reveal that DDPM consistently produced images of higher realism, 
backed by lower FID scores, and overtakes PGGANs in augmenting classification outcomes of all investigated models and datasets. Addition of 
DDPM-generated images to original datasets obtained improvement of about 6% in accuracy and therefore enhanced robustness and reliability of 
models, specifically when datasets are unbalanced. Although Random Sampling obtained better consistency, Greedy K Sampling obtained higher 
variability but higher FID scores. Overall, this research identifies the potential of DDPM to effectively augment and balance sparse datasets of 
medical images and subsequently improve training of models and predictive outcomes.

Keywords: medical image augmentation, generative models, Progressive Growing Generative Adversarial Networks (PGGANs), Denoising 
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1. Introduction
Medical imaging is the foundation of modern medicine, guiding 

diagnostics, surgery, treatment following, and disease monitoring. 
Growing volumes of images present challenges [1] for clinicians and 
radiologists to maintain productivity of workflow without computer 
intervention. There are significant challenges to train accurate and 
reliable Machine Learning or Deep Learning diagnostic classifiers. 
The primary concerns are the absence of complete and diverse datasets 
[2], rigorous data privacy legislation, and inherent dataset imbalances. 
These imbalances lead to biased classifiers likely to fail with rare 
diseases and small errors having unintended effects.

Conventional data augmentation procedures like random 
rotations, flipping, cropping, and noise injection have been heavily 
utilized to augment training sets. While beneficial, they simply reorder 
available samples and do not imbue the system with the type of basic 
variability required for comprehensive model training [3]. As opposed 
to conventional data augmentation procedures, generative models [4], 
Generative Adversarial Networks (GANs), and Denoising Diffusion 
Probabilistic Models (DDPMs) have changed the landscape of image 
synthesis by producing brand new data points. Generative models 
present potential solutions to the problems of imbalanced datasets, 
especially when applied to the realm of medical imaging where labeled 
data are scarce.

Generative models usually demand large and diverse sets [5]. 
This is paradoxical: if we had such large sets of labeled data available, 
efficient models could simply be directly trained. Generative models 
are thus only tenable if they are capable of functioning effectively with 
small sets of data. The current article meets this challenge by introducing 
the comprehensive framework of generating synthetic medical images 
from small and imbalanced sets of data with two generative models: 
Progressive Growing Generative Adversarial Networks (PGGANs) 
[6] and DDPM [7]. We further investigate applying two sampling 
methodologies—Random Sampling and the Greedy K Sampling 
methods—to also evaluate their effects on the performance of the 
model. This framework is extensively tested to improve the diagnostic 
accuracy and robustness of the model.

This work proposes a framework for applying advanced 
generative models to small and imbalanced medical image sets 
(Figure 1). Our main contributions are as follows:

1)  Holistic assessment process: We construct an intensive process of 
assessing the quality and performance of synthetic images produced 
by DDPM and PGGANs. This process has three phases. First, 
synthetic images are produced with the two models. Second, the 
quality of the produced images is tested visually and with quantitative 
measures like Fréchet Inception Distance (FID), assessing the 
generated image–real image similarity, and the VGG Expert model 
for visual confirmation. Third, we investigate the effect of adding 
synthetic images to small and imbalanced sets on the performance 
of the classification model.
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2)  Generation of high-quality synthetic images: Through extensive 
experimentation, we demonstrate the feasibility of generating high-
quality synthetic images from small medical image datasets using 
DDPM and PGGANs. DDPM consistently outperforms PGGANs 
in terms of FID scores, producing more realistic and diverse images 
that improve dataset size and balance.

3)  Improved classification performance: By integrating synthetic 
images into small and imbalanced datasets, we show significant 
improvements in the performance of both custom Convolutional 
Neural Networks (CNNs) and untrained VGG16 models. For 
example, the accuracy of untrained models trained on small datasets 
improved significantly.

4)  Enhanced model stability: Our findings highlight that incorporating 
synthetic images into the original datasets enhances the stability 
of both untrained and pretrained classification models. Notably, 
DDPM provides better stability and consistency in performance 
than PGGANs, especially under challenging conditions of small 
dataset.

