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Abstract: Cloud data centers provide essential scalable computing resources but often suffer from inefficient resource allocation, resulting in 
excessive energy consumption and increased carbon emissions. This paper proposes a Q-learning-driven adaptive virtual machine placement 
strategy that simultaneously optimizes thermal performance and energy efficiency in heterogeneous data centers. The proposed approach explicitly 
considers the physical location of servers within racks as well as their processor performance-to-power ratio (PPR). By dynamically adjusting 
CPU utilization thresholds according to the servers’ rack positions, the method ensures that servers operate near their optimal PPR. The algorithm 
formally classifies servers into “best gear,” “high preferred gear,” and “low preferred gear” states. A reinforcement learning framework based on 
Q-Learning learns optimal placement policies to minimize energy consumption, maintain stable service-level agreements (SLAs), and reduce the 
risk of thermal hotspots. Experimental results show that our approach reduces energy usage by 18.43% compared to particle swarm optimization, 
20% compared to genetic algorithms, and 13% compared to predictive thermal-aware cloud optimization. Furthermore, it significantly lowers SLA 
violations and hotspot occurrences. By improving both thermal and energy management, this work contributes to more sustainable, efficient, and 
environmentally responsible cloud data center operations.
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1. Introduction
Cloud computing’s explosive growth has resulted in a sharp rise 

in data center energy consumption, posing serious infrastructure, cost, 
and sustainability challenges for service providers. Approximately 
one million physical machines and five to six million virtual machines 
(VMs) are housed in contemporary data centers. Consequently, it is 
anticipated that within the next years, their overall energy consumption 
could account for around 3% to 13% of the world’s total electricity 
production by 2030 [1, 2]. Significant economic impacts, such as 
higher operating costs, and environmental impacts, including increased 
greenhouse gas emissions, result from this continuous rise in energy 
consumption.

Today, data centers already consume about 1% or more of all 
electricity generated worldwide. For example, in China alone, data 
centers are projected to use about 6.4% of the country’s total electricity 
consumption by 2030, reflecting the growing dependence on digital 
infrastructures and cloud services [3, 4]. With approximately 40% of 
total energy consumption, servers remain the largest energy consumers 
in data centers, powering computing processes and hosting VMs. 
Storage devices and communication equipment, such as network 
switches and routers, account for approximately 5% of total energy 
use. Power supply systems, including uninterruptible power supplies 
and power distribution units, contribute about 10%. It should also be 
noted that cooling systems, such as air conditioning and ventilation, 

continue to use nearly 40% of the energy consumed in data centers. 
Maintaining optimal operating temperatures is essential to prevent 
equipment overheating and to ensure reliability [5, 6].

A range of solutions has been introduced to address the energy and 
thermal challenges in data centers. Classical numerical methods such as 
reduced-order models, flow network modeling, and computational fluid 
dynamics are used to optimize airflow and improve cooling efficiency. 
Intelligent systems, including adaptive fan controls, have also 
demonstrated significant potential in reducing energy consumption. In 
addition, the use of machine learning or deep reinforcement learning 
is increasing to anticipate thermal fluctuations and optimize the 
distribution of VMs in real time. Together, these solutions contribute to 
more efficient energy and thermal management in data centers.

Our contribution presents a model for optimizing the placement 
of VMs in heterogeneous cloud data centers, with a focus on both 
energy efficiency and thermal management. It employs the servers’ 
performance-to-power ratio (PPR) along with their physical position 
in racks to determine the optimal CPU load thresholds for each server. 
It takes into account factors such as server power consumption, 
temperature fluctuations, and heat recirculation within the data center. 
Using reinforcement learning techniques, specifically Q-Learning (QL), 
our model dynamically adapts the placement of VMs based on thermal 
and energy characteristics. By strategically distributing workloads 
across servers with favorable thermal and energy profiles, the model 
improves overall energy efficiency, reduces cooling requirements, and 
prevents hot spots from forming. This innovative approach improves 
both thermal management and resource allocation, resulting in 
significant reductions in operating costs and carbon footprint.
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In addition to operational efficiency and cost savings, the 
proposed thermal and energy-aware placement strategy directly 
contributes to mitigating the environmental impact of data centers. 
By reducing overall energy consumption and cooling demands, our 
approach lowers the carbon footprint associated with fossil fuel-based 
electricity generation. This is increasingly important as the global 
ICT sector is expected to become a significant source of greenhouse 
gas emissions if not properly managed. Therefore, optimizing VM 
placement with awareness of thermal dynamics and energy use supports 
not only sustainable data center operations but also broader climate 
goals and environmental commitments.

