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Abstract: Cloud data centers provide essential scalable computing resources but often suffer from inefficient resource allocation, resulting in
excessive energy consumption and increased carbon emissions. This paper proposes a Q-learning-driven adaptive virtual machine placement
strategy that simultaneously optimizes thermal performance and energy efficiency in heterogeneous data centers. The proposed approach explicitly
considers the physical location of servers within racks as well as their processor performance-to-power ratio (PPR). By dynamically adjusting
CPU utilization thresholds according to the servers’ rack positions, the method ensures that servers operate near their optimal PPR. The algorithm
formally classifies servers into “best gear,” “high preferred gear,” and “low preferred gear” states. A reinforcement learning framework based on
Q-Learning learns optimal placement policies to minimize energy consumption, maintain stable service-level agreements (SLAs), and reduce the
risk of thermal hotspots. Experimental results show that our approach reduces energy usage by 18.43% compared to particle swarm optimization,
20% compared to genetic algorithms, and 13% compared to predictive thermal-aware cloud optimization. Furthermore, it significantly lowers SLA
violations and hotspot occurrences. By improving both thermal and energy management, this work contributes to more sustainable, efficient, and
environmentally responsible cloud data center operations.
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1. Introduction continue to use nearly 40% of the energy consumed in data centers.
Maintaining optimal operating temperatures is essential to prevent
equipment overheating and to ensure reliability [5, 6].

A-range of solutions has been introduced to address the energy and
thermal challenges in data centers. Classical numerical methods such as
reduced-order models, flow network modeling, and computational fluid
dynamics are used to optimize airflow and improve cooling efficiency.
Intelligent systems, including adaptive fan controls, have also
demonstrated significant potential in reducing energy consumption. In
addition, the use of machine learning or deep reinforcement learning
is increasing to anticipate thermal fluctuations and optimize the
distribution of VMs in real time. Together, these solutions contribute to
more efficient energy and thermal management in data centers.

Our contribution presents a model for optimizing the placement
of VMs in heterogeneous cloud data centers, with a focus on both
energy efficiency and thermal management. It employs the servers’
performance-to-power ratio (PPR) along with their physical position
in racks to determine the optimal CPU load thresholds for each server.
It takes into account factors such as server power consumption,
temperature fluctuations, and heat recirculation within the data center.
Using reinforcement learning techniques, specifically Q-Learning (QL),
our model dynamically adapts the placement of VMs based on thermal
and energy characteristics. By strategically distributing workloads

Cloud computing’s explosive growth has resulted in a sharp rise
in data center energy consumption, posing serious infrastructure, cost,
and sustainability challenges for service providers. Approximately
one million physical machines and five to six million virtual machines
(VMs) are housed in contemporary data centers. Consequently, it is
anticipated that within the next years, their overall energy consumption
could account for around 3% to 13% of the world’s total electricity
production by 2030 [1, 2]. Significant economic impacts, such as
higher operating costs, and environmental impacts, including increased
greenhouse gas emissions, result from this continuous rise in energy
consumption.

Today, data centers already consume about 1% or more of all
electricity generated worldwide. For example, in China alone, data
centers are projected to use about 6.4% of the country’s total electricity
consumption by 2030, reflecting the growing dependence on digital
infrastructures and cloud services [3, 4]. With approximately 40% of
total energy consumption, servers remain the largest energy consumers
in data centers, powering computing processes and hosting VMs.
Storage devices and communication equipment, such as network
switches and routers, account for approximately 5% of total energy
use. Power supply systems, including uninterruptible power supplies
and power distribution units, contribute about 10%. It should also be

noted that cooling systems, such as air conditioning and ventilation,
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across servers with favorable thermal and energy profiles, the model
improves overall energy efficiency, reduces cooling requirements, and
prevents hot spots from forming. This innovative approach improves
both thermal management and resource allocation, resulting in
significant reductions in operating costs and carbon footprint.
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In addition to operational efficiency and cost savings, the
proposed thermal and energy-aware placement strategy directly
contributes to mitigating the environmental impact of data centers.
By reducing overall energy consumption and cooling demands, our
approach lowers the carbon footprint associated with fossil fuel-based
electricity generation. This is increasingly important as the global
ICT sector is expected to become a significant source of greenhouse
gas emissions if not properly managed. Therefore, optimizing VM
placement with awareness of thermal dynamics and energy use supports
not only sustainable data center operations but also broader climate
goals and environmental commitments.

The remainder of this article is organized as follows. Section 2
reviews related work, focusing on the main contributions in this field.
Section 3 offers a detailed description of the system model. Section 4
presents our proposed method. Section 5 presents the results and analysis,
offering a detailed assessment of the model’s performance as well as
comparisons with existing methods. Finally, Section 6 summarizes the
paper’s findings and suggests possible avenues for future research.

