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Abstract: Missing modalities pose a significant challenge on multi-modal studies by disrupting the comprehensive analysis of diverse data 
sources. Deep learning addresses this issue by employing algorithms that can effectively infer and integrate the absent information, thereby 
ensuring robustness and accuracy of the models while increasing the study’s statistical power. This study aims to provide a systematic literature 
review on deep learning solutions for missing imaging modalities in multi-modal medical data analysis. Articles on PubMed, IEEE explore digital 
library, and Scopus were searched in the range from January 2013 to May 2025. This systematic search and review identified 234 articles. Adhering 
to the specified search criteria, 61 published studies were eligible. Among these, 47% employed image synthesis methods, 20% applied knowledge 
transfer methods, and 33% used latent feature space-based methods. The paper explores the research gaps and challenges associated within 
each of these categories. Additionally, this review paper illuminates the popular public datasets for multi-modal studies with missing modalities. 
Furthermore, it presents evaluation metrics and their key attributes. The review concludes with its limitations and a detailed discussion of current 
challenges and future directions in this domain.
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1. Introduction
Over recent decades, medical advances have made it possible 

to generate abundant medical data for individual patients from various 
resources (e.g., imaging systems, blood tests, and histopathology data). 
Medical data obtained from different resources are referred to as multi-
modal data. Each data modality represents a different type of data, such as 
images from medical imaging scans, text from electronic health records 
(EHR), histopathologic data from tissue specimens, or genetic data 
[1]. Advanced neural network methods have been applied to interpret 
these modalities of medical data generated from diverse sources. These 
methods aim to leverage the complementary information presented in 
different modalities while also utilizing the unique strengths of each 
modality to improve model performance and enhance understanding of 
complex systems [2]. Multi-modal methods have been applied across 
various clinical domains [3]. Combining multimodal information 

enables healthcare professionals to develop a holistic view of a patient’s 
health condition, aiding in diagnosis, treatment planning, and/or 
therapy monitoring [4]. For instance, in neuroimaging, the integration 
of structural Magnetic Resonance Imaging (MRI) with functional 
MRI and diffusion MRI provides detailed information about brain 
structure, function, and microstructure, enhancing the management of 
neurological disorders [5]. Similarly, in oncology, combining data from 
Computed Tomography (CT), MRI, and Positron Emission Tomography 
(PET) scans improves tumor analysis and treatment response and 
assessment, enabling personalized cancer care [6]. Furthermore, multi-
modal methods drive medical research by exploring complex biological 
processes, leading to innovative diagnostic and therapeutic advances 
[2]. Multi-modal data fusion algorithms can fully take advantage 
of informative and abundant features in cancer survival prediction 
[7], while multi-modal ensemble techniques are suitable for decision 
making in medical datasets [8].

One of the most significant challenges to the adoption of multi-
modality is the high prevalence of missing data. In real-world clinical 
settings, it is not uncommon for certain imaging modalities to be 
unavailable due to equipment limitations, patient-related factors, or 
technical issues. Additionally, artifacts or inadequate capture of specific 

© The Author(s) 2025. Published by BON VIEW PUBLISHING PTE. LTD. This is an open access article under the CC BY License (https://creativecommons.org/licenses/	
by/4.0/).

1

*Corresponding author: Lili He, Department of Radiology, Cincinnati Children’s 
Hospital Medical Center, University of Cincinnati College of Medicine, USA. Email: 
Lili.He@cchmc.org
†Co-first author

https://doi.org/10.47852/bonviewAIA52026392
https://orcid.org/0009-0007-3742-0032
https://orcid.org/0009-0002-6712-2937
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:Lili.He%40cchmc.org?subject=


Artificial Intelligence and Applications Vol. 00  Iss. 00  2025

regions of interest within an image further complicates the analysis 
process. Traditional methods for dealing with missing data often entail 
strategies such as complete case analysis, which assumes that the data 
are free of missing data and only uses cases with complete datasets 
for analysis [9], or simplistic imputation techniques such as mean 
substitution or last observation carried forward [10]. Nevertheless, these 
methodologies exhibit significant shortcomings. Complete case analysis 
reduces the study’s statistical power and may lead to biased results if 
data are not missing at random, while simple imputation methods may 
introduce inaccuracies and underestimate variability, affecting the 
reliability of subsequent analyses. The assumption that the dataset has 
no missing data leads to models only working well theoretically and 
cannot be adapted to real-world scenarios. Moreover, these approaches 
fail to fully utilize available information, potentially limiting the insights 
gained from multi-modal data integration. Whereas, in deep learning-
based approaches missing modalities will result in an insufficient 
dataset for training [11]. This leads to serious problems of decreased 
model accuracy, potential biases, and unreliable predictions, ultimately 
compromising the effectiveness of the model in clinical applications.

Deep learning methods have provided an alternative solution 
to the missing modality problem [12]. Their inherent capability to 
discern intricate patterns in data renders it highly suitable for managing 
the complexities of high-dimensional and heterogeneous multiple 
modalities, eliminating the need for manual feature engineering [13]. 
They can automatically extract and integrate relevant features from 
multimodal MRI, CT, and PET scans for accurate disease diagnosis 
without the need for manual feature extraction [14]. Besides, their 
adaptability ensures precise imputation of missing data, with the 
utilization of extensive datasets bolstering generalization across varied 
clinical contexts. For example, in the EHR, deep learning models exhibit 
proficiency in facilitating more accurate imputation by effectively 
learning intricate patterns and correlations within the patients’ data, 
which enables precise predictions and the customization of treatments 
to the unique needs of individual patients [15]. Furthermore, they 
adeptly incorporate contextual cues and spatial relationships within 
multiple modalities, enhancing data fidelity and facilitating thorough 
analyses. For instance, in pathology slides, deep learning models can 
simultaneously analyze histopathological images alongside clinical 
data and genetic information to deliver a thorough understanding of 
disease progression and treatment response [16].

