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Abstract: In industrial manufacturing, ensuring quality control is critical to maintaining high standards and operational efficiency. Manual defect
detection, however, is often time-consuming, error-prone, and costly, thereby driving the need for automated solutions. This paper investigates a
technique for industrial anomaly detection (IAD) by utilizing the state-of-the-art PatchCore algorithm in conjunction with the widely recognized
MVTec AD dataset. The dataset consists of 5354 high-resolution color images representing diverse objects and textures, including defect-free
samples for training and numerous anomalous instances for testing. With over seventy distinct defect types—such as scratches, dents, contamination,
and other structural irregularities—the dataset presents substantial challenges for conventional visual inspection (VI) techniques. The approach
integrates convolutional neural networks (CNNs) with patch-based feature extraction methods, enabling PatchCore to accurately identify and
localize even subtle anomalies within complex industrial imagery. Experimental results demonstrate that PatchCore significantly enhances detection
accuracy, reduces false positives, and streamlines the overall inspection process. These improvements have important implications for operational

productivity and quality assurance in various industrial sectors, paving the way for more reliable and cost-effective manufacturing practices.
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1. Introduction

In anomaly detection (AD), unusual patterns deviating from
expected behavior are called outliers. Anomalies can be categorized
into three types: point anomalies, which are individual data points
that significantly differ from others; contextual anomalies, which are
abnormalities that are specific to a certain context; and collective
anomalies, where a group of data instances collectively indicates an
anomaly. AD is often associated with terms like outlier detection,
forgery detection, or out-of-distribution detection. In practical AD
scenarios, outliers may be absent, poorly defined, or only present in
limited cases. In industrial anomaly detection (IAD), visual inspection
(VI) is becoming increasingly difficult due to the continuously rising
standards for quality, and all scenarios can be regarded as a form of
quality inspection. Quality inspection use cases involve assessing the
condition or state of an object rather than identifying flaws or missing
components. One use case exclusively focused on quality inspection is
determining the state of woven fabrics or leather quality.

Damage detection, also known as defect detection and VI,
involves classifying or detecting at least one form of damage. One
instance of use cases for damage identification includes identifying
surface flaws in internal combustion engine parts or segmenting
various steel surface faults [1]. Crack detection is a specific type of
damage detection categorized separately due to its frequent occurrence
in the literature. The crack detection use case focuses on categorizing,
localizing, or segmenting cracks. The typical application scenario
is the upkeep of public structures, such as the repair of pavement
cracks or concrete cracks. Another application of VI is verifying the
presence or absence of a component and identifying any flaws [2]. The
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completeness check provides a summary of these application cases.
A completeness check involves determining the absence or presence
of something. The previous VI use case class, designated as “other,”
encompasses VI use cases that cannot be immediately observed solely
through quality inspection and do not fall under damage detection or
completeness check categories.

This research work is organized into the following sections:
Section 2 presents the current state of research and insights into
various AD datasets, along with different types of AD methods used.
The limitations of the existing work, following the research gaps and
contribution, are presented at the end of Section 2. Section 3 details
the methodology, dataset description, and further implementation
details. Section 4 presents in detail the result analysis along with a brief
discussion. Section 5 further discusses the challenges of industrial AD
and their potential solutions. Finally, Section 6 concludes the paper with
future directions of research.

2. Literature Review

Researchers have proposed many image AD techniques.
Depending on how they work, both machine learning (ML) and deep
learning (DL) are used. The study focuses strongly on the industrial
image of AD. In addition to giving academics and practitioners a
thorough grasp of the advantages and disadvantages of the different DL
algorithms for AD in image data, the summary offers insights into the
performance of these approaches.

Hyun et al. [3] proposed the ReConPatch technique for
identifying irregularities in industrial manufacturing. It employs
contrastive representation learning to provide distinctive features for
AD. The process works by using a linear modulation on patch features
from a model that has already been trained. This creates a representation
focused on the target that is easy to distinguish. To tackle the issue of
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insufficient labeled pairings for contrastive learning (CL), pseudo-labels
based on pairwise and contextual similarities are employed. Peng et
al. [4] proposed a new error detection method using an unsupervised
approach. The algorithm is based on defect map prediction using actual
manufacturing problems. The method shows a significant advance in
error detection in industrial products. It outperforms other detection
methods, improving the area under the receiver operating characteristic
(AUROC) metric by 1.1%. This shows its strong ability to combine the
15 bands in the MV Tec dataset. Furthermore, the method outperforms
the best discriminatively trained reconstruction anomaly embedding
model (DRAEM) by 31.5% in the detection analysis of average precision
(AP) detection, showing significant improvement in fault detection.
This is because the method focuses on measuring the distance between
normal and abnormal samples rather than knowing exactly what the
error is. This network utilizes data processing techniques such as affine
transformation and image enhancement to improve noise immunity
and robustness. Additionally, they were trained using video images
created as input samples. Jiang et al. [5] proposed a novel ground-truth
segmentation method to reduce false positives caused by artificial
threshold determination. False Rejection (FR)-PatchCore excels in
anomaly identification on MVTec datasets and reaches cutting-edge
capability on Multiple Product Defect Detection or Multi-Product
Defect (MPDD) datasets (with spatial location disparities). The pre-text
task of feature-level registration optimizes memory features by reducing
registration loss to an ideal feature representation. Experimental results
show that FR-PatchCore efficiently handles “similar category” and
“spatial transformation category” data, improving its generalization
capabilities. Wen et al. [6] focused on the cross-scale with attention
normalizing flow (CSA-Flow) novel that incorporates channel attention
(CA) and self-attention (SA) modules to enhance AD in high-speed
railway systems. This is particularly useful in complex industrial
environments, aiming to reduce the need for manual maintenance of
high-speed electric multiple units. Intricate backgrounds and enigmatic
subjects pose a challenge in detecting defects in manufacturing
environments. The CSA-Flow channel feature extraction module takes
features of different sizes by combining pretrained convolutional neural
network models with a CA module. It also employs the SA module’s
broader receptive field to gather contextual information. CSA-Flow
was evaluated using the high-resolution Synthetic Aperture Radar
(SAR) images dataset (HSRBD), which determined that the method
achieved the highest rate of anomaly identification. CSA-Flow does
not do pixel segmentation but can detect aberrant areas using anomaly
scores. Liu et al. [7] introduced a simple but effective method, called
SimpleNet, to detect and identify anomalies without monitoring.
SimpleNet includes several basic neural network modules designed
for training and use in industrial environments. Despite its simplicity,
SimpleNet outperforms previously developed methods in terms of
performance and implementation speed at the scale of MVTec Anomaly
Detection (MVTec AD). SimpleNet provides a new approach bridging
academic research and industrial applications in the field of random
detection and localization. Roth et al. [8] presented the PatchCore
algorithm as a method for detecting and categorizing odd data during
testing, using only nominal samples as a basis of knowledge. PatchCore
achieves balance by preserving relevant context during testing using
memory banks (MB) that contain locally aware, nominal patch-level
feature representations generated from ImageNet pretrained networks.
It also minimizes runtime by employing coreset subsampling. The
outcome is a cutting-edge cold-start image AD and localization system
that performs highly on industrial AD benchmarks while requiring few
processing resources. At MVTec, the dataset can obtain an AUROC
of over 99% in image AD. Ishida et al. [9] introduced SA-PatchCore
as an extension of the existing PatchCore algorithm. SA-PatchCore
incorporates a self-attention (SA) module to identify anomalies in
co-occurrence connections. This nonlinear transformation module

may generate feature maps by analyzing the relationship between
features without relying on the linear transformation used in traditional
self-attention and its training process. SA-PatchCore mitigates the
computational complexity of self-attention by utilizing feature maps
that have been compressed using a pretrained CNN in the self-attention
module. Additionally, the Co-Occurrence anomaly detection-Screw
Dataset (CAD-SD) contains local and co-occurrence anomalies, as
no AD dataset includes co-occurrence anomalies. SA-PatchCore
demonstrates excellent AD performance on MVTec AD, which consists
solely of local anomalies. Furthermore, it obtains the highest AD
performance in the CAD-SD.

Tang et al. [10] highlight the disparity that currently exists
between academic research and its practical implementation in industrial
business. A precise and dependable method called Relation-aware
Disentangled Learning (RADL) is designed to detect and pinpoint
anomalies to address this discrepancy. RADL is a specialized solution
that aims to tackle the difficulties associated with inspecting the quality
of industrial products in real-world settings. The effectiveness of RADL
is validated by the performance attained on the MVTec AD dataset
and real-world manufacturing industry datasets compared to earlier
studies. The proposed inspection system can improve the effectiveness
of manufacturing industry processes in the real world. Choi et al.
[11] proposed ViV-Ano, a model that combines a vision transformer
(VT) and a Variational Autoencoder (VAE) for AD. The ViV-Ano
model demonstrated superior performance to the present model on
a test dataset. Models evaluated on the MVTec AD dataset for IAD
achieved comparable or superior performance to the previous model.
In manufacturing, AD algorithms utilize spatial information to identify
flaws in image data. Image analysis and localization techniques enhance
decision-making and improve efficiency.