In brief, our research introduces the novel method of overcoming 
the limitation of sparse and imbalanced medical datasets with the help 
of the most powerful generative models. It reveals the promise of 
DDPM and PGGANs to complement the data so as to not only expand 
and adapt the size of the sets efficiently but also enhance considerably 
the precision, consistency, and robustness of the classification models 
of the area of medical imaging. The following sections give the 
presentation of the overview of the generative models and detailed 
description of DDPM and PGGANs and the application to the area of 
medical imaging as well as the detailed examination of our method and 
our findings.

The outline of this article consists of the overview of generative 
models, followed by the discussion of two important methods used in 
the article, DDPMs and PGGANs, and their applications in medical 
imaging. Then, we proceed to discuss our methodology and obtained 
results.

2. Related Work
Generative models, particularly those generating high-quality 

realistic images, have been of great interest in supplementing medical 
datasets and especially in rare diseases where data insufficiency 
and class imbalance are the norm. Such models can themselves be 
categorized as latent variable generative models, either explicit or 
implicit density models.

Concepts from unrelated fields offer beneficial learnings for 
healthcare. As an example, Sustainability Value Articulation enhances 
internal and external actions toward better social and environment 
performance by underscoring the involvement of suppliers and 
technological integration [8]. Similarly, the EV supply chain emphasizes 
the necessity of constant benchmarking and technological development 

for building competitive advantages in complex systems [9]. These 
principles have the same goals as generative models to cope with the 
scarcity of data and complement the quality of healthcare data with the 
possibility of long-term scalability and effect.

Explicit density models such as Variational Autoencoders, 
Boltzmann Machines, and DDPMs possess predefined density 
functions and provide interpretability and stability in training [7, 10, 
11]. As this class of models is beneficial for applications involving 
anomaly detection because of the explicit likelihood functions they 
possess, their distributional assumptions sometimes result in less 
realistic images [12].

Implicit density models like GANs lack explicit likelihood 
functions and thus are less restrictive and can learn complex 
distributions. While they generate more realistic pictures, they 
suffer from training instability and difficulty in evaluation as well as 
hyperparameter sensitivity [13, 14].

2.1. GAN family in medical imaging
GANs are prominent implicit density models that consist of two 

competing neural networks, a generator that creates synthetic images 
from a latent space and a discriminator which evaluates resemblance 
of generated images to real images, engaging in a zero-sum game. 
Generally, it is hard to train GANs due to training instability [14]. 
PGGANs, introduced by Karras et al. [6], have significantly improved 
the stability and quality of GAN-generated images. PGGANs utilize 
progressive training procedures, where low-resolution images are 
applied at initialization and escalated step by step with training progress. 
Such a process allows for easier training of the network to learn coarse 
information before fine information and generate better pictures.

In medical imaging, GANs mainly have been used to enhance 
classification and segmentation deep learning models [15]. The work 
by Costa et al. [2] uses GANs on a small CT scan dataset to generate 
eye fundus images which confirm to the given masks. Mahapatra et al. 
[16] also used mask to generate lung images, and only the synthetic 
images that fulfilled informativeness criteria calculated by Bayesian 
neural networks were used to improve the classifier model. In the study 
by Frid-Adar et al. [4], GANs are employed to synthesize high-quality 
focal liver lesions of multiple conditions to enhance a CNN classifier. 
Moreover, GANs have been successful at synthesizing prostate lesions 
[17], lung cancer nodules [18], and brain MRI images [19] to name a 
few. Chen et al. [20] generate high-resolution synthetic images of skin 
lesions from a dataset of 2,000 dermoscopic images using multiple 
GAN architectures and compare their classification performances. They 
conclude that PGGANs could synthesize realistic images that medical 
professionals upon evaluation were not able to distinguish from real 
ones. Results of the study by Park et al. [21] confirm that PGGANs can 
produce high-resolution images with remarkable detail and consistency, 
making them one of the best choices for medical image synthesis
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Figure 1
Framework for evaluating synthetic images
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2.2. Diffusion family in medical imaging
Diffusion models are generative models that transform noise 

into structured data through a sequence of steps. The DDPM [7] is 
a prominent model in this family, known for producing high-fidelity 
images by reversing a diffusion process. These models iteratively 
add and then remove noise from an image through two main phases: 
the forward process, where noise is added over several steps, and the 
reverse process, where the model learns to denoise the image step 
by step. This iterative refinement allows DDPMs to generate images 
with fine-grained details. Introduced by Ho et al. [7] in 2020, DDPMs 
have set new benchmarks in image generation quality by leveraging a 
sophisticated noise schedule and a robust denoising network.