2. Related Work

Saadi et al. [7] explored how combining task clustering methods
with scheduling algorithms can improve the execution of scientific
workflows on cloud platforms. These distributed scientific applications
generate complex workflows with multiple tasks that require significant
computing power in cloud data centers. The resulting high workload
may result in increased energy consumption and longer runtimes. Job
clustering, the consolidation of multiple jobs into a single job, is an
effective technique for reducing resource allocation time and minimizing
runtime. Using the open-source Workflow-Sim simulator, the study
demonstrates that grouping techniques have a major impact on energy
usage and lead times. Specific combinations of planning and grouping
methods, such as vertical grouping and the Max-Min algorithm,
reveal particular energy-saving efficiencies. The research highlights
the essential role of careful integration of scheduling algorithms in
improving the efficiency of cloud-based scientific workflows.

Monshizadeh et al. [8] highlighted the increasing energy
consumption in cloud data centers due to the growing adoption of
cloud computing, motivating the exploration of techniques that
balance energy savings with quality of service requirements. Server
consolidation is widely recognized as a key method to maximize data
center productivity by minimizing the number of physical servers in
operation while meeting service-level agreements (SLAs). The main
challenge is to allocate new VMs to the most suitable hosts to avoid
resource waste and unnecessary server activation. This study examines
current SC algorithms using CloudSim as a simulation platform and
real workload data for evaluation.

Ghasemi et al. [9] highlight the major importance of virtualization
in cloud systems, which are among the world’s largest energy consumers.
This technology plays a central role in resource management, offering
effective solutions to many of the challenges faced in this domain.
Resource consolidation, particularly through the grouping of VMs, is a
widely adopted method to improve the efficiency of cloud datacenters.
The rise of container-based systems and containerized workloads
has opened up new opportunities for consolidation. In their study,
the authors focus specifically on consolidating data centers within
distributed cloud environments. They offer a comprehensive overview
of computational consolidation at various levels of cloud services,
including virtualized data centers, and examine multiple consolidation
strategies. Additionally, they introduce a thematic classification and
review existing solutions from the literature. The paper concludes by
highlighting key research challenges and outlining promising directions
for future work, underlining their significance and potential impact.

Amahrouch et al. [10] introduce a model that combines
reinforcement learning, a Firefly-based optimization algorithm, and
machine learning-based classification to optimize the placement of VMs
in cloud datacenters. This method categorizes VMs into two groups:
sensitive VMs requiring strict SLA compliance, and insensitive VMs
such as batch workloads. The authors demonstrate the effectiveness of
their model in VM consolidation, achieving significant improvements
in energy efficiency and reduction of live VM migrations. Their work
underscores the importance of combining classification, optimization,
and adaptive decision-making to enhance energy efficiency, minimize
SLA violations, and enhance overall system performance. This method
is in line with current trends in intelligent resource management for
cloud environments and provides valuable insights into sustainable
cloud infrastructure design.

Tabrizchi et al. [11] address the pressing issue of thermal
management in large-scale data centers, emphasizing the growing need
to control power consumption due to increased cooling requirements.
As data centers grow in size and complexity, it becomes crucial to
be able to accurately predict temperature in order to avoid hot spots,
optimize energy consumption, and ensure system reliability. The
proposed model combines convolutional neural networks (CNNs)
with bidirectional LSTM networks (BiLSTMs) to form a hybrid deep
learning framework. This model effectively captures the nonlinear and
dynamic behavior of temperature variations in data centers, resulting in
highly accurate predictions. Their approach demonstrates a significant
improvement in prediction accuracy, with an R2 value of 97.15% and
lower error rates compared to existing methods. The CNN-BiLSTM
model is particularly effective in data centers, where temperature
variations are influenced by factors such as server location, processor
load, and airflow. By leveraging real sensor data, the model reduces
cooling costs and improves energy efficiency, providing a robust
solution for cloud service providers seeking to improve sustainability
and reliability. This approach also paves the way for future research on
thermal anomaly detection and optimization of thermal management
strategies in industrial environments.

Kumar et al. [12] review studies conducted between 2015 and
2019 with particular emphasis on the power performance of data centers
and the increase in power consumption caused by the widespread use
of cloud services. Data centers face several challenges, including heat
loss, power factor issues, and inefficient cooling systems, all of which
contribute to excessive energy consumption. The study identifies
airflow, heat dissipation, and ambient temperature as critical factors for
improving energy efficiency. Machine learning algorithms, particularly
reinforcement learning techniques, have proven useful in optimizing
cooling systems. The article proposes exploring hybrid models
combining SVM and Ant Colony Optimization (ACO) algorithms to
optimize energy consumption. The study emphasizes the importance
of the thermal environment in determining overall efficiency and
highlights the need for better automation of cooling processes. Current
cooling systems lack intelligent automation, resulting in inefficiencies
between consumed energy and expected performance levels. The
authors advocate the development of automated systems based on
machine learning and hybrid SVM-ACO approaches to optimize
cooling parameters, which may contribute to substantial efficiency
gains in data center operations.