The past few years have witnessed heightened focus on utilizing 
deep learning methods to address the issue of missing data in multi-modal 
MRI-based analysis, with published surveys discussing the missing 
modality issue of MRI data [17, 18]. However, these surveys typically 
group methods based on technical implementation details or specific 
modalities and mainly focus on the brain tumor segmentation task, which 
makes cross-task generalization less clear. By contrast, our framework 
emphasizes the underlying strategy for handling missing modalities, 
providing a broader and more unifying perspective. Therefore, in this 
work, we provide a systematic literature review focusing on all types 
of imaging modalities and applicable to all tasks within the medical 
domain like image quality analysis, classification, prediction, and 
segmentation. Such a review will furnish invaluable insights into the 
available solutions, limitations, and optimal practices associated with 
deploying deep learning strategies for addressing missing data issues 
in multi-modal medical data analysis. In this review, we summarize 
the deep learning-based methods which address the missing modality 
problem. In that, we target methods that specifically provide solutions 
for missing images. We aim to cover every contributory method in the 
last decade. This survey contributes to the following:

1)  Systematically review missing modality deep learning techniques in 
the last 10 years which have provided solutions to missing modality 
issues in the context of multi-modal medical image analysis.

2)  Categorize the identified solutions based on their approach and 
present their benefits and limitations. 

3)  Summarize datasets and assessment criteria applied in the studies.
4)  Analyze the main findings and outline future directions for research 

in this domain. 

The remainder of the review is organized as follows: Section 2 
outlines the review planning; Section 3 presents key findings; Section 4 
discusses and interprets the results; Section 5 states limitations in our 
research; Section 6 highlights future directions; and Section 7 makes 
the conclusion of the review.

2. Review Planning
This section focuses on organizing the review: clearly specifying 

the research questions relevant to the study, detailing the information 
sources, and outlining the inclusion criteria.

2.1. Key research questions
1)  What approach is proposed to address the missing modality problem? 
2)  Which dataset is used?
3)  Under which methodological category does the proposed approach 

fall? 
4)  What pre-processing approaches are used?
5)  What criteria are used for evaluation?
6)  Is the code publicly available?
7)  Does the article carry out external validation?

2.2. Data sources and search strategy
Our study followed the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines [19]. We searched 
both general databases (Scopus, PubMed) and a subject-specific 
database (IEEE Xplore) to ensure broad biomedical coverage while 
also capturing technical contributions often published in engineering 
venues. The search strategy was developed for the purpose of reviewing 
deep learning methods for missing modalities in multimodal medical 
imaging. Queries combined terms related to multimodality, missing data, 
clinical tasks (e.g., classification and segmentation), medical imaging 
context, and deep learning techniques. This blended approach allowed 
us to balance breadth and depth and ensured that both methodological 
and application-oriented studies were included. The queries used for the 
respective sources of publications spanning from January 2013 to May 
2025 have been listed in Table 1.

2.3. Inclusion criteria
Inclusion requirements were: (a) original research article; (b) 

published within January 2013 and May 2025; (c) published in English 
language; (d) required to be a multi-modal study involving different 
modalities of medical images, or imaging and any other non-imaging 
modality; (e) proposing solutions to missing imaging modality; (f) 
proposing deep learning-based solutions; and (g) applied to any 
classification, prediction, or segmentation task in medical domain.

Specifically, papers’ titles and abstracts were sought on each 
of the previously mentioned information sources using the respective 
search queries as given in Table 1. Figure 1 presents the flow diagram 
based on the PRISMA guidelines. In total, 234 records were initially 
identified. Following the first exclusion phase, 210 remained for abstract 
screening. Of these, 132 met the criteria for full-text review. Finally, 61 
studies were retained for this review, with 29 image synthesis methods, 
12 knowledge transfer methods, and 20 latent feature space-based 
methods. The resulting 61 studies were cross-checked by a second 
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Figure 1
Flow diagram for retrieved articles based on the PRISMA guidelines

Source of information Query used
PubMed1 ((multimodal) OR (fusion) OR (ensemble) OR (feature integration) OR (multiparametric)) AND ((missing data[Ti-

tle/Abstract]) OR (missing modality[Title/Abstract]) OR (incomplete data[Title/Abstract])) AND ((classification 
[Title/Abstract]) OR (regression[Title/Abstract]) OR (prediction[Title/Abstract]) OR (diagnosis[Title/Abstract]) OR 
(segmentation[Title/Abstract])) AND ((medical image) OR (medical application)) AND (deep learning)

IEEE explore digital 
library2

Scopus3 ( ALL ( multimodal ) OR ALL ( fusion ) OR ALL ( ensemble ) OR ALL ( feature_integration ) OR ALL ( multi-
parametric ) ) 
AND ( TITLE-ABS-KEY ( missing AND data ) OR TITLE-ABS-KEY ( missing AND modality ) OR TITLE-ABS-
KEY ( incomplete AND data) ) 
AND ( TITLE-ABS-KEY ( classification ) OR TITLE-ABS-KEY ( regression ) OR TITLE-ABS-KEY ( prediction 
) OR TITLE-ABS-KEY ( diagnosis ) OR TITLE-ABS-KEY ( segmentation ) ) 
AND ( ALL ( medical_image ) OR ALL (medical_application ) ) 
AND ( ALL ( deep_learning)
AND ( LIMIT-TO ( SUBJAREA,”COMP” ) ) AND ( LIMIT-TO ( DOCTYPE,”ar” ) OR LIMIT-TO ( DOC-
TYPE,”cp” ) )

Table 1
Search query

1(https://pubmed.ncbi.nlm.nih.gov/)
2(https://ieeexplore.ieee.org/Xplore/home.jsp)
3(https://www.scopus.com/)

https://pubmed.ncbi.nlm.nih.gov/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com/
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reviewer, and disagreements were resolved through team discussion 
until consensus was reached.

2.4. Data extraction
For each included study, we extracted key information using a 

structured template, covering publication year, dataset(s), imaging 
modalities, methodological approach, preprocessing steps, model 
architecture, evaluation metrics, performance results, code availability, 
and use of external validation. Data extraction was carried out by one 
reviewer and verified by a second. To synthesize findings, studies 
were grouped into three methodological categories (image synthesis, 
knowledge transfer, and latent feature space–based methods). Within 
each category, results were compared in terms of performance, 
robustness to missing modalities, reproducibility (code availability, 
external validation), and task type. Evidence was summarized 
narratively and with structured tables (Tables 4–6), alongside a 
standardized comparison table (Table 8) highlighting core attributes 
such as performance, robustness, and reproducibility.

3. Results
With above search strategy, we retrieved 234 articles published 

between January 2013 and May 2025. After manually removing articles 
that did not meet the inclusion criteria and searching the bibliography 
of eligible articles, 61 articles met the inclusion criteria. The results are 
presented as follows: First, we outline the datasets utilized across the 
articles included in this review. Then, we present a compilation of the 
61 research articles, organized based on the established categories and 
finally we summarize the evaluation metrics used by these studies.

