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Abstract: In industrial manufacturing, ensuring quality control is critical to maintaining high standards and operational efficiency. Manual defect 
detection, however, is often time-consuming, error-prone, and costly, thereby driving the need for automated solutions. This paper investigates a 
technique for industrial anomaly detection (IAD) by utilizing the state-of-the-art PatchCore algorithm in conjunction with the widely recognized 
MVTec AD dataset. The dataset consists of 5354 high-resolution color images representing diverse objects and textures, including defect-free 
samples for training and numerous anomalous instances for testing. With over seventy distinct defect types—such as scratches, dents, contamination, 
and other structural irregularities—the dataset presents substantial challenges for conventional visual inspection (VI) techniques. The approach 
integrates convolutional neural networks (CNNs) with patch-based feature extraction methods, enabling PatchCore to accurately identify and 
localize even subtle anomalies within complex industrial imagery. Experimental results demonstrate that PatchCore significantly enhances detection 
accuracy, reduces false positives, and streamlines the overall inspection process. These improvements have important implications for operational 
productivity and quality assurance in various industrial sectors, paving the way for more reliable and cost-effective manufacturing practices.
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1. Introduction
In anomaly detection (AD), unusual patterns deviating from 

expected behavior are called outliers. Anomalies can be categorized 
into three types: point anomalies, which are individual data points 
that significantly differ from others; contextual anomalies, which are 
abnormalities that are specific to a certain context; and collective 
anomalies, where a group of data instances collectively indicates an 
anomaly. AD is often associated with terms like outlier detection, 
forgery detection, or out-of-distribution detection. In practical AD 
scenarios, outliers may be absent, poorly defined, or only present in 
limited cases. In industrial anomaly detection (IAD), visual inspection 
(VI) is becoming increasingly difficult due to the continuously rising 
standards for quality, and all scenarios can be regarded as a form of 
quality inspection. Quality inspection use cases involve assessing the 
condition or state of an object rather than identifying flaws or missing 
components. One use case exclusively focused on quality inspection is 
determining the state of woven fabrics or leather quality.

Damage detection, also known as defect detection and VI, 
involves classifying or detecting at least one form of damage. One 
instance of use cases for damage identification includes identifying 
surface flaws in internal combustion engine parts or segmenting 
various steel surface faults [1]. Crack detection is a specific type of 
damage detection categorized separately due to its frequent occurrence 
in the literature. The crack detection use case focuses on categorizing, 
localizing, or segmenting cracks. The typical application scenario 
is the upkeep of public structures, such as the repair of pavement 
cracks or concrete cracks. Another application of VI is verifying the 
presence or absence of a component and identifying any flaws [2]. The 

completeness check provides a summary of these application cases. 
A completeness check involves determining the absence or presence 
of something. The previous VI use case class, designated as “other,” 
encompasses VI use cases that cannot be immediately observed solely 
through quality inspection and do not fall under damage detection or 
completeness check categories.

This research work is organized into the following sections: 
Section 2 presents the current state of research and insights into 
various AD datasets, along with different types of AD methods used. 
The limitations of the existing work, following the research gaps and 
contribution, are presented at the end of Section 2. Section 3 details 
the methodology, dataset description, and further implementation 
details. Section 4 presents in detail the result analysis along with a brief 
discussion. Section 5 further discusses the challenges of industrial AD 
and their potential solutions. Finally, Section 6 concludes the paper with 
future directions of research.

2. Literature Review
Researchers have proposed many image AD techniques. 

Depending on how they work, both machine learning (ML) and deep 
learning (DL) are used. The study focuses strongly on the industrial 
image of AD. In addition to giving academics and practitioners a 
thorough grasp of the advantages and disadvantages of the different DL 
algorithms for AD in image data, the summary offers insights into the 
performance of these approaches.

