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Abstract: Missing modalities pose a significant challenge on multi-modal studies by disrupting the comprehensive analysis of diverse data
sources. Deep learning addresses this issue by employing algorithms that can effectively infer and integrate the absent information, thereby
ensuring robustness and accuracy of the models while increasing the study’s statistical power. This study aims to provide a systematic literature
review on deep learning solutions for missing imaging modalities in multi-modal medical data analysis. Articles on PubMed, IEEE explore digital
library, and Scopus were searched in the range from January 2013 to May 2025. This systematic search and review identified 234 articles. Adhering
to the specified search criteria, 61 published studies were eligible. Among these, 47% employed image synthesis methods, 20% applied knowledge
transfer methods, and 33% used latent feature space-based methods. The paper explores the research gaps and challenges associated within
each of these categories. Additionally, this review paper illuminates the popular public datasets for multi-modal studies with missing modalities.
Furthermore, it presents evaluation metrics and their key attributes. The review concludes with its limitations and a detailed discussion of current

challenges and future directions in this domain.

Keywords: deep learning, missing modalities, image synthesis, knowledge transfer, latent space, medical image analysis

1. Introduction

Over recent decades, medical advances have made it possible
to generate abundant medical data for individual patients from various
resources (e.g., imaging systems, blood tests, and histopathology data).
Medical data obtained from different resources are referred to as multi-
modal data. Each data modality represents a different type of data, such as
images from medical imaging scans, text from electronic health records
(EHR), histopathologic data from tissue specimens, or genetic data
[1]. Advanced neural network methods have been applied to interpret
these modalities of medical data generated from diverse sources. These
methods aim to leverage the complementary information presented in
different modalities while also utilizing the unique strengths of each
modality to improve model performance and enhance understanding of
complex systems [2]. Multi-modal methods have been applied across
various clinical domains [3]. Combining multimodal information
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enables healthcare professionals to develop a holistic view of a patient’s
health condition, aiding in diagnosis, treatment planning, and/or
therapy monitoring [4]. For instance, in neuroimaging, the integration
of structural Magnetic Resonance Imaging (MRI) with functional
MRI and diffusion MRI provides detailed information about brain
structure, function, and microstructure, enhancing the management of
neurological disorders [5]. Similarly, in oncology, combining data from
Computed Tomography (CT), MRI, and Positron Emission Tomography
(PET) scans improves tumor analysis and treatment response and
assessment, enabling personalized cancer care [6]. Furthermore, multi-
modal methods drive medical research by exploring complex biological
processes, leading to innovative diagnostic and therapeutic advances
[2]. Multi-modal data fusion algorithms can fully take advantage
of informative and abundant features in cancer survival prediction
[7], while multi-modal ensemble techniques are suitable for decision
making in medical datasets [8].

One of the most significant challenges to the adoption of multi-
modality is the high prevalence of missing data. In real-world clinical
settings, it is not uncommon for certain imaging modalities to be
unavailable due to equipment limitations, patient-related factors, or
technical issues. Additionally, artifacts or inadequate capture of specific
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regions of interest within an image further complicates the analysis
process. Traditional methods for dealing with missing data often entail
strategies such as complete case analysis, which assumes that the data
are free of missing data and only uses cases with complete datasets
for analysis [9], or simplistic imputation techniques such as mean
substitution or last observation carried forward [10]. Nevertheless, these
methodologies exhibit significant shortcomings. Complete case analysis
reduces the study’s statistical power and may lead to biased results if
data are not missing at random, while simple imputation methods may
introduce inaccuracies and underestimate variability, affecting the
reliability of subsequent analyses. The assumption that the dataset has
no missing data leads to models only working well theoretically and
cannot be adapted to real-world scenarios. Moreover, these approaches
fail to fully utilize available information, potentially limiting the insights
gained from multi-modal data integration. Whereas, in deep learning-
based approaches missing modalities will result in an insufficient
dataset for training [11]. This leads to serious problems of decreased
model accuracy, potential biases, and unreliable predictions, ultimately
compromising the effectiveness of the model in clinical applications.

Deep learning methods have provided an alternative solution
to the missing modality problem [12]. Their inherent capability to
discern intricate patterns in data renders it highly suitable for managing
the complexities of high-dimensional and heterogeneous multiple
modalities, eliminating the need for manual feature engineering [13].
They can automatically extract and integrate relevant features from
multimodal MRI, CT, and PET scans for accurate disease diagnosis
without the need for manual feature extraction [14]. Besides, their
adaptability ensures precise imputation of missing data, with the
utilization of extensive datasets bolstering generalization across varied
clinical contexts. For example, in the EHR, deep learning models exhibit
proficiency in facilitating more accurate imputation by effectively
learning intricate patterns and correlations within the patients’ data,
which enables precise predictions and the customization of treatments
to the unique needs of individual patients [15]. Furthermore, they
adeptly incorporate contextual cues and spatial relationships within
multiple modalities, enhancing data fidelity and facilitating thorough
analyses. For instance, in pathology slides, deep learning models can
simultaneously analyze histopathological images alongside clinical
data and genetic information to deliver a thorough understanding of
disease progression and treatment response [16].

The past few years have witnessed heightened focus on utilizing
deep learning methods to address the issue of missing data in multi-modal
MRI-based analysis, with published surveys discussing the missing
modality issue of MRI data [17, 18]. However, these surveys typically
group methods based on technical implementation details or specific
modalities and mainly focus on the brain tumor segmentation task, which
makes cross-task generalization less clear. By contrast, our framework
emphasizes the underlying strategy for handling missing modalities,
providing a broader and more unifying perspective. Therefore, in this
work, we provide a systematic literature review focusing on all types
of imaging modalities and applicable to all tasks within the medical
domain like image quality analysis, classification, prediction, and
segmentation. Such a review will furnish invaluable insights into the
available solutions, limitations, and optimal practices associated with
deploying deep learning strategies for addressing missing data issues
in multi-modal medical data analysis. In this review, we summarize
the deep learning-based methods which address the missing modality
problem. In that, we target methods that specifically provide solutions
for missing images. We aim to cover every contributory method in the
last decade. This survey contributes to the following:

1) Systematically review missing modality deep learning techniques in
the last 10 years which have provided solutions to missing modality
issues in the context of multi-modal medical image analysis.

2) Categorize the identified solutions based on their approach and
present their benefits and limitations.