The remainder of this article is organized as follows. Section 2 
reviews related work, focusing on the main contributions in this field. 
Section 3 offers a detailed description of the system model. Section 4 
presents our proposed method. Section 5 presents the results and analysis, 
offering a detailed assessment of the model’s performance as well as 
comparisons with existing methods. Finally, Section 6 summarizes the 
paper’s findings and suggests possible avenues for future research.

2. Related Work
Saadi et al. [7] explored how combining task clustering methods 

with scheduling algorithms can improve the execution of scientific 
workflows on cloud platforms. These distributed scientific applications 
generate complex workflows with multiple tasks that require significant 
computing power in cloud data centers. The resulting high workload 
may result in increased energy consumption and longer runtimes. Job 
clustering, the consolidation of multiple jobs into a single job, is an 
effective technique for reducing resource allocation time and minimizing 
runtime. Using the open-source Workflow-Sim simulator, the study 
demonstrates that grouping techniques have a major impact on energy 
usage and lead times. Specific combinations of planning and grouping 
methods, such as vertical grouping and the Max-Min algorithm, 
reveal particular energy-saving efficiencies. The research highlights 
the essential role of careful integration of scheduling algorithms in 
improving the efficiency of cloud-based scientific workflows.

Monshizadeh et al. [8] highlighted the increasing energy 
consumption in cloud data centers due to the growing adoption of 
cloud computing, motivating the exploration of techniques that 
balance energy savings with quality of service requirements. Server 
consolidation is widely recognized as a key method to maximize data 
center productivity by minimizing the number of physical servers in 
operation while meeting service-level agreements (SLAs). The main 
challenge is to allocate new VMs to the most suitable hosts to avoid 
resource waste and unnecessary server activation. This study examines 
current SC algorithms using CloudSim as a simulation platform and 
real workload data for evaluation.

Ghasemi et al. [9] highlight the major importance of virtualization 
in cloud systems, which are among the world’s largest energy consumers. 
This technology plays a central role in resource management, offering 
effective solutions to many of the challenges faced in this domain. 
Resource consolidation, particularly through the grouping of VMs, is a 
widely adopted method to improve the efficiency of cloud datacenters. 
The rise of container-based systems and containerized workloads 
has opened up new opportunities for consolidation. In their study, 
the authors focus specifically on consolidating data centers within 
distributed cloud environments. They offer a comprehensive overview 
of computational consolidation at various levels of cloud services, 
including virtualized data centers, and examine multiple consolidation 
strategies. Additionally, they introduce a thematic classification and 
review existing solutions from the literature. The paper concludes by 
highlighting key research challenges and outlining promising directions 
for future work, underlining their significance and potential impact.

Amahrouch et al. [10] introduce a model that combines 
reinforcement learning, a Firefly-based optimization algorithm, and 
machine learning-based classification to optimize the placement of VMs 
in cloud datacenters. This method categorizes VMs into two groups: 
sensitive VMs requiring strict SLA compliance, and insensitive VMs 
such as batch workloads. The authors demonstrate the effectiveness of 
their model in VM consolidation, achieving significant improvements 
in energy efficiency and reduction of live VM migrations. Their work 
underscores the importance of combining classification, optimization, 
and adaptive decision-making to enhance energy efficiency, minimize 
SLA violations, and enhance overall system performance. This method 
is in line with current trends in intelligent resource management for 
cloud environments and provides valuable insights into sustainable 
cloud infrastructure design.