Hyun et al. [3] proposed the ReConPatch technique for 
identifying irregularities in industrial manufacturing. It employs 
contrastive representation learning to provide distinctive features for 
AD. The process works by using a linear modulation on patch features 
from a model that has already been trained. This creates a representation 
focused on the target that is easy to distinguish. To tackle the issue of 
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insufficient labeled pairings for contrastive learning (CL), pseudo-labels 
based on pairwise and contextual similarities are employed. Peng et 
al. [4] proposed a new error detection method using an unsupervised 
approach. The algorithm is based on defect map prediction using actual 
manufacturing problems. The method shows a significant advance in 
error detection in industrial products. It outperforms other detection 
methods, improving the area under the receiver operating characteristic 
(AUROC) metric by 1.1%. This shows its strong ability to combine the 
15 bands in the MVTec dataset. Furthermore, the method outperforms 
the best discriminatively trained reconstruction anomaly embedding 
model (DRAEM) by 31.5% in the detection analysis of average precision 
(AP) detection, showing significant improvement in fault detection. 
This is because the method focuses on measuring the distance between 
normal and abnormal samples rather than knowing exactly what the 
error is. This network utilizes data processing techniques such as affine 
transformation and image enhancement to improve noise immunity 
and robustness. Additionally, they were trained using video images 
created as input samples. Jiang et al. [5] proposed a novel ground-truth 
segmentation method to reduce false positives caused by artificial 
threshold determination. False Rejection (FR)-PatchCore excels in 
anomaly identification on MVTec datasets and reaches cutting-edge 
capability on Multiple Product Defect Detection or Multi-Product 
Defect (MPDD) datasets (with spatial location disparities). The pre-text 
task of feature-level registration optimizes memory features by reducing 
registration loss to an ideal feature representation. Experimental results 
show that FR-PatchCore efficiently handles “similar category” and 
“spatial transformation category” data, improving its generalization 
capabilities. Wen et al. [6] focused on the cross-scale with attention 
normalizing flow (CSA-Flow) novel that incorporates channel attention 
(CA) and self-attention (SA) modules to enhance AD in high-speed 
railway systems. This is particularly useful in complex industrial 
environments, aiming to reduce the need for manual maintenance of 
high-speed electric multiple units. Intricate backgrounds and enigmatic 
subjects pose a challenge in detecting defects in manufacturing 
environments. The CSA-Flow channel feature extraction module takes 
features of different sizes by combining pretrained convolutional neural 
network models with a CA module. It also employs the SA module’s 
broader receptive field to gather contextual information. CSA-Flow 
was evaluated using the high-resolution Synthetic Aperture Radar 
(SAR) images dataset (HSRBD), which determined that the method 
achieved the highest rate of anomaly identification. CSA-Flow does 
not do pixel segmentation but can detect aberrant areas using anomaly 
scores. Liu et al. [7] introduced a simple but effective method, called 
SimpleNet, to detect and identify anomalies without monitoring. 
SimpleNet includes several basic neural network modules designed 
for training and use in industrial environments. Despite its simplicity, 
SimpleNet outperforms previously developed methods in terms of 
performance and implementation speed at the scale of MVTec Anomaly 
Detection (MVTec AD). SimpleNet provides a new approach bridging 
academic research and industrial applications in the field of random 
detection and localization. Roth et al. [8] presented the PatchCore 
algorithm as a method for detecting and categorizing odd data during 
testing, using only nominal samples as a basis of knowledge. PatchCore 
achieves balance by preserving relevant context during testing using 
memory banks (MB) that contain locally aware, nominal patch-level 
feature representations generated from ImageNet pretrained networks. 
It also minimizes runtime by employing coreset subsampling. The 
outcome is a cutting-edge cold-start image AD and localization system 
that performs highly on industrial AD benchmarks while requiring few 
processing resources. At MVTec, the dataset can obtain an AUROC 
of over 99% in image AD. Ishida et al. [9] introduced SA-PatchCore 
as an extension of the existing PatchCore algorithm. SA-PatchCore 
incorporates a self-attention (SA) module to identify anomalies in 
co-occurrence connections. This nonlinear transformation module 

may generate feature maps by analyzing the relationship between 
features without relying on the linear transformation used in traditional 
self-attention and its training process. SA-PatchCore mitigates the 
computational complexity of self-attention by utilizing feature maps 
that have been compressed using a pretrained CNN in the self-attention 
module. Additionally, the Co-Occurrence anomaly detection-Screw 
Dataset (CAD-SD) contains local and co-occurrence anomalies, as 
no AD dataset includes co-occurrence anomalies. SA-PatchCore 
demonstrates excellent AD performance on MVTec AD, which consists 
solely of local anomalies. Furthermore, it obtains the highest AD 
performance in the CAD-SD.

Tang et al. [10] highlight the disparity that currently exists 
between academic research and its practical implementation in industrial 
business. A precise and dependable method called Relation-aware 
Disentangled Learning (RADL) is designed to detect and pinpoint 
anomalies to address this discrepancy. RADL is a specialized solution 
that aims to tackle the difficulties associated with inspecting the quality 
of industrial products in real-world settings. The effectiveness of RADL 
is validated by the performance attained on the MVTec AD dataset 
and real-world manufacturing industry datasets compared to earlier 
studies. The proposed inspection system can improve the effectiveness 
of manufacturing industry processes in the real world. Choi et al. 
[11] proposed ViV-Ano, a model that combines a vision transformer 
(VT) and a Variational Autoencoder (VAE) for AD. The ViV-Ano 
model demonstrated superior performance to the present model on 
a test dataset. Models evaluated on the MVTec AD dataset for IAD 
achieved comparable or superior performance to the previous model. 
In manufacturing, AD algorithms utilize spatial information to identify 
flaws in image data. Image analysis and localization techniques enhance 
decision-making and improve efficiency.