3.1. Dataset
We list all the public multimodal datasets used by the 61 articles 

included in this review in Table 2. For each dataset we include the online 
location to access the dataset, the dataset details in terms of number of 
subjects, and the modalities available with the dataset.

3.2. Deep learning methods with missing imaging 
modality

The purpose of this section is to investigate the questions raised in 
the review planning process in Section 2. Without considering specific 
tasks (e.g., classification, regression, or segmentation), multi-modal 
deep learning models take multiple modalities of imaging data, and 
extract the high-level feature representations (i.e., feature embeddings).

In this work, we categorized all reviewed deep learning methods 
into (i) image synthesis methods, (ii) knowledge transfer methods, 
and (iii) latent feature space-based methods. Figure 2 illustrates the 
categories presented in this review. Briefly, image synthesis methods 
synthesize the missing imaging modalities with existing ones, 
knowledge transfer methods focus on establishing new architectures/
deep learning models to transfer knowledge, and latent feature space-
based methods work in the shared feature sub-space. We present all 
61 articles identified in this review based on these three categories. 
Table 3 presents all identified papers under each category, with 29 
studies in image synthesis methods, 12 studies in knowledge transfer 
methods and 20 studies in latent feature space-based methods. Figure 3 
summarizes their distribution in a taxonomy diagram. In Tables 4–6, 
for each category of methods, we provided the preprocessing pipeline 
of the method, the basic architecture of the deep learning model, the 
main context of the proposed solution for handling missing modality, 
the medical task performed, and the evaluation metrics used to assess 
the performances. To show the accessibility of the methods, we also 

mention code availability of the proposed solution and the use (or 
absence) of external validation.

3.2.1. Image synthesis methods
Image synthesis methods aim at recovering the missing imaging 

modalities from the available imaging modalities. These methods 
typically were developed using Generative Adversarial Networks 
(GAN) [97] and its variants [98]. The synthesis models consist of two 
subnetworks: one generator that synthesizes the missing modalities 
from available ones, and one discriminator that judges whether the 
input image is real or synthesized by generator [99]. These subnetworks 
are trained simultaneously under an adversarial loss. As a result, the 
generator’s performance is improved to create satisfying images as 
compensation to missing ones. To improve the quality of synthesized 
image, multi-modal learning techniques are applied in the generator to 
correlate features from multiple modalities [40]. The synthesized images 
can either serve as supplementary training data to help the downstream 
models better understand the tasks or be used to augment training 
data, in order to improve the models’ robustness and generalization 
capabilities.

Despite the obvious advantage of recovering missing imaging 
modality information directly, the training cost of GAN is relatively 
high due to their model complexity. What is more, the training of GAN 
will become unstable when encountering issues like mode collapse 
[100], resulting in poor synthesis performance. Table 4 gives a detailed 
list of all studies included in this review that use image synthesis 
approaches.

3.2.2. Knowledge transfer methods
Knowledge transfer methods first develop a source model 

that encodes all data modalities. The representations learned from 
the source model are then transferred to the target model, which has 
incomplete modalities as input. This target model is then utilized for 
the downstream task [68]. There are two ways to transfer the learned 
modalities from the source model to the target model, namely, using 
the knowledge distillation method [65], or by using domain adaptation 
[66]. 

Knowledge distillation involves training the target model in 
accordance with the source model. First, the source model with a larger 
number of parameters is trained with the full modalities until it achieves 
high performance on the target task. The target model of less complexity 
learns from the source model by capturing the encoded knowledge in 
its outputs and then is trained with incomplete datasets. The forward 
propagation is performed on both models while the back propagation 
is only performed on the target model. The output of the source model 
can be used as soft labels to guide the training of target model [103]. 
The discrepancy between the target model’s predictions and the soft 
labels of the source model is measured by the target’s distillation loss, 
which is combined with traditional learning loss in the training of the 
target model.

Domain adaptation methods are typically used in transfer 
learning approaches for handling missing modalities to uncover the 
common latent features across the source and target domains. The 
source model encodes complete modalities, whereas the target model 
encodes the incomplete modalities separately, and features are extracted 
from both models. A discriminator is used to bridge the domain gap 
between the output of the source and target model. A similarity loss is 
used with the discriminator to map the features to a similar distribution, 
and a consistency loss is applied to minimize the distance between the 
distributions [104]. 

Knowledge transfer methods outperform other non-synthesizing 
methods in multiple conditions of missing modalities and are capable 
of transferring to other tasks [67]. Nevertheless, it could be affected 
by limited availability or imbalanced datasets, resulting in difficulty 
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Multi-modal datasets
Dataset Online link Subjects Modalities
Alzheimer’s Disease 
NeuroImaging Initiative 
(ADNI) [20]

https://adni.loni.usc.edu/ 200 elderly cognitively normal, 
400 Mild Cognitive Impairment 
(MCI), and 200 Alzheimer’s 
disease (AD) subjects

Clinical, genetic, MRI, PET, 
biospecimen

Brain Tumor Segmenta-
tion Challenge (BraTS 
(2021)) [21]

http://braintumorsegmentation.org/ 2040 glioma cases (8000 
Multiparametric MRI scans)

MRI modalities: T1, T1 
post-contrast (T1c), T2, T2 
Fluid-Attenuated Inversion 
Recovery (FLAIR)

Ischemic Stroke Lesion 
Segmentation (ISLES) 
[22]

https://www.smir.ch/ISLES/Start2015 36 cases on subtask: sub-
acute ischemic stroke lesion 
segmentation (SISS)

MRI modalities: T1, T1c, 
T2, T2 FLAIR, Diffusion-​
weighted Imaging (DWI)

IXI Brain Development https://brain-development.org/ixi-dataset/ Nearly 600 scans from normal, 
healthy subjects

MRI modalities: T1, T2, 
Proton Density (PD), 
Magnetic Resonance 
Angiography (MRA), DWI

Open Access Series of Im-
aging Studies (OASIS-3) 
[23]

https://sites.wustl.edu/oasisbrains/home/
oasis-3/

1378 participants collected across 
several ongoing projects through 
the WUSTL Knight ADRC over 
the course of 30years, include 755 
cognitively normal adults and 622 
individuals at various stages of 
cognitive decline ranging in age 
from 42-95yrs.