Akbari et al. [13] suggest a genetic algorithm (GA) to maximize
cooling energy efficiency in a cloud data center. The three primary
parts of this framework were a GA-based optimization mechanism,
a thermodynamics model to estimate cooling power, and an artificial
neural network to predict temperature. In order to maximize computing
load and minimize air conditioning energy requirements, the static
portion of the framework focuses on figuring out how cooling
setpoints and computing load are distributed at various levels (room,
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rack, and row). According to the study, rack-level distribution is the
most efficient, lowering cooling energy consumption by 21% to 50%
during dynamic optimization, contingent on operating conditions. The
general framework is flexible and useful, even though the temperature
prediction model is specific to a particular laboratory setup, which
limits its direct applicability to other settings. By using this method,
data centers can save a significant amount of energy and enhance the
performance of their cooling infrastructure.

Athavale et al. [14] address the challenge of reducing total power
usage in heterogeneous data centers by optimizing the distribution of
VMs, with a particular focus on thermal considerations. This problem,
known as MITEC, is formulated as a nonlinear integer optimization
problem that takes into account both computing and cooling energy
consumption. The authors propose a VM allocation heuristic based on a
GA (MITEC-GA). This approach iteratively refines allocation strategies
to achieve near-optimal results, balancing energy efficiency and thermal
considerations. Experimental results show that the MITEC-GA heuristic
achieves more than 30% energy savings compared to traditional heat-
aware greedy algorithms and power-aware VM allocation heuristics.
The study highlights the importance of VM consolidation and migration
in reducing energy consumption and eliminating thermal hotspots. The
MITEC-GA heuristic offers a promising path toward more energy-
efficient data center management by improving VM placement while
taking thermal dynamics into account. Future research will explore
dynamic VM migration and fan speed control to further improve real-
time thermal management.

In the interest of improving the thermal performance and energy
efficiency of cloud data centers, we propose a new optimization model
based on QL, which leverages the PPR of processors and the physical
location of servers in racks. Inspired by existing approaches, such as task
grouping, VM consolidation, and thermal management algorithms, our
method dynamically adjusts processor load and optimizes VM allocation.
The goal is to reduce total energy consumption for both computing and
cooling systems while minimizing thermal risks. By focusing solely
on optimization, our QL model improves temperature regulation and
overall data center efficiency while ensuring high performance.

3. System Model

3.1. Data center description

In a typical data center, server racks are positioned on a raised
floor with perforated floor slabs, which are arranged into hot aisles and
cold aisles. Cool air from the floor, supplied by the cooling system—
also known as the computer room air conditioning unit (CRAC)—rises
through the perforated tiles into the cold aisles. As it moves through
the servers, this air absorbs heat from their internal components before
exiting at the back. To complete the cooling cycle, hot aisles are
created, and the hot air is sent back to the CRAC, which is often located
above the hot aisles. High-density deployment and effective thermal
management are enabled by the multiple chassis contained in each rack,
as well as the multiple servers housed within each chassis. As illustrated
in Figure 1, this configuration ensures a continuous, controlled airflow
that facilitates efficient heat dissipation in data centers.

3.2. Power consumption by cooling system

The majority of power consumption in a data center comes from
the computing and cooling systems [15-17].

When the processor operates at high performance levels, the host
consumes more energy, which is converted into heat. This heat must be
dissipated by the CRAC cooling system to prevent the host temperature
from exceeding critical limits, thereby avoiding thermal hot spots and
potential hardware malfunctions.

Figure 1
Data center description

G

| =

l_i !
I

Rack Rack

» > I I
» » »

Perforated tiles

e Hot air

P> Cold air
Note: CRAC: computer room air conditioning unit.

The data center’s thermal behavior is controlled by the cooling
systems (CRACs). The power consumption of the air conditioning
system was estimated using the approximation from the study by Lin
etal. [18]. The cooling system’s efficiency is measured by the coefficient
of performance (CoP), which is the ratio of the power used by the data
center’s IT components to the power used by the cooling system. The
CoP is a quadratic function of the supply air temperature (7, )

CoP(Tyyp) = A1 (1)

Prooling

In Equation (1), Prr and Peooing represent the computing and
cooling power consumption in the data center, respectively.