Utilization of DDPMs for application to medical imaging has 
also been explored for varied applications. Nichol and Dhariwal [22] 
reported evidence of guided diffusion models and upsampling-based 
models to efficiently improve MRI resolution to better diagnose 
and plan for treatment with a dataset of 10,000 MRI images. For 
applications in medical imaging, combined utilization of explainability 
and trust in AI-based applications has also been invaluable for clinician 
acceptance of AI-based applications for life-threatening diseases 
like cancer. Rezaeian et al. [23] posit a two-stage AI architecture for 
diagnosing breast cancer and introduce graded explainability levels 
like tumor localization and probability distributions to increase trust 
in AI-based applications, which were found to significantly enhance 
trust in AI-based applications. In line with this, our current research is 
targeted on enhancing AI model robustness by addressing data sparsity 
and imbalance challenges as central challenges for building robust 
diagnosis-based tools. Jalal et al. [24] further explored DDPMs for MRI 
reconstruction and reported substantial improvement in image quality 
and noise robustness using a dataset of 3,500 MRI data. In line with 
this, Wolleb et al. [25] utilized DDPMs for application to medical image 
segmentation and reported state-of-the-art results using a dataset of 
7,500 images. Müller-Franzes et al. [26] compared latent DDPMs and 

GANs for application to medical image synthesis for varied modalities 
using 8,000 CT and MRI data and reported DDPMs to have superior 
image quality and diversity when compared with alternative uses of 
GANs for image synthesis. Liang et al. [27] reported a DDPM-based 
X-ray Image Synthesizer using 6,000 X-ray image data and established 
the capability of generating high-fidelity synthetic X-ray images to 
enhance training datasets and enhance diagnosis-based model accuracy.

Most studies use large datasets for image generation or do not 
directly leverage generated datasets to improve model performance. In 
contrast, our approach uses a small dataset to generate synthetic images 
and shows how these images enhance model performance, addressing 
data scarcity and imbalance. This underscores the potential of DDPMs 
to transform medical imaging, making diagnostic tools more accurate, 
reliable, and accessible.

3. Methodology
Our research methodology includes several key phases: image 

synthesis, dataset augmentation, model training and fine-tuning, and 
performance evaluation.

3.1. Image synthesis
3.1.1. PGGANs

PGGANs utilize a progressive training approach, starting 
with low-resolution images and gradually increasing the resolution 
as training progresses (Figure 2). This method enhances stability 
and image quality by incrementally increasing the complexity of the 
generator and discriminator networks. The generator produces data 
resembling real data, while the discriminator distinguishes between real 
and generated data [28]. The adversarial loss functions for the generator 
(ℒG) and discriminator (ℒD) are as follows:

ℒG = log(1−D(G(z))) (1)

3

Figure 2
PGGAN training progression
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ℒD = log(D(x)) + log(1−D(G(z)))

where G(z) represents the generated data from noise z and D(x) 
represents the discriminator’s output for real data x [29].

PGGANs adopt a step-by-step training approach, beginning 
with low-resolution images and advancing to higher resolutions. This 
progressive training allows the model to learn rough features initially 
and then fine-tune them for generating high-quality images. New layers 
are added to both networks iteratively, and the loss functions are applied 
at each resolution level to maintain consistency.

3.1.2. DDPMs
DDPMs synthesize images by reversing a diffusion process that 

gradually adds Gaussian noise to an image and then reconstructs the 
original image from the noise (Figure 3) [7].

The forward process adds noise to the image:

where xt is the image at iteration t, αt is a noise scaling factor, and εt 
is the Gaussian noise added at iteration t [7]. The backward process is 
aimed at denoising the noisy image obtained from the forward process 
and recovering the original clean image by optimizing the variational 
lower bound:

ℒDDPM = 𝔼t, ,ε [|ε−εθ (xt,t)|
2]

Here, ε represents Gaussian noise and εθ is the noise predicted 
by the model.

The U-Net architecture, adapted for use in DDPMs, excels in 
the reverse diffusion process by predicting and removing noise added 
during the forward phase [13, 30]. U-Net’s U-shaped structure with 
downsampling and upsampling paths efficiently synthesizes detailed 
images, incorporating time embeddings to adjust noise prediction based 
on the reverse process timestep [31].