MRI modalities: T1, T2, 
T2FLAIR, etc.
PET, CT

The Cancer Genome Atlas 
Program (TCGA) 

https://www.cancer.gov/ccg/research/ge-
nome-sequencing/tcga

Including Kidney Clear Cell 
Carcinoma (KIRC) (385 cases), 
Liver Hepatocellular Carcinoma 
(LIHC) (287 cases), Esopha-
geal Carcinoma (ESCA) (153 
cases), Lung Squamous Cell 
Carcinoma (LUSC) (438 cases), 
Lung Adenocarcinoma (LUAD) 
(452 cases), and Uterine Corpus 
Endometrial Carcinoma (UCEC) 
(387 cases), etc.

Genomic data, MRI, Region 
Of Interest (ROI) images, 
diagnostic Whole Slide 
Imaging (WSI) images, 
clinical records, etc.

MIMIC Chest X-ray 
(MIMIC-CXR) [24]

https://physionet.org/content/mim-
ic-cxr/2.0.0/

65,379 patients presenting to the 
Beth Israel Deaconess 
Medical Center Emergency De-
partment between 2011–2016

Clinical time series data, 
X-ray

Parkinson's Progression 
Markers Initiative (PPMI) 
[25]

https://www.ppmi-info.org/access-data- 
specimens/download-data/

400 recently diagnosed Parkinson 
Disease and 200 healthy subjects

T1 MRI, Diffusion Tensor 
Imaging (DTI) images, 
Single Nucleotide Polymor-
phism (SNP)

LONI Probabilistic Brain 
Atlas (LPBA40) [26]

https://loni.usc.edu/research/atlases 40 healthy, normal subjects T1 MRI

Synapse [27] https://www.synapse.org/#!Syn-
apse:syn3193805/wiki/217753

34 subjects for MRI and 30 sub-
jects for CT

MRI, CT

Combined (CT-MR) 
Healthy Abdominal Organ 
Segmentation (CHAOS) 
[28]

https://chaos.grand-challenge.org/ 80 patients, 40 of them (22 males, 
18 females, ages between 18 and 
63) went through a single CT 
scan and 40 of them (23 male, 17 
female, ages between 18 and 76) 
went through MR scans

MRI, CT

Chinese Brain Molecular 
and Functional Mapping 
(CBMFM) [29]

Upon request 646 subjects from 18 to 82 years 
old collected from four medical 
centers

MRI modalities: T1, T2, 
T2FLAIR

Table 2
Summary of the datasets used in the papers included in the review

https://adni.loni.usc.edu/
http://braintumorsegmentation.org/
https://www.smir.ch/ISLES/Start2015
https://brain-development.org/ixi-dataset/
https://sites.wustl.edu/oasisbrains/home/oasis-3/
https://sites.wustl.edu/oasisbrains/home/oasis-3/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://www.ppmi-info.org/access-data-specimens/download-data/
https://www.ppmi-info.org/access-data-specimens/download-data/
https://loni.usc.edu/research/atlases
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753
https://chaos.grand-challenge.org/
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in training or a decrease in performance [71]. Table 5 gives a 
comprehensive list of all the studies covered in this review that use 
knowledge transfer approaches.

3.2.3. Latent feature space-based methods
Latent feature space-based methods offer a typical solution 

to handling missing modalities by focusing on deriving meaningful 
features from existing modalities alone, bypassing intermediate 
processes such as imputation [106] or synthesis [107]. Latent feature 
space-based methods involve independently learning and embedding 
of the input image into a latent space for each modality. Each of the 
modalities is encoded respectively to extract its specific feature 
representations. Subsequently, these modalities are translated into 
a shared latent space. Fusion strategies such as mean and variance 
operations are utilized to establish one common latent embedding for 
all modalities, so that missing features can be recovered [96]. Once the 
shared representation is obtained, a decoder is used to reconstruct the 
data from it to perform the downstream tasks. Such methods are robust 
to missing imaging modality by learning a shared representation of the 
available modalities [81]. 

However, projecting data into a latent space can lead to 
information loss from the original modalities. This loss can affect the 
overall performance of the model, particularly if the missing modalities 
contain critical information [78]. Also, the learned latent vectors of 

individual modalities from independent encoders are fused to create 
a shared representation. However, this assumes that each modality is 
equally informative and contributes equally to the final task, which may 
not always be true. Besides, interpreting the results of models based 
on latent feature space methods can be challenging, especially when 
the relationships between modalities are complex or non-linear. Table 
6 gives a detailed list of all the studies included in this review that use 
latent feature space-based approaches.

3.3. Evaluation metrics
In this section, we review the evaluation metrics applied for 

validating the performances of the methods in missing modalities 
scenarios. In classification tasks, accuracy, sensitivity, specificity, and 
area under the curve (AUC) are the most popular choices for assessment. 
Dice similarity coefficient (DSC) is widely used for measuring the 
segmentation results, while peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM) intuitively display the 
quality of synthesized images of missing modalities. Table 7 gives a list 
of all the evaluation metrics used in the articles included in this review 
with the following attributes for each: the name and abbreviation of 
the metric, the formulation to compute the metric, and the usage of the 
metric.

6

Multi-modal datasets
Dataset Online link Subjects Modalities
Early life adversity biolog-
ical embedding (eLABE)

Upon request 127 neonates (postmenstrual 
age=41.1 ± 1.5 weeks, female N = 
59, white N = 42)

MRI modalities: T1, T2, 
resting state functional MRI 
(rs-fMRI)

Environmental influences 
on child health outcomes 
(ECHO) [30]

Upon request including 10 infants (age=41.2 ± 
1.9 weeks, female N = 5, white 
N = 8)

MRI modalities: T1, T2, 
rs-fMRI

Multiple Sclerosis with 
the MS Grand Challenge 
(MSGC) [31]

http://www.ia.unc.edu/MSseg/ 45 cases, 25 from the Boston 
Children's Hospital (CHB) and 
20 from the University of North 
Carolina (UNC)

MRI modalities: T1, T2, 
T2FLAIR

Relapsing Remitting 
Multiple Sclerosis 
(RRMS)

Upon request 300 RRMS patients (mean age 
= 37.5, surface distance (SD) = 
10.0)

MRI modalities: T1, T2, 
T2FLAIR, T1c

Chinese Longitudinal 
Aging Study (CLAS) [32]

Upon request 1068 elderly Chinese (42.2% 
male), mean age of 72.8 years 
(SD = 8.5) completed a compre-
hensive cognitive, psychosocial 
and mental health assessment

T1 MRI

The Australian Imaging, 
Biomarkers and Lifestyle 
(AIBL) [33]

Upon request 1112 subjects, 211 AD, 133 MCI, 
768 healthy controls

T1 MRI, PET

UNC/UMN Baby 
Connectome Project [34]