The CoP depends on the data center and can be modeled using
regression techniques with various parameters, including workload and
supply air temperature. To estimate the CoP, we adopt the model from
the HP Utility data center, as shown in Equation (2), where T, ,p presents
the supply air temperature.

CoP(Tyyp) = 0.0068T2, + 0.0008T 4,y + 0.458 )

sup

According to Equation (2), by increasing (Tsup), we increase CoP
(Tsup) and consequently the cooling power is reduced.

3.3. IT components power model

The primary IT components in a data center are servers and
networking devices. However, the power consumed by network
devices is generally considered negligible. Therefore, the total IT power
consumption mainly corresponds to the sum of the power consumed by
all active servers.

In this study, we use a power model based on CPU utilization,
assuming a linear correlation between a server’s power consumption
and its CPU load. This relationship is expressed in Equation (3) as
follows:

P(u) = Pidle + (Pmax - Pidle)- u (3)

where P(u) is the power consumption of the server when its current
CPU utilization reaches the level u. P;g. and Ppay represent the power
consumption of an idle and a fully utilized server, respectively.
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The overall power usage in the data center comprises both the
energy consumed by cooling systems and that used by IT components
(refer to Equation (4)).

Ptotal = Pcooling + PIT 4

Using Equations (3) and (4), we formulate the total power
consumption Py as follows:

Poar = (1+ zopiry ) Prr ®)

3.4. Host temperature (emplacement)

The thermal distribution within server racks is strongly influenced
by vertical placement. Tang et al. [19] demonstrated that when all
servers are idle, the inlet temperature is not uniform across rack levels.
Chassis located near the bottom of the rack benefit from direct access
to cold air from floor vents, resulting in lower inlet temperatures. In
contrast, upper-level chassis receive less cold airflow and thus operate
at higher inlet temperatures due to the reduced cooling supply.

In a related study, Tang et al. [20] examined the impact of hot
air recirculation on the upper rack levels. Their findings indicate
that hot air expelled by the lower chassis tends to rise and affect the
thermal conditions of the upper ones. However, because the top chassis
are close to ceiling-level fans or exhaust vents, much of this hot air
is quickly directed back to the cooling system, partially mitigating its
thermal impact.

Xu et al. [21] focused on the dependency between rack position
and heat dissipation performance. Their results indicate that the higher a
server is placed in the rack, the lower its cooling efficiency. Specifically,
each higher rack level experiences an average temperature increase of
between 2.7°C and 3.4°C, demonstrating the importance of thermally-
aware VM placement strategies in energy-efficient cloud data centers.

Based on these observations, we categorize rack levels into three
thermal zones: Level L0, closest to the cold air sources, offers the lowest
inlet temperature; Level L1, situated in the middle, receives less cold air
and experiences more hot air recirculation; and Level L2, at the top, is
most affected by hot air accumulation, leading to the highest operating
temperatures. Figure 2 illustrates this vertical temperature distribution
across the rack levels.

Because of the complex nature of the airflow inside the data center,
a part of the hot air exhausted from the server outlets recirculates into
the inlet of other servers. One of the reasons for the energy overhead of
the cooling system is mainly due to the mixing of cold air with the hot
air recirculated into the inlet. To provide an acceptable inlet temperature

Figure 2
Temperature distribution across rack levels
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for all servers, the air temperature must be lowered, which increases the
energy cost of cooling. To avoid hot spots in the data center, the position
of the servers in the racks must be taken into consideration when setting
the maximum load threshold.

3.5. Performance Power Ratio (PPR)

PPR represents the energy efficiency of a server, indicating the
number of operations executed per watt of power used. This metric
provides useful information on the efficiency of a system’s energy use,
particularly under varying workload conditions. According to results
published on the SPEC website [22], several manufacturers have
evaluated their servers using the SPECpower ssj2008 benchmark.
Figure 3 [22] illustrates the corresponding graphs for two types of
servers, showing the evolution of power consumption and PPR as a
function of increasing processor load. In the case of the Dell PowerEdge
R830 (Intel Xeon E5-4669 v4 2.20 GHz), the highest PPR is reached at
around 80% CPU utilization, whereas for the HP Apollo XL225n Gen
10 Plus (AMD EPYC 7702 2.0 GHz), the maximum PPR is observed
at full CPU load (100%). These curves highlight the importance of
identifying the optimum utilization point for each server model to
maximize energy efficiency.

The highest PPR varies by server type; for example, it peaks at
80% CPU utilization for the Dell PowerEdge R830 and at 100% for
the HP Apollo XL225n Genl0 Plus. Power consumption rises nearly
linearly with CPU utilization.