3.2. Generated image assessment
1)  Visual inspection: Generated images are initially evaluated by 

visually comparing random samples to the original images.
2)  FID: The FID score quantifies the distributional similarity between 

real and generated images. It is calculated by extracting features 
from an InceptionV3 model for both real and generated images 
and then computing the Fréchet distance between the resulting 
multivariate Gaussian distributions. A higher FID score indicates 
greater dissimilarity [32].

3.3. Classification models
We compare the impact of synthetic images using four separate 

classifiers: pretrained VGG16 and ResNet50 (Table 1), an untrained 
VGG16, and a self-built CNN (Table 2). Each of these models is first 
trained on both imbalanced and small datasets to establish baselines 
before training on augmented versions of both datasets using DDPM- 
and PGGAN-created synthetic images. Inclusion of an untrained 
VGG16 allows for assessing the direct impact of synthetic data on 

(2)

(3)

(4)
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Layer (Type) Output Shape Param #
vgg16/resnet50 
(Functional)

(None, 7, 7, 512) 14,714,688

flatten (Flatten) (None, 25,088) 0
dense (Dense) (None, 512) 12,845,568
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 2) 1,026
Total params: 27,561,282 (105.14 MB)
Trainable params: 12,846,594 (49.01 MB)
Non-trainable 
params:

14,714,688 (56.13 MB)

Table 1
VGG16 and ResNet50 model summary

Layer (Type) Output Shape Param #
conv2d_1 (Conv2D) (None, 128, 128, 64) 1,792
batch_normalization_1 
(BatchNorm)

(None, 128, 128, 64) 256

max_pooling2d_1 
(MaxPool2D)

(None, 64, 64, 64) 0

conv2d_2 (Conv2D) (None, 64, 64, 128) 73,856
batch_normalization_2 
(BatchNorm)

(None, 64, 64, 128) 512

max_pooling2d_2 
(MaxPool2D)

(None, 32, 32, 128) 0

conv2d_3 (Conv2D) (None, 32, 32, 256) 295,168
batch_normalization_3 
(BatchNorm)

(None, 32, 32, 256) 1,024

max_pooling2d_3 
(MaxPool2D)

(None, 16, 16, 256) 0

flatten (Flatten) (None, 65536) 0
dense_1 (Dense) (None, 256) 16,777,472
dropout_1 (Dropout) (None, 256) 0
dense_2 (Dense) (None, 128) 32,896
dropout_2 (Dropout) (None, 128) 0
dense_3 (Dense) (None, 2) 258
Total params: 17,183,234 

(65.55 MB)
Trainable params: 17,182,338 

(65.55 MB)
Non-trainable params: 896 (3.50 KB)

Table 2
Custom CNN model summary

 Figure 3
Directed graphical model of DDPM
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scratch-training models and gaining a better understanding of how 
effective generated image data are at improving generalization without 
having learned information to fall back on. That is particularly of 
relevance in scenarios in which pretrained models are not usable 
or irrelevant and in which we are concerned with discovering how 
synthetic data are able to help models learn directly off of augmented 
datasets. Each of our models is run five times to assess stability and 
monitor changing classification metrics. Each of these actions allows 
for an in-depth observation of how models’ generalization performance 
on test datasets is impacted by augmented datasets and provides rational 
insights on how effective using synthetic data is able to improve both 
untrained and pretrained model accuracy.

4. Experimental Results
This section presents the findings from our experiments.

1)  Computation resources: Our experiments are conducted on a Pitzer 
GPU cluster node from OSC (Ohio Supercomputer Center) with 
Dual NVIDIA Volta V100 GPUs with 32 GB GPU memory and 48 
cores per node at 2.9 GHz. We used Python for the implementation, 
PyTorch for the generative models, and TensorFlow for the 
classification models.

2)  Dataset: The original dataset for this study, sourced from Kaggle, 
consists of chest X-ray (CXR) images categorized into two classes: 
1,802 NORMAL and 1,800 PNEUMONIA. Each image is originally 
256 × 256 pixels in size. However, in order to simulate real-world 
scenarios, two types of datasets are created: small and imbalanced 
datasets.
a.	 Small dataset: We choose 200 images per class (PNEUMONIA 

and NORMAL) so that we get a balanced training set. The 
remaining 1,600 per class are taken for the test set. Such a mini 
dataset is ideal to evaluate model performance when data are 
limited and data availability is low, like in clinical applications 
where unusual medical conditions are involved.

b.	 Imbalanced dataset: We generate an imbalanced dataset by 
randomly selecting 1,500 images of the NORMAL class and 200 
images of the PNEUMONIA class for training. For validation 
and test purposes, we generate three different imbalanced test 
sets by randomly selecting 300 images of the NORMAL class 
and 100 images of the PNEUMONIA class. Each of these test 
sets is used for validation and test for three different models, and 
the average of the performance measures is taken for correct 
comparison. This is an imbalanced dataset of the type often 
found in medical datasets where some of the conditions are not 
sufficiently represented (e.g., pneumonia).