3) Summarize datasets and assessment criteria applied in the studies.

4) Analyze the main findings and outline future directions for research
in this domain.

The remainder of the review is organized as follows: Section 2
outlines the review planning; Section 3 presents key findings; Section 4
discusses and interprets the results; Section 5 states limitations in our
research; Section 6 highlights future directions; and Section 7 makes
the conclusion of the review.

2. Review Planning

This section focuses on organizing the review: clearly specifying
the research questions relevant to the study, detailing the information
sources, and outlining the inclusion criteria.

2.1. Key research questions

1) What approach is proposed to address the missing modality problem?

2) Which dataset is used?

3) Under which methodological category does the proposed approach
fall?

4) What pre-processing approaches are used?

5) What criteria are used for evaluation?

6) Is the code publicly available?

7) Does the article carry out external validation?

2.2. Data sources and search strategy

Our study followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [19]. We searched
both general databases (Scopus, PubMed) and a subject-specific
database (IEEE Xplore) to ensure broad biomedical coverage while
also capturing technical contributions often published in engineering
venues. The search strategy was developed for the purpose of reviewing
deep learning methods for missing modalities in multimodal medical
imaging. Queries combined terms related to multimodality, missing data,
clinical tasks (e.g., classification and segmentation), medical imaging
context, and deep learning techniques. This blended approach allowed
us to balance breadth and depth and ensured that both methodological
and application-oriented studies were included. The queries used for the
respective sources of publications spanning from January 2013 to May
2025 have been listed in Table 1.

2.3. Inclusion criteria

Inclusion requirements were: (a) original research article; (b)
published within January 2013 and May 2025; (c) published in English
language; (d) required to be a multi-modal study involving different
modalities of medical images, or imaging and any other non-imaging
modality; (e) proposing solutions to missing imaging modality; (f)
proposing deep learning-based solutions; and (g) applied to any
classification, prediction, or segmentation task in medical domain.

Specifically, papers’ titles and abstracts were sought on each
of the previously mentioned information sources using the respective
search queries as given in Table 1. Figure 1 presents the flow diagram
based on the PRISMA guidelines. In total, 234 records were initially
identified. Following the first exclusion phase, 210 remained for abstract
screening. Of these, 132 met the criteria for full-text review. Finally, 61
studies were retained for this review, with 29 image synthesis methods,
12 knowledge transfer methods, and 20 latent feature space-based
methods. The resulting 61 studies were cross-checked by a second
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Table 1
Search query

Source of information

Query used

PubMed'

IEEE explore digital
library?

Scopus?

((multimodal) OR (fusion) OR (ensemble) OR (feature integration) OR (multiparametric)) AND ((missing data[Ti-
tle/Abstract]) OR (missing modality[Title/Abstract]) OR (incomplete data[Title/Abstract])) AND ((classification
[Title/Abstract]) OR (regression|Title/Abstract]) OR (prediction| Title/Abstract]) OR (diagnosis[Title/Abstract]) OR
(segmentation[Title/Abstract])) AND ((medical image) OR (medical application)) AND (deep learning)

(ALL ( multimodal ) OR ALL ( fusion ) OR ALL ( ensemble ) OR ALL ( feature_integration ) OR ALL ( multi-
parametric ) )

AND ( TITLE-ABS-KEY ( missing AND data ) OR TITLE-ABS-KEY ( missing AND modality ) OR TITLE-ABS-
KEY ( incomplete AND data) )

AND ( TITLE-ABS-KEY ( classification ) OR TITLE-ABS-KEY ( regression ) OR TITLE-ABS-KEY ( prediction
) OR TITLE-ABS-KEY ( diagnosis ) OR TITLE-ABS-KEY ( segmentation ) )

AND (ALL ( medical image ) OR ALL (medical application ) )

AND (ALL ( deep_learning)

AND ( LIMIT-TO ( SUBJAREA,”COMP” ) ) AND ( LIMIT-TO ( DOCTYPE,”ar” ) OR LIMIT-TO ( DOC-
TYPE,’cp”))

Figure 1
Flow diagram for retrieved articles based on the PRISMA guidelines
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reviewer, and disagreements were resolved through team discussion
until consensus was reached.

2.4. Data extraction

For each included study, we extracted key information using a
structured template, covering publication year, dataset(s), imaging
modalities, methodological approach, preprocessing steps, model
architecture, evaluation metrics, performance results, code availability,
and use of external validation. Data extraction was carried out by one
reviewer and verified by a second. To synthesize findings, studies
were grouped into three methodological categories (image synthesis,
knowledge transfer, and latent feature space—based methods). Within
each category, results were compared in terms of performance,
robustness to missing modalities, reproducibility (code availability,
external validation), and task type. Evidence was summarized
narratively and with structured tables (Tables 4-6), alongside a
standardized comparison table (Table 8) highlighting core attributes
such as performance, robustness, and reproducibility.

3. Results

With above search strategy, we retrieved 234 articles published
between January 2013 and May 2025. After manually removing articles
that did not meet the inclusion criteria and searching the bibliography
of eligible articles, 61 articles met the inclusion criteria. The results are
presented as follows: First, we outline the datasets utilized across the
articles included in this review. Then, we present a compilation of the
61 research articles, organized based on the established categories and
finally we summarize the evaluation metrics used by these studies.

3.1. Dataset

We list all the public multimodal datasets used by the 61 articles
included in this review in Table 2. For each dataset we include the online
location to access the dataset, the dataset details in terms of number of
subjects, and the modalities available with the dataset.

3.2. Deep learning methods with missing imaging
modality

The purpose of this section is to investigate the questions raised in
the review planning process in Section 2. Without considering specific
tasks (e.g., classification, regression, or segmentation), multi-modal
deep learning models take multiple modalities of imaging data, and
extract the high-level feature representations (i.e., feature embeddings).

In this work, we categorized all reviewed deep learning methods
into (i) image synthesis methods, (ii) knowledge transfer methods,
and (iii) latent feature space-based methods. Figure 2 illustrates the
categories presented in this review. Briefly, image synthesis methods
synthesize the missing imaging modalities with existing ones,
knowledge transfer methods focus on establishing new architectures/
deep learning models to transfer knowledge, and latent feature space-
based methods work in the shared feature sub-space. We present all
61 articles identified in this review based on these three categories.
Table 3 presents all identified papers under each category, with 29
studies in image synthesis methods, 12 studies in knowledge transfer
methods and 20 studies in latent feature space-based methods. Figure 3
summarizes their distribution in a taxonomy diagram. In Tables 4-6,
for each category of methods, we provided the preprocessing pipeline
of the method, the basic architecture of the deep learning model, the
main context of the proposed solution for handling missing modality,
the medical task performed, and the evaluation metrics used to assess
the performances. To show the accessibility of the methods, we also

mention code availability of the proposed solution and the use (or
absence) of external validation.