Tabrizchi et al. [11] address the pressing issue of thermal 
management in large-scale data centers, emphasizing the growing need 
to control power consumption due to increased cooling requirements. 
As data centers grow in size and complexity, it becomes crucial to 
be able to accurately predict temperature in order to avoid hot spots, 
optimize energy consumption, and ensure system reliability. The 
proposed model combines convolutional neural networks (CNNs) 
with bidirectional LSTM networks (BiLSTMs) to form a hybrid deep 
learning framework. This model effectively captures the nonlinear and 
dynamic behavior of temperature variations in data centers, resulting in 
highly accurate predictions. Their approach demonstrates a significant 
improvement in prediction accuracy, with an R2 value of 97.15% and 
lower error rates compared to existing methods. The CNN-BiLSTM 
model is particularly effective in data centers, where temperature 
variations are influenced by factors such as server location, processor 
load, and airflow. By leveraging real sensor data, the model reduces 
cooling costs and improves energy efficiency, providing a robust 
solution for cloud service providers seeking to improve sustainability 
and reliability. This approach also paves the way for future research on 
thermal anomaly detection and optimization of thermal management 
strategies in industrial environments.

Kumar et al. [12] review studies conducted between 2015 and 
2019 with particular emphasis on the power performance of data centers 
and the increase in power consumption caused by the widespread use 
of cloud services. Data centers face several challenges, including heat 
loss, power factor issues, and inefficient cooling systems, all of which 
contribute to excessive energy consumption. The study identifies 
airflow, heat dissipation, and ambient temperature as critical factors for 
improving energy efficiency. Machine learning algorithms, particularly 
reinforcement learning techniques, have proven useful in optimizing 
cooling systems. The article proposes exploring hybrid models 
combining SVM and Ant Colony Optimization (ACO) algorithms to 
optimize energy consumption. The study emphasizes the importance 
of the thermal environment in determining overall efficiency and 
highlights the need for better automation of cooling processes. Current 
cooling systems lack intelligent automation, resulting in inefficiencies 
between consumed energy and expected performance levels. The 
authors advocate the development of automated systems based on 
machine learning and hybrid SVM-ACO approaches to optimize 
cooling parameters, which may contribute to substantial efficiency 
gains in data center operations.

Akbari et al. [13] suggest a genetic algorithm (GA) to maximize 
cooling energy efficiency in a cloud data center. The three primary 
parts of this framework were a GA-based optimization mechanism, 
a thermodynamics model to estimate cooling power, and an artificial 
neural network to predict temperature. In order to maximize computing 
load and minimize air conditioning energy requirements, the static 
portion of the framework focuses on figuring out how cooling 
setpoints and computing load are distributed at various levels (room, 
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rack, and row). According to the study, rack-level distribution is the 
most efficient, lowering cooling energy consumption by 21% to 50% 
during dynamic optimization, contingent on operating conditions. The 
general framework is flexible and useful, even though the temperature 
prediction model is specific to a particular laboratory setup, which 
limits its direct applicability to other settings. By using this method, 
data centers can save a significant amount of energy and enhance the 
performance of their cooling infrastructure.

Athavale et al. [14] address the challenge of reducing total power 
usage in heterogeneous data centers by optimizing the distribution of 
VMs, with a particular focus on thermal considerations. This problem, 
known as MITEC, is formulated as a nonlinear integer optimization 
problem that takes into account both computing and cooling energy 
consumption. The authors propose a VM allocation heuristic based on a 
GA (MITEC-GA). This approach iteratively refines allocation strategies 
to achieve near-optimal results, balancing energy efficiency and thermal 
considerations. Experimental results show that the MITEC-GA heuristic 
achieves more than 30% energy savings compared to traditional heat-
aware greedy algorithms and power-aware VM allocation heuristics. 
The study highlights the importance of VM consolidation and migration 
in reducing energy consumption and eliminating thermal hotspots. The 
MITEC-GA heuristic offers a promising path toward more energy-
efficient data center management by improving VM placement while 
taking thermal dynamics into account. Future research will explore 
dynamic VM migration and fan speed control to further improve real-
time thermal management.

In the interest of improving the thermal performance and energy 
efficiency of cloud data centers, we propose a new optimization model 
based on QL, which leverages the PPR of processors and the physical 
location of servers in racks. Inspired by existing approaches, such as task 
grouping, VM consolidation, and thermal management algorithms, our 
method dynamically adjusts processor load and optimizes VM allocation. 
The goal is to reduce total energy consumption for both computing and 
cooling systems while minimizing thermal risks. By focusing solely 
on optimization, our QL model improves temperature regulation and 
overall data center efficiency while ensuring high performance.