To ensure diversity and robustness, two different sampling 
methods are employed:

1)  Random sampling: Images are randomly selected from the full 
dataset, similarly to datasets in practice where available data are 
frequently uncurated and randomly sampled. This allows for a 
more natural sampling of images but is not necessarily capable 
of capturing the diversity of the dataset and thus often constrains 
generative model performance.

2)  Greedy K sampling: Images are sampled according to their 
dissimilarity to others for obtaining higher diversity representation 
of the training set. Computational cost is minimized by looking at 
only a smaller set of very diverse data on which to create synthetic 
images at an efficient rate. Higher diversity of sampled data leads to 
creating synthetic images with higher variability, then facilitating 
better generalization of models.

The combination of these approaches results in four distinct 
datasets: a small and an imbalanced dataset for each sampling method. 

These datasets are then used for training the classification models and 
assessing the impact of synthetic images generated by DDPM and 
PGGANs (Table 3).

4.1. Synthetic image generation
The PGGAN and DDPM models are trained separately for each 

class in the training dataset, producing a total of four models using 200 
images from the small dataset for each sampling method. Leveraging 
the code from Hugging Face, we generate 2,000 images per class for 
each model.

To train PGGAN models, Random Sampling from a standard 
normal distribution is employed for initialization. Stability in training 
is achieved by equalizing the learning rate, that is, scaling the outputs 
right before the forward pass [6]. Convolution layers below a 64-pixel 
resolution are set at 128 filters, while layers at 64- and 128-pixel 
resolutions are set to 64 filters. The BATCH-SIZE is set to 4. One 
PGGAN model is trained per class using the Adam optimizer and 
the Wasserstein loss, each for 200,000 epochs. Due to computational 
constraints, the models did not converge, though the training process 
was stable and followed a desired pattern of loss (Figure 4). Each spike 
reflects the network’s temporary destabilization when a new resolution 
level is introduced, followed by a return to more stable behavior as 
the model adapts to the increased complexity. This pattern shows that 
PGGANs maintained balanced training despite fluctuations, adapting 
effectively during progressive layer growth. With experimental trials 
relying on computed losses, we choose the checkpoint from epochs 
160,000 (PGGANs 160k).

5

Dataset Type
Sampling 
Method

Training Data
(NOR, PNE)

Test Data
(NOR, PNE)

Original dataset - 1802, 1800 -
Small dataset Random 200, 200 1602, 1600

Greedy K 200, 200 1602, 1600
Imbalanced 
dataset

Random 1500, 300 3 sets of (300, 100)
Greedy K 1500, 300 3 sets of (300, 100)

Table 3
Dataset overview

 Figure 4
PGGAN training loss—PNEUMONIA class
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The DDPM model hyperparameters include an image size of 128 
pixels, a batch size of 16, a learning rate of 1e−4, 512 epochs, 8,000 
timesteps, and mixed precision ("fp16") to reduce memory use and 
speed up data transfer.

4.2. Synthetic image quality evaluation
4.2.1. Visual inspection

Figures 5 and 6 showcase a visual comparison of generated 
images of both healthy and pneumonia-affected lungs. Although 
visual inspection can be subjective, the PGGAN images from the 

160k checkpoint are visually appealing but occasionally display defect 
patches. In contrast, the DDPM-generated images demonstrate a closer 
resemblance to the original data, exhibiting superior visual fidelity.

4.2.2. FID metric
PyTorch implementation provided by Khazrak  et al. [33] is used 

to calculate FID scores between the original dataset and each model’s 
generated images per class (Figure 7).

Figure 7 shows FID metrics for the DDPM and PGGAN models 
in two scenarios—Random and Greedy K Sampling methods—
after generating 2,000 synthetic images for both the NORMAL and 
PNEUMONIA labels.