Upon request 500 typically developing infants, 
toddlers, and preschool-aged 
children between birth and 5 years 
of age

MRI modalities: T1, T2, 
DWI, rs-fMRI

MIDAS [35] Upon request 34 healthy subjects, ranging in age 
from 19 to 72 and of both sexes, 
27 tumor cases included thirty 
lesions

MRI modalities: T1, T2, 
MRA

Table 2
(Continued)

http://www.ia.unc.edu/MSseg/
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4. Discussion
This paper offers a systematic review of deep learning methods 

dealing with missing imaging modalities in medical analysis in terms 

of the most popular public datasets used, the different types of deep 
learning approaches developed, and the most common metrics for 
evaluating the performance of the approaches. Though prior works have 
reviewed deep learning approaches for brain tumor segmentation tasks 
under the condition of missing MRI modalities, a systematic review 
that includes deep learning methods under the circumstance of missing 
medical imaging modalities regardless of the tasks to be performed, 
has not been published yet. We identified 61 papers in this review that 
focus on deep learning-based solutions that we categorized into image 
synthesis methods, knowledge transfer methods, and latent feature 
space-based methods. Unlike bibliometric systematic reviews, which 
primarily analyze publication volume, author networks, or keyword 
co-occurrence, our review uncovers trends at the methodological level. 
These include shifts in the types of deep learning models employed 
(e.g., increasing use of U-Nets and transformers), the prevalence of 
specific evaluation metrics across tasks (e.g., SSIM for image synthesis, 
DSC for segmentation, and AUC for classification), and reproducibility 
practices (e.g., proportion of studies with external validation or public 
code). We therefore provide a systematic methodological synthesis 
rather than a bibliometric mapping, which we believe is more directly 
useful to the medical imaging community.

In the last decade, neural network approaches have gradually 
been recognized for their capabilities of tackling missing modalities 
in medical analysis. Overall, we find that both latent feature space-
based methods favored for their straightforward deployment, and 
image synthesis methods due to the popularity of GAN, are the more 
favorable techniques for dealing with missing modalities. Knowledge 
transfer methods show noteworthy performance in cases where multiple 
modalities of the data are missing. 

Firstly, our results show that 47% of the reviewed papers use 
image synthesis methods. 17% of articles focus on methods that are 
implemented for the segmentation purpose [44, 46, 55, 56, 64], 38% 
are implemented for the classification tasks [37, 39–41, 47, 50, 53, 
57–59, 63], and 4% for the prediction use [48]. 41% of the reviewed 
papers under image synthesis-based methods focus on the evaluation 
of the quality of synthesized images [36, 38, 42, 43, 45, 49, 51, 52, 
54, 60–62]. All the reviewed image synthesis methods utilize GAN or 
its extension framework, consisting of one or two generators and one 
discriminator. However, the architecture of the generator to synthesize 
images for the recovery of the missing modalities varies. Nearly half of 
the GAN-based synthesis networks apply CNN-based structure as the 
generator. Nevertheless, CNN-based generator has several drawbacks, 
such as fixed input–output channels, lack of interpretability [45], and 
loss of low-level spatial information [49]. U-net, which is capable of 
channel-wise feature fusion, wins more favor in the choice of generator. 
It allows region-specific feedback, enhancing the generator’s learning 
process and leading to superior image synthesis quality. According to 
our review, U-net is utilized as the generator in 36% of the papers and 
has been especially popular in the last three years. It is worth mentioning 
that 12% of the papers combine CNN or U-net with the transformer in 
the image synthesis network. Leveraging the attention mechanism, the 
transformer performs efficient and accurate synthesis by capturing cross-
modal correlations within input modalities while removing redundant 
information, and the interpretability of the model could be increased by 
visualizing the attention score. In [44], an efficient generator is designed 
by the combination of transformer and CNN, enabling the model to 
have global sensitivity as well as detailed local modeling. In terms of 
the discriminator, almost all the papers choose CNN. Only a few papers 
attempt to make effective improvements on the discriminator, such as 
the task-induced design of the discriminator aimed at integrating image 
synthesis with downstream tasks [53]. 

Next, 20% of the reviewed papers use knowledge transfer 
methods, which have garnered increased attention among researchers 
in recent years. 58% of these methods are implemented to perform 

7

Figure 2
Illustration of methods by category. (a) With complete modalities, 
multimodal images are directly used for feature extraction. When 
modalities are missing, three strategies are applied: (b) synthesis 

methods generate absent modalities from available ones, (c) 
knowledge transfer leverages models trained on complete data to 

guide models trained on partial data, (d) latent space methods fuse 
embeddings into shared representations

 Figure 3
Taxonomy diagram for retrieved articles in this study

Category References
Total 

number
Image synthesis 
methods

[36], [37], [38], [39], [40], 
[41], [42], [43], [44], [45], 
[46], [47], [48], [49], [50], 
[51], [52], [53], [54], [55], 
[56], [57], [58], [59], [60], 

[61], [62], [63], [64]

29

Knowledge transfer 
methods

[65], [66], [67], [68], [69], 
[70], [71], [72], [73], [74], 

[75], [76]

12

Latent space-based 
methods

[77], [78], [79], [80], [81], 
[82], [83], [84], [85], [86], 
[87], [88], [89], [90], [91], 
[92], [93], [94], [95], [96]

20

Table 3
Methodological categories identified in this review and their 

corresponding studies
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Evaluation metrics
Metric Formulation Usage
Accuracy (ACC) Given true positive (TP), true negative (TN), 

positive (P) and negative (N),
ACC ranges from 0 to 1 (or in percentage terms), with the larg-
er value showing that the classification result is more precise.

Sensitivity (SEN)/
Recall ((REC)

Given true positive (TP) and positive (P), SEN ranges from 0 to 1, with the larger value showing better 
performance in correctly identifying positive cases

Specificity (SPE) Given true negative (TN) and negative (N), SPE ranges from 0 to 1, with the larger value showing better 
performance in correctly identifying negative cases

Area under the 
curve (AUC)

where FPR(T): T →x, the x-axis of ROC curve, 
denotes false positive rate, TPR(T): T →y(x), the 
y-axis of ROC curve, denotes true positive rate.

AUC ranges from 0.5 to 1, with the larger value showing that 
the model is more likely to arrange positive instance in front of 
negative instance (i.e. has a better ability of prediction).

Precision (PRE) Given true positive (TP) and false positive (FP), Higher precision values indicate better model performance in 
correctly identifying positive instances.