3.2.1. Image synthesis methods

Image synthesis methods aim at recovering the missing imaging
modalities from the available imaging modalities. These methods
typically were developed using Generative Adversarial Networks
(GAN) [97] and its variants [98]. The synthesis models consist of two
subnetworks: one generator that synthesizes the missing modalities
from available ones, and one discriminator that judges whether the
input image is real or synthesized by generator [99]. These subnetworks
are trained simultaneously under an adversarial loss. As a result, the
generator’s performance is improved to create satisfying images as
compensation to missing ones. To improve the quality of synthesized
image, multi-modal learning techniques are applied in the generator to
correlate features from multiple modalities [40]. The synthesized images
can either serve as supplementary training data to help the downstream
models better understand the tasks or be used to augment training
data, in order to improve the models’ robustness and generalization
capabilities.

Despite the obvious advantage of recovering missing imaging
modality information directly, the training cost of GAN is relatively
high due to their model complexity. What is more, the training of GAN
will become unstable when encountering issues like mode collapse
[100], resulting in poor synthesis performance. Table 4 gives a detailed
list of all studies included in this review that use image synthesis
approaches.

3.2.2. Knowledge transfer methods

Knowledge transfer methods first develop a source model
that encodes all data modalities. The representations learned from
the source model are then transferred to the target model, which has
incomplete modalities as input. This target model is then utilized for
the downstream task [68]. There are two ways to transfer the learned
modalities from the source model to the target model, namely, using
the knowledge distillation method [65], or by using domain adaptation
[66].

Knowledge distillation involves training the target model in
accordance with the source model. First, the source model with a larger
number of parameters is trained with the full modalities until it achieves
high performance on the target task. The target model of less complexity
learns from the source model by capturing the encoded knowledge in
its outputs and then is trained with incomplete datasets. The forward
propagation is performed on both models while the back propagation
is only performed on the target model. The output of the source model
can be used as soft labels to guide the training of target model [103].
The discrepancy between the target model’s predictions and the soft
labels of the source model is measured by the target’s distillation loss,
which is combined with traditional learning loss in the training of the
target model.

Domain adaptation methods are typically used in transfer
learning approaches for handling missing modalities to uncover the
common latent features across the source and target domains. The
source model encodes complete modalities, whereas the target model
encodes the incomplete modalities separately, and features are extracted
from both models. A discriminator is used to bridge the domain gap
between the output of the source and target model. A similarity loss is
used with the discriminator to map the features to a similar distribution,
and a consistency loss is applied to minimize the distance between the
distributions [104].

Knowledge transfer methods outperform other non-synthesizing
methods in multiple conditions of missing modalities and are capable
of transferring to other tasks [67]. Nevertheless, it could be affected
by limited availability or imbalanced datasets, resulting in difficulty
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Table 2

Summary of the datasets used in the papers included in the review

Multi-modal datasets

Dataset

Online link

Subjects

Modalities

Alzheimer’s Disease
Neurolmaging Initiative
(ADNI) [20]

Brain Tumor Segmenta-
tion Challenge (BraTS
(2021)) [21]

Ischemic Stroke Lesion
Segmentation (ISLES)
[22]

IXI Brain Development

Open Access Series of Im-
aging Studies (OASIS-3)
[23]

The Cancer Genome Atlas
Program (TCGA)

MIMIC Chest X-ray
(MIMIC-CXR) [24]

Parkinson's Progression
Markers Initiative (PPMI)
[25]

LONI Probabilistic Brain
Atlas (LPBA40) [26]

Synapse [27]

Combined (CT-MR)
Healthy Abdominal Organ
Segmentation (CHAOS)
(28]

Chinese Brain Molecular
and Functional Mapping
(CBMFM) [29]

https://adni.loni.usc.edu/

http://braintumorsegmentation.org/

https://www.smir.ch/ISLES/Start2015

https://brain-development.org/ixi-dataset/

https://sites.wustl.edu/oasisbrains/home/
oasis-3/

https://www.cancer.gov/ccg/research/ge-
nome-sequencing/tcga

https://physionet.org/content/mim-
ic-cxr/2.0.0/

https://www.ppmi-info.org/access-data-
specimens/download-data/

https://loni.usc.edu/research/atlases
https://www.synapse.org/#!Syn-

apse:syn3193805/wiki/217753
https://chaos.grand-challenge.org/

Upon request

200 elderly cognitively normal,
400 Mild Cognitive Impairment
(MCI), and 200 Alzheimer’s
disease (AD) subjects

2040 glioma cases (8000
Multiparametric MRI scans)

36 cases on subtask: sub-
acute ischemic stroke lesion
segmentation (SISS)

Nearly 600 scans from normal,
healthy subjects

1378 participants collected across
several ongoing projects through
the WUSTL Knight ADRC over
the course of 30years, include 755
cognitively normal adults and 622
individuals at various stages of
cognitive decline ranging in age
from 42-95yrs.

Including Kidney Clear Cell
Carcinoma (KIRC) (385 cases),
Liver Hepatocellular Carcinoma
(LIHC) (287 cases), Esopha-

geal Carcinoma (ESCA) (153
cases), Lung Squamous Cell
Carcinoma (LUSC) (438 cases),
Lung Adenocarcinoma (LUAD)
(452 cases), and Uterine Corpus
Endometrial Carcinoma (UCEC)
(387 cases), etc.