Across both sampling methods, the FID scores for DDPM are 
consistently lower than those for PGGANs, indicating that DDPM 
generates more realistic synthetic images that are closer to the real data 
distribution. In both models, the FID values for the PNEUMONIA label 
are higher than those for the NORMAL label, suggesting that generating 
realistic PNEUMONIA images is more challenging.

However, the impact of the sampling method is evident in the 
significantly higher FID scores observed with the Greedy K Sampling 
method compared with Random Sampling, especially for PGGANs. 
The Greedy K Sampling method selects more diverse and distinct 
samples, which encourages the generative models to produce a 
wider variety of images, including rare or uncommon patterns in the 
dataset. While this increases image diversity, it also makes it harder 
for the models to maintain fidelity to the real data, leading to higher 
FID scores—particularly for the PNEUMONIA label, which is more 
difficult to generate accurately.

4.3. Experimental evaluation of classification models
To assess the impact of data augmentation using generative 

models, we conducted two distinct experiments using two different 
sampling methods: the Random Sampling and Greedy K Sampling 
methods. For each sampling method, we performed two experiments—
one on a small dataset and another on an imbalanced dataset.

Four models were evaluated in each experiment: a custom 
CNN (trained for 20 epochs), an untrained VGG16 (10 epochs), a 
pretrained VGG16 (5 epochs), and a pretrained ResNet50 (5 epochs). 
The pretrained weights for both the VGG16 and ResNet50 models were 
sourced from the ImageNet Large Scale Visual Recognition Challenge 
dataset, which consists of 1.2 million images categorized into 1,000 
classes. The following datasets were used for model training for each 
sampling method:

1)  Small dataset:
a.  Baseline: Training dataset with a total size of 400 images.
b.  DDPM Mix: Training dataset augmented with DDPM-generated 

synthetic images, resulting in a total size of 4,400 images.

6

 Figure 5
Pneumonia images: original vs. generated by DDPM vs. generated 

by PGGANs. Synthetic images exhibit high similarity to the 
originals

 Figure 7
FID score comparison

 Figure 6
Normal images: original vs. synthetic
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c.  PGGAN Mix: Training dataset augmented with PGGAN-
generated synthetic images, resulting in a total size of 4,400 
images.

2)  Imbalanced dataset:
a.  Baseline: Training dataset with a total of 1,700 images (1,500 

NORMAL, 200 PNEUMONIA).
b.  DDPM Mix: Training dataset augmented with DDPM-generated 

synthetic images, leading to 3,700 images (1,500 NORMAL, 
2,200 PNEUMONIA).

c.  PGGAN Mix: Training dataset augmented with PGGAN-
generated synthetic images, leading to 3,700 images (1,500 
NORMAL, 2,200 PNEUMONIA).

All hyperparameters were kept consistent across experiments. 
Models were evaluated using accuracy, recall, precision, and F1 Score. 

To ensure robustness and model stability, each model was run five 
times, with training and validation data shuffled for each run.

4.3.1. Random sampling
We employed random sampling to generate both small and 

imbalanced datasets, simulating real-world scenarios where data 
distribution is often uneven and limited in size. In this section, we 
present the results of these experiments, highlighting the impact 
of synthetic data augmentation on model performance under these 
challenging conditions (Tables 4 and 5 and Figure 8).

1)  Small dataset:
The custom CNN performance on DDPM- and PGGAN-

augmented datasets improves distinctly on both datasets in comparison 
to using the base dataset itself. On the original dataset, the algorithm 
performed with mean accuracy, F1 Score, recall, and precision of 0.90 
and standard deviation (SD) of 0.035, demonstrating medium variability 
between runnings. For the DDPM-augmented dataset, these were 
elevated to 0.93 and SD was lowered to 0.011 to reflect more consistent 
performance. For both datasets generated by PGGANs to expand them, 
performance was also improved and accuracy and other measures were 
elevated to 0.92. Variability was also lowered to 0.011 SD.

For untrained VGG16 model results, significant improvements 
were obtained when using both DDPM- and PGGAN-augmented 
datasets on the original dataset. For the DDPM-augmented dataset, 
mean accuracy, F1 metric, recall, and precision were improved 
drastically to 0.92. SD dropped to 0.021, indicating a much stable result 
per run. There is a significant increase in both performance and stability 
obtained due to the DDPM-generated synthetic data.