To enhance energy efficiency, we propose an allocation strategy
that determines the best PPR gear for each server and establishes it as

Figure 3
PPR and power usage as CPU utilization rises (SPECpower_
$5j2008): (a) Dell PowerEdge R830 (Intel Xeon ES-4669 v4 2.20
GHz) and (b) HP Apollo XL225n Gen 10 Plus (AMD EPYC 7702
2.0 GHz)
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Figure 4
PPR and power usage as CPU utilization rises: Dell PowerEdge
R830 (Intel Xeon E5-4669 v4 2.20 GHz)
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a CPU load threshold. In a heterogeneous data center, this CPU load
threshold varies per server.

To ensure energy efficiency, servers are loaded close to their
optimal PPR—that is, where each server executes the highest number of
instructions per watt consumed. The exact CPU load threshold is defined
based on the server’s position within the rack. Specifically, servers
located in Level LO are assigned the High Preferred Gear (HPG), those in
L1 the Best Gear (BG), and those in L2 the Low Preferred Gear (LPG).

Figure 4 illustrates this concept for the Dell PowerEdge R830,
where the BG corresponds to approximately 80% CPU utilization, the
HPG to 90%, and the LPG to 70%. This stratified thresholding enables
a thermally-aware and energy-efficient VM placement strategy, tailored
to both server characteristics and their rack positions.

The BG corresponds to the CPU utilization that maximizes the
PPR for each server. The HPG and LPG are then defined as upper and
lower operating ranges around this optimum, typically within £10% of the
BG point. This ensures that each server operates close to its most energy-
efficient state while considering thermal constraints and rack position.

4. Proposed Approach
4.1. Problem modeling

The placement of VMs with respect to temperature control and
energy consumption is an NP-hard problem. An optimization problem
that aims to minimize overall energy consumption while respecting
all operational constraints can be used to formulate the best location
for VMs. The optimization problem that this work attempts to solve is
formally defined as follows:

1) Minimize the total energy consumption of both the IT equipment
and the cooling system.

2) Ensure satisfactory machine performance by respecting CPU load
constraints based on the PPR and the host’s position in the racks.

In this study, the user workload requests to the data center are
abstracted as VMs. A data center consists of # racks, each rack contains
r chassis, and each chassis holds n servers. The objective is to place
m VMs across these servers optimally. The power consumed for all
servers (PIT) is calculated by Equation (6).

Prr =) z;P, z;={0,1
=2 .13 ©)

T; is a binary variable that takes 1 when the host 7 is active and
zero if it is switched off.

The final aim is to minimize Pjoq;, the sum of power consumed
by IT equipment and cooling systems, represented mathematically as
follows:

n
min Py = min(l T m)PH = minY z; (1 + m)a 7
i=1

i=

4.2. Threshold determination

For balanced thermal management and optimum energy
efficiency in heterogeneous data centers, dynamically setting the CPU
load threshold for each server based on its physical rack location is
crucial. Algorithm 1 outlines a straightforward but effective method
for determining the appropriate CPU load threshold according to the
server’s surrounding temperature.

Servers located in the lower part of the rack (LO level), which
benefit from better cold air circulation, can support a higher load (HPG).
Servers located in the middle (L1) operate at an optimum threshold
(BG), whereas those at the top (L2), exposed to recirculated hot air, are
limited to a lower load (LPG) to avoid overheating.

1) LO: Servers in the lower part of the rack, where there’s more cool
air. CPU load threshold = HPG.

2) L1: Intermediate servers, where the temperature is moderate. CPU
load threshold = BG.

3) L2: Servers located at the top part of the rack, where hot air tends to
concentrate. CPU load threshold = LPG.

Algorithm 1: Server threshold determination
Input: hostList
Output: CPU Load Threshold (CPUTh) assigned to each server based on its rack
position
foreach server in hostList do
If server.getPosition() is LO then
setCpuTh (HPG)
else if server.getPosition () is L1 then
setCpuTh(BG)
else if server.getPosition() is L2 then
setCpuTh (LPG)
end if
end foreach

4.3. Proposed VM placement method

Q-Learning is a type of reinforcement learning that enables
systems to learn the best actions to take through experience. Instead
of relying on a predefined model, it learns by trying different actions
and observing the results, gradually improving its decisions based on
accumulated feedback.

Applied to the placement of VMs in a data center, QL makes real-
time decisions by observing current system conditions, such as energy
consumption, temperature levels, and resource utilization. Based on
this information, it chooses actions such as moving a VM to another
server or starting or stopping a server. Each action is evaluated using
a reward signal that reflects how much it contributes to improving
energy efficiency, maintaining thermal stability, or improving overall
system performance. Over time, as the system gains experience, it
develops an increasingly effective strategy for VM placement. The
result is a smarter distribution of workloads that helps reduce energy
consumption, prevent overheating, and make better use of available
resources, all without the need for an exact mathematical model of data
center behavior.
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1) State Space (S): Represents the current configuration of VMs and
hosts in the data center.)