3. System Model

3.1. Data center description
In a typical data center, server racks are positioned on a raised 

floor with perforated floor slabs, which are arranged into hot aisles and 
cold aisles. Cool air from the floor, supplied by the cooling system—
also known as the computer room air conditioning unit (CRAC)—rises 
through the perforated tiles into the cold aisles. As it moves through 
the servers, this air absorbs heat from their internal components before 
exiting at the back. To complete the cooling cycle, hot aisles are 
created, and the hot air is sent back to the CRAC, which is often located 
above the hot aisles. High-density deployment and effective thermal 
management are enabled by the multiple chassis contained in each rack, 
as well as the multiple servers housed within each chassis. As illustrated 
in Figure 1, this configuration ensures a continuous, controlled airflow 
that facilitates efficient heat dissipation in data centers.

3.2. Power consumption by cooling system
The majority of power consumption in a data center comes from 

the computing and cooling systems [15–17].
When the processor operates at high performance levels, the host 

consumes more energy, which is converted into heat. This heat must be 
dissipated by the CRAC cooling system to prevent the host temperature 
from exceeding critical limits, thereby avoiding thermal hot spots and 
potential hardware malfunctions.

The data center’s thermal behavior is controlled by the cooling 
systems (CRACs). The power consumption of the air conditioning 
system was estimated using the approximation from the study by Lin 
et al. [18]. The cooling system’s efficiency is measured by the coefficient 
of performance (CoP), which is the ratio of the power used by the data 
center’s IT components to the power used by the cooling system. The 
CoP is a quadratic function of the supply air temperature (Tsup).

In Equation (1),  and  represent the computing and 
cooling power consumption in the data center, respectively.

The CoP depends on the data center and can be modeled using 
regression techniques with various parameters, including workload and 
supply air temperature. To estimate the CoP, we adopt the model from 
the HP Utility data center, as shown in Equation (2), where Tsup presents 
the supply air temperature.

According to Equation (2), by increasing (Tsup), we increase CoP 
(Tsup) and consequently the cooling power is reduced.

3.3. IT components power model
The primary IT components in a data center are servers and 

networking devices. However, the power consumed by network 
devices is generally considered negligible. Therefore, the total IT power 
consumption mainly corresponds to the sum of the power consumed by 
all active servers.

In this study, we use a power model based on CPU utilization, 
assuming a linear correlation between a server’s power consumption 
and its CPU load. This relationship is expressed in Equation (3) as 
follows:

where  is the power consumption of the server when its current 
CPU utilization reaches the level .  and  represent the power 
consumption of an idle and a fully utilized server, respectively.

(1)

(2)

(3)

3

Figure 1
Data center description

Note: CRAC: computer room air conditioning unit.
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The overall power usage in the data center comprises both the 
energy consumed by cooling systems and that used by IT components 
(refer to Equation (4)).

 

Using Equations (3) and (4), we formulate the total power 
consumption  as follows: 

3.4. Host temperature (emplacement)
The thermal distribution within server racks is strongly influenced 

by vertical placement. Tang et al. [19] demonstrated that when all 
servers are idle, the inlet temperature is not uniform across rack levels. 
Chassis located near the bottom of the rack benefit from direct access 
to cold air from floor vents, resulting in lower inlet temperatures. In 
contrast, upper-level chassis receive less cold airflow and thus operate 
at higher inlet temperatures due to the reduced cooling supply.

In a related study, Tang et al. [20] examined the impact of hot 
air recirculation on the upper rack levels. Their findings indicate 
that hot air expelled by the lower chassis tends to rise and affect the 
thermal conditions of the upper ones. However, because the top chassis 
are close to ceiling-level fans or exhaust vents, much of this hot air 
is quickly directed back to the cooling system, partially mitigating its 
thermal impact.

Xu et al. [21] focused on the dependency between rack position 
and heat dissipation performance. Their results indicate that the higher a 
server is placed in the rack, the lower its cooling efficiency. Specifically, 
each higher rack level experiences an average temperature increase of 
between 2.7°C and 3.4°C, demonstrating the importance of thermally-
aware VM placement strategies in energy-efficient cloud data centers.

Based on these observations, we categorize rack levels into three 
thermal zones: Level L0, closest to the cold air sources, offers the lowest 
inlet temperature; Level L1, situated in the middle, receives less cold air 
and experiences more hot air recirculation; and Level L2, at the top, is 
most affected by hot air accumulation, leading to the highest operating 
temperatures. Figure 2 illustrates this vertical temperature distribution 
across the rack levels.