Reconstruction-based AD produced either equivalent or superior
results to current anomaly identification methods. Bozcan et al. [12]
proposed an architecture that addressed two fundamental issues in
smart manufacturing systems, where robots learn tasks from human
experts. It first detects anomalies by scoring each observation during the
task’s execution. The system helps human specialists record innovative
demonstrations by recognizing states that differ considerably from
training samples. Avoiding repetitive data collection and ensuring a
variety of protests are essential for good learning. It is more economical
and versatile than parametric models since new data does not require
computationally expensive retraining. Jezek et al. [13] addressed the
challenge of difficult parallel work of artificial vertical lines in the
production of steel elements, and new data were developed to identify
errors. Like other AD industry datasets, these data are intended for use
by unsupervised and supervised units. Therefore, it includes images
without training anomalies, all without anomalies, and with ensemble
testing, and mask pairs showing defective areas. Additionally, the dataset
is used to evaluate the performance of existing troubleshooting systems
for the problems included in the dataset. Traditional detection methods
of AD have proven to be ineffective when applied to MVTec AD data,
which is considered the method for detecting industrial problems. The
Patch Distribution Modeling Framework Patch Distribution Modeling
(PaDiM) Framework [14] method showed significant differences
in error detection capabilities between the two datasets. Zhao et al.
[15] suggested the Patch support vector data description (SVDD)
technique for segmenting and detecting image anomalies. The image
at the patch level, in contrast to Deep SVDD, also localizes faults.
Further, self-supervised learning enhances detection performance.
Consequently, the suggested approach attained cutting-edge results on
the MVTec AD dataset. Due to their high dimensionality and structure,
images were featured in earlier research before the ensuing downstream
tasks. Analysis findings indicate that the nearest neighbor method
using a raw patch frequently distinguishes abnormalities reasonably
well. Kumari et al. [16] suggested the usefulness of DL-based image
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AD in industrial inspection applications. It compares conventional
and advanced supervised, unsupervised, and semi-supervised DL
approaches in solving important issues like real-time processing, low
sample size, and dataset imbalance. The performance is evaluated on
various industrial datasets, used in unmanned aerial vehicle (UAV),
automated guided vehicle (AGV), and manipulator-based inspection
systems, and mitigation strategies and future research directions are
discussed to improve AD in manufacturing quality assurance. Kumari et
al. [17] discussed the status of vision-based AD in industrial applications
in terms of data acquisition, preprocessing, learning mechanisms, and
evaluation, categorizing the methods by supervision level: supervised,
unsupervised, and semi-supervised learning. Highlighting major
challenges, such as real-time processing, small defect detection, and
data imbalance, it also shares the solutions, such as edge computing,
data augmentation, and generative models for system integration.
It also reviews relevant industrial datasets and designs the future
directions, such as explainable Al (XAI) and large vision-language
models (LVLMs), for improving automated inspection systems. Lin
et al. [18] proposed unsupervised industrial image anomaly detection
(UIAD) methods in Red Green Blue (RGB), 3D, and multimodal
domains. It provides a systematic review of the development of single-
modal RGB-based methods, which are mainstream but insufficient
for complex scenarios, to the latest 3D methods for spatial data, and
multimodal methods for effective detection using fusing RGB, 3D point
cloud, and other data. The author classifies some of the state-of-the-
art architectures (feature embedding, reconstruction, memory bank,
transformer, diffusion, large models), describes some of the major
datasets and evaluation metrics, and focuses on multimodal feature
fusion approaches. It also presents deployment issues, including a
lack of modalities, noise, and domain adaptability, and defines future
directions of efficient transferable and noise-resistant algorithms in
complex real-world industrial environments.

Liang et al. [19] described Topological/Texture-oriented
Contextual Anomaly Detection (ToCoAD) as a two-stage contrastive
learning framework for unsupervised AD in images, especially for
industrial applications. The first stage uses a discriminative network
trained with the help of synthetic anomalies generated with Perlin noise,
which allows for the localization of the defects roughly. In the second
stage, this network is used to guide a negative bootstrap contrastive
learning process that is used to fine-tune the feature extractor and is
helpful in overcoming domain gaps between pretrained models and
industrial data. Through the use of both synthetic anomalous and positive
augmented normal samples, ToCoAD is able to accomplish robust and
adaptive feature representations. Experiments on benchmark datasets
(MVTec AD, Visual Anomaly (VisA), and BTAD) show competitive
and state-of-the-art performance with the pixel-level AUROC above
97%, which shows its effectiveness for industrial defect identification
and localization.

Six different DL methods have been used for the detection of
defects. These methods include CNN, encoder-decoder, pyramid,
generative adversarial networks (GAN), attention mechanism,
etc. (Figure 1).

Among all the DL methods used in the literature, the pyramid
network approach has the greatest rate at 33%. Because pyramid-based
architectures extract features from several layers, improving the results,
much recent research has focused on utilizing them for defect detection.
Naturally, GAN models account for 4% of DL approaches, whereas
encoder-decoder models account for 11%, attention mechanisms for
15%, and other models for 9%.

2.1. Importance of quality control in industry

The industry’s ability to produce goods that meet customer
expectations depends on quality control. It consists of methodical

Figure 1
Comparative analysis of DL methods usage

>

Attention
15%

M Encoder-Decoder Attention
HCNN u GAN
W Others o Pyramid

observation, measurement, and evaluation of every manufacturing
stage to find defects and nonconformities. Quality control has several
really significant motives. First, it guarantees that objects are safe
and not dangerous for users. Second, it encourages consistency and
repetition of products, therefore enhancing quality and durability. Last,
quality control lowers raw material waste and defects, thus increasing
the organization’s competitiveness. In today’s global corporate climate,
any sector seeking profitability and customer satisfaction must also
incorporate quality control [20]. Several strategies are applied in
production quality control to guarantee product quality and eradicate
defects and nonconformities. As a fundamental quality control tool, VI
looks for surface, aesthetic, and other flaws in items.

2.2. Artificial intelligence tools in vision systems

Vision systems in many different disciplines employ several
artificial intelligence (Al) techniques, for example, Viola—Jones cascade
method [21], Scale-Invariant Feature Transform (SIFT) or Speeded-Up
Robust Features (SURF) feature descriptors [22], color and texture
histograms [23], support vector machines (SVM) [24], decision tree
algorithms [25], and, finally, neural networks [26, 27]. Vision systems
frequently use neural networks for various important purposes [28].
Table 1 presents the contributions of the researchers’ work in vision
systems.

2.3. Industrial anomaly detection

Over the past few years, the manufacturing industry has
been enhancing the standards for inspecting the quality of industrial
products. Precise detection of defects guarantees that industrial
products meet the required quality standards and minimizes the risk
of safety hazards during their use. The progress of the manufacturing
sector has elevated the criteria for assessing the quality of industrial
goods [29]. Al-based AD is becoming increasingly important in
industrial applications, especially quality control. These methods
automatically detect defective items to help manufacturers maintain
quality and reduce rework. In the industrial sphere, “anomalies” relate
to faults, including scratches, bruises, crushing, foreign colors, and
texture alterations. VI inside an industrial setting often reveals these
flaws. Product anomalies in industrial settings can significantly impact
quality. Image-level and pixel-level detection are two types of AD in
computer vision (CV). Image-level detection refers to judging the entire
image for anomalies, while pixel-level detection focuses on each pixel.
Pixel-level detection yields more accurate and interpretable anomaly
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Table 1

Researchers work in vision systems

Year ML DL Contribution

Limitation

20211301

learning in the field of operations management.

2022311 X

object detecting methods are examined.

2022 [32] - — Introduces unsupervised anomaly localization in industrial
images.

2023 [33] X / Evaluations of machine vision applications within the
automotive manufacturing sector.

2023 [34] X / Deep convolutional neural network-based defect detection
models in industrial applications.

2023 [35] X / Exhibits architectures pertinent to deep learning-based
intelligent automated decision-making methodologies.

2024 [36] X  Examines deep learning-based surface defect identification
in industrial applications.

2024 [37] X

2024 [38] X X Mapping the implementation of AD algorithms in edge
computing.

2025[39] X / Techniques employed for the visual examination of air-
craft.

Demonstrated the potential of machine learning and deep

The industrial applications and present techniques of

Vision-based flaw identification is not the primary concern.
Discusses object detection broadly.
Addresses unsupervised machine learning models.

Insufficient emphasis is given on defect detection
applications, and learning techniques, along with their
evaluation criteria, are not adequately discussed.

The study examines techniques based on deep convolutional
neural networks (CNNs).

Fails to offer background regarding extensive industrial
sectors and their use of IAD algorithms.

Concentrates exclusively on applications based on surface
detection.

Evaluates contemporary approaches in self-supervised AD. Examines exclusively deep self-supervised learning

methodologies. Does not expressly address industrial uses.
Examines several articles, a portion of which are not
image-based models.

Insufficient information is available regarding applications
of Al in defect detection.

maps. Industrial methods use complete training samples to find faults
during testing. It typically targets fine-grained abnormalities in limited
image areas, unlike semantic AD, which detects anomalies across the
entire image. The main approaches are embedded-based [40—42] and
synthesizing-based [43] methods.

For detection, synthesizing-based approaches use augmentations
or feature space manipulation [7] to mimic the anomalous distribution.
ReContrast [44] and PatchCore [8] emphasize anomalies by embedding
normal picture features. These methods are effective at detecting
pixel-level anomalies but not semantic ones. For instance, SimpleNet
[7], the benchmark’s best model, only detects anomalies in local
patches. So, it lacks a global perspective needed to model patch
cross-correlations, which is crucial for semantic anomaly identification.
AD detects anomalies by finding anomalous correlations among
patch attributes, not just at the patch level. Over the past decade,
Al and deep vision detection technology have advanced in various
fields, including autonomous vehicles, surveillance systems, and
medical imaging [45, 46]. Al-based deep neural networks (DNNs) are
increasingly used in factories to detect product faults because of their
higher accuracy and faster inspection speed than previous approaches.
AD learning from normal images is a well-liked, unsupervised paradigm
for defect detection. The methods are classified as reconstruction based,
representation based, and synthesis based.

2.3.1. Reconstruction-based methods

The image reconstruction method [11, 12] is widely used in AD
research. The auto-encoder (AE) models the manifold and reconstructs
it using the embedding space [13, 47]. The anomalies cannot be rebuilt
because they did not evolve during training. The AD result is the
difference between the detected and rebuilt images. Various strategies
can improve reconstruction results, including GAN [48], learnable
memory banks [49, 50], and inpainting masked regions [15]. Although
image reconstruction algorithms are practical in industrial settings,
they often yield inaccurate findings due to insufficient feature-level

discrimination. One drawback of reconstruction-based approaches is
their end-to-end learning paradigm, which requires improved network
topology, external constraints, and training procedures presented in
Figure 2.