S= [CPU utilization,temperature,host states] ®)

2) Action Space (A): Represents the possible actions for VM placement
or migration.

A = {Place VM from Host i to Host j,Turn on Host, ©)
Turn Off Host}

3) Reward Function (R (s, a)): Evaluates the impact of an action a in
states.
a. Energy efficiency:

Renergy = —Total Energy Consumption (E) (10)
b. Thermal management:
R _ [~Tmaz if Tiaz < Threshold, "
thermal = —00 f Truae > Threshold (1D
¢. Load balancing:
Riatance = —Variance of CPU utilization across hosts (12)
d. Combined reward function:
R(5> a) =wl- Renergy +w2- RtheTmal +w3 - Rbalancea (13)

where w1, w2, and w3 are weights to prioritize objectives.

4) O(s, a): is the cumulative reward of taking action « in state s:
Q(s,a) < Q(s,a) + a[R(s,a) + yatmazQ(st,al) — Q(s,a)] (14)

s @ state.

a: Action.

. R(s,a) Immediate reward.

s'": Next state (After action a).
o: Learning rate.

y: Discount factor.

me e os

5) Exploration Strategy (€, dy): Balances exploration (try new actions)
and exploitation (use learned knowledge):
a. With probability €(epsilon), select a random action.
b. Otherwise, select the action a with the highest Q-value

The QL procedure for VM placement optimization is summarized
in Algorithm 2. This algorithm iteratively updates the O-table based
on the observed state, selected action, and received reward, balancing
exploration and exploitation through the e-greedy strategy

Algorithm 2: Q-Learning for VM PI Optimization

4.4. Algorithms for comparison

In this study, the performance of the QL-based model is evaluated
against three established VM placement techniques. Approaches such
as particle swarm optimization (PSO), GA, and predictive thermal-
aware cloud optimization (PTACO)-MMT are employed.

1) PSO: is a “swarm intelligence” algorithm that uses the collective
behavior of particles to find the optimal position for virtual
machines, minimizing power consumption and improving resource
utilization [23].

2) GA: is an evolutionary algorithm inspired by natural selection. It
is used to generate optimal placement solutions through crossover
and mutation operations, aiming to reduce overall energy
consumption [24].

3) PTACO-MMT [25]: is a power- and thermal-aware VM placement
scheme that reduces the total energy consumption of both IT and
cooling systems. It combines a VM selection algorithm based on the
Minimization Method and a VM placement algorithm based on an
improved ACO approach.

Although more recent techniques have been proposed, these
methods remain widely used as benchmark algorithms for performance
comparison, providing a robust framework to evaluate the effectiveness
of the QL model based on the power performance ratio. To ensure
robustness, two models of host behavior described by Wang et al. [26]
are also considered: /r 1.2 mmt and igr 1.5 mc, which are based on
the following methods:

1) IgrMc: This approach uses a VM allocation strategy that relies on
the Inter Quartile Range technique for detecting hotspots, combined
with a policy that prioritizes migrating VMs exhibiting the highest
correlation.

2) LrMmt: Based on Cleveland’s local regression method, LrMmt
determines whether a host is overloaded and if its VMs should be
migrated. When overload is detected, it selects the VM with the
shortest migration time, applying a minimum migration time strategy.

5. Result and Analysis

5.1. Simulation setup

This study utilized real workload traces from the Microsoft
Azure 2019 dataset, focusing specifically on CPU utilization data
collected over ten randomly selected days. The dataset encompasses
approximately 2.6 million VMs and 1.9 billion utilization records,
captured at 5-minute intervals [27].

For the simulation setup, CloudSim was used to model a cloud
data center consisting of 800 identical host machines. The data center
is organized into 10 zones, each containing 10 racks arranged in a 4 x 2
layout. Each rack houses 10 hosts, resulting in a total of 800 hosts. Four
types of single-core VMs, based on Amazon EC2 specifications, were

Table 1
VMs specifications

Input: S (State space), A (Action space), Learning rate, Discount factor, Max
iterations.
Output: Optimal Q-table for VM placement decisions
1. Initialize Q-table with arbitrary values for all (s in S) and all (a in A).
2. Repeat for (I) iterations or until convergence:
a. Observe the state (s).
b. Select action a using an exploration strategy (e.g., (epsilon-greedy):
- With probability (epsilon), choose a random action.
- Otherwise, choose (a = arg (max Q (s, a)).
c. Execute action a, observe the next state s' and reward (R (s, a))
d. Update the Q-value using Equation (12):
3. Return Q-table Q (s, a).