Reconstruction-based AD produced either equivalent or superior 
results to current anomaly identification methods. Bozcan et al. [12] 
proposed an architecture that addressed two fundamental issues in 
smart manufacturing systems, where robots learn tasks from human 
experts. It first detects anomalies by scoring each observation during the 
task’s execution. The system helps human specialists record innovative 
demonstrations by recognizing states that differ considerably from 
training samples. Avoiding repetitive data collection and ensuring a 
variety of protests are essential for good learning. It is more economical 
and versatile than parametric models since new data does not require 
computationally expensive retraining. Jezek et al. [13] addressed the 
challenge of difficult parallel work of artificial vertical lines in the 
production of steel elements, and new data were developed to identify 
errors. Like other AD industry datasets, these data are intended for use 
by unsupervised and supervised units. Therefore, it includes images 
without training anomalies, all without anomalies, and with ensemble 
testing, and mask pairs showing defective areas. Additionally, the dataset 
is used to evaluate the performance of existing troubleshooting systems 
for the problems included in the dataset. Traditional detection methods 
of AD have proven to be ineffective when applied to MVTec AD data, 
which is considered the method for detecting industrial problems. The 
Patch Distribution Modeling Framework Patch Distribution Modeling 
(PaDiM) Framework [14] method showed significant differences 
in error detection capabilities between the two datasets. Zhao et al. 
[15] suggested the Patch support vector data description (SVDD) 
technique for segmenting and detecting image anomalies. The image 
at the patch level, in contrast to Deep SVDD, also localizes faults. 
Further, self-supervised learning enhances detection performance. 
Consequently, the suggested approach attained cutting-edge results on 
the MVTec AD dataset. Due to their high dimensionality and structure, 
images were featured in earlier research before the ensuing downstream 
tasks. Analysis findings indicate that the nearest neighbor method 
using a raw patch frequently distinguishes abnormalities reasonably 
well. Kumari et al. [16] suggested the usefulness of DL-based image 
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AD in industrial inspection applications. It compares conventional 
and advanced supervised, unsupervised, and semi-supervised DL 
approaches in solving important issues like real-time processing, low 
sample size, and dataset imbalance. The performance is evaluated on 
various industrial datasets, used in unmanned aerial vehicle (UAV), 
automated guided vehicle (AGV), and manipulator-based inspection 
systems, and mitigation strategies and future research directions are 
discussed to improve AD in manufacturing quality assurance. Kumari et 
al. [17] discussed the status of vision-based AD in industrial applications 
in terms of data acquisition, preprocessing, learning mechanisms, and 
evaluation, categorizing the methods by supervision level: supervised, 
unsupervised, and semi-supervised learning. Highlighting major 
challenges, such as real-time processing, small defect detection, and 
data imbalance, it also shares the solutions, such as edge computing, 
data augmentation, and generative models for system integration. 
It also reviews relevant industrial datasets and designs the future 
directions, such as explainable AI (XAI) and large vision-language 
models (LVLMs), for improving automated inspection systems. Lin 
et al. [18] proposed unsupervised industrial image anomaly detection 
(UIAD) methods in Red Green Blue (RGB), 3D, and multimodal 
domains. It provides a systematic review of the development of single-
modal RGB-based methods, which are mainstream but insufficient 
for complex scenarios, to the latest 3D methods for spatial data, and 
multimodal methods for effective detection using fusing RGB, 3D point 
cloud, and other data. The author classifies some of the state-of-the-
art architectures (feature embedding, reconstruction, memory bank, 
transformer, diffusion, large models), describes some of the major 
datasets and evaluation metrics, and focuses on multimodal feature 
fusion approaches. It also presents deployment issues, including a 
lack of modalities, noise, and domain adaptability, and defines future 
directions of efficient transferable and noise-resistant algorithms in 
complex real-world industrial environments.

Liang et al. [19] described Topological/Texture-oriented 
Contextual Anomaly Detection (ToCoAD) as a two-stage contrastive 
learning framework for unsupervised AD in images, especially for 
industrial applications. The first stage uses a discriminative network 
trained with the help of synthetic anomalies generated with Perlin noise, 
which allows for the localization of the defects roughly. In the second 
stage, this network is used to guide a negative bootstrap contrastive 
learning process that is used to fine-tune the feature extractor and is 
helpful in overcoming domain gaps between pretrained models and 
industrial data. Through the use of both synthetic anomalous and positive 
augmented normal samples, ToCoAD is able to accomplish robust and 
adaptive feature representations. Experiments on benchmark datasets 
(MVTec AD, Visual Anomaly (VisA), and BTAD) show competitive 
and state-of-the-art performance with the pixel-level AUROC above 
97%, which shows its effectiveness for industrial defect identification 
and localization.