Because of the complex nature of the airflow inside the data center, 
a part of the hot air exhausted from the server outlets recirculates into 
the inlet of other servers. One of the reasons for the energy overhead of 
the cooling system is mainly due to the mixing of cold air with the hot 
air recirculated into the inlet. To provide an acceptable inlet temperature 

for all servers, the air temperature must be lowered, which increases the 
energy cost of cooling. To avoid hot spots in the data center, the position 
of the servers in the racks must be taken into consideration when setting 
the maximum load threshold.

3.5. Performance Power Ratio (PPR)
PPR represents the energy efficiency of a server, indicating the 

number of operations executed per watt of power used. This metric 
provides useful information on the efficiency of a system’s energy use, 
particularly under varying workload conditions. According to results 
published on the SPEC website [22], several manufacturers have 
evaluated their servers using the SPECpower_ssj2008 benchmark. 
Figure 3 [22] illustrates the corresponding graphs for two types of 
servers, showing the evolution of power consumption and PPR as a 
function of increasing processor load. In the case of the Dell PowerEdge 
R830 (Intel Xeon E5-4669 v4 2.20 GHz), the highest PPR is reached at 
around 80% CPU utilization, whereas for the HP Apollo XL225n Gen 
10 Plus (AMD EPYC 7702 2.0 GHz), the maximum PPR is observed 
at full CPU load (100%). These curves highlight the importance of 
identifying the optimum utilization point for each server model to 
maximize energy efficiency.

The highest PPR varies by server type; for example, it peaks at 
80% CPU utilization for the Dell PowerEdge R830 and at 100% for 
the HP Apollo XL225n Gen10 Plus. Power consumption rises nearly 
linearly with CPU utilization.

To enhance energy efficiency, we propose an allocation strategy 
that determines the best PPR gear for each server and establishes it as 

(4)

(5)
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Figure 2
Temperature distribution across rack levels

 Figure 3
PPR and power usage as CPU utilization rises (SPECpower_

ssj2008): (a) Dell PowerEdge R830 (Intel Xeon E5-4669 v4 2.20 
GHz) and (b) HP Apollo XL225n Gen 10 Plus (AMD EPYC 7702 

2.0 GHz)
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a CPU load threshold. In a heterogeneous data center, this CPU load 
threshold varies per server.

To ensure energy efficiency, servers are loaded close to their 
optimal PPR—that is, where each server executes the highest number of 
instructions per watt consumed. The exact CPU load threshold is defined 
based on the server’s position within the rack. Specifically, servers 
located in Level L0 are assigned the High Preferred Gear (HPG), those in 
L1 the Best Gear (BG), and those in L2 the Low Preferred Gear (LPG).

Figure 4 illustrates this concept for the Dell PowerEdge R830, 
where the BG corresponds to approximately 80% CPU utilization, the 
HPG to 90%, and the LPG to 70%. This stratified thresholding enables 
a thermally-aware and energy-efficient VM placement strategy, tailored 
to both server characteristics and their rack positions.

The BG corresponds to the CPU utilization that maximizes the 
PPR for each server. The HPG and LPG are then defined as upper and 
lower operating ranges around this optimum, typically within ±10% of the 
BG point. This ensures that each server operates close to its most energy-
efficient state while considering thermal constraints and rack position.

4. Proposed Approach

4.1. Problem modeling
The placement of VMs with respect to temperature control and 

energy consumption is an NP-hard problem. An optimization problem 
that aims to minimize overall energy consumption while respecting 
all operational constraints can be used to formulate the best location 
for VMs. The optimization problem that this work attempts to solve is 
formally defined as follows:

1)  Minimize the total energy consumption of both the IT equipment 
and the cooling system.

2)  Ensure satisfactory machine performance by respecting CPU load 
constraints based on the PPR and the host’s position in the racks.

In this study, the user workload requests to the data center are 
abstracted as VMs. A data center consists of t racks, each rack contains 
r chassis, and each chassis holds n servers. The objective is to place 
m VMs across these servers optimally. The power consumed for all 
servers (PIT) is calculated by Equation (6).

 is a binary variable that takes 1 when the host i is active and 
zero if it is switched off.