Average precision 
(AP)

where n is the total number of retrieved items, P(k) 
is the precision at cut-off k, ΔR(k) represents the 
change in recall from the previous cut-off to the 
current cut-off, δ(k) is an indicator function that is 1 
if the item at position k is relevant, and 0 otherwise.

Higher AP values indicate better model performance, with 1 
representing perfect precision and recall, and 0 representing no 
relevant items retrieved.

F1 score (F1S) Given Precision (PRE) and Recall (REC), F1 Score is widely used in binary classification tasks, espe-
cially when the classes are imbalanced. It ranges from 0 to 1, 
where 0 indicates poor performance, suggesting either low 
precision or low recall, 1 indicates perfect precision and recall. 

Dice similarity 
coefficient (DSC)

Given two sets A and B DSC is commonly used image segmentation, where the goal is 
to compare the similarity between two sets of regions. Higher 
Dice coefficient values indicate better agreement between 
the segmented regions and the ground truth, indicating better 
segmentation performance.

Balanced accuracy 
(BAC)

Given true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN),

BAC is used to evaluate the performance of binary classifi-
cation models, particularly with imbalanced datasets. Higher 
BAC values indicate better model performance, with 1 rep-
resenting perfect classification accuracy and 0.5 representing 
random classification.

Balanced 
classification 
accuracy (BCA)

Given Sensitivity (SEN) and Specificity (SPE) BCA is also used to evaluate the performance of binary 
classification models, particularly with imbalanced datasets. 
Higher BCA values indicate better model performance, with 1 
representing perfect classification accuracy and 0 representing 
random classification.

Matthews 
correlation 
coefficient (MCC)

Given true positive (TP), false positive (FP), true 
negative (TN) and false negative (FN),

Higher MCC values indicate better classifier performance, 
with 1 representing perfect agreement between prediction and 
observation, 0 indicating random prediction, and -1 indicating 
total disagreement.

Mean absolute error 
(MAE)

where n is the number of samples,  is sample I’s 
predicted value, and  is sample I’s true value

MAE is widely used as a measure of the accuracy of regression 
models. Lower MAE values indicate better model performance, 
as they suggest smaller errors between predictions and actual 
values.

Mean relative 
absolute error 
(MRAE) where n is the number of samples,  is sample I’s 

predicted value, and  is sample I’s true value

In [91], MRAE is the mean of the absolute error divided by 
the corresponding chronological age. A lower MRAE indicates 
better model performance.

Table 7
Evaluation metrics used for evaluation of methods dealing with missing modalities
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Evaluation metrics
Metric Formulation Usage
Mean squared error 
(MSE)

where n is the number of samples,  is sample I’s 
predicted value, and  is sample I’s true value

MSE is commonly used for model evaluation, model compari-
son, and model selection in regression tasks. Lower MSE val-
ues indicate better model performance, as they suggest smaller 
errors between predictions and actual values.

Normalized mean 
squared error 
(NMSE) where n is the number of samples,  is sample I’s 

predicted value,  is sample I’s true value and  is 
the mean of true values.

In [51], NMSE was used to measure the model's ability of im-
age synthesis. A lower NMSE value indicates a better synthesis 
quality.

Root mean squared 
error (RMSE)

where n is the number of samples,  is sample I’s 
predicted value, and  is sample I’s true value

In [78], RMSE was used to measure model's ability of impu-
tation. A smaller RMSE value indicates a better imputation 
performance.

Peak signal-to-noise 
ratio (PSNR)

Given the maximum possible pixel value (MAX) 
and Mean squared error (MSE) between the ground 
truth and synthesized images,

PSNR usually ranges from 20 to 50 (dB), with a larger value 
showing that the synthesized (reconstructed) image's quality is 
better.

Structural similarity 
index measure 
(SSIM)

μ μ σ
μ μ σ σ

where C1 and C2 are constants to stabilize the 
division with weak denominator, μ  is the mean of 
image x, σ�  is the standard deviations of image x, 
σ  is the covariance of x and y

SSIM value is a decimal between -1 and 1, where 1 indicates 
perfect similarity, 0 indicates no similarity, and -1 indicates 
perfect dissimilarity. A higher SSIM value suggests a higher 
similarity between the images.

Mean structural 
similarity index 
measure (MSSIM)

Given Structural similarity index measure (SSIM), 

where x and y are the compared images, m and n are 
the dimensions of the images, and x_ij, y_ijare the 
corresponding patches in images x and y.

In [52], a higher MSSIM value indicates higher similarity 
between images.

Learned perceptual 
image patch similar-
ity (LPIPS) [117] where x and y are two images, N is the number 

of patches, C is the number of channels,  is the 
feature extraction function, R is scaling factor.

In [45], LPIPS was utilized to capture the perceptual similar-
ity between images. A lower LPIPS value indicates improved 
perceptual quality.

Feature similarity 
index measure 
(FSIM) [118] where x and y are two images, s and f represents the 

local similarity and the structural feature similarity 
between corresponding image patches ,  respec-
tively.

In [43], a higher FSIM value indicates higher similarity be-
tween the compared images.

Maximum mean 
discrepancy (MMD)

where ϕ represents for feature map, xi and yi are 
from distribution ℱ and 𝒢 respectively, while n and 
m are numbers of subjects of distribution ℱ and 𝒢 
respectively.

In [53], a lower MMD value indicates better image quality.

Table 7
(Continued)
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segmentation tasks [65, 71–76], and 42% are performed on classification 
tasks [66–70]. All the methods for segmentation purpose choose U-net, 
while for classification the choice of network ranges from CNNs to 
GAN. The difficulty of designing the network, the high training cost of 
the source model as well as the interpretability of the model have always 
been the major concern concerns for knowledge transfer methods [119]. 
Even though none of the reviewed papers completely overcame these 
hindrances, some of them made notable progress. In [71] authors 
disentangled features on the modality level and employed a contrastive 
learning-based learning scheme in the spatial and frequency domain to 
exploit more explicit relations between modalities. Similarly in [66], a 
contrastive learning-based loss was applied to direct the optimization of 
the target model from the source model. The authors in [68] combined 
image synthesis models with domain adaptation by implementing two 
GAN to generate missing modalities and transfer knowledge within the 
learned feature space.