Figure 2
Flow of reconstruction-based method
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2.3.2. Representation-based methods

AD is a classification problem that differentiates between
aberrant and normal data. Tasks that involve categorizing data into two
distinct labels are commonly known as binary classifications. Typically,
a class label of 0 represents the normal state, whereas a class label of
1 indicates the abnormal condition. During testing, most approaches
use the distance between sample features and normal features to find
anomalies, such as SPatially-weighted Anomaly Detection (SPADE)
[51, 52], PaDiM [52], PatchCore [53], glancing patch (GP) [54], etc.,
which are common algorithms. These methods use distinct distance
measurements (loss functions) to record anomaly scores and build score
maps.

The focus your distribution (FYD) [55] approach uses a
coarse-to-fine alignment technique to learn about the dense and
condensed distribution of regular images. The first alignment stage
standardizes the placement of object pixels at both the image and feature
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levels. Optimal alignment ensures that the features are maximally
identical across all positions in the batch. Scale-based image processing
approaches include image, patch, and pixel levels. Gaussian-AD utilizes
normal images to extract discriminating feature vectors. Patch SVDD
[56], PatchCore [53], and PaDiM [52] algorithms utilize normal image
patches to generate discriminative feature vectors. SPADE [51, 52]
utilizes discriminative features for pixel-level image alignment. These
approaches collect normal image features with a statistical method. The
premise that anomalous samples have distinct distributions leads to
more promising anomaly AD findings in Figure 3.

Figure 3

Flow of the representation-based method
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2.3.3. Synthesis-based methods

This method uses nominal (non-defective) images to create fake
anomalous images. Using CutPaste [57], false defects (anomalies)
are created by randomly pasting a nominal image patch over another
nominal image. Synthesizing-based approaches struggle to adequately
reflect real anomalies due to their diverse and unexpected appearance.
Creating synthetic anomalies from nominal images cannot correctly
depict the complexity of real anomalies. Recent OpenGAN [58]
research indicates that creating synthesized features, rather than
images, improves model performance. This strategy benefits from (1)
eliminating noise in feature extraction from synthesized images and (2)
reducing model capacity by synthesizing in feature space. To address
issues with synthesized images, SimpleNet [59] suggested generating
anomalies in the feature space instead of images to address issues with
synthesized images.

2.4. Types of datasets and contexts

The nature of data in AD can be categorized along multiple
dimensions, such as data type and structure (Figure 4). For the scope
of this work, we focus on image-based IAD. Numerous public datasets
have been established to benchmark performance in this domain, the
most prominent of which are summarized in Table 2.

2.5. Limitations of recent work and research gaps

While the recent literature demonstrates impressive performance
on standardized benchmarks, this focus often comes at the expense of
critical analysis of broader limitations. Many contemporary studies,
including those discussed here, prioritize incremental improvements
in metrics like AUROC on datasets such as MVTec AD but often
overlook crucial practical deployment challenges. These include (1)
extreme computational and memory requirements of methods like
PatchCore, which can hinder real-time application; (2) sensitivity to
hyperparameters like patch size and coreset ratio, which are rarely
subjected to rigorous ablation studies; (3) limited generalization across
vastly different domains, as models are typically trained and tested
on data from the same distribution; and (4) a lack of robustness to
real-world variations like lighting changes, camera angles, and new,
unseen defect types that differ from the training set. Truly foundational
progress in IAD will require the community to address these practical
constraints with the same rigor applied to boosting benchmark scores.

Figure 4
Taxonomy of the dataset
y \
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Table 2

Dataset descriptions

Ref. Dataset Summary
[6] Canadian Canadian Institute For Advanced Research
Institute For (CIFAR)10 and Canadian Institute
Advanced For Advanced Research (CIFAR)100 have
Research 60,000 natural color images with 32 x 32
(CIFAR) resolution. The training set has 50,000
images and the testing set 10,000. Canadian
Institute For Advanced Research (CIFAR)10
has 10 equally sized classes, while Ca-
nadian Institute For Advanced Research
(CIFAR)100 has 100 fine-grained or 20
coarse-grained classes.
[52] Fashion Modified National Institute of Standards and
Modified Technology (MNIST) has 60,000 training
National and 10,000 test samples, each made up

[10]

[19]

Institute of
Standards and

Technology
(MNIST)

MVTec AD

MVTec Local
Context
(LOCO)

VisA

MPDD

of 28x28 greyscale images in 10 distinct
classes.

The MVTec AD dataset, with 5354
high-resolution images from 15 industrial
sectors, is a key test for manufacturing AD
algorithms. These anomalies have over

70 faults, including scratches, dents, and
structural modifications.

This dataset locates anomalies in images

of industrial products with logical and
structural faults. It has 3644 industrial
inspection- themed images from five classes.

Images of manufacturing abnormalities
make up the largest industrial anomaly
benchmark, Visual Anomaly. It has 10,821
high- resolution images of 12 classes in 3
domains.

This smaller dataset is aimed to detect issues
with painted metal part production. The
testing setting is realistic, with varied spatial
orientations, different items, and diverse
backgrounds, unlike lab-based AD datasets.
It has 1346 images in 6 categories.
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From the limitations above, the research gap is to improve
the detection of fine-grained anomalies. To bridge the gap in the
literature between theoretical algorithm performance and practical
implementation, this paper presents PatchCore and identifies an
optimal configuration in terms of backbone, coreset ratio, and feature
layers. The usage of the Facebook Al Similarity Search (FAISS) index
is a crucial enabler in order to provide key performance and latency
numbers necessary to drive adoption in the industry. The contributions
of this research work are as follows:

1) A brief comparative analysis of the DL method usage and recent
research studies related to image-based IAD, showing existing
methodological approaches with utilized datasets.

2) Design and implementation of the proposed technique for [AD using
the PatchCore to improve the detection of fine-grained anomalies.

3) The challenges of IAD are identified and examined along with future
research directions.

3. Methodology

Anomalib library offers dataset adapters for an increasing
number of public benchmark datasets from image domains extensively
utilized in the literature. It supports CIFAR-10 [6] for quick prototyping
and MVTec [7] and BeanTech Anomaly Detection dataset (BTAD)
[8] for real-world defect detection uses. The preprocessing includes
changing the input images and dividing the optional image into (non-)
overlapping tiles. After that, preprocessing uses the transforms and
tiling. In the transforms, Anomalib manages the ground truth pixel
mappings with the input images using the Albumentations [11] library
for image transformations. Albumentations is a tool for computer
vision. Besides its extendable Python interface, Albumentations enables
reading transformation parameters from a config file, facilitating
experimentation and hyperparameter optimization (HPO). In the tiling,
many real-world datasets feature high image resolution, so it is usually
necessary to scale the input images before feeding them to the model.
Small anomalies in the image could thus lose detail, which makes it
more difficult for the model to find these areas. Tiling the input image
helps since the size of the abnormal areas stays constant. After that
model is deployed along with modular components acting as building
blocks to create unique algorithms, Anomalib features a suite of state-
of-the-art AD and localization techniques. After that, computational
algorithms used in the library are periodically updated with the most
recent state-of-the-art AD models. Models now in use might be
classified as knowledge distillation models [20], reconstruction [17],
and density estimates [12—15].

The model components consist of many ready-to-use modules
carrying often-used operations. Like scikit-learn [18], the model
components are arranged in relation to their function in AD models (e.g.,
feature extraction, dimensionality reduction, and statistical modeling).
PyTorch implements all model components, enabling all operations to
be conducted on the GPU and allowing models to be exported to ONNX
and OpenVINO. Applying a custom anomaly detection algorithm
using the model components is easy. Like PatchCore [15], consider an
anomalous model that first collects features by CNNs and uses coreset
sampling [19] to reduce dimensionality. Normalization and thresholding
are used in post-processing. In the normalization, depending on the
model and dataset, the range of image-level or pixel-level anomaly
scores projected by the models in Anomalib during inference could
differ. Anomalib normalizes the projected anomaly scores to the [0,1]
range, hence transforming the raw anomaly scores into a standardized
form. Although Anomalib defaults to min-max normalization with
regard to the observed validation values, the normalization technique
can be completely turned off or customized. In thresholding, an adaptive
thresholding method, which maximizes the threshold value depending

on the Fl-score during validation, helps the user to select an anomaly
score threshold for their trained models. The user may alternatively
indicate a manual threshold. In visualization, Anomalib can be set to
display and preserve visualizations of the expected anomaly heatmaps
and segmentation masks during validation and testing. The PaDiM
model is used to discover anomalies. PaDiM uses a novel approach
to the cold-start AD method in industrial images. The model, trained
on the MVTec AD dataset, effectively localizes industrial abnormalities
to their spatial environment without specific dataset training. After
teaching the model on normal and defective images, the model detects
anomalies by comparing the input image to the learned distribution of
normal patches during testing.

3.1. Dataset description

The MVTec AD dataset [59, 60] is a public dataset for industrial
inspection. MVTec AD comprises more than 5000 images split into
15 categories. Every category has a training set with nonanomalous
samples and a test set that includes both anomalous and nonanomalous
samples. Two further datasets include information gathered on separate
production lines from several manufacturing sectors. The first dataset
consists of medical pills. Single pill images are cropped from a whole
image depending on predetermined areas.

Anomaly identification handles every combination of pill blisters.
The second dataset of images came from the beverage manufacturing
line. While the sizes and colors of restricted caps vary depending on the
beverage, an AD system controls all of them. Both datasets maintain
the same test and train set structure for every MVTec AD category. The
pills dataset’s training set comprises 350 RGB images of white oblong
tablets set on an aluminum background. Every image has dimensions of
100 x 210 x 3. The test set consists of 224 faulty and 250 non-anomalous
samples. Scratches, cracks, incorrect pill orientation, missing sections,
or extra pill elements define several flaws in abnormal samples. The
dataset of bottle caps comes from Inspect360+ VI systems. One camera
gathers cap images, which are then transformed using the Li et al. [61]
specified calibration process. The training set contains 243 RGB images
with dimensions of 280 x 96 x 3. The test set has 160 normal and 132
aberrant photos with defects: inclined cap, fractured inviolability ring,
and absent cap.