The final aim is to minimize , the sum of power consumed 
by IT equipment and cooling systems, represented mathematically as 
follows:

4.2. Threshold determination
For balanced thermal management and optimum energy 

efficiency in heterogeneous data centers, dynamically setting the CPU 
load threshold for each server based on its physical rack location is 
crucial. Algorithm 1 outlines a straightforward but effective method 
for determining the appropriate CPU load threshold according to the 
server’s surrounding temperature.

Servers located in the lower part of the rack (L0 level), which 
benefit from better cold air circulation, can support a higher load (HPG). 
Servers located in the middle (L1) operate at an optimum threshold 
(BG), whereas those at the top (L2), exposed to recirculated hot air, are 
limited to a lower load (LPG) to avoid overheating.

1)  L0: Servers in the lower part of the rack, where there’s more cool 
air. CPU load threshold = HPG.

2)  L1: Intermediate servers, where the temperature is moderate. CPU 
load threshold = BG.

3)  L2: Servers located at the top part of the rack, where hot air tends to 
concentrate. CPU load threshold = LPG.

4.3. Proposed VM placement method 
Q-Learning is a type of reinforcement learning that enables 

systems to learn the best actions to take through experience. Instead 
of relying on a predefined model, it learns by trying different actions 
and observing the results, gradually improving its decisions based on 
accumulated feedback.

Applied to the placement of VMs in a data center, QL makes real-
time decisions by observing current system conditions, such as energy 
consumption, temperature levels, and resource utilization. Based on 
this information, it chooses actions such as moving a VM to another 
server or starting or stopping a server. Each action is evaluated using 
a reward signal that reflects how much it contributes to improving 
energy efficiency, maintaining thermal stability, or improving overall 
system performance. Over time, as the system gains experience, it 
develops an increasingly effective strategy for VM placement. The 
result is a smarter distribution of workloads that helps reduce energy 
consumption, prevent overheating, and make better use of available 
resources, all without the need for an exact mathematical model of data 
center behavior.(6)

(7)
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 Figure 4
PPR and power usage as CPU utilization rises: Dell PowerEdge 

R830 (Intel Xeon E5-4669 v4 2.20 GHz)
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1)  State Space (S): Represents the current configuration of VMs and 
hosts in the data center.)

S= [CPU utilization,temperature,host states]

2)  Action Space (A): Represents the possible actions for VM placement 
or migration.

A = {Place VM from Host_i to Host_j,Turn on Host,
Turn Off Host}

3)  Reward Function (R (s, a)): Evaluates the impact of an action a in 
states. 
a.  Energy efficiency:

b.  Thermal management:

c.  Load balancing:

d.  Combined reward function:

where w1, w2, and w3 are weights to prioritize objectives.

4)  Q(s, a): is the cumulative reward of taking action a in state s:

a.  s : state.
b.  a: Action.
c.  R(s,a) Immediate reward.
d.  s′: Next state (After action a).
e.  α: Learning rate.
f.  γ: Discount factor.

5)  Exploration Strategy (∈Greedy): Balances exploration (try new actions) 
and exploitation (use learned knowledge):
a.  With probability ϵ(epsilon), select a random action.
b.  Otherwise, select the action a with the highest Q-value

The QL procedure for VM placement optimization is summarized 
in Algorithm 2. This algorithm iteratively updates the Q-table based 
on the observed state, selected action, and received reward, balancing 
exploration and exploitation through the ε-greedy strategy

4.4. Algorithms for comparison
In this study, the performance of the QL-based model is evaluated 

against three established VM placement techniques. Approaches such 
as particle swarm optimization (PSO), GA, and predictive thermal-
aware cloud optimization (PTACO)-MMT are employed.

1)  PSO: is a “swarm intelligence” algorithm that uses the collective 
behavior of particles to find the optimal position for virtual 
machines, minimizing power consumption and improving resource 
utilization [23].

2)  GA: is an evolutionary algorithm inspired by natural selection. It 
is used to generate optimal placement solutions through crossover 
and mutation operations, aiming to reduce overall energy 
consumption [24].

3)  PTACO-MMT [25]: is a power- and thermal-aware VM placement 
scheme that reduces the total energy consumption of both IT and 
cooling systems. It combines a VM selection algorithm based on the 
Minimization Method and a VM placement algorithm based on an 
improved ACO approach.