Core (processing RAM Bandwidth

VM type MIPS elements) (MB) (Mbps)
High-CPU medium 2,500 1 870 100
instance

Extra-large instance 2,000 1 1,740 100
Small instance 1,000 1 1,740 100
Micro instance 500 1 613 100

Note: VM: virtual machine.
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Table 2 VM migration count directly reflects the number of live VM relocations
Experimental parameters executed during operation, providing a measure of system reactivity
and consolidation cost. Finally, hotspots are used to monitor thermal
Item Parameters Valeur stability, with a higher number indicating poor thermal distribution
Datacenter ~ Number of zones 10 and greater risk of overheating, which may necessitate cooling
Number of racks in zone 4*2
Number of hosts in the rack 10 Figure 5
CRAC Supply air temperature from CRAC 250C Energy consumption (kWh) under different workload datasets
Server Heat capacity 340 J/K 28 1
= 35
Thermal resistance 0,34 K'W 2 3901
Initial CPU temperature 318K ? 291
Threshold of CPU temperature 75°C s 12 ]
0
Upper utilization threshold 80% Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl0
Workload dates
Note: CRAC: computer room air conditioning unit.
—AQLIr_mmt_1,2 QL lgr_mc_1,5 PSO Igr_mc_1,5
PSO Ir_mmt_1,2 ——Genetic Igr_mc_1,5 Genetic Ir_mmt_1,2
Table 3 ——PTACO Ir_mmt_1,2
Number of Virtual Machines per day
Date Number of VMs Figure 6
Day 1 1.052 Average energy consumption (kWh)
Day 2 898 » 27.549105
28 26.938875 ;
Day 3 1’061 = 264 25.794385 25.607753 50807753
Day 4 1,516 2
> 244
Day 5 1,078 g, | 2oz70r 2146826
Day 6 1,463 20 I I
Day 7 1,358 184
Ir_mmt_1,2 Iqr_mc_1,5 Iqr mc_1,5 Ir_mmt_: 12 Igr_mc_1,5 Ir_mmt_ 12 Ir_mmt_1,2
Day 8 1’233 QL PSO Genetic PTACO
Day 9 1,054
Day 10 1,033 Figure 7
Note: CRAC: computer room air conditioning unit. Comparison of VM migration counts under different loads
é 20000
defined with processing capacities ranging from 500 to 2,500 MIPS, S 15000
RAM between 613 and 1,740 MB, and a standardized bandwidth of 100 g 10000
Mbps. Detailed VM specifications are provided in Table 1. g
The thermal parameters are detailed in Table 2. E 2000 H I
The initial allocation of VMs is based on the resource = 0

requirements defined by the VM type. However, during their lifetime,
VMs consume fewer resources due to workload variations, allowing
dynamic VM consolidation. Real system workload traces were
employed to conduct the experiments. Data from Microsoft Azure 2019
nodes, including CPU utilization from 10 randomly selected days and
over 1,000 VMs, were used. Utilization measurements were recorded at
S-minute intervals. Table 3 summarizes the number of VMs observed
each day, ranging from 898 to 1,516 VMs per day.

5.2. Results and discussion

To evaluate the effectiveness of our model, four key performance
indicators are used, each providing insight into different aspects of
system behavior. Energy consumption, measured in kilowatt-hours
(kWh), quantifies the total energy used by the data center and serves
as a primary indicator of energy efficiency. SLA violation captures the
degradation in service quality caused by dynamic VM consolidation,
taking into account both the impact of VM migrations—which can
momentarily reduce application performance—and the occurrence
of hotspots, which represent servers that have exceeded a critical
temperature threshold, potentially threatening hardware reliability. The

Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 DaylO
Workload dates

M Genetic Igr_mc_1,5
M PSO Ir_mmt_1,2
W PTACO Ir_mmt_1,2

WAaLir_mmt_1,2
M Genetic Ir_mmt_1,2
mQLlgr_mc_1,5

Note: VM: virtual machine.

PSO Igr_mc_1,5

Figure 8
Average number of migrations
120000
99282
2 100000 89426
o
=
75251
S, 80000 A 71854 68011
= 61732
5 60000 51555
& 40000
€
=]
=z 20000
0_
Ir_mmt_1,2 Igr_mc_1,5[Igr_mc_1,5 Ir_mmt_1,2| Igr_mc_1,5 Ir_mmt_1,2| Ir_mmt_1,2
QL PSO Genetic PTACO

Note: PSO: particle swarm optimization. PTACO: predictive thermal-aware
cloud optimization. QL: Q-Learning.
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intervention or trigger thermal throttling. Combined, these metrics
provide a thorough evaluation of the balance between energy efficiency,
operational performance, and thermal safety.