65,379 patients presenting to the
Beth Israel Deaconess

Medical Center Emergency De-
partment between 2011-2016

400 recently diagnosed Parkinson
Disease and 200 healthy subjects

40 healthy, normal subjects

34 subjects for MRI and 30 sub-
jects for CT

80 patients, 40 of them (22 males,
18 females, ages between 18 and
63) went through a single CT
scan and 40 of them (23 male, 17
female, ages between 18 and 76)
went through MR scans

646 subjects from 18 to 82 years
old collected from four medical
centers

Clinical, genetic, MRI, PET,
biospecimen

MRI modalities: T1, T1
post-contrast (T1c), T2, T2
Fluid-Attenuated Inversion
Recovery (FLAIR)

MRI modalities: T1, Tlc,
T2, T2 FLAIR, Diffusion-
weighted Imaging (DWI)
MRI modalities: T1, T2,
Proton Density (PD),
Magnetic Resonance
Angiography (MRA), DWI
MRI modalities: T1, T2,
T2FLAIR, etc.

PET, CT

Genomic data, MRI, Region
Of Interest (ROI) images,
diagnostic Whole Slide
Imaging (WSI) images,
clinical records, etc.

Clinical time series data,
X-ray

T1 MRI, Diffusion Tensor
Imaging (DTI) images,
Single Nucleotide Polymor-
phism (SNP)

T1 MRI

MRI, CT

MRI, CT

MRI modalities: T1, T2,
T2FLAIR


https://adni.loni.usc.edu/
http://braintumorsegmentation.org/
https://www.smir.ch/ISLES/Start2015
https://brain-development.org/ixi-dataset/
https://sites.wustl.edu/oasisbrains/home/oasis-3/
https://sites.wustl.edu/oasisbrains/home/oasis-3/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
https://www.ppmi-info.org/access-data-specimens/download-data/
https://www.ppmi-info.org/access-data-specimens/download-data/
https://loni.usc.edu/research/atlases
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753
https://chaos.grand-challenge.org/
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Table 2
(Continued)

Multi-modal datasets

Dataset

Online link

Subjects

Modalities

Early life adversity biolog-
ical embedding (¢eLABE)

Environmental influences
on child health outcomes
(ECHO) [30]

Multiple Sclerosis with
the MS Grand Challenge
(MSGC) [31]

Relapsing Remitting
Multiple Sclerosis
(RRMS)

Chinese Longitudinal

Upon request

Upon request

http://www.ia.unc.edu/MSseg/

Upon request

Upon request

127 neonates (postmenstrual
age=41.1 + 1.5 weeks, female N =
59, white N = 42)

including 10 infants (age=41.2 +
1.9 weeks, female N = 5, white
N=2%8)

45 cases, 25 from the Boston
Children's Hospital (CHB) and

20 from the University of North
Carolina (UNC)

300 RRMS patients (mean age
= 37.5, surface distance (SD) =
10.0)

1068 elderly Chinese (42.2%

MRI modalities: T1, T2,
resting state functional MRI
(rs-fMRI)

MRI modalities: T1, T2,
rs-fMRI

MRI modalities: T1, T2,
T2FLAIR

MRI modalities: T1, T2,
T2FLAIR, Tlc

T1 MRI

Aging Study (CLAS) [32]

The Australian Imaging,
Biomarkers and Lifestyle
(AIBL) [33]

UNC/UMN Baby
Connectome Project [34]

Upon request

Upon request

MIDAS [35] Upon request

male), mean age of 72.8 years
(SD=8.5) completed a compre-
hensive cognitive, psychosocial
and mental health assessment
1112 subjects, 211 AD, 133 MCI,
768 healthy controls

T1 MRI, PET

MRI modalities: T1, T2,
DWI, rs-fMRI

500 typically developing infants,
toddlers, and preschool-aged
children between birth and 5 years
of age

34 healthy subjects, ranging in age MRI modalities: T1, T2,
from 19 to 72 and of both sexes, MRA

27 tumor cases included thirty

lesions

in training or a decrease in performance [71]. Table 5 gives a
comprehensive list of all the studies covered in this review that use
knowledge transfer approaches.

3.2.3. Latent feature space-based methods

Latent feature space-based methods offer a typical solution
to handling missing modalities by focusing on deriving meaningful
features from existing modalities alone, bypassing intermediate
processes such as imputation [106] or synthesis [107]. Latent feature
space-based methods involve independently learning and embedding
of the input image into a latent space for each modality. Each of the
modalities is encoded respectively to extract its specific feature
representations. Subsequently, these modalities are translated into
a shared latent space. Fusion strategies such as mean and variance
operations are utilized to establish one common latent embedding for
all modalities, so that missing features can be recovered [96]. Once the
shared representation is obtained, a decoder is used to reconstruct the
data from it to perform the downstream tasks. Such methods are robust
to missing imaging modality by learning a shared representation of the
available modalities [81].

However, projecting data into a latent space can lead to
information loss from the original modalities. This loss can affect the
overall performance of the model, particularly if the missing modalities
contain critical information [78]. Also, the learned latent vectors of

individual modalities from independent encoders are fused to create
a shared representation. However, this assumes that each modality is
equally informative and contributes equally to the final task, which may
not always be true. Besides, interpreting the results of models based
on latent feature space methods can be challenging, especially when
the relationships between modalities are complex or non-linear. Table
6 gives a detailed list of all the studies included in this review that use
latent feature space-based approaches.

3.3. Evaluation metrics

In this section, we review the evaluation metrics applied for
validating the performances of the methods in missing modalities
scenarios. In classification tasks, accuracy, sensitivity, specificity, and
area under the curve (AUC) are the most popular choices for assessment.
Dice similarity coefficient (DSC) is widely used for measuring the
segmentation results, while peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) intuitively display the
quality of synthesized images of missing modalities. Table 7 gives a list
of all the evaluation metrics used in the articles included in this review
with the following attributes for each: the name and abbreviation of
the metric, the formulation to compute the metric, and the usage of the
metric.


http://www.ia.unc.edu/MSseg/

Artificial Intelligence and Applications \Vol. 00

Iss. 00 2025

Figure 2
Ilustration of methods by category. (a) With complete modalities,
multimodal images are directly used for feature extraction. When
modalities are missing, three strategies are applied: (b) synthesis
methods generate absent modalities from available ones, (¢)
knowledge transfer leverages models trained on complete data to
guide models trained on partial data, (d) latent space methods fuse
embeddings into shared representations

Missing modalities “ Complete modalities

Table 3
Methodological categories identified in this review and their
corresponding studies

Total

Category References number
Image synthesis [36], [37], [38], [39], [40], 29
methods [41], [42], [43], [44], [45],

[46], [47], [48], [49], [50],

[511, [52], [53], [54], [55],

[561, [571, [58], [59], [60],

[61], [62], [63], [64]
Knowledge transfer [65], [66], [67], [68], [69], 12
methods [70], [71], [72], [73], [74],
[75], [76]