Although more recent techniques have been proposed, these 
methods remain widely used as benchmark algorithms for performance 
comparison, providing a robust framework to evaluate the effectiveness 
of the QL model based on the power performance ratio. To ensure 
robustness, two models of host behavior described by Wang et al. [26] 
are also considered: lr_1.2_mmt and iqr_1.5_mc, which are based on 
the following methods:

1)  IqrMc: This approach uses a VM allocation strategy that relies on 
the Inter Quartile Range technique for detecting hotspots, combined 
with a policy that prioritizes migrating VMs exhibiting the highest 
correlation.

2)  LrMmt: Based on Cleveland’s local regression method, LrMmt 
determines whether a host is overloaded and if its VMs should be 
migrated. When overload is detected, it selects the VM with the 
shortest migration time, applying a minimum migration time strategy.

5. Result and Analysis

5.1. Simulation setup
This study utilized real workload traces from the Microsoft 

Azure 2019 dataset, focusing specifically on CPU utilization data 
collected over ten randomly selected days. The dataset encompasses 
approximately 2.6 million VMs and 1.9 billion utilization records, 
captured at 5-minute intervals [27].

For the simulation setup, CloudSim was used to model a cloud 
data center consisting of 800 identical host machines. The data center 
is organized into 10 zones, each containing 10 racks arranged in a 4 × 2 
layout. Each rack houses 10 hosts, resulting in a total of 800 hosts. Four 
types of single-core VMs, based on Amazon EC2 specifications, were 

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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VM type MIPS
Core (processing 

elements)
RAM 
(MB)

Bandwidth 
(Mbps)

High-CPU medium 
instance

2,500 1 870 100

Extra-large instance 2,000 1 1,740 100
Small instance 1,000 1 1,740 100
Micro instance 500 1 613 100
Note: VM: virtual machine.

Table 1
VMs specifications
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defined with processing capacities ranging from 500 to 2,500 MIPS, 
RAM between 613 and 1,740 MB, and a standardized bandwidth of 100 
Mbps. Detailed VM specifications are provided in Table 1.

The thermal parameters are detailed in Table 2.
The initial allocation of VMs is based on the resource 

requirements defined by the VM type. However, during their lifetime, 
VMs consume fewer resources due to workload variations, allowing 
dynamic VM consolidation. Real system workload traces were 
employed to conduct the experiments. Data from Microsoft Azure 2019 
nodes, including CPU utilization from 10 randomly selected days and 
over 1,000 VMs, were used. Utilization measurements were recorded at 
5-minute intervals. Table 3 summarizes the number of VMs observed 
each day, ranging from 898 to 1,516 VMs per day.

5.2. Results and discussion
To evaluate the effectiveness of our model, four key performance 

indicators are used, each providing insight into different aspects of 
system behavior. Energy consumption, measured in kilowatt-hours 
(kWh), quantifies the total energy used by the data center and serves 
as a primary indicator of energy efficiency. SLA violation captures the 
degradation in service quality caused by dynamic VM consolidation, 
taking into account both the impact of VM migrations—which can 
momentarily reduce application performance—and the occurrence 
of hotspots, which represent servers that have exceeded a critical 
temperature threshold, potentially threatening hardware reliability. The 

VM migration count directly reflects the number of live VM relocations 
executed during operation, providing a measure of system reactivity 
and consolidation cost. Finally, hotspots are used to monitor thermal 
stability, with a higher number indicating poor thermal distribution 
and greater risk of overheating, which may necessitate cooling 
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Item Parameters Valeur
Datacenter Number of zones 10

Number of racks in zone 4*2
Number of hosts in the rack 10

CRAC Supply air temperature from CRAC 25°C
Server Heat capacity 340 J/K

Thermal resistance 0,34 K/W
Initial CPU temperature 318 K
Threshold of CPU temperature 75°C
Upper utilization threshold 80%

Note: CRAC: computer room air conditioning unit.

Table 2
Experimental parameters

Date Number of VMs
Day 1 1,052
Day 2 898
Day 3 1,061
Day 4 1,516
Day 5 1,078
Day 6 1,463
Day 7 1,358
Day 8 1,233
Day 9 1,054
Day 10 1,033

Note: CRAC: computer room air conditioning unit.

Table 3
 Number of Virtual Machines per  day 

 Figure 5
Energy consumption (kWh) under different workload datasets

 Figure 6
Average energy consumption (kWh)‎

 Figure 7
Comparison of VM migration counts under different loads

Note: VM: virtual machine.