Thirdly, our results show that 33% of the reviewed papers use 
latent feature space-based methods. Among them, 55% are implemented 
for the purpose of segmentation [77, 81, 84, 86–89, 92–94, 96], 20% are 
implemented for classification tasks [79, 80, 85, 90], and the rest are 

implemented for various uses, such as prediction [78, 82, 83], missing 
modality imputation [91] and synthesized image evaluation [95]. Of the 
reviewed latent feature space-based methods, 80% rely on convolution 
neural networks (CNNs) to extract latent features. Specifically, 
around 50% of them use U-net, which has a comprehensible structure 
and performs well on the segmentation tasks [120]. Notably 10% of 
the reviewed papers leveraged transformers to achieve satisfactory 
outcomes [79, 84]. Considering that the bias of convolution limits 
the ability to harness cross-modal relationships [86], a multi-modal 
transformer can model the correlated high-level features from different 
modalities by the attention mechanism [110]. Moreover, the transformer 
has inspired researchers to combine the attention mechanism with the 
traditional encoder–decoder model, enabling the network to highlight 
important latent features while suppressing irrelevant ones [77]. The 
remaining 10% of the methods use RNN-based blocks in their network 
when dealing with longitudinal missing modality [78, 82]. Multi-modal 
data fusion strategies are utilized by most latent feature space-based 
methods to combine the multi-modal extracted features into latent 
space representation. They contribute to exploiting the latent feature 
space and emphasizing the major features from multiple modalities. 

26

Evaluation metrics
Metric Formulation Usage
Concordance index 
(CI)

where N is the total number of samples,  is sample 
I’s predicted value,  is sample I’s true value. A 
pair of I and J is concordant if the predicted ranking 
agrees with the true ranking (i.e., if  and 

 and discordant otherwise.

In [83], CI was used to measure how well the model can 
reliably rank patients based on their predicted survival times. A 
larger CI, ranging from 0 to 1, indicates better performance.

Hausdorff distance 
(HD95)

Let A and B be two sets of points in a metric space, 
HD95(A, B) = max(percentile(d(a, B), 95),percentile​ 
(d(b, A), 95))
where d(x, Y) represents the distance between point 
x from set X and the nearest point in set Y, the 
function percentile(x,p) returns the pth percentile 
of the distances and the 95th percentile is chosen to 
calculate the maximum distance.

In [74], HD 95 was used to evaluate each nested subregion 
of brain tumors. A lower HD95 indicate better segmentation 
performance.

Table 7
(Continued)

Category Typical tasks
Median reported 

performance Robustness
External 

validation
Code 

availability
Image synthesis 
methods

Mostly synthesis; 
segmentation; 
classification

DSC: ~0.86 (Segmentation)
AUC: ~0.85 (Classification)
SSIM: ~0.93 (Synthesis)

Limited (mainly 
tested for specific 
missing modality)

More 
frequently

Low (~10%)

Knowledge transfer 
methods

Mostly segmentation; 
classification

DSC: ~0.88 (Segmentation)
AUC: ~0.84 (Classification)

Moderate (can handle 
missing modalities)

Rarely High (~70%)

Latent space-based 
methods

Mostly segmentation; 
classification

DSC: ~0.86 (Segmentation)
AUC: ~0.83 (Classification)

Moderate (can handle 
missing modalities)

Rarely Moderate 
(~30%)

Table 8
Quantitative summary of the three methodological categories. Columns indicate (I) typical tasks, (II) median performance (DSC for 

segmentation, AUC for classification, SSIM for synthesis), (III) robustness to missing modalities, (IV) use of external validation, and (V) 
code availability
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The fusion strategies based on arithmetic operations such as merging 
the features by computing mean and variance are simple but effective 
when the purpose is to reinforce the model’s robustness. More complex 
fusion strategies, including L1 or L2 distance minimization [95] and 
attention-based fusion [89], have also been proposed. However, it is 
difficult to decide which strategy is best for handling multi-modal 
missing imaging modality since none of them assure the model to learn 
a shared latent representation from different intensity distributions 
of different modalities. Interpretability of the multi-modal deep 
learning models is another concern for their further applications in 
medical image analysis [121]. Consequently, researchers are striving 
to enhance the interpretability of their models. For example, in [81] 
authors not only presented a latent feature space-based U-net effective 
for both classification and segmentation tasks but also enhanced the 
interpretability via the t-SNE visualization of the latent feature space.

Although a formal meta-analysis was not feasible due to the 
substantial heterogeneity across studies in terms of datasets, tasks, and 
performance metrics, in Table 8, we provide a quantitative summary 
of the three methodological categories, comparing their typical 
applications, reported performance, robustness to missing modalities, 
external validation, and code availability. Across the three categories, 
reported performance is generally similar. Segmentation tasks, which 
are mostly evaluated on the BraTS dataset, show DSC values around 
0.86–0.88, while classification tasks on the ADNI dataset reach AUC 
values of about 0.83–0.85. For image synthesis, SSIM is typically 
around 0.93. The main differences lie in robustness and research 
practice: image synthesis methods are usually tested on specific missing 
modalities, show more frequent external validation, but have the lowest 
code availability. In contrast, knowledge transfer and latent space 
methods are more often tested in missing modalities scenarios, though 
they are less often externally validated, with code availability being 
high (~70%) and moderate (~30%), respectively.

While the above categories provide a useful framework to organize 
the literature, they are not fully separate. Some studies use methods that 
overlap across categories. For example, certain works generate synthetic 
images to expand datasets while also applying knowledge transfer to 
improve model performance [68]. Others combine latent feature space 
analysis with image synthesis to strengthen prediction tasks [36]. These 
mixed approaches show that methods in this field are often built on 
each other, and that combining techniques from different categories can 
be especially useful for tackling the challenges of multimodal medical 
imaging.

In the review, we have summarized the datasets used for missing 
modality studies. Regarding the most popular datasets used to develop 
missing modalities techniques, 60% of the approaches included in this 
review used the BraTS dataset and 29% selected the ADNI dataset for 
training. Most datasets contain multiple MRI modalities, resulting in 
similar preprocessing pipelines. It is worth noting that public datasets 
partly reflect real-world clinical practice. They are derived from real 
patients and usually include preprocessing steps such as normalization 
or artifact reduction, which are also common in practice. This makes 
them useful for benchmarking and method development. However, they 
are not fully representative, as the released data are often high-quality 
and relatively clean. Cases with noise, missing data, or poor annotations 
are usually filtered out. Therefore, results based only on public datasets 
may not fully capture the challenges of everyday clinical scenarios.