Latent space-based [771, [78], [79], [80], [81], 20
methods [82], [83], [84], [85], [86],

[871, [88], [89], [90], [91],

Figure 3
Taxonomy diagram for retrieved articles in this study
Reviewed
Papers
(n=61)
Image Knowledge Latent space-
synthesis transfer based
(n=29) (n=12) (n=20)

4. Discussion

This paper offers a systematic review of deep learning methods
dealing with missing imaging modalities in medical analysis in terms

of the most popular public datasets used, the different types of deep
learning approaches developed, and the most common metrics for
evaluating the performance of the approaches. Though prior works have
reviewed deep learning approaches for brain tumor segmentation tasks
under the condition of missing MRI modalities, a systematic review
that includes deep learning methods under the circumstance of missing
medical imaging modalities regardless of the tasks to be performed,
has not been published yet. We identified 61 papers in this review that
focus on deep learning-based solutions that we categorized into image
synthesis methods, knowledge transfer methods, and latent feature
space-based methods. Unlike bibliometric systematic reviews, which
primarily analyze publication volume, author networks, or keyword
co-occurrence, our review uncovers trends at the methodological level.
These include shifts in the types of deep learning models employed
(e.g., increasing use of U-Nets and transformers), the prevalence of
specific evaluation metrics across tasks (e.g., SSIM for image synthesis,
DSC for segmentation, and AUC for classification), and reproducibility
practices (e.g., proportion of studies with external validation or public
code). We therefore provide a systematic methodological synthesis
rather than a bibliometric mapping, which we believe is more directly
useful to the medical imaging community.

In the last decade, neural network approaches have gradually
been recognized for their capabilities of tackling missing modalities
in medical analysis. Overall, we find that both latent feature space-
based methods favored for their straightforward deployment, and
image synthesis methods due to the popularity of GAN, are the more
favorable techniques for dealing with missing modalities. Knowledge
transfer methods show noteworthy performance in cases where multiple
modalities of the data are missing.

Firstly, our results show that 47% of the reviewed papers use
image synthesis methods. 17% of articles focus on methods that are
implemented for the segmentation purpose [44, 46, 55, 56, 64], 38%
are implemented for the classification tasks [37, 3941, 47, 50, 53,
57-59, 63], and 4% for the prediction use [48]. 41% of the reviewed
papers under image synthesis-based methods focus on the evaluation
of the quality of synthesized images [36, 38, 42, 43, 45, 49, 51, 52,
54, 60—-62]. All the reviewed image synthesis methods utilize GAN or
its extension framework, consisting of one or two generators and one
discriminator. However, the architecture of the generator to synthesize
images for the recovery of the missing modalities varies. Nearly half of
the GAN-based synthesis networks apply CNN-based structure as the
generator. Nevertheless, CNN-based generator has several drawbacks,
such as fixed input—output channels, lack of interpretability [45], and
loss of low-level spatial information [49]. U-net, which is capable of
channel-wise feature fusion, wins more favor in the choice of generator.
It allows region-specific feedback, enhancing the generator’s learning
process and leading to superior image synthesis quality. According to
our review, U-net is utilized as the generator in 36% of the papers and
has been especially popular in the last three years. It is worth mentioning
that 12% of the papers combine CNN or U-net with the transformer in
the image synthesis network. Leveraging the attention mechanism, the
transformer performs efficient and accurate synthesis by capturing cross-
modal correlations within input modalities while removing redundant
information, and the interpretability of the model could be increased by
visualizing the attention score. In [44], an efficient generator is designed
by the combination of transformer and CNN, enabling the model to
have global sensitivity as well as detailed local modeling. In terms of
the discriminator, almost all the papers choose CNN. Only a few papers
attempt to make effective improvements on the discriminator, such as
the task-induced design of the discriminator aimed at integrating image
synthesis with downstream tasks [53].

Next, 20% of the reviewed papers use knowledge transfer
methods, which have garnered increased attention among researchers
in recent years. 58% of these methods are implemented to perform
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Table 7

Evaluation metrics used for evaluation of methods dealing with missing modalities

Evaluation metrics

Metric Formulation Usage

Accuracy (ACC) Given true positive (TP), true negative (TN), ACC ranges from 0 to 1 (or in percentage terms), with the larg-
positive (P) and negative (N), er value showing that the classification result is more precise.

Acc = TR

Sensitivity (SEN)/ Given true positive (TP) and positive (P), SEN ranges from 0 to 1, with the larger value showing better

Recall (REC) SEN = % performance in correctly identifying positive cases

Specificity (SPE) Given true negative (TN) and negative (N), SPE ranges from 0 to 1, with the larger value showing better

SPE = % performance in correctly identifying negative cases

Area under the AuC= [! TPR(FPR ' (x)) dx AUC ranges from 0.5 to 1, with the larger value showing that

curve (AUC) x=0 the model is more likely to arrange positive instance in front of
where FPR(T): T —x, the x-axis of ROC curve, negative instance (i.e. has a better ability of prediction)
denotes false positive rate, TPR(T): T —y(x), the h '
y-axis of ROC curve, denotes true positive rate.

Precision (PRE) Given true positive (TP) and false positive (FP), Higher precision values indicate better model performance in

Average precision
(AP)

F1 score (F1S)

Dice similarity
coefficient (DSC)

Balanced accuracy
(BAC)

Balanced
classification
accuracy (BCA)

Matthews
correlation
coefficient (MCC)

Mean absolute error

(MAE)

Mean relative
absolute error
(MRAE)

24

.. _ TP
Precision = TPTP
_ Y (P(k)- AR(K))
AP = =55

where 7 is the total number of retrieved items, P(k)
is the precision at cut-off k, AR(k) represents the
change in recall from the previous cut-off to the
current cut-off, d(k) is an indicator function that is 1
if the item at position k is relevant, and 0 otherwise.
Given Precision (PRE) and Recall (REC),

Fl= 2xPRExXREC

PRE+REC

Given two sets A and B
_ 2x|AnB|
DSC = Tarmg

Given true positive (TP), false positive (FP), true
negative (TN) and false negative (FN),

_ 1 TP TN
BAC = 7(TP+FN + TN+FP)

Given Sensitivity (SEN) and Specificity (SPE)
BCA = 1(SEN + SPE)

Given true positive (TP), false positive (FP), true
negative (TN) and false negative (FN),

_ TPxTN-FPxFN
MCC = /(TP+FP)(TP+FN)(IN+FP)(TN<FN)

n
T

where n is the number of samples, , is sample I's
predicted value, and y; is sample I’s true value

n ~
MRAE:%;‘%‘

where 7 is the number of samples, g, is sample I’s
predicted value, and y; is sample I’s true value

correctly identifying positive instances.