Six different DL methods have been used for the detection of 
defects. These methods include CNN, encoder-decoder, pyramid, 
generative adversarial networks (GAN), attention mechanism, 
etc. (Figure 1).

Among all the DL methods used in the literature, the pyramid 
network approach has the greatest rate at 33%. Because pyramid-based 
architectures extract features from several layers, improving the results, 
much recent research has focused on utilizing them for defect detection. 
Naturally, GAN models account for 4% of DL approaches, whereas 
encoder-decoder models account for 11%, attention mechanisms for 
15%, and other models for 9%.

2.1. Importance of quality control in industry
The industry’s ability to produce goods that meet customer 

expectations depends on quality control. It consists of methodical 

observation, measurement, and evaluation of every manufacturing 
stage to find defects and nonconformities. Quality control has several 
really significant motives. First, it guarantees that objects are safe 
and not dangerous for users. Second, it encourages consistency and 
repetition of products, therefore enhancing quality and durability. Last, 
quality control lowers raw material waste and defects, thus increasing 
the organization’s competitiveness. In today’s global corporate climate, 
any sector seeking profitability and customer satisfaction must also 
incorporate quality control [20]. Several strategies are applied in 
production quality control to guarantee product quality and eradicate 
defects and nonconformities. As a fundamental quality control tool, VI 
looks for surface, aesthetic, and other flaws in items.

2.2. Artificial intelligence tools in vision systems
Vision systems in many different disciplines employ several 

artificial intelligence (AI) techniques, for example, Viola–Jones cascade 
method [21], Scale-Invariant Feature Transform (SIFT) or Speeded-Up 
Robust Features (SURF) feature descriptors [22], color and texture 
histograms [23], support vector machines (SVM) [24], decision tree 
algorithms [25], and, finally, neural networks [26, 27]. Vision systems 
frequently use neural networks for various important purposes [28]. 
Table 1 presents the contributions of the researchers’ work in vision 
systems.

2.3. Industrial anomaly detection
Over the past few years, the manufacturing industry has 

been enhancing the standards for inspecting the quality of industrial 
products. Precise detection of defects guarantees that industrial 
products meet the required quality standards and minimizes the risk 
of safety hazards during their use. The progress of the manufacturing 
sector has elevated the criteria for assessing the quality of industrial 
goods [29]. AI-based AD is becoming increasingly important in 
industrial applications, especially quality control. These methods 
automatically detect defective items to help manufacturers maintain 
quality and reduce rework. In the industrial sphere, “anomalies” relate 
to faults, including scratches, bruises, crushing, foreign colors, and 
texture alterations. VI inside an industrial setting often reveals these 
flaws. Product anomalies in industrial settings can significantly impact 
quality. Image-level and pixel-level detection are two types of AD in 
computer vision (CV). Image-level detection refers to judging the entire 
image for anomalies, while pixel-level detection focuses on each pixel. 
Pixel-level detection yields more accurate and interpretable anomaly 
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maps. Industrial methods use complete training samples to find faults 
during testing. It typically targets fine-grained abnormalities in limited 
image areas, unlike semantic AD, which detects anomalies across the 
entire image. The main approaches are embedded-based [40–42] and 
synthesizing-based [43] methods.

For detection, synthesizing-based approaches use augmentations 
or feature space manipulation [7] to mimic the anomalous distribution. 
ReContrast [44] and PatchCore [8] emphasize anomalies by embedding 
normal picture features. These methods are effective at detecting 
pixel-level anomalies but not semantic ones. For instance, SimpleNet 
[7], the benchmark’s best model, only detects anomalies in local 
patches. So, it lacks a global perspective needed to model patch 
cross-correlations, which is crucial for semantic anomaly identification. 
AD detects anomalies by finding anomalous correlations among 
patch attributes, not just at the patch level. Over the past decade, 
AI and deep vision detection technology have advanced in various 
fields, including autonomous vehicles, surveillance systems, and 
medical imaging [45, 46]. AI-based deep neural networks (DNNs) are 
increasingly used in factories to detect product faults because of their 
higher accuracy and faster inspection speed than previous approaches. 
AD learning from normal images is a well-liked, unsupervised paradigm 
for defect detection. The methods are classified as reconstruction based, 
representation based, and synthesis based.