3.2. Implementation details

The workflow of developing an IAD system based on the
Anomalib library [62] is designed to work with image processing. The
pipeline consists of several connected elements structured in a detailed
flowchart that executes each task for AD, as presented in Figure 5.

1) Data preprocessing

The preprocessing pipeline was developed to normalize the input
images as well as make the model more robust to variations that may
occur under industrial conditions. All images were resized to 256 x 256
pixels, and each image was normalized using ImageNet statistics.
Importantly, several normalization and centre-cropping techniques
were used during the training on nominal (defect-free) samples to
enhance the generalization. This was followed by random rotations
(90°, 180°, and 270°), flipping horizontally and vertically, and changes
to brightness and contrast. It should be noted that no augmentations that
either fake or imitate defects (random erasing, cutout, etc.) were used,
as this would poison the nominal training set. The preprocessing steps
are presented in Figure 6.
2) Pseudocode for implementation

The implementation of this research is done by extensive custom
tuning and tweaking to make it perform the best for the specific
industrial contexts under study. This included:
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Figure 5
Steps for implementation
Import Choose Import MVTec AD
libraries algorithm dataset
t — Set object
category
Install Anomalib
library
Load the
Anomal inference model Use test images
| map . € folder to test model
Heat ma|
. | : <
Segmentation
mask

Use good images
folder to train model

r\

I\
Segmetation mask

on top of the
original image

Image that you want
to check anomaly

Algorithm Workflow

Figure 6 1. Import import anomalib
Preprocessing steps of bottle and pills and define from PIL import Image |

preprocessing - |import torchvision.transforms as transforms |
Original image Resized image (256 x 256) Normalized image Center cropped (224 x224)

preprocess = transforms.Compose([ |
transforms.Resize((256, 256)),
@ @ transforms.CenterCrop(256),

> » : — - transforms. ToTensor(), |
transforms.Normalize(mean=[0.485, 0.456
0.406],
std=[0.229, 0.224, 0.225]) |
1)

2. Load and |img = Image.open("your_image.jpg") |
preprocess img_processed = preprocess(img) |
image img_processed = img_processed.
unsqueeze(0)
a. Hyperparameter optimization: The primary parameters of the
algorithm, including patch size (3 x 3), coreset sampling ratio 3. Initialize from torchvision.models import
(0.25), and DL models for feature extraction (choosing from PatchCore wide_resnet50 2
layer 2 or layer 3 of WideResNet-50-2), were explored using model from anomalib.models.patchcore import
a comprehensive grid search. Table 3 presents the parameter Patchcore
values used for the implementation. backbone =
b. Dataset-specific calibration: Anomaly size and contrast are very wide resnet50 2(pretrained=True)
dynamic factors; therefore, a thresholding scheme was calibrated model = Patchcore(backbone=backbone) |
for each dataset class independently with the help of the
F1-maximization concept, departing from the originally adopted 4. Train model [for train_imgs in train_loader: |
global approach. and build features = model.extract features(train imgs) |
The PatchCore methodology, illustrated in Figure 7, is memory bank - |model memory_bank.add(featurcs) |

engineered for efficiency and effectiveness in a manufacturing context. 5. Test model features — model.
Its performance stems from a two-stage process: and generate extract_features(img_processed)
a. Efficient knowledge representation: Instead of operating on entire heatmap score, heatmap = model.predict(features

images, PatchCore operates on patch-based representations
of a pretrained WideResNet-50-2. These features are stored in
a “memory bank,” which results in a dense representation of

memory bank=model.memory bank)
show_heatmap(heatmap) |

normality.
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Table 3
Hyperparameter values used for implementation

Parameter Predefined value

Description

Backbone network WideResNet-50-2

Input image size 256 x 256
Patch size 3
Stride 4

Feature layer(s) layer 2, layer 3

Coreset sampling ratio 0.25 (i.e., 25%)

Dimensionality reduction PCA
Batch size (inference/train) 32
FAISS index PQ64 on GPU

Pretrained feature extractor (WideResNet-50-2)

All images are resized to this resolution during preprocessing

Size of the local patches extracted from intermediate features

Stride used during patch extraction

Backbone layers used for feature embedding (usually deeper layers)
Percentage of patch embeddings used to form the memory bank
Absolute necessity for fast NN search

Batch size used during feature extraction

Provides the approximate search speed

b. Anomaly as distance: In the process of inference (Figure 7, Steps
4 and 5), the set of anomalies is defined as a simple nearest
neighbor search in this patch feature space. The result in the end
is an anomaly heatmap with pixel accuracy.

Figure 7
Steps of patch core methodology

I g pixel-level anomaly

Anomaly Classification

Classifying images based on patch anomalies

Coreset Subsampling

ol e

y through sub 1i hni

@{8 Memory Bank Creation

8

(G Organizing features into a structured memory bank
[

Feature Extraction

Breaking down nominal samples into patch-level features J

PatchCore leverages a pretrained WideResNet-50-2 for feature
extraction, generating a rich representation of image patches. To
efficiently manage the high dimensionality of these features, a memory
bank is constructed. However, storing all features is computationally
prohibitive; therefore, a coreset subsampling algorithm is applied
to select a maximally representative subset of patches, preserving
coverage of the normal data distribution while drastically reducing
memory footprint. During inference, the anomaly score for a new
image patch is calculated as its distance to the nearest neighbor in the
coreset-sampled memory bank.

3) Feature extraction backbone

WideResNet-50-2, a pretrained backbone network on the
ImageNet dataset, is used as the PatchCore implementation. This
particular model was selected because it has been found to be effective
in previous AD research and to provide a good trade-off between
representational power and computational efficiency. With the “wide”

factor of 2, there are many more filters per layer than in a standard
ResNet-50, and so more subtle representations of features important
for identifying minor industrial anomalies may be captured. Features
were extracted from the predefined intermediate layers of this network
(layer 2 and layer 3) in order to extract a hierarchy of information, from
fine textures to complex structures, for later processing at the patch
level and the construction of memory banks.

The PatchCore analyzes images by using WideResNet-50-2
extracted features to detect normality by assessing feature distribution
throughout the feature space. The patch representation features transform
the original images into features from another space. PatchCore
originally served as an industrial manufacturing AD tool but has no
barriers to use in different image fields. This model produces an anomaly
heatmap for visual representation. The Anomalib library provides its
PatchCore implementation. The initial step of “Feature Extraction”
splits nominal samples into their patch-level features at the beginning
of this process. The second step in this process moves upward to
create “Memory Bank Creation” for structuring collected features into
an organized system. The third step utilizes “Coreset Subsampling”
procedures to decrease redundancy by applying subsampling methods.
“Anomaly Classification” represents Step 4, which involves the image
classification process through patch anomaly assessment. After running
the process, the last step “Segmentation Generation” creates pixel-level
anomaly segmentation, shown in Figure 8. Figure 9 presents memory
bank representation with corset sampling, and Figure 10 presents
anomaly heatmap of bottle and pill.

4. Results Analysis

The PatchCore was assessed using the standard train-test split
provided by the MVTec AD, pill dataset, and bottle cap dataset.
The results presented in Table 4 and Figures 11-14 should therefore
be interpreted as strong initial indicators of performance on these
benchmark datasets, with the understanding that the next critical step
is validation under a more rigorous evaluation framework for future
work.

For every approach across the three datasets—MVTec
AD, pill dataset, and bottle cap dataset—performance measures
(AUROC and Fl-score). The values show the most successful
approaches for every metric and dataset. Some techniques for the bottle
cap dataset attained perfect scores (1.0); the table shows the relative
performance of several AD techniques that could be readily compared
across these significant industrial inspection datasets.
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Figure 8
(a) Extracted patches of bottle and (b) extracted patches of pills

(b)

_— — ———
4 -*g, 3

Figure 9
Memory bank representation with corset sampling

Memory Bank and Coreset (2D PCA)

T
Memory Bank
» Coreset

AUROC scores performance of six distinct techniques on three
datasets—MVTec AD, pill dataset, and bottle cap dataset are shown
in Figure 9. AUROC scores falling between 0.70 and 1.05 are shown

Figure 10
Anomaly heatmap of bottle and pill

Anomaly Map Heatmap Bottle Anomaly Map Heatmap Pill

on the y-axis. With multiple methods obtaining perfect 1.000 scores,
the bottle cap dataset usually offers the best performance among
approaches. Particularly with DIFAR displaying its lowest score at
0.762, the MVTec AD dataset seems to have the lowest performance
for most techniques, with certain methods exhibiting more consistent
performance than others.

In addition to the standard AUROC and Fl-score
(Figures 11 and 12), evaluation of models is done using metrics that are
specifically designed for imbalanced data and segmentation tasks. The
area under the precision-recall (AUPR) is reported as it is a more reliable
performance measure for an AD problem where positive (anomalous)
pixels are rare. To measure the spatial precision of anomaly localization,
we compute the Intersection over Union (IoU) between the predicted

Table 4
Results comparative analysis

Dataset— MVTec AD Pill dataset Bottle cap dataset
Metric AUROC F1-score AUROC F1-score AUROC F1-score
Techniques

Fastflow 0.979 0.916 0.985 0.957 1.0 1.0
Efficient AD 0.988 0.970 0.961 0.932 1.0 1.0
DFKDE 0.762 0.872 0.954 0.905 0.992 0.969
DFM 0.936 0.943 0.990 0.975 1.0 1.0
PaDiM 0.891 0.916 0.993 0.956 0.996 0.996
PatchCore 0.990 0.976 0.997 0.987 0.986 0.994
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segmentation masks and the ground truth. Furthermore, we give the
Matthews correlation coefficient (MCC) for a balanced evaluation
of the pixel-wise classification performance for all thresholds. The
comprehensive metric of MVTec AD is shown in Table 5.

As shown in Table 5, the overall metrics confirm the superior
performance of PatchCore. It achieves a very good AUPR score of
0.953, which is an excellent performance on the imbalanced pixel-wise
detection task and much better than other models. This means that
PatchCore is not only detecting the anomalies, but it does so with high
precision and recall.