 Figure 8
Average number of migrations

Note: PSO: particle swarm optimization. PTACO: predictive thermal-aware 
cloud optimization. QL: Q-Learning.
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intervention or trigger thermal throttling. Combined, these metrics 
provide a thorough evaluation of the balance between energy efficiency, 
operational performance, and thermal safety.

To evaluate our methodology and analyze the results, we 
performed a comparative study including PSO, GA, and our QL model. 
We considered two types of host behavior models: lr_1.2_mmt and 
iqr_1.5_mc.

From the analysis of Figures 5 and 6, it is clear that VM placement 
using QL yields the lowest energy consumption among the methods 
tested. Specifically, under the lr_1.2_mmt strategy, our Q-Learning 
model achieves an energy reduction of 18.43% compared to PSO, 20% 
compared to the GA, and 13% compared to PTACO. Similarly, with the 
iqr_1.5_mc strategy, our model reduces energy consumption by 14.14% 
compared to PSO and 13.51% compared to the GA.

Observing Figures 7 and 8, we observe that the QL-based model 
consistently achieves the lowest number of VM migrations across 
both host behavior strategies. Under the lr_1.2_mmt configuration 
(Figure 7), our model significantly outperforms the others with only 
51,555 migrations, compared to 71,854 for PSO, 75,251 for the GA, 
and 68,011 for PTACO.

Similarly, under the iqr_1.5_mc, the QL approach results in 
61,732 migrations, whereas GA and PSO record 89,426 and 99,282 
migrations, respectively.

These results demonstrate the effectiveness of the proposed 
approach in reducing the number of migrations, which is vital for 
ensuring service stability and lowering energy costs during dynamic 
VM consolidation.

Figure 9 shows the percentage of SLA violations. Our model 
outperforms the other approaches under both the iqr_1.5_mc and lr_1.2_
mmt strategies, maintaining a consistently low violation rate over the 
ten-day evaluation period. This performance is primarily attributed to 
the reduced number of migrations achieved by the QL method, which 
helps preserve service quality.

Our QL model demonstrates a significant reduction in thermal 
hotspots, recording only 2,500 and 2,250 occurrences under the 
lr_1.2_mmt and iqr_1.5_mc strategies, respectively. In contrast, 
PSO registers 5,750 and 5,500, whereas Genetic records 5,725 and 
5,250 under the same strategies. PTACO also performs better than 
PSO and Genetic, but remains superior to QL, with 3,450 hotspots 
under lr_1.2_mmt. These results highlight the superior effectiveness 
of QL in managing thermal conditions, thanks to its adaptive learning 
capability, whereas PSO and Genetic, which are less responsive to 
dynamic variations in workload, exhibit a higher number of hot spots 
(see Figure 10).

6. Conclusion
In this study, we introduced a new strategy for placing VMs in 

heterogeneous cloud data centers, focusing simultaneously on energy 
efficiency and thermal management. Our method considers each 
server’s PPR and its physical placement within the rack, allowing 
dynamic adjustment of CPU load thresholds to maximize efficiency and 
minimize thermal hotspots.

By leveraging QL, the system learns optimal placement decisions 
over time, resulting in smarter resource allocation that balances thermal 
risks and power usage patterns. Experimental results confirm the 
effectiveness of the model, showing clear reductions in overall energy 
consumption and a lower risk of overheating compared to traditional 
methods such as PSO and GAs.

These improvements directly contribute to lowering the 
carbon footprint of data centers by reducing the energy required for 
both computation and cooling, supporting a more sustainable digital 
infrastructure. 

In the future, integrating real-time monitoring data could 
further enhance the adaptability of the placement strategy under 
dynamic workloads. Combining QL with other advanced machine 
learning methods or hybrid optimization approaches also shows 
promise for improving both energy and thermal performance. Finally, 
future work could investigate the impact of network traffic on heat 
generation and energy use to develop holistic solutions that jointly 
optimize computing, cooling, and communication in modern cloud 
environments.
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 Figure 9
Average SLA violation

Note: SLA: service-level agreement.

 Figure 10
Average hotspots

Note: PSO: particle swarm optimization. PTACO: predictive thermal-aware 
cloud optimization. QL: Q-Learning.

https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
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