2.3.1. Reconstruction-based methods
The image reconstruction method [11, 12] is widely used in AD 

research. The auto-encoder (AE) models the manifold and reconstructs 
it using the embedding space [13, 47]. The anomalies cannot be rebuilt 
because they did not evolve during training. The AD result is the 
difference between the detected and rebuilt images. Various strategies 
can improve reconstruction results, including GAN [48], learnable 
memory banks [49, 50], and inpainting masked regions [15]. Although 
image reconstruction algorithms are practical in industrial settings, 
they often yield inaccurate findings due to insufficient feature-level 

discrimination. One drawback of reconstruction-based approaches is 
their end-to-end learning paradigm, which requires improved network 
topology, external constraints, and training procedures presented in 
Figure 2.

2.3.2. Representation-based methods
AD is a classification problem that differentiates between 

aberrant and normal data. Tasks that involve categorizing data into two 
distinct labels are commonly known as binary classifications. Typically, 
a class label of 0 represents the normal state, whereas a class label of 
1 indicates the abnormal condition. During testing, most approaches 
use the distance between sample features and normal features to find 
anomalies, such as SPatially-weighted Anomaly Detection (SPADE) 
[51, 52], PaDiM [52], PatchCore [53], glancing patch (GP) [54], etc., 
which are common algorithms. These methods use distinct distance 
measurements (loss functions) to record anomaly scores and build score 
maps.

The focus your distribution (FYD) [55] approach uses a 
coarse-to-fine alignment technique to learn about the dense and 
condensed distribution of regular images. The first alignment stage 
standardizes the placement of object pixels at both the image and feature 
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Figure 2
Flow of reconstruction-based method

Year ML DL Contribution Limitation
2021 [30] ✔ ✔ Demonstrated the potential of machine learning and deep 

learning in the field of operations management.
Vision-based flaw identification is not the primary concern.

2022 [31] ✘ ✔ The industrial applications and present techniques of 
object detecting methods are examined.

Discusses object detection broadly.

2022 [32] – – Introduces unsupervised anomaly localization in industrial 
images.

Addresses unsupervised machine learning models.

2023 [33] ✘ ✔ Evaluations of machine vision applications within the 
automotive manufacturing sector.

Insufficient emphasis is given on defect detection 
applications, and learning techniques, along with their 
evaluation criteria, are not adequately discussed.

2023 [34] ✘ ✔ Deep convolutional neural network-based defect detection 
models in industrial applications.

The study examines techniques based on deep convolutional 
neural networks (CNNs).

2023 [35] ✘ ✔ Exhibits architectures pertinent to deep learning-based 
intelligent automated decision-making methodologies.

Fails to offer background regarding extensive industrial 
sectors and their use of IAD algorithms.

2024 [36] ✘ ✔ Examines deep learning-based surface defect identification 
in industrial applications.

Concentrates exclusively on applications based on surface 
detection.

2024 [37] ✘ ✔ Evaluates contemporary approaches in self-supervised AD. Examines exclusively deep self-supervised learning 
methodologies. Does not expressly address industrial uses.

2024 [38] ✘ ✘ Mapping the implementation of AD algorithms in edge 
computing.

Examines several articles, a portion of which are not 
image-based models.

2025 [39] ✘ ✔ Techniques employed for the visual examination of air-
craft.

Insufficient information is available regarding applications 
of AI in defect detection.

Table 1
Researchers work in vision systems
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levels. Optimal alignment ensures that the features are maximally 
identical across all positions in the batch. Scale-based image processing 
approaches include image, patch, and pixel levels. Gaussian-AD utilizes 
normal images to extract discriminating feature vectors. Patch SVDD 
[56], PatchCore [53], and PaDiM [52] algorithms utilize normal image 
patches to generate discriminative feature vectors. SPADE [51, 52] 
utilizes discriminative features for pixel-level image alignment. These 
approaches collect normal image features with a statistical method. The 
premise that anomalous samples have distinct distributions leads to 
more promising anomaly AD findings in Figure 3.

2.3.3. Synthesis-based methods
This method uses nominal (non-defective) images to create fake 

anomalous images. Using CutPaste [57], false defects (anomalies) 
are created by randomly pasting a nominal image patch over another 
nominal image. Synthesizing-based approaches struggle to adequately 
reflect real anomalies due to their diverse and unexpected appearance. 
Creating synthetic anomalies from nominal images cannot correctly 
depict the complexity of real anomalies. Recent OpenGAN [58] 
research indicates that creating synthesized features, rather than 
images, improves model performance. This strategy benefits from (1) 
eliminating noise in feature extraction from synthesized images and (2) 
reducing model capacity by synthesizing in feature space. To address 
issues with synthesized images, SimpleNet [59] suggested generating 
anomalies in the feature space instead of images to address issues with 
synthesized images.