Higher AP values indicate better model performance, with 1
representing perfect precision and recall, and 0 representing no
relevant items retrieved.

F1 Score is widely used in binary classification tasks, espe-
cially when the classes are imbalanced. It ranges from 0 to 1,
where 0 indicates poor performance, suggesting either low
precision or low recall, 1 indicates perfect precision and recall.

DSC is commonly used image segmentation, where the goal is
to compare the similarity between two sets of regions. Higher
Dice coefficient values indicate better agreement between

the segmented regions and the ground truth, indicating better
segmentation performance.

BAC is used to evaluate the performance of binary classifi-
cation models, particularly with imbalanced datasets. Higher
BAC values indicate better model performance, with 1 rep-
resenting perfect classification accuracy and 0.5 representing
random classification.

BCA is also used to evaluate the performance of binary
classification models, particularly with imbalanced datasets.
Higher BCA values indicate better model performance, with 1
representing perfect classification accuracy and 0 representing
random classification.

Higher MCC values indicate better classifier performance,
with 1 representing perfect agreement between prediction and
observation, 0 indicating random prediction, and -1 indicating
total disagreement.

MAE is widely used as a measure of the accuracy of regression
models. Lower MAE values indicate better model performance,
as they suggest smaller errors between predictions and actual
values.

In [91], MRAE is the mean of the absolute error divided by
the corresponding chronological age. A lower MRAE indicates
better model performance.
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Table 7
(Continued)

Evaluation metrics

Metric

Formulation

Usage

Mean squared error
(MSE)

Normalized mean
squared error
(NMSE)

Root mean squared
error (RMSE)

Peak signal-to-noise
ratio (PSNR)

Structural similarity
index measure
(SSIM)

Mean structural
similarity index
measure (MSSIM)

Learned perceptual
image patch similar-
ity (LPIPS) [117]

Feature similarity
index measure
(FSIM) [118]

Maximum mean
discrepancy (MMD)

MSE = 33 (4~ 9)°
where 7 is the number of samples, ¥; is sample I’s
predicted value, and ¥; is sample I’s true value
n A\ 2
NMSE = 13~ =)
S n Z:l (i—9)°

where n is the number of samples, ¥; is sample I’s
predicted value, ¥i is sample I’s true value and ¥ is
the mean of true values.

3

RMSE =, [ 13" (s — )"
i=1

where n is the number of samples, ¥; is sample I’s
predicted value, and ¥; is sample I’s true value

Given the maximum possible pixel value (MAX)
and Mean squared error (MSE) between the ground
truth and synthesized images,

PSNR = 10 - log, (245" )

— (2ueny+C1)(204y+Ch)
SSIM(2.9) = Triia) g

where C, and C, are constants to stabilize the
division with weak denominator, 1z is the mean of
image x, o, is the standard deviations of image x,
Ozy is the covariance of x and y

Given Structural similarity index measure (SSIM),
MSSIM(z,y) = -L- 303" SSIM(z4j, i)
i=1j=1

where x and y are the compared images, m and n are
the dimensions of the images, and x_ij, y_ijare the
corresponding patches in images x and y.
)= N 2 1/2
LPIPS({E,y) — % Zf\i] <% ZS:] (fc( z)Rfc(y:)) )

where x and y are two images, N is the number
of patches, C is the number of channels, f, is the
feature extraction function, R is scaling factor.
i S(@iyi) f(xiyi

FSIM(z,y) = =5
where x and y are two images, s and f represents the
local similarity and the structural feature similarity
between corresponding image patches ;,Y; respec-
tively.

MMD*(#,9) = |-l S0, T, 6(a:)
*% Z?:l 27:1 #(z:)
+m Z;Zl E;'L B(y:)

where ¢ represents for feature map, x, and y, are
from distribution F and § respectively, while n and
m are numbers of subjects of distribution F and G
respectively.

2

MSE is commonly used for model evaluation, model compari-
son, and model selection in regression tasks. Lower MSE val-
ues indicate better model performance, as they suggest smaller
errors between predictions and actual values.

In [51], NMSE was used to measure the model's ability of im-
age synthesis. A lower NMSE value indicates a better synthesis
quality.

In [78], RMSE was used to measure model's ability of impu-
tation. A smaller RMSE value indicates a better imputation
performance.

PSNR usually ranges from 20 to 50 (dB), with a larger value
showing that the synthesized (reconstructed) image's quality is
better.

SSIM value is a decimal between -1 and 1, where 1 indicates
perfect similarity, 0 indicates no similarity, and -1 indicates
perfect dissimilarity. A higher SSIM value suggests a higher
similarity between the images.

In [52], a higher MSSIM value indicates higher similarity
between images.

In [45], LPIPS was utilized to capture the perceptual similar-
ity between images. A lower LPIPS value indicates improved
perceptual quality.

In [43], a higher FSIM value indicates higher similarity be-
tween the compared images.

In [53], a lower MMD value indicates better image quality.
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Table 7
(Continued)

Evaluation metrics

Metric

Formulation

Usage

Concordance index
(€D

Hausdorff distance
(HD95)

N N
OF = wvmy 2 2L (W0 > 93) - 0w <))
i=1j=

where N is the total number of samples, Y is sample
I’s predicted value, ¥Yi is sample I’s true value. A
pair of / and J is concordant if the predicted ranking
agrees with the true ranking (i.e., if Y > ¥J and

Yi <Yj and discordant otherwise.

Let 4 and B be two sets of points in a metric space,
HD95(4, B) = max(percentile(d(a, B), 95),percentile
(d(b, 4), 95))

where d(x, Y) represents the distance between point
x from set X and the nearest point in set Y, the
function percentile(x,p) returns the pth percentile

of the distances and the 95th percentile is chosen to
calculate the maximum distance.

In [83], CI was used to measure how well the model can
reliably rank patients based on their predicted survival times. A
larger CI, ranging from 0 to 1, indicates better performance.