Table §
Comprehensive performance metrics on MVTec AD

Model AUROC AUPR  Fl-score IoU MCC
Fastflow 0.979 0.892 0.916 0.843  0.847
Efficient AD 0.988 0.931 0.970 0912  0.925
DFKDE 0.762 0.455 0.872 0.701  0.723
DFM 0.936 0.823 0.943 0.812  0.835
PaDiM 0.891 0.761 0916 0.793  0.808
PatchCore 0.990 0.953 0.976 0931  0.942

The IoU scores give a direct indication of the segmentation
quality. PatchCore’s IoU of 0.931 shows that there is a very strong
spatial overlap between the predictions and the ground truth anomalies,
which is critical for accurately localizing faults in an industrial context.
The MCC values taking all aspects of the confusion matrix into
consideration confirm the overall balanced nature of the performance of
PatchCore, a value closer to 1.0 being an almost ideal predictor.

Figure 11
AUROC score comparison

The “AUROC scores” provide a comparison of different
techniques. The Score values extend between 0.75 and 1.05 along the
vertical axis. Fastflow, Efficient AD, Deep Feature Kernel Density
Estimation (DFKDE), DFM, PaDiM, and PatchCore are the six
categories on the x-axis. Each category shows three datasets: MVTec
AD uses blue, the pill dataset shows orange, and the bottle cap dataset
shows green. Each category in the bottle cap dataset leads to the highest
recorded scores, which stay near 1.000. The DFKDE category presents
the lowest performance for the MVTec AD dataset since it scored
0.762. The pill dataset maintains average performance while exhibiting
significant variation when evaluated in the DFKDE category, where it
obtained 0.954. A significant finding emerges from PatchCore because
all datasets performed well in this aspect, according to the scoring
results. Table 6 presents the inference speed benchmarking on MVTec
AD.

As you can see in Table 6, PatchCore is a good trade-off between
accuracy and speed. While not the fastest model, it has a relatively low
inference time of ~200 ms on an edge device, which is fast enough for
many industrial inspection applications with cycle times of 0.2 seconds
or more (~5 FPS). The main computational bottleneck for PatchCore
is the nearest neighbor search between the input patch features and the
memory bank that is stored. This is a highly parallelized operation that
lends itself well to GPU acceleration, which is confirmed by the high
GPU utilization.

The analysis employs the “F1-score” to evaluate six techniques
in performance comparison. The score data series extends from 0.850
to 1.050 along the y-axis scale. The chart includes six segments on the
x-axis: Fastflow, Efficient AD, and DFKDE, followed by DFM and
PaDiM, while PatchCore remains outlined in red. Under the MV Tec
AD dataset, PatchCore achieved the highest result of 0.976, but
DFKDE produced the lowest outcome, 0.872. PatchCore achieved the
highest score of 0.987, while DFKDE had the lowest score of 0.905
in evaluating the pill dataset. The average performance of the three
datasets is presented in Figure 13.

The PatchCore is shown with a red dashed outline and Efficient
AD, DFM, Fastflow, PaDiM, and DFKDE. The presented graph shows
two metrics through Score (AUROC & F1) bar charts aligned with both
axes. The Score (AUROC & F1) bars span a range from 0.90 to 1.04 on
the left y-axis. The right y-axis contains a green line for the Combined

1.05
1004 oot 1000 0952 00901000 09930956 0 gg0 09971000 Average Score. The methods demonstrate two bars with blue AUROC
005 : and orange F1 in a vertical arrangement. Among the methods evaluated,

o PatchCore delivers the best performance of 0.996 (blue) and 0.988
g 0.901 (orange); Efficient AD, DFM, and Fastflow follow, while DFKDE
0.85+ demonstrates the lowest scores at 0.903 (blue) and 0.915 (orange). The
0.80 green line within the graph moves from left to right while showing that
i PatchCore delivers superior results on all metrics through the datasets.
Fastflow  Efficient AD DFKDE DFM PaDiM PatchCore Figure 14 presents the AD performance heatmap.
E r.VTeCAD The heatmap under the “AD performance” label compares the
ill dataset . | ) X
I Bottle cap dataset six AD techniques (Fastflow, Efficient AD, DFKDE, DFM, PaDiM,
and PatchCore) while evaluating their performance on MVTec AD, pill
Table 6
Inference speed benchmarking on MVTec AD

Model Hardware platform Avg. inference FPS GPU utilization (%) CPU utilization (%)

time (ms)

PatchCore NVIDIA V100 45 22 85 15

PatchCore NVIDIA Jetson Xavier AGX 210 4.8 95 40

Efficient AD NVIDIA V100 12 83 - -

PaDiM NVIDIA V100 90 11 - -

10
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dataset, and bottle cap dataset. The scores of each dataset for AUROC
and Fl-score metrics are shown through a gradient scale, which
transitions from blue (lower scores) to dark red (higher scores). Among
all techniques, the bottle cap dataset performs best by achieving a perfect
score of 1.000. On MVTec AD, DFKDE demonstrates considerably
inferior performance, achieving 0.762 AUROC and 0.872 F1-score.
The PatchCore achieves the highest score average of 0.992 across every

dataset. Strong results appear in all techniques for the pill dataset, yet
performance outcomes for the MVTec AD dataset remain inconsistent.
Overall performance statistics show that PatchCore maintains the top
position with average results of 0.992, while DFM (0.974), Efficient
AD (0.975), and Fastflow (0.973) occupy the following positions.

5. Discussion

Integrating PatchCore into IAD systems represents a significant
advancement in manufacturing quality control, yet it also presents

Figure 12 . several challenges. In this work, combining CNN with patch-based
Fl-score comparison feature extraction has notably improved the identification and
1.05 localization of anomalies across high-resolution images from the
1.03+ o o o 2000 MVTec AD dataset. The methodology shows that training solely
1.001 = on defect-free images and then evaluating images with anomalies
g g:z:: can achieve high detection accuracy while effectively reducing false
B 093] positives compared to traditional methods. This represents a leap
0.904 from manual and conventional automated visual inspections, where
0.88 human error and rigid rule-based systems often fall short in adapting
088 ey Erciont A0 DEIOE vy PR 'Fo subtle or Va}riable .defect .patterns. Howeverf deploying PatchCore
VT D in real-wor!d industrial s.ettmgs does present 11.1tegrat10n 'chal!enges.
0 Pl dataset The necessity for extensive preprocessing of high-resolution images
I Bottle cap dataset and the reliance on high-performance computational facilities for
initial training may hinder immediate onsite applicability in legacy
production lines. Additionally, ensuring balanced datasets to prevent
Figure 13 model overfitting remains a critical challenge, as imbalances in defect
Average performance comparison representation can bias the detection performance. The patch-based
NN I P strategy excels in efficiently localizing anomalies, but its dependence
o on optimal patch size and configuration demands further research to
Il 1027 [ 1'°2§ standardize these parameters across different manufacturing contexts.
& 1.00- 1'008, Future improvements involve incorporating adaptive augmentation
§ 0.98- 098  techniques and leveraging ensemble methods to strengthen the
2 096- 0962 robustness of AD. Despite these challenges, the potential for increased
Eo.ga- osag operational efficiency, cost savings, and enhanced product quality
. 3 positions PatchCore as a transformative tool for industrial applications.
whaezy 092 & This work demonstrates significant technical advancements in defect
0.90 - 090" detection and lays the groundwork for future studies to integrate
Al-driven solutions more seamlessly into existing industrial quality
Figure 14
AD performance heatmap
1.00
MVTec AD AUROC
MVTec AD F1-score - 0.95
Pill dataset AUROC
-0.90
Pill dataset F1-score
Bottle cap dataset AUROC 1.000 1.000 -0.85
Bottle cap dataset F1-score 1.000
0.80

Average score

Fastflow Efficient AD
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Techniques
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control frameworks, ultimately fostering a new era of intelligent
manufacturing practices.

The experimental results show that the standard implementation
of PatchCore has the state-of-the-art performance on the selected
benchmarks. In particular, the selection of the coreset subsampling
algorithm and configuration of the memory bank (patch size, coreset
sampling, and stride) have a direct influence on the computational
efficiency/memory consumption/detection accuracy trade-off. Future
work will include a more rigorous ablation analysis of the effect of
these hyperparameters, the use of sampling algorithms other than the
standard greedy coreset approach, and the optimization of the memory
bank construction for specific defect types and modalities of image
data. This will not only make the model effective but also in order to be
fine-tuned for practical deployment scenarios.

One of the challenges identified in this research is the detection of
small and subtle anomalies, which still present a problem for automated
systems and cannot be identified without a high false-positive ratio.
While patch-based correlation of PatchCore provides a certain level of
granularity that favorably affects small defect detection, the standard
implementation used here did not feature specific architectural changes
(e.g., multi-scale feature extraction or dedicated attention mechanisms)
designed specifically to improve performance on such fine-grained
defects. To explicitly address this limitation, future work will
address this limitation by incorporating multi-scale analysis pipelines
and hierarchical memory banks and validate them on specialized
benchmarks containing a higher proportion of minute anomalies to
quantitatively show improvements.

The evaluation is that it is based on a single, dataset-wide
threshold, which is chosen as a result of Fl-score maximization on
the validation set. A false negative (missed defect) could lead to
compromising the product safety and reputation of the brand, whereas
a false positive (false alarm) leads to unnecessary downtime and
the cost of inspection. More robust thresholding strategies that are
application-aware must therefore be a future priority. This involves
using precision-recall curves to choose a threshold that satisfies certain
precision (reduce false alarms) or recall (catch all defects) criteria,
or using cost-sensitive learning to explicitly reduce financial loss, or
even adaptive thresholding techniques that can adjust dynamically to
changing data distributions on the production line.

5.1. Interpretability and anomaly justification

Integration of Gradient-weighted Class Activation Mapping
(Grad-CAM): While PatchCore determines which anomalies are
identified by the distance of features from the patch, Grad-CAM
can be used to determine which features within the pretrained
(WideResNet-50-2) backbone are most important for the decision.