Pretrained VGG16 exhibited stable performance on all datasets, 
and maximum stability and accuracy were obtained on the DDPM-
augmented dataset. Average accuracy was increased to 0.95. SD was 
kept low at 0.017 and accounted for highly consistent performance.
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 Figure 8
Accuracy and F1 scores across datasets

Custom CNN 0.95 ± 0.014 0.95 ± 0.011 0.95 ± 0.018
Untrained VGG16 0.86 ± 0.028 0.92 ± 0.008 0.89 ± 0.030
Pretrained VGG16 0.94 ± 0.019 0.94 ± 0.019 0.94 ± 0.018
Pretrained ResNet50 0.95 ± 0.017 0.95 ± 0.010 0.95 ± 0.016

Table 5
Accuracy ± SD: Random Sampling, Imbalanced Dataset

Custom CNN 0.90 ± 0.035 0.93 ± 0.011 0.92 ± 0.011
Untrained VGG16 0.86 ± 0.039 0.92 ± 0.018 0.88 ± 0.016
Pretrained VGG16 0.93 ± 0.007 0.95 ± 0.005 0.92 ± 0.019
Pretrained ResNet50 0.93 ± 0.015 0.93 ± 0.017 0.94 ± 0.002

Table 4
Accuracy ± SD: Random Sampling, Balanced Dataset
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Pretrained ResNet50 performed best on an augmented PGGAN 
dataset with an average accuracy of 0.94. SD was 0.002, indicating high 
stable performance on a number of runs.

2)  Imbalanced dataset:
Even though custom CNN’s performance was consistent for all 

datasets, DDPM augmentation had greater stability with lower SD than 
original and PGGAN-augmented datasets. PGGANs marginally raised 
variability, and so, DDPM is chosen for stability.

For the untrained VGG16 network on DDPM-augmented data, 
accuracy also increased significantly to 0.92. SD was also reduced to 
0.009 to capture more stable performance in each run and to reflect 
better stability than both original data and PGGAN-augmented data.

For both pretrained VGG16 and ResNet50 networks, the 
augmented datasets had smaller SD, indicating greater stability and 
reduced run-to-run performance variability.

4.3.2. Greedy K sampling
In the next experiment, we used the Greedy K Sampling method 

to create small and imbalanced datasets and this section highlights the 
impact of synthetic data augmentation on model performance (Tables 6 
and 7 and Figure 8).

The custom CNN model made a spectacular increase in accuracy 
and stability with the augmented datasets. Accuracy was increased to 
0.93 (DDPM) from 0.89 (original), and SD decreased to 0.011 from 
0.035 to display a stable improvement in performance.

For untrained VGG16, DDPM raised accuracy considerably 
from 0.85 (original) to 0.94 and decreased SD from 0.040 to 0.003, 
considerably higher stability with DDPM augmentation.

For pretrained VGG16, accuracy was increased from 0.95 to 0.96 
by using the DDPM-augmented dataset with a corresponding SD drop 
from 0.011 to 0.008, exhibiting increased stability.

For pretrained ResNet50, the DDPM dataset also maintained the 
original’s same level of high accuracy of 0.96 and no increased model 
stability was observed after adding artificially generated data.

1)  Imbalanced dataset:
For custom CNN models, both PGGANs and DDPM improved 

accuracy and PGGANs obtained the highest accuracy of 0.97 yet DDPM 
obtained higher stability. For untrained VGG16, both augmentations 
significantly increased accuracy to 0.92 and DDPM obtained better 
stability due to less variability.

For pretrained VGG16, PGGANs obtained a slightly higher 
accuracy of 0.96 and a SD of 0.005 indicating superior stability than 
that for the original dataset.

Finally, for pretrained ResNet50, PGGANs obtained a moderate 
improvement on both stability and accuracy.

Augmentation for robustness improvement using synthetic 
images is attributed to augmented diversity and balance injected in 
training data. For smaller and unbalanced datasets, models overfit and 
learn non-generalizable patterns due to unchanging data. Augmentation 
using synthetic images, specifically those generated by DDPM, 
increases diversity and robustness to training data by adding fresh and 
diverse samples to the training dataset better representing underlying 
data distribution. Overfitting is reduced, and the model is able to learn 
generalized characteristics that are not specific to data variations used to 
train it but to underlying data distribution. Additionally, augmentation 
by synthetic data helps in balancing datasets such that minority classes 
are represented well to facilitate better identification of rare states by 
the model by enhancing better robustness of it. Through these two 
processes, increased stability and accuracy are obtained in successive 
runnings and models are less affected by data variations and are 
therefore robust. Our code and implementation are also available in 
publicly available code repository [34].