2.4. Types of datasets and contexts
The nature of data in AD can be categorized along multiple 

dimensions, such as data type and structure (Figure 4). For the scope 
of this work, we focus on image-based IAD. Numerous public datasets 
have been established to benchmark performance in this domain, the 
most prominent of which are summarized in Table 2.

2.5. Limitations of recent work and research gaps
While the recent literature demonstrates impressive performance 

on standardized benchmarks, this focus often comes at the expense of 
critical analysis of broader limitations. Many contemporary studies, 
including those discussed here, prioritize incremental improvements 
in metrics like AUROC on datasets such as MVTec AD but often 
overlook crucial practical deployment challenges. These include (1) 
extreme computational and memory requirements of methods like 
PatchCore, which can hinder real-time application; (2) sensitivity to 
hyperparameters like patch size and coreset ratio, which are rarely 
subjected to rigorous ablation studies; (3) limited generalization across 
vastly different domains, as models are typically trained and tested 
on data from the same distribution; and (4) a lack of robustness to 
real-world variations like lighting changes, camera angles, and new, 
unseen defect types that differ from the training set. Truly foundational 
progress in IAD will require the community to address these practical 
constraints with the same rigor applied to boosting benchmark scores.

5

Figure 3
 Flow of the representation-based method

Ref. Dataset Summary
[6] Canadian 

Institute For 
Advanced 
Research 
(CIFAR)

Canadian Institute For Advanced Research 
(CIFAR)10 and Canadian Institute 
For Advanced Research (CIFAR)100 have 
60,000 natural color images with 32 × 32 
resolution. The training set has 50,000 
images and the testing set 10,000. Canadian 
Institute For Advanced Research (CIFAR)10 
has 10 equally sized classes, while Ca-
nadian Institute For Advanced Research 
(CIFAR)100 has 100 fine-grained or 20 
coarse-grained classes.

[52] Fashion 
Modified 
National 
Institute of 
Standards and 
Technology 
(MNIST)

Modified National Institute of Standards and 
Technology (MNIST) has 60,000 training 
and 10,000 test samples, each made up 
of 28x28 greyscale images in 10 distinct 
classes.

[9] MVTec AD The MVTec AD dataset, with 5354 
high-resolution images from 15 industrial 
sectors, is a key test for manufacturing AD 
algorithms. These anomalies have over 
70 faults, including scratches, dents, and 
structural modifications.

[10] MVTec Local 
Context 
(LOCO)

This dataset locates anomalies in images 
of industrial products with logical and 
structural faults. It has 3644 industrial 
inspection- themed images from five classes.

[19] VisA Images of manufacturing abnormalities 
make up the largest industrial anomaly 
benchmark, Visual Anomaly. It has 10,821 
high- resolution images of 12 classes in 3 
domains.

[5] MPDD This smaller dataset is aimed to detect issues 
with painted metal part production. The 
testing setting is realistic, with varied spatial 
orientations, different items, and diverse 
backgrounds, unlike lab-based AD datasets. 
It has 1346 images in 6 categories.

Table 2
Dataset descriptions

Figure 4
Taxonomy of the dataset
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From the limitations above, the research gap is to improve 
the detection of fine-grained anomalies. To bridge the gap in the 
literature between theoretical algorithm performance and practical 
implementation, this paper presents PatchCore and identifies an 
optimal configuration in terms of backbone, coreset ratio, and feature 
layers. The usage of the Facebook AI Similarity Search (FAISS) index 
is a crucial enabler in order to provide key performance and latency 
numbers necessary to drive adoption in the industry. The contributions 
of this research work are as follows:

1) A brief comparative analysis of the DL method usage and recent 
research studies related to image-based IAD, showing existing 
methodological approaches with utilized datasets.

2) Design and implementation of the proposed technique for IAD using 
the PatchCore to improve the detection of fine-grained anomalies.

3) The challenges of IAD are identified and examined along with future 
research directions.