The process would have worked as follows:

Generate PatchCore anomaly map: This gives the first localization
of anomalous areas.

Calculate Grad-CAM: For the best anomalous image patch,
calculate the gradients of the anomaly score (distance to the nearest
neighbor in the memory bank) with regard to the feature maps from the
last convolution layer in the backbone CNN.

Fused visualization: The resulting Grad-CAM heatmap is then
overlaid on the original image, showing certain textures and structures
the model thought to be the most abnormal, as presented in Figure 15.

On the left is the original image of the object, showing a close-up
of the bottle and pill. In the center is the anomaly heatmap, which
highlights the areas of the image with detected anomalies. These
anomalies are represented in a color gradient indicating higher levels
of detected irregularity. On the right, the heatmap is overlaid onto the
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original image to visually emphasize where the anomalies are located,
helping to identify defects or irregularities in the object.

Figure 15
Bottle and pill anomaly heatmap and overlay

Original Image Anomaly Heatmap

Overlay

5.2. Challenges and solutions in IAD

Vision-based AD is being integrated into various domains to
address inspection and quality control issues. However, automatic
detection brings new obstacles. These problems can be classified as
scientific or industrial. Scientific domains focus on the detection model
and its operation, whereas industrial issues focus on the practical use
of automated detection in industry. Key challenges include real-time
detection, sophisticated inspections, annotations, insufficient datasets,
data management, and system integration.

1) Real-time inspection and decision-making: Real-time model needs
adaptability, minimal latency, and seamless processing. It is crucial
for detecting systems to keep up with current processes. Due to
the dynamic nature of industrial processes, new anomaly samples
may arise during real-world operations. Due to their fixed dataset
training, offline learning methods may not accurately recognize or
categorize new occurrences. To address these issues, consider adding
edge processing. Unlike cloud computing, edge processing reduces
latency and speeds up decision-making by bringing data closer to
the inspection system. Lightweight defect detection algorithms
like Bergmann et al.’s [60] also balance speed and accuracy while
reducing computing parameters. However, there is potential for
developing speedier inspection and more efficient, lightweight fault
detection models.

2) Small defects and annotation: When using automated inspection,
addressing small problems that are not visible to the naked eye
is challenging. Regardless of size, small faults can compromise
a structure’s integrity and cause failure. Detecting minor
flaws is challenging due to their size in the broader region of
interest. To mitigate this issue, inspection models should have
a low false-positive rate [62], reducing the number of defective
occurrences misclassified as non-defective. Annotated datasets and
minor flaws pose a continuing problem [63]. However, annotation of
fine detail across several images is expensive and time-consuming.
Approaches using generative models aim to overcome these issues.
These techniques use generative networks to synthesize big labeled
datasets using a minimal amount of manually labeled data [64].
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3) Unbalancing and insufficient datasets: Obtaining sufficient
industrial datasets is a significant difficulty for learning-based
methods. A bias toward plentiful classes emerges from an imbalance
between faulty and non-defective samples, with defective examples
being harder to obtain. This may impact performance metrics, as
high detection scores may be more typical of the overall class and not
correspond with minority samples. Additionally, insufficient training
datasets reduce detection accuracy as the model lacks experience
in all categories. Small and imbalanced datasets can be addressed
by increasing sample size using data augmentation, generative
networks, and synthetic approaches [65]. Few-shot learning is a
prominent method for addressing data scarcity by training models
on a small number of samples. However, dataset reliance remains a
key feature of IAD and is constantly being enhanced.

4) Data quality and management: This branch also manages vast
amounts of data. Data samples must be properly collected, stored,
and distributed for effective solutions. The inspection system uses
feedback from evaluations, user inputs, and neighboring systems.
Quality data is essential for inspection, as low-quality data can
inhibit it [66, 61, 67]. To overcome quality issues, incorporate
appropriate sensing and illumination components. Alternative
methods include training, which enhances model resilience and
performance under diverse lighting and imaging situations.
Additionally, development toward Industry 5.0 will reduce technical
and logistical data-collecting obstacles [68].

6. Conclusion and Future Scope

This study demonstrates the transformative potential of the
PatchCore algorithm in IAD by leveraging high-resolution images
from the MVTec AD dataset. Investigation confirms that integrating
CNN with patch-based feature extraction significantly enhances defect
detection capabilities for various anomalies, including scratches,
dents, and contaminations. The presented method not only improves
detection accuracy and reduces false positives but also streamlines
the quality inspection process, thereby offering substantial benefits in
efficiency and cost-effectiveness over traditional manual and automated
inspection systems. Despite the evident advantages, our work reveals
critical challenges, such as the demands for extensive computational
resources during the training phase and difficulties in integrating
advanced Al systems with legacy manufacturing infrastructures. These
limitations underscore the need for further research into optimizing
processing pipelines, calibrating detection thresholds, and refining
model deployment strategies for diverse industrial environments. The
study represents a pivotal step toward infusing smart technology into
quality control practices, setting the stage for resilient, future-ready
manufacturing systems.

IAD using PatchCore presents a clear path toward transformative
advancements in manufacturing quality control. Incorporating transfer
learning and unsupervised learning techniques to enhance detection
capabilities further can help to address challenges such as limited
defect-labeled data and heterogeneous production environments. Future
efforts will focus on integrating this model with Internet of Things
(IoT) technology, enabling real-time data acquisition from sensors
and edge devices for immediate anomaly identification and response.
Additionally, exploring multimodal data fusion—combining visual,
acoustic, and thermal imaging—may yield improved accuracy in
detecting subtle defects under varying operational conditions. Research
can also investigate the optimization of lightweight, energy-efficient
network architectures to ensure that robust AD algorithms are
deployable on resource-constrained devices. Emphasis on adaptive
learning methods to continually update detection models in response to

changing manufacturing processes promises more resilient and scalable
systems. Moreover, collaborations with industry stakeholders will be
vital in tailoring these Al solutions to diverse production lines, paving
the way for fully integrated, smart quality control systems. These efforts
will catalyze the evolution of sustainable, intelligent manufacturing
practices that set new efficiency and product reliability benchmarks.
These efforts promise to establish robust, scalable Al solutions for
future smart manufacturing.

The primary objective of our paper is to improve the accuracy
on the public benchmarks (MVTec AD, pill, bottle cap). Despite the
vital role that public datasets play in establishing and benchmarking
current algorithms, they are notoriously lacking the sharp class
imbalances, noise characteristics, and defect modes that are prevalent in
manufacturing datasets that are currently present in the real world. For
this, the preprocessing steps included resizing the image, normalization,
and center cropping of the image. In order to achieve this performance,
further implementations are carried out on choosing the patch size,
coreset sampling ratio, and layers 2 and 3. The above features make
the usage of the existing benchmark dataset more novel to test the
performance.

The further research will therefore be oriented toward quantifying
the model’s inference latency and throughput on industry-standard edge
computing devices (e.g., NVIDIA Jetson AGX Orin) to validate the
suitability of the model for real-time inspection. It also includes pilot
integration through working with industry partners to implement the
system on a live production line for a limited pilot study. This will permit
the collection of the most important real-life measures: false-positive
rate (FPR), which has a direct impact on production downtime, and the
false-negative rate (FNR), which has an impact on quality control.

Ethical Statement

This study does not contain any studies with human or animal
subjects performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest to
this work.

Data Availability Statement

The data that support the findings of this study are openly available
at https://www.mvtec.com/company/research/datasets/mvtec-ad.

Author Contribution Statement

Shalini Kumari: Conceptualization, Software, analysis,
Resources, Data curation, Writing — original draft. Chander Prabha:
Methodology, Validation, Investigation, Writing — review & editing,
Visualization, Supervision, Project administration.

References

[1] Shan, B., Zheng, S., & Ou, J. (2016). A stereovision-based
crack width detection approach for concrete surface assessment.
KSCE  Journal of Civil Engineering, 20(2), 803-812.
https://doi.org/10.1007/s12205-015-0461-6

[2] Fujita, Y., & Hamamoto, Y. (2011). A robust automatic
crack detection method from noisy concrete surfaces.
Machine  Vision and  Applications,  22(2), 245-254.
https://doi.org/10.1007/s00138-009-0244-5

13


https://www.mvtec.com/company/research/datasets/mvtec-ad
https://doi.org/10.1007/s12205-015-0461-6
https://doi.org/10.1007/s00138-009-0244-5

Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

(4]

[10]

[12]

[15]

[16]

14

Hyun, J., Kim, S., Jeon, G., Kim, S. H., Bae, K., & Kang, B. J.
(2024). ReConPatch: Contrastive patch representation learning
for industrial anomaly detection. In Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer Vision,
2041-2050. https://doi.org/10.1109/WACV57701.2024.00205
Peng, T., Zheng, Y., Zhao, L., & Zheng, E. (2024). Industrial
product surface anomaly detection with realistic synthetic
anomalies based on defect map prediction. Sensors, 24(1), 264.
https://doi.org/10.3390/524010264

Jiang, Z., Zhang, Y., Wang, Y., Li, J.,, & Gao, X. (2024).
FR-PatchCore: An industrial anomaly detection method
for improving generalization. Sensors, 24(5), 1368.
https://doi.org/10.3390/524051368

Wen, P, Gao, X., Wang, Y., Li, J., & Luo, L. (2023).
Normalizing flow-based industrial complex background
anomaly detection. Journal of Sensors, 2023(1), 6690190.
https://doi.org/10.1155/2023/6690190

Liu, Z., Zhou, Y., Xu, Y., & Wang, Z. (2023). SimpleNet:
A simple network for image anomaly detection and
localization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 20402-20411.
https://doi.org/10.1109/CVPR52729.2023.01954

Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T., &
Gehler, P. (2022). Towards total recall in industrial anomaly
detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 14298—14308.
https://doi.org/10.1109/CVPR52688.2022.01392