In [74], HD 95 was used to evaluate each nested subregion
of brain tumors. A lower HD95 indicate better segmentation
performance.

Table 8

Quantitative summary of the three methodological categories. Columns indicate (I) typical tasks, (II) median performance (DSC for
segmentation, AUC for classification, SSIM for synthesis), (III) robustness to missing modalities, (IV) use of external validation, and (V)
code availability

Median reported External Code

Category Typical tasks performance Robustness validation availability
Image synthesis Mostly synthesis; DSC: ~0.86 (Segmentation) Limited (mainly More Low (~10%)
methods segmentation; AUC: ~0.85 (Classification) tested for specific frequently

classification SSIM: ~0.93 (Synthesis) missing modality)
Knowledge transfer ~ Mostly segmentation; DSC: ~0.88 (Segmentation) Moderate (can handle  Rarely High (~70%)
methods classification AUC: ~0.84 (Classification) missing modalities)
Latent space-based Mostly segmentation; DSC: ~0.86 (Segmentation) Moderate (can handle  Rarely Moderate
methods classification AUC: ~0.83 (Classification) missing modalities) (~30%)

segmentation tasks [65, 71-76], and 42% are performed on classification
tasks [66—70]. All the methods for segmentation purpose choose U-net,
while for classification the choice of network ranges from CNNs to
GAN. The difficulty of designing the network, the high training cost of
the source model as well as the interpretability of the model have always
been the major concern concerns for knowledge transfer methods [119].
Even though none of the reviewed papers completely overcame these
hindrances, some of them made notable progress. In [71] authors
disentangled features on the modality level and employed a contrastive
learning-based learning scheme in the spatial and frequency domain to
exploit more explicit relations between modalities. Similarly in [66], a
contrastive learning-based loss was applied to direct the optimization of
the target model from the source model. The authors in [68] combined
image synthesis models with domain adaptation by implementing two
GAN to generate missing modalities and transfer knowledge within the
learned feature space.

Thirdly, our results show that 33% of the reviewed papers use
latent feature space-based methods. Among them, 55% are implemented
for the purpose of segmentation [77, 81, 84, 86—89, 92-94, 96], 20% are
implemented for classification tasks [79, 80, 85, 90], and the rest are
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implemented for various uses, such as prediction [78, 82, 83], missing
modality imputation [91] and synthesized image evaluation [95]. Of the
reviewed latent feature space-based methods, 80% rely on convolution
neural networks (CNNs) to extract latent features. Specifically,
around 50% of them use U-net, which has a comprehensible structure
and performs well on the segmentation tasks [120]. Notably 10% of
the reviewed papers leveraged transformers to achieve satisfactory
outcomes [79, 84]. Considering that the bias of convolution limits
the ability to harness cross-modal relationships [86], a multi-modal
transformer can model the correlated high-level features from different
modalities by the attention mechanism [110]. Moreover, the transformer
has inspired researchers to combine the attention mechanism with the
traditional encoder—decoder model, enabling the network to highlight
important latent features while suppressing irrelevant ones [77]. The
remaining 10% of the methods use RNN-based blocks in their network
when dealing with longitudinal missing modality [78, 82]. Multi-modal
data fusion strategies are utilized by most latent feature space-based
methods to combine the multi-modal extracted features into latent
space representation. They contribute to exploiting the latent feature
space and emphasizing the major features from multiple modalities.
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The fusion strategies based on arithmetic operations such as merging
the features by computing mean and variance are simple but effective
when the purpose is to reinforce the model’s robustness. More complex
fusion strategies, including L1 or L2 distance minimization [95] and
attention-based fusion [89], have also been proposed. However, it is
difficult to decide which strategy is best for handling multi-modal
missing imaging modality since none of them assure the model to learn
a shared latent representation from different intensity distributions
of different modalities. Interpretability of the multi-modal deep
learning models is another concern for their further applications in
medical image analysis [121]. Consequently, researchers are striving
to enhance the interpretability of their models. For example, in [81]
authors not only presented a latent feature space-based U-net effective
for both classification and segmentation tasks but also enhanced the
interpretability via the t-SNE visualization of the latent feature space.

Although a formal meta-analysis was not feasible due to the
substantial heterogeneity across studies in terms of datasets, tasks, and
performance metrics, in Table 8, we provide a quantitative summary
of the three methodological categories, comparing their typical
applications, reported performance, robustness to missing modalities,
external validation, and code availability. Across the three categories,
reported performance is generally similar. Segmentation tasks, which
are mostly evaluated on the BraTS dataset, show DSC values around
0.86—0.88, while classification tasks on the ADNI dataset reach AUC
values of about 0.83-0.85. For image synthesis, SSIM is typically
around 0.93. The main differences lie in robustness and research
practice: image synthesis methods are usually tested on specific missing
modalities, show more frequent external validation, but have the lowest
code availability. In contrast, knowledge transfer and latent space
methods are more often tested in missing modalities scenarios, though
they are less often externally validated, with code availability being
high (~70%) and moderate (~30%), respectively.

While the above categories provide a useful framework to organize
the literature, they are not fully separate. Some studies use methods that
overlap across categories. For example, certain works generate synthetic
images to expand datasets while also applying knowledge transfer to
improve model performance [68]. Others combine latent feature space
analysis with image synthesis to strengthen prediction tasks [36]. These
mixed approaches show that methods in this field are often built on
each other, and that combining techniques from different categories can
be especially useful for tackling the challenges of multimodal medical
imaging.

In the review, we have summarized the datasets used for missing
modality studies. Regarding the most popular datasets used to develop
missing modalities techniques, 60% of the approaches included in this
review used the BraTS dataset and 29% selected the ADNI dataset for
training. Most datasets contain multiple MRI modalities, resulting in
similar preprocessing pipelines. It is worth noting that public datasets
partly reflect real-world clinical practice. They are derived from real
patients and usually include preprocessing steps such as normalization
or artifact reduction, which are also common in practice. This makes
them useful for benchmarking and method development. However, they
are not fully representative, as the released data are often high-quality
and relatively clean. Cases with noise, missing data, or poor annotations
are usually filtered out. Therefore, results based only on public datasets
may not fully capture the challenges of everyday clinical scenarios.