5. Limitations and Future Work
1)  Limitations: This study is limited to a single public CXR dataset 

and a binary task (NORMAL vs. PNEUMONIA), without external 
cross-dataset validation. To reduce computational cost and enable 
a controlled DDPM–PGGAN comparison under small/imbalanced 
data, we generated images at 128 × 128 resolution ; this choice may 
limit fine-grained anatomical detail. DDPM is more computationally 
expensive than PGGANs in both training and inference. As with any 
synthetic augmentation, there is a risk of overfitting to the synthetic 
distribution or artifacts not present in the real data. We did not 
employ clinician review to clean or prune synthetic images prior 
to training in this study; by contrast, in related work on laryngeal 
lesion classification, two domain experts screened DDPM-generated 
images to remove unrealistic samples before model training [35]. 
Finally, each configuration was run five times; we report mean SD 
and refrain from null hypothesis testing, which may limit statistical 
power.

2)  Future work: We will (i) conduct cross-dataset (out-of-distribution) 
validation to assess generalization across institutions; (ii) investigate 
domain adaptation techniques to mitigate source–target shift; 
(iii) evaluate rare-disease and extreme-imbalance cohorts where 
augmentation is most impactful; (iv) study higher-resolution 
synthesis (e.g., 256–512 px) and quantify trade-offs using FID, 
SSIM, PSNR, and downstream accuracy; (v) extend beyond binary 
CXR to multi-class tasks and additional modalities (e.g., CT and 
MRI); and (vi) increase the number of runs (e.g., 10) to enable 
adequately powered hypothesis testing where appropriate.

Note: Models trained with DDPM-augmented data consistently 
achieved higher accuracy and F1 scores, especially in smaller and 
imbalanced datasets. The reduction in SD across runs indicates 
improved training stability and better generalization, with DDPM 
showing more consistent benefits compared with PGGANs.

6. Conclusion
This research used data augmentation by DDPM and PGGANs 

on small-sized and imbalanced medical image datasets formed by 
Random Sampling and Greedy K Sampling. In all the experiments, 
the inclusion of synthetic images increased the classification accuracy, 
improved generalization, and minimized variability across runs. 
Comparing the two networks, DDPMs universally beat PGGANs by 
generating data closer to the original distribution, resulting in low FID 
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Custom CNN 0.95 ± 0.014 0.95 ± 0.012 0.97 ± 0.012
Untrained VGG16 0.87 ± 0.028 0.92 ± 0.010 0.92 ± 0.011
Pretrained VGG16 0.96 ± 0.016 0.97 ± 0.007 0.96 ± 0.008
Pretrained ResNet50 0.95 ± 0.006 0.96 ± 0.006 0.96 ± 0.007

Table 7
Accuracy ± SD: Greedy K Sampling, Imbalanced Dataset

Custom CNN 0.89 ± 0.035 0.93 ± 0.011 0.93 ± 0.020
Untrained VGG16 0.85 ± 0.040 0.94 ± 0.003 0.87 ± 0.032
Pretrained VGG16 0.95 ± 0.011 0.96 ± 0.008 0.95 ± 0.008
Pretrained ResNet50 0.96 ± 0.004 0.96 ± 0.012 0.93 ± 0.018

Table 6
Accuracy ± SD: Greedy K Sampling, Balanced Dataset
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scores and producing a more stable behavior under varying classifiers 
and sampling regimes.

Random Sampling was the stronger alternative, providing 
constant increments toward accuracy and stability, whereas Greedy K 
Sampling contributed added diversity with higher variability. However, 
DDPM demonstrated great proficiency under both schemes, achieving 
a balance between fidelity and diversity that benefited models ranging 
from customized CNNs to pretrained models.

The general enhancements come from the added balance and 
diversity inherent to synthetic data that lessen overfitting and enhance 
minority class representation. These benefits were most apparent within 
untrained models, where synthetic augmentation enabled networks to 
learn more generalized characteristics and greater stability than when 
using real data.

Overall, generative models—particularly DDPM—are an 
efficient and dependable solution to the long-lasting problems of small-
sized and imbalanced medical datasets. Generative models improve 
accuracy, stability, and data variability, aiding the construction of 
stabler diagnostic models.
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