Ishida, K., Takena, Y., Nota, Y., Mochizuki, R., Matsumura, 1., &
Ohashi, G. (2023). SA-PatchCore: Anomaly detection in dataset
with co-occurrencerelationships using self-attention. /EEE Access,
11, 3232-3240. https://doi.org/10.1109/ACCESS.2023.3234745
Tang, Q., & Jung, H. (2023). Reliable anomaly
detection and localization system: Implications on
manufacturing industry. [EEE Access, 11, 114613-114622.
https://doi.org/10.1109/ACCESS.2023.33243 14

Choi, B., & Jeong, J. (2022). ViV-Ano: Anomaly detection
and localization combining vision transformer and variational
autoencoder in the manufacturing process. Electronics, 11(15),
2306. https://doi.org/10.3390/electronics 11152306

Bozcan, 1., Korndorfer, C., Madsen, M. W., & Kayacan, E. (2022).
Score-based anomaly detection for smart manufacturing systems.
IEEE/ASME Transactions on Mechatronics, 27(6), 5233-5242.
https://doi.org/10.1109/TMECH.2022.3169724

Jezek, S., Jonak, M., Burget, R., Dvorak, P., & Skotak,
M. (2021). Deep learning-based defect detection of metal
parts: Evaluating current methods in complex conditions.
In 2021 13th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops, 66—71.
https://doi.org/10.1109/ICUMT54235.2021.9631567

Defard, T., Setkov, A., Loesch, A., & Audigier, R. (2021).
PaDiM: A patch distribution modelling framework for anomaly
detection and localization. In 25th International Conference
on Pattern Recognition Workshops and Challenges, 475-489.
https://doi.org/10.1007/978-3-030-68799-1_35

Zhao, H., Jia, J., & Koltun, V. (2020). Exploring Self-attention
for Image Recognition. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 10073-10082.
https://doi.org/10.1109/CVPR42600.2020.01009

Kumari, S., Prabha, C., Karim, A., Hassan, Md. M., &
Azam, S. (2024). A comprehensive investigation of anomaly
detection methods in deep learning and machine learning:

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(23]

[26]

(27]

(28]

[29]

(30]

2019-2023. [IET Information Security,
https://doi.org/10.1049/2024/8821891
Kumari, S., & Prabha, C. (2024). A comprehensive review of
deep anomaly detection techniques- An analysis. In 2024 I[EEE
9th International Conference for Convergence in Technology,
1-6. https://doi.org/10.1109/12CT61223.2024.10543335

Lin, Y., Chang, Y., Tong, X., Yu, J., Liotta, A., Huang,
G.,..., & Zhang, W. (2025). A survey on RGB, 3D, and
multimodal approaches for unsupervised industrial image
anomaly detection. Information Fusion, 121(C), 103139.
https://doi.org/10.1016/j.inffus.2025.103139
Liang,Y.,Hu,Z.,Huang,J.,Di,D.,Su,A.,&Fan,L.(2025).ToCoAD:
Two-stage contrastive learning for industrial anomaly detection.
IEEE Transactions on Instrumentation and Measurement, 74,
1-9. https://doi.org/10.1109/TIM.2025.3545987

Zonnenshain, A., & Kenett, R. S. (2020). Quality 4.0—The
challenging future of quality engineering. Quality Engineering,
32(4), 614-626. https://doi.org/10.1080/08982112.2019.1706744
Ciberlin, J., Grbic, R., Teslic, N., & Pilipovic, M. (2019). Object
detection and object tracking in front of the vehicle using front view
camera. In 2019 Zooming Innovation in Consumer Technologies
Conference, 27-32. https://doi.org/10.1109/ZINC.2019.8769367
Bansal, M., Kumar, M., & Kumar, M. (2021). 2D object
recognition: A comparative analysis of SIFT, SURF and ORB
feature descriptors. Multimedia Tools and Applications, 80(12),
18839-18857. https://doi.org/10.1007/s11042-021-10646-0
Zhou, W., Gao, S., Zhang, L., & Lou, X. (2020). Histogram of
oriented gradients featureextraction fromraw Bayer patternimages.
IEEE Transactions on Circuits and Systems II: Express Briefs,
67(5), 946-950. https://doi.org/10.1109/TCSI1.2020.2980557
Dhakshina Kumar, S., Esakkirajan, S., Bama, S.,, &
Keerthiveena, B. (2020). A microcontroller based machine
vision approach for tomato grading and sorting using SVM
classifier. Microprocessors and Microsystems, 76, 103090.
https://doi.org/10.1016/j.micpro.2020.103090

Ahmed, A., Jalal, A., & Kim, K. (2019). Region and decision
tree-based segmentations for multi-objects detection and
classification in outdoor scenes. In 2019 International
Conference on Frontiers of Information Technology, 209-2095.
https://doi.org/10.1109/F1T47737.2019.00047

Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela,
R., Pandya, S.,...& Ghayvat, H. (2021). CNN variants
for computer vision: History, architecture, application,
challenges and future scope. Electronics, 10(20), 2470.
https://doi.org/10.3390/electronics 10202470

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A.,
Mottaghi, A.,..., & Socher, R. (2021). Deep learning-enabled
medical computer vision. npj Digital Medicine, 4(1), 5.
https://doi.org/10.1038/s41746-020-00376-2

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues,
I,..., & Summers, R. M. (2016). Deep convolutional
neural networks for computer-aided detection: CNN
architectures, dataset characteristics and transfer learning.
IEEE Transactions on Medical Imaging, 35(5), 1285-1298.
https://doi.org/10.1109/TM1.2016.2528162

Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C.,..., & Jin, Y.
(2024). IM-IAD: Industrial image anomaly detection benchmark
in manufacturing. [EEE Transactions on Cybernetics, 54(5),
2720-2733. https://doi.org/10.1109/TCYB.2024.3357213
Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021).
Machine Learning for industrial applications: A comprehensive

2024(1), 8821891.


https://doi.org/10.1109/WACV57701.2024.00205
https://doi.org/10.3390/s24010264
https://doi.org/10.3390/s24051368
https://doi.org/10.1155/2023/6690190
https://doi.org/10.1109/CVPR52729.2023.01954
https://doi.org/10.1109/CVPR52688.2022.01392
https://doi.org/10.1109/ACCESS.2023.3234745 
https://doi.org/10.1109/ACCESS.2023.3324314 
https://doi.org/10.3390/electronics11152306
https://doi.org/10.1109/TMECH.2022.3169724 
https://doi.org/10.1109/ICUMT54235.2021.9631567
https://doi.org/10.1007/978-3-030-68799-1_35 
https://doi.org/10.1109/CVPR42600.2020.01009 
https://doi.org/10.1049/2024/8821891
https://doi.org/10.1109/I2CT61223.2024.10543335
https://doi.org/10.1016/j.inffus.2025.103139
https://doi.org/10.1109/TIM.2025.3545987 
https://doi.org/10.1080/08982112.2019.1706744 
https://doi.org/10.1109/ZINC.2019.8769367
https://doi.org/10.1007/s11042-021-10646-0
https://doi.org/10.1109/TCSII.2020.2980557
https://doi.org/10.1016/j.micpro.2020.103090 
https://doi.org/10.1109/FIT47737.2019.00047
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TCYB.2024.3357213 

Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

(31]

[39]

[42]

[44]

literature review. Expert Systems with Applications, 175, 114820.
https://doi.org/10.1016/j.eswa.2021.114820

Ahmad, H. M., & Rahimi, A. (2022). Deep learning
methods for object detection in smart manufacturing: A
survey. Journal of Manufacturing Systems, 64, 181-196.
https://doi.org/10.1016/j.jmsy.2022.06.011

Yasuda, Y. D. V., Cappabianco, F. A. M., Martins, L. E. G., &
Gripp, J. A. B. (2022). Aircraft visual inspection: A systematic
literature review. Computers in Industry, 141, 103695.
https://doi.org/10.1016/j.compind.2022.103695

Konstantinidis, F. K., Myrillas, N., Tsintotas, K. A., Mouroutsos,
S. G., & Gasteratos, A. (2023). A technology maturity assessment
framework for Industry 5.0 machine vision systems based
on systematic literature review in automotive manufacturing.
International Journal of Production Research. Advance online
publication. https://doi.org/10.1080/00207543.2023.227058
Jha,S.B.,&Babiceanu,R.F.(2023). Deep CNN-based visual defect
detection: Survey of current literature. Computers in Industry,
148, 103911. https://doi.org/10.1016/j.compind.2023.103911
Kumari, S., & Prabha, C. (2023). A comprehensive review
on anomaly detection in images: Challenges and future
research directions. In 2023 [EEE North Karnataka
Subsection  Flagship  International  Conference,  1-6.
https://doi.org/10.1109/NKCon59507.2023.10396507

Ameri, R., Hsu, C.-C.,, &amp; Band, S. S. (2024). A
systematic review of deep learning approaches for surface
defect detection in industrial applications. Engineering
Applications  of  Artificial  Intelligence, 130, 107717.
https://doi.org/10.1016/j.engappai.2023.107717

Hojjati, H.,, Ho, T. K. K., & Armanfard, N. (2024).
Self-supervised anomaly detection in computer vision and
beyond: A survey and outlook. Neural Networks, 172, 106106.
https://doi.org/10.1016/j.neunet.2024.106106

Trilles, S., Hammad, S. S., & Iskandaryan, D. (2024).
Anomaly detection based on artificial intelligence of things: A
systematic literature mapping. Internet of Things, 25, 101063.
https://doi.org/10.1016/j.10t.2024.101063

Shukla, V., Shukla, A., S. K., S. P, & Shukla, S. (2025). A
systematic survey: Role of deep learning-based image anomaly
detection in industrial inspection contexts. Frontiers in Robotics
and A1, 12, 1554196. https://doi.org/10.3389/frobt.2025.1554196
Kraitem, Z. (2025). A comparative study of text-to-image
synthesis techniques using generative adversarial networks.
American Journal of Neural Networks and Applications, 11(1),
24-30. https://doi.org/10.11648/j.ajae.20231001.13

Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F. M., Caputo, B.,
& Tommasi, T. (2022). Self-supervised learning across domains.
1EEE Transactions on Pattern Analysis and Machine Intelligence,
44(9), 5516-5528. https://doi.org/10.1109/TPAMI.2021.3070791
Hendrycks, D., Mazeika, M., Kadavath, S., & Song, D. (2019).
Using self-supervised learning can improve model robustness and
uncertainty. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 15663—15674.
Adam, A., Rivlin, E., Shimshoni, I., & Reinitz, D. (2008).
Robust real-time unusual event detection using multiple
fixed-location monitors. [EEE Tramsactions on Pattern
Analysis  and ~ Machine  Intelligence, 30(3), 555-560.
https://doi.org/10.1109/TPAMI.2007.70825

Guo, J., Lu, S., Jia, L., Zhang, W., & Li, H. (2023). ReContrast:
Domain-specific anomaly detection via contrastive reconstruction.
In Proceedings of the 27th Conference on Neural Information
Processing Systems, 10721-10740.