3. Methodology
Anomalib library offers dataset adapters for an increasing 

number of public benchmark datasets from image domains extensively 
utilized in the literature. It supports CIFAR-10 [6] for quick prototyping 
and MVTec [7] and BeanTech Anomaly Detection dataset (BTAD) 
[8] for real-world defect detection uses. The preprocessing includes 
changing the input images and dividing the optional image into (non-)
overlapping tiles. After that, preprocessing uses the transforms and 
tiling. In the transforms, Anomalib manages the ground truth pixel 
mappings with the input images using the Albumentations [11] library 
for image transformations. Albumentations is a tool for computer 
vision. Besides its extendable Python interface, Albumentations enables 
reading transformation parameters from a config file, facilitating 
experimentation and hyperparameter optimization (HPO). In the tiling, 
many real-world datasets feature high image resolution, so it is usually 
necessary to scale the input images before feeding them to the model. 
Small anomalies in the image could thus lose detail, which makes it 
more difficult for the model to find these areas. Tiling the input image 
helps since the size of the abnormal areas stays constant. After that 
model is deployed along with modular components acting as building 
blocks to create unique algorithms, Anomalib features a suite of state-
of-the-art AD and localization techniques. After that, computational 
algorithms used in the library are periodically updated with the most 
recent state-of-the-art AD models. Models now in use might be 
classified as knowledge distillation models [20], reconstruction [17], 
and density estimates [12–15].

The model components consist of many ready-to-use modules 
carrying often-used operations. Like scikit-learn [18], the model 
components are arranged in relation to their function in AD models (e.g., 
feature extraction, dimensionality reduction, and statistical modeling). 
PyTorch implements all model components, enabling all operations to 
be conducted on the GPU and allowing models to be exported to ONNX 
and OpenVINO. Applying a custom anomaly detection algorithm 
using the model components is easy. Like PatchCore [15], consider an 
anomalous model that first collects features by CNNs and uses coreset 
sampling [19] to reduce dimensionality. Normalization and thresholding 
are used in post-processing. In the normalization, depending on the 
model and dataset, the range of image-level or pixel-level anomaly 
scores projected by the models in Anomalib during inference could 
differ. Anomalib normalizes the projected anomaly scores to the [0,1] 
range, hence transforming the raw anomaly scores into a standardized 
form. Although Anomalib defaults to min-max normalization with 
regard to the observed validation values, the normalization technique 
can be completely turned off or customized. In thresholding, an adaptive 
thresholding method, which maximizes the threshold value depending 

on the F1-score during validation, helps the user to select an anomaly 
score threshold for their trained models. The user may alternatively 
indicate a manual threshold. In visualization, Anomalib can be set to 
display and preserve visualizations of the expected anomaly heatmaps 
and segmentation masks during validation and testing. The PaDiM 
model is used to discover anomalies. PaDiM uses a novel approach 
to the cold-start AD method in industrial images. The model, trained 
on the MVTec AD dataset, effectively localizes industrial abnormalities 
to their spatial environment without specific dataset training. After 
teaching the model on normal and defective images, the model detects 
anomalies by comparing the input image to the learned distribution of 
normal patches during testing.

3.1. Dataset description
The MVTec AD dataset [59, 60] is a public dataset for industrial 

inspection.  MVTec AD comprises more than 5000 images split into 
15 categories.  Every category has a training set with nonanomalous 
samples and a test set that includes both anomalous and nonanomalous 
samples. Two further datasets include information gathered on separate 
production lines from several manufacturing sectors. The first dataset 
consists of medical pills. Single pill images are cropped from a whole 
image depending on predetermined areas.

Anomaly identification handles every combination of pill blisters.  
The second dataset of images came from the beverage manufacturing 
line. While the sizes and colors of restricted caps vary depending on the 
beverage, an AD system controls all of them. Both datasets maintain 
the same test and train set structure for every MVTec AD category. The 
pills dataset’s training set comprises 350 RGB images of white oblong 
tablets set on an aluminum background. Every image has dimensions of 
100 × 210 × 3. The test set consists of 224 faulty and 250 non-anomalous 
samples. Scratches, cracks, incorrect pill orientation, missing sections, 
or extra pill elements define several flaws in abnormal samples. The 
dataset of bottle caps comes from Inspect360+ VI systems. One camera 
gathers cap images, which are then transformed using the Li et al. [61] 
specified calibration process. The training set contains 243 RGB images 
with dimensions of 280 × 96 × 3. The test set has 160 normal and 132 
aberrant photos with defects: inclined cap, fractured inviolability ring, 
and absent cap.

3.2. Implementation details
The workflow of developing an IAD system based on the 

Anomalib library [62] is designed to work with image processing. The 
pipeline consists of several connected elements structured in a detailed 
flowchart that executes each task for AD, as presented in Figure 5.