With respect to experimental design, preprocessing was the most 
frequently discussed aspect. For MRI preprocessing, normalization, 
registration, and skull stripping are the top three frequently used methods, 
while for other modalities such as PET, registration and normalization 
remained standard practice. In terms of computational resources, 90% 
of the papers listed in this review used Graphical Processing Units 

(GPUs) for their training. Only 25% of the reviewed papers provided 
a public code, half of which are latent feature space-based methods, 
promoting reproducibility and collaboration for advancing studies. 
There are 42% reviewed papers using multiple datasets, 23% of which 
perform an external validation [38, 40, 50, 52, 55, 59], which helps 
to identify biases or variability present in the training samples while 
strengthening the robustness and dependability of their models. 

Lastly, a detailed summary of all evaluation metrics used by 
the papers included in this review is provided in Section 3.3. In most 
studies, the chosen assessment criteria depend on the task categories. 
Around 34% of papers included in this review evaluate their methods 
under one missing modality condition. Among the rest of papers 
tested on multiple missing modalities scenario, half of them carry 
out ‘robustness evaluation’ [122], i.e. assessing their networks on 
every possible combination of missing modalities. For non-synthesis 
methods, it is difficult to quantify how well the recovery is because 
in some categories, it is not even possible to verify the quality of the 
recovered modality. For image synthesis methods, such evaluation is 
available due to the presence of ground truth. However, it is hard to 
compare the recovered modalities within different image synthesis 
models even if they are applied to the same task and the same dataset, 
if they synthesize different imaging modalities. Also, since most image 
synthesis-based methods use CNN networks that rely on fixed channels 
of input and output, it is difficult for them to perform a robust evaluation 
as a separate model will be required for each possible input–output 
scenario [45]. In contrast, nearly half of the articles on latent feature 
space-based methods and knowledge transfer methods implement the 
‘robustness evaluation’.

5. Limitation
Firstly, the review was conducted by only two reviewers. Although 

cross-checking was carried out, the small number of reviewers may have 
introduced some subjectivity in study selection and data extraction. 
Secondly, the included studies are more weighted toward computer 
science and methodological aspects, while clinical perspectives may be 
underrepresented. This could limit the assessment of clinical relevance. 
Thirdly, it was difficult to compare results across studies in a quantitative 
way, since they used different datasets, preprocessing steps, evaluation 
metrics, and tasks. The lack of standardized benchmarks makes direct 
comparison challenging. Nevertheless, given the systematic search 
across multiple major databases and the structured synthesis process, we 
are confident that this review covered the most relevant studies and that 
the findings capture the current landscape of research on deep learning 
methods for missing modalities in multimodal medical imaging.

6. Future Direction
Despite the rapid development of deep learning methods, there is 

still a long way to go to solve the missing modalities problem perfectly. 
In this section, we will discuss the limitations of current approaches and 
indicate the possible solutions concerning them.

A major challenge for adopting deep learning-based models 
in a clinical-setting is posed by that lack of model interpretability. 
For clinical decision-making applications, model interpretability and 
introspection are crucial components. It is known that features extracted 
from deep learning models are abstract and may not always be clinically 
relevant [6]. Such models will not generalize well on unseen data or be 
biased against certain populations. However, the interpretation of deep 
learning models is an active research topic and multiple methods have 
been proposed [123–127] that allow us to visualize which parts of the 
data the model considers important for its predictions, even though the 
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underlying feature representations remain abstract. Ref. [123] shows 
a popular deep learning technique that visually identifies the key 
areas within an input image influencing the model’s predictions. It is 
beneficial in shedding light on how decisions are made by multi-modal 
deep learning models applied to medical images. Emerging solutions 
aim not only to enhance interpretability but also to uncover associations 
between different modalities [6, 128].

From the perspective of multi-modal data dimensionality, 
we observe in our results that 2D is a more popular choice than 3D. 
Although 3D medical image analysis offers advantages in terms 
of capturing richer spatial information and potentially improving 
prediction accuracy, it comes with the increased complexity of 
models. For instance, CNNs used for 3D image analysis may require 
deeper architecture or incorporate additional layers to handle the data. 
Adapting transfer learning is a potential solution to this challenge. Pre-
trained models from related domains will help the 3D target model to 
initialize more efficiently and reduce the need for extensive labeled 
data [129]. Another noteworthy approach is to integrate attention 
mechanisms into 3D models. By focusing on the important parts and 
ignoring irrelevant regions of the 3D images, the attention modules can 
reduce the computation cost and improve the interpretability of the 3D 
models [130].

Another important future direction for successfully dealing with 
missing modalities will be gaining data diversity. The BraTS and the 
ADNI datasets provide a large sum of image data for the reviewed 
papers’ experiment; however, most of the data are of MRI modalities, 
bringing inadequate data diversity issues. As it is difficult to collect 
various and complete imaging data from clinical scenarios, generated 
images might be a better way to enrich the data diversity. To achieve 
such a purpose, more research on the fidelity of the synthesized images 
and the interpretability of image synthesis methods are required. Other 
modalities of data such as clinical records or genomic information are 
also applicable to expand the data variety and improve the effectiveness 
of the models. 

In addition to data diversity, another critical consideration is 
the lack of consistent ways to evaluate methods across studies. While 
various papers report quantitative metrics, differences in tasks, datasets, 
and evaluation metrics make it hard to compare results directly. 
Therefore, future work should create standardized benchmarks and 
shared evaluation protocols. This would make cross-study comparisons 
more meaningful, improve reproducibility, and provide reliable 
baselines to guide future research.

Despite the popularity of deep learning methods, a major 
roadblock for its widespread adoption is the unavailability of large-
scale groundtruth datasets with all multimodal data. This challenge 
arises primarily from the labor-intensive process of manual annotation, 
privacy concerns in the clinical domain, and biases introduced by 
the typically small size of patient cohorts, which often represent 
high socioeconomic status [131, 132]. Popular approaches like data 
augmentation [133], semi-supervised learning [134], transfer learning 
[135], and automated annotation [136] offer promising solutions to 
address the problem of insufficient labeled data.

7. Conclusion
This review identified and summarized 61 relevant papers 

through the search process in accordance with the PRISMA guidelines. 
Our research is distinct in its focus on systematically reviewing multi-
modal deep learning methods developed over the last decade dealing 
with missing imaging modality issues in medical image analysis. Central 
to our investigation are key research inquiries answered in the results 
section, illustrating the methodologies employed in medical image 

analysis with missing modality, cataloging publicly available datasets 
for researchers, and encapsulating prevalent evaluation techniques. We 
provide a detailed discussion regarding our findings and identify notable 
research gaps and their potential solutions. The literature explores 
addressed questions and analyzes them in the following sections, 
highlighting a rapidly growing and globally significant field of interest.
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