With respect to experimental design, preprocessing was the most
frequently discussed aspect. For MRI preprocessing, normalization,
registration, and skull stripping are the top three frequently used methods,
while for other modalities such as PET, registration and normalization
remained standard practice. In terms of computational resources, 90%
of the papers listed in this review used Graphical Processing Units

(GPUs) for their training. Only 25% of the reviewed papers provided
a public code, half of which are latent feature space-based methods,
promoting reproducibility and collaboration for advancing studies.
There are 42% reviewed papers using multiple datasets, 23% of which
perform an external validation [38, 40, 50, 52, 55, 59], which helps
to identify biases or variability present in the training samples while
strengthening the robustness and dependability of their models.

Lastly, a detailed summary of all evaluation metrics used by
the papers included in this review is provided in Section 3.3. In most
studies, the chosen assessment criteria depend on the task categories.
Around 34% of papers included in this review evaluate their methods
under one missing modality condition. Among the rest of papers
tested on multiple missing modalities scenario, half of them carry
out ‘robustness evaluation’ [122], i.e. assessing their networks on
every possible combination of missing modalities. For non-synthesis
methods, it is difficult to quantify how well the recovery is because
in some categories, it is not even possible to verify the quality of the
recovered modality. For image synthesis methods, such evaluation is
available due to the presence of ground truth. However, it is hard to
compare the recovered modalities within different image synthesis
models even if they are applied to the same task and the same dataset,
if they synthesize different imaging modalities. Also, since most image
synthesis-based methods use CNN networks that rely on fixed channels
of input and output, it is difficult for them to perform a robust evaluation
as a separate model will be required for each possible input—output
scenario [45]. In contrast, nearly half of the articles on latent feature
space-based methods and knowledge transfer methods implement the
‘robustness evaluation’.

5. Limitation

Firstly, the review was conducted by only two reviewers. Although
cross-checking was carried out, the small number of reviewers may have
introduced some subjectivity in study selection and data extraction.
Secondly, the included studies are more weighted toward computer
science and methodological aspects, while clinical perspectives may be
underrepresented. This could limit the assessment of clinical relevance.
Thirdly, it was difficult to compare results across studies in a quantitative
way, since they used different datasets, preprocessing steps, evaluation
metrics, and tasks. The lack of standardized benchmarks makes direct
comparison challenging. Nevertheless, given the systematic search
across multiple major databases and the structured synthesis process, we
are confident that this review covered the most relevant studies and that
the findings capture the current landscape of research on deep learning
methods for missing modalities in multimodal medical imaging.

6. Future Direction

Despite the rapid development of deep learning methods, there is
still a long way to go to solve the missing modalities problem perfectly.
In this section, we will discuss the limitations of current approaches and
indicate the possible solutions concerning them.

A major challenge for adopting deep learning-based models
in a clinical-setting is posed by that lack of model interpretability.
For clinical decision-making applications, model interpretability and
introspection are crucial components. It is known that features extracted
from deep learning models are abstract and may not always be clinically
relevant [6]. Such models will not generalize well on unseen data or be
biased against certain populations. However, the interpretation of deep
learning models is an active research topic and multiple methods have
been proposed [123—127] that allow us to visualize which parts of the
data the model considers important for its predictions, even though the
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underlying feature representations remain abstract. Ref. [123] shows
a popular deep learning technique that visually identifies the key
areas within an input image influencing the model’s predictions. It is
beneficial in shedding light on how decisions are made by multi-modal
deep learning models applied to medical images. Emerging solutions
aim not only to enhance interpretability but also to uncover associations
between different modalities [6, 128].

From the perspective of multi-modal data dimensionality,
we observe in our results that 2D is a more popular choice than 3D.
Although 3D medical image analysis offers advantages in terms
of capturing richer spatial information and potentially improving
prediction accuracy, it comes with the increased complexity of
models. For instance, CNNs used for 3D image analysis may require
deeper architecture or incorporate additional layers to handle the data.
Adapting transfer learning is a potential solution to this challenge. Pre-
trained models from related domains will help the 3D target model to
initialize more efficiently and reduce the need for extensive labeled
data [129]. Another noteworthy approach is to integrate attention
mechanisms into 3D models. By focusing on the important parts and
ignoring irrelevant regions of the 3D images, the attention modules can
reduce the computation cost and improve the interpretability of the 3D
models [130].

Another important future direction for successfully dealing with
missing modalities will be gaining data diversity. The BraTS and the
ADNI datasets provide a large sum of image data for the reviewed
papers’ experiment; however, most of the data are of MRI modalities,
bringing inadequate data diversity issues. As it is difficult to collect
various and complete imaging data from clinical scenarios, generated
images might be a better way to enrich the data diversity. To achieve
such a purpose, more research on the fidelity of the synthesized images
and the interpretability of image synthesis methods are required. Other
modalities of data such as clinical records or genomic information are
also applicable to expand the data variety and improve the effectiveness
of the models.

In addition to data diversity, another critical consideration is
the lack of consistent ways to evaluate methods across studies. While
various papers report quantitative metrics, differences in tasks, datasets,
and evaluation metrics make it hard to compare results directly.
Therefore, future work should create standardized benchmarks and
shared evaluation protocols. This would make cross-study comparisons
more meaningful, improve reproducibility, and provide reliable
baselines to guide future research.

Despite the popularity of deep learning methods, a major
roadblock for its widespread adoption is the unavailability of large-
scale groundtruth datasets with all multimodal data. This challenge
arises primarily from the labor-intensive process of manual annotation,
privacy concerns in the clinical domain, and biases introduced by
the typically small size of patient cohorts, which often represent
high socioeconomic status [131, 132]. Popular approaches like data
augmentation [133], semi-supervised learning [134], transfer learning
[135], and automated annotation [136] offer promising solutions to
address the problem of insufficient labeled data.

7. Conclusion

This review identified and summarized 61 relevant papers
through the search process in accordance with the PRISMA guidelines.
Our research is distinct in its focus on systematically reviewing multi-
modal deep learning methods developed over the last decade dealing
with missing imaging modality issues in medical image analysis. Central
to our investigation are key research inquiries answered in the results
section, illustrating the methodologies employed in medical image
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analysis with missing modality, cataloging publicly available datasets
for researchers, and encapsulating prevalent evaluation techniques. We
provide a detailed discussion regarding our findings and identify notable
research gaps and their potential solutions. The literature explores
addressed questions and analyzes them in the following sections,
highlighting a rapidly growing and globally significant field of interest.
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