[45]

[46]

(48]

[49]

[52]

[54]

[58]

Tang, Q., Cao, G., & Jo, K.-H. (2021). Integrated
feature pyramid network with feature aggregation for
traffic sign detection. [EEE Access, 9, 117784-117794.
https://doi.org/10.1109/ACCESS.2021.3106350

Liang, Y., Zhang, J., Zhao, S., Wu, R, Liu, Y, &
Pan, S. (2023).  Omni-frequency  channel-selection
representations  for  unsupervised anomaly  detection.

IEEE Transactions on Image Processing, 32, 4327-4340.
https://doi.org/10.1109/TIP.2023.3293772

Rudolph, M., Wandt, B., & Rosenhahn, B. (2021). Same
same but differnet: Semi-supervised defect detection
with normalizing flows. In 2021 [EEE Winter Conference
on  Applications  of  Computer  Vision, 1906-1915.
https://doi.org/10.1109/WACV48630.2021.00195
Venkataramanan, S., Peng, K.-C., Singh, R. V., & Mahalanobis,
A. (2020). Attention guided anomaly localization in images. In
ECCV 2020: 16th European Conference on Computer Vision,
485-503. https://doi.org/10.1007/978-3-030-58520-4 29

Kong, S., & Ramanan, D. (2025). OpenGAN: Open-set
recognition via open data generation. /[EEE Transactions on
Pattern Analysis and Machine Intelligence, 47(5), 3233-3243.
https://doi.org/10.1109/TPAMI.2022.3184052

Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2020).
Uninformed students: Student-teacher anomaly detection with
discriminative latent embeddings. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 4182-4191.
https://doi.org/10.1109/CVPR42600.2020.00424

Wang, N., Zhang, Z., Zhao, X., Miao, Q., Ji, R., & Gao, Y. (2019).
Exploring high-order correlations for industry anomaly detection.
1EEE Transactions on Industrial Electronics, 66(12), 9682-9691.
https://doi.org/10.1109/TIE.2019.2907441

Sabokrou, M., Khalooei, M., Fathy, M., & Adeli, E.
(2018).  Adversarially learned one-class classifier for
novelty detection. In 2018 I[EEE/CVF Conference on
Computer Vision and Pattern Recognition, 3379-3388.
https://doi.org/10.1109/CVPR.2018.00356

Wang, Q., Yuan, Z., Du, Q., & Li, X. (2019). GETNET: A general
end-to-end 2-D CNN framework for hyperspectral image change
detection. I[EEE Transactions on Geoscience and Remote Sensing,
57(1), 3—13. https://doi.org/10.1109/TGRS.2018.2849692

Yao, R., Liu, C., Zhang, L., & Peng, P. (2019). Unsupervised
anomaly  detection  using  Variational  Auto-Encoder
based feature extraction. In 2019 I[EEE International
Conference on Prognostics and Health Management, 1-7.
https://doi.org/10.1109/ICPHM.2019.8819434

Staar, B., Litjen, M., & Freitag, M. (2019). Anomaly
detection with convolutional neural networks for industrial
surface  inspection.  Procedia  CIRP, 79, 484-489.
https://doi.org/10.1016/j.procir.2019.02.1230te. 12394

Jing, J., Ma, H., & Zhang, H. (2019). Automatic fabric defect
detection using a deep convolutional neural network. Coloration
Technology, 135(3), 213-223. https://doi.org/10.1111/cote.12394
Perera, P., & Patel, V. M. (2019). Learning deep features for
one-class classification. /EEE Transactions on Image Processing,
28(11), 5450-5463. https://doi.org/10.1109/TIP.2019.2917862
Ullah, W., Khan, S. U., Kim, M. J., Hussain, A., Munsif, M.,
Lee, M. Y.,..., & Baik, S. W. (2024). Industrial defective
chips detection using deep convolutional neural network
with inverse feature matching mechanism. Journal of
Computational Design and Engineering, 11(3), 326-336.
https://doi.org/10.1093/jcde/qwae019

15


https://doi.org/10.1016/j.eswa.2021.114820 
https://doi.org/10.1016/j.jmsy.2022.06.011
https://doi.org/10.1016/j.compind.2022.103695
https://doi.org/10.1080/00207543.2023.2270588
https://doi.org/10.1016/j.compind.2023.103911
https://doi.org/10.1109/NKCon59507.2023.10396507 
https://doi.org/10.1016/j.engappai.2023.107717
https://doi.org/10.1016/j.neunet.2024.106106 
https://doi.org/10.1016/j.iot.2024.101063 
 https://doi.org/10.3389/frobt.2025.1554196
https://doi.org/10.11648/j.ajae.20231001.13
https://doi.org/10.1109/TPAMI.2021.3070791
https://doi.org/10.1109/TPAMI.2007.70825
https://doi.org/10.1109/ACCESS.2021.3106350 
https://doi.org/10.1109/TIP.2023.3293772
https://doi.org/10.1109/WACV48630.2021.00195
https://doi.org/10.1007/978-3-030-58520-4_29
https://doi.org/10.1109/TPAMI.2022.3184052
https://doi.org/10.1109/CVPR42600.2020.00424
https://doi.org/10.1109/TIE.2019.2907441
https://doi.org/10.1109/CVPR.2018.00356
https://doi.org/10.1109/TGRS.2018.2849692
https://doi.org/10.1109/ICPHM.2019.8819434
https://doi.org/10.1016/j.procir.2019.02.123ote.12394
 https://doi.org/10.1111/cote.12394
https://doi.org/10.1109/TIP.2019.2917862
https://doi.org/10.1093/jcde/qwae019

Artificial Intelligence and Applications Vol. 00

Iss. 00 2026

[59]

[60]

[63]

[64]

16

Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., & Steger, C.
(2021). The MV Tec anomaly detection dataset: A comprehensive
real-world dataset for unsupervised anomaly detection.
International Journal of Computer Vision, 129(4), 1038-1059.
https://doi.org/10.1007/s11263-020-01400-4

Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019).
MVTec AD—A comprehensive real-world dataset for
unsupervised anomaly detection. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 9584-9592.
https://doi.org/10.1109/CVPR.2019.00982

Li, D., Ling, H., Kim, S. W., Kreis, K., Fidler, S., & Torralba,
A. (2022). BigDatasetGAN: Synthesizing imagenet with
pixel-wise annotations. In 2022 [EEE/CVF Conference on
Computer Vision and Pattern Recognition, 21298-21308.
https://doi.org/10.1109/CVPR52688.2022.02064

Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B.,
Ahuja, N., & Gence, U. (2022). Anomalib: A deep
learning library for anomaly detection. In 2022 [EEE
International Conference on Image Processing, 1706—-1710.
https://doi.org/10.1109/1CIP46576.2022.9897283

Malesa, M., & Rajkiewicz, P. (2021). Quality control of pet bottles
caps with dedicated image calibration and deep neural networks.
Sensors, 21(2), 501. https://doi.org/10.3390/s21020501

Yuan, L., Chen, Y., Tang, H., Gao, R., & Wu, W. (2024).
A lightweight  deep-learning  algorithm for  welding
defect detection in new energy vehicle battery current
collectors. [EEE Sensors Journal, 24(13), 21655-21668.
https://doi.org/10.1109/JSEN.2024.3398769

[65]

[66]

[67]

[68]

Dong, X., Taylor, C. J., & Cootes, T. F. (2019). Small defect
detection using convolutional neural network features
and random forests. In ECCV 2018 Workshops: European
Conference on Computer Vision Workshops, 398-412.
https://doi.org/10.1007/978-3-030-11018-5_35

Mei, S., Cheng, J., He, X., Hu, H., & Wen, G. (2022). A novel
weakly supervised ensemble learning framework for automated
pixel-wise industry anomaly detection. /EEE Sensors Journal,
22(2), 1560-1570. https://doi.org/10.1109/JSEN.2021.3131908
Liu, S., Ni, H,, Li, C., Zou, Y., & Luo, Y. (2024). DefectGAN:
Synthetic data generation for EMU defects detection with
limited data. [EEE Sensors Journal, 24(11), 17638-17652.
https://doi.org/10.1109/JSEN.2024.3386711

Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., & Wang,
C. (2023). Multimodal industrial anomaly detection
via hybrid fusion. In 2023 I[EEE/CVF Conference on
Computer Vision and Pattern Recognition, 8032—-8041.
https://doi.org/10.1109/CVPR52729.2023.00776

How to Cite: Kumari, S., & Prabha, C. (2026). Anomaly Detection Utilizing PatchCore
for Reimagining Industrial Visual Inspection. Artificial Intelligence and Applications.
https://doi.org/10.47852/bonviewAlA52026321



https://doi.org/10.1007/s11263-020-01400-4
https://doi.org/10.1109/CVPR.2019.00982
https://doi.org/10.1109/CVPR52688.2022.02064
https://doi.org/10.1109/ICIP46576.2022.9897283
https://doi.org/10.3390/s21020501
https://doi.org/10.1109/JSEN.2024.3398769
https://doi.org/10.1007/978-3-030-11018-5_35
https://doi.org/10.1109/JSEN.2021.3131908
https://doi.org/10.1109/JSEN.2024.3386711
https://doi.org/10.1109/CVPR52729.2023.00776
https://doi.org/10.47852/bonviewAIA52025416