To evaluate our methodology and analyze the results, we
performed a comparative study including PSO, GA, and our QL model.
We considered two types of host behavior models: Ir 1.2 mmt and
iqr 1.5 mec.

From the analysis of Figures 5 and 6, it is clear that VM placement
using QL yields the lowest energy consumption among the methods
tested. Specifically, under the Ir 1.2 mmt strategy, our Q-Learning
model achieves an energy reduction of 18.43% compared to PSO, 20%
compared to the GA, and 13% compared to PTACO. Similarly, with the
iqr_1.5_moc strategy, our model reduces energy consumption by 14.14%
compared to PSO and 13.51% compared to the GA.

Observing Figures 7 and 8, we observe that the QL-based model
consistently achieves the lowest number of VM migrations across
both host behavior strategies. Under the Ir 1.2 mmt configuration
(Figure 7), our model significantly outperforms the others with only
51,555 migrations, compared to 71,854 for PSO, 75,251 for the GA,
and 68,011 for PTACO.

Similarly, under the iqr 1.5 mc, the QL approach results in
61,732 migrations, whereas GA and PSO record 89,426 and 99,282
migrations, respectively.

These results demonstrate the effectiveness of the proposed
approach in reducing the number of migrations, which is vital for
ensuring service stability and lowering energy costs during dynamic
VM consolidation.

Figure 9
Average SLA violation
0.00035
0.0003 -
0.00025 -
c
2 0.0002 4
=
-2 0.00015
<<
& 0.0001
0.00005 - I I
0 4

Ir_mmt_1,2 Iqr mc_ 15 Igr_mc_1,5 Ir_mmt_1,2|Igr_mc_1,5 Ir_mmt_1,2| Ir_mmt_1,2

PSO Genetic PTACO
Note: SLA: service-level agreement.
Figure 10
Average hotspots
7000
6000 - 5750 5725
a 5500 5250
% 5000 -
o
T 4000+ 3450
o 3000
2 1 2500
e 2250
S 2000 -
=z
1000 -
04
Ir_mmt_1,2| Igr_mc_1,5 Ir_mmt_1,2| lgr_mc_1,5 |r_rnmt_1,2| Igr_mc_1,5 [ Ir_mmt_1,2
(o] PSO Genetic PTACO

Note: PSO: particle swarm optimization. PTACO: predictive thermal-aware
cloud optimization. QL: Q-Learning.

Figure 9 shows the percentage of SLA violations. Our model
outperforms the other approaches under both theiqr 1.5 mcandlr 1.2
mmt strategies, maintaining a consistently low violation rate over the
ten-day evaluation period. This performance is primarily attributed to
the reduced number of migrations achieved by the QL method, which
helps preserve service quality.

Our QL model demonstrates a significant reduction in thermal
hotspots, recording only 2,500 and 2,250 occurrences under the
Ir 1.2 mmt and iqr 1.5 mc strategies, respectively. In contrast,
PSO registers 5,750 and 5,500, whereas Genetic records 5,725 and
5,250 under the same strategies. PTACO also performs better than
PSO and Genetic, but remains superior to QL, with 3,450 hotspots
under Ir 1.2 mmt. These results highlight the superior effectiveness
of QL in managing thermal conditions, thanks to its adaptive learning
capability, whereas PSO and Genetic, which are less responsive to
dynamic variations in workload, exhibit a higher number of hot spots
(see Figure 10).

6. Conclusion

In this study, we introduced a new strategy for placing VMs in
heterogeneous cloud data centers, focusing simultaneously on energy
efficiency and thermal management. Our method considers each
server’s PPR and its physical placement within the rack, allowing
dynamic adjustment of CPU load thresholds to maximize efficiency and
minimize thermal hotspots.

By leveraging QL, the system learns optimal placement decisions
over time, resulting in smarter resource allocation that balances thermal
risks and power usage patterns. Experimental results confirm the
effectiveness of the model, showing clear reductions in overall energy
consumption and a lower risk of overheating compared to traditional
methods such as PSO and GAs.

These improvements directly contribute to lowering the
carbon footprint of data centers by reducing the energy required for
both computation and cooling, supporting a more sustainable digital
infrastructure.

In the future, integrating real-time monitoring data could
further enhance the adaptability of the placement strategy under
dynamic workloads. Combining QL with other advanced machine
learning methods or hybrid optimization approaches also shows
promise for improving both energy and thermal performance. Finally,
future work could investigate the impact of network traffic on heat
generation and energy use to develop holistic solutions that jointly
optimize computing, cooling, and communication in modern cloud
environments.
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