1) Data preprocessing
The preprocessing pipeline was developed to normalize the input 

images as well as make the model more robust to variations that may 
occur under industrial conditions. All images were resized to 256 × 256 
pixels, and each image was normalized using ImageNet statistics. 
Importantly, several normalization and centre-cropping techniques 
were used during the training on nominal (defect-free) samples to 
enhance the generalization. This was followed by random rotations 
(90°, 180°, and 270°), flipping horizontally and vertically, and changes 
to brightness and contrast. It should be noted that no augmentations that 
either fake or imitate defects (random erasing, cutout, etc.) were used, 
as this would poison the nominal training set. The preprocessing steps 
are presented in Figure 6.
2) Pseudocode for implementation

The implementation of this research is done by extensive custom 
tuning and tweaking to make it perform the best for the specific 
industrial contexts under study. This included:
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a. Hyperparameter optimization: The primary parameters of the 
algorithm, including patch size (3 × 3), coreset sampling ratio 
(0.25), and DL models for feature extraction (choosing from 
layer 2 or layer 3 of WideResNet-50-2), were explored using 
a comprehensive grid search. Table 3 presents the parameter 
values used for the implementation.

b. Dataset-specific calibration: Anomaly size and contrast are very 
dynamic factors; therefore, a thresholding scheme was calibrated 
for each dataset class independently with the help of the 
F1-maximization concept, departing from the originally adopted 
global approach.

The PatchCore methodology, illustrated in Figure 7, is 
engineered for efficiency and effectiveness in a manufacturing context. 
Its performance stems from a two-stage process:

a. Efficient knowledge representation: Instead of operating on entire 
images, PatchCore operates on patch-based representations 
of a pretrained WideResNet-50-2. These features are stored in 
a “memory bank,” which results in a dense representation of 
normality.
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Figure 5
 Steps for implementation

Figure 6
Preprocessing steps of bottle and pills

1. Import 
and define 
preprocessing

import anomalib
from PIL import Image
import torchvision.transforms as transforms
preprocess = transforms.Compose([

transforms.Resize((256, 256)),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 
0.406],

std=[0.229, 0.224, 0.225])
])

2. Load and 
preprocess 
image

img = Image.open("your_image.jpg")
img_processed = preprocess(img)
img_processed = img_processed.
unsqueeze(0)

3. Initialize 
PatchCore 
model

from torchvision.models import 
wide_resnet50_2

from anomalib.models.patchcore import 
Patchcore
backbone = 
wide_resnet50_2(pretrained=True)
model = Patchcore(backbone=backbone)

4. Train model 
and build 
memory bank

for train_imgs in train_loader:
features = model.extract_features(train_imgs)
model.memory_bank.add(features)

5. Test model 
and generate 
heatmap

features = model.
extract_features(img_processed)

score, heatmap = model.predict(features,
memory_bank=model.memory_bank)
show_heatmap(heatmap)

Algorithm Workflow
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b. Anomaly as distance: In the process of inference (Figure 7, Steps 
4 and 5), the set of anomalies is defined as a simple nearest 
neighbor search in this patch feature space. The result in the end 
is an anomaly heatmap with pixel accuracy.

PatchCore leverages a pretrained WideResNet-50-2 for feature 
extraction, generating a rich representation of image patches. To 
efficiently manage the high dimensionality of these features, a memory 
bank is constructed. However, storing all features is computationally 
prohibitive; therefore, a coreset subsampling algorithm is applied 
to select a maximally representative subset of patches, preserving 
coverage of the normal data distribution while drastically reducing 
memory footprint. During inference, the anomaly score for a new 
image patch is calculated as its distance to the nearest neighbor in the 
coreset-sampled memory bank.
3) Feature extraction backbone

WideResNet-50-2, a pretrained backbone network on the 
ImageNet dataset, is used as the PatchCore implementation. This 
particular model was selected because it has been found to be effective 
in previous AD research and to provide a good trade-off between 
representational power and computational efficiency. With the “wide” 

factor of 2, there are many more filters per layer than in a standard 
ResNet-50, and so more subtle representations of features important 
for identifying minor industrial anomalies may be captured. Features 
were extracted from the predefined intermediate layers of this network 
(layer 2 and layer 3) in order to extract a hierarchy of information, from 
fine textures to complex structures, for later processing at the patch 
level and the construction of memory banks.

The PatchCore analyzes images by using WideResNet-50-2 
extracted features to detect normality by assessing feature distribution 
throughout the feature space. The patch representation features transform 
the original images into features from another space. PatchCore 
originally served as an industrial manufacturing AD tool but has no 
barriers to use in different image fields. This model produces an anomaly 
heatmap for visual representation. The Anomalib library provides its 
PatchCore implementation. The initial step of “Feature Extraction” 
splits nominal samples into their patch-level features at the beginning 
of this process. The second step in this process moves upward to 
create “Memory Bank Creation” for structuring collected features into 
an organized system. The third step utilizes “Coreset Subsampling” 
procedures to decrease redundancy by applying subsampling methods. 
“Anomaly Classification” represents Step 4, which involves the image 
classification process through patch anomaly assessment. After running 
the process, the last step “Segmentation Generation” creates pixel-level 
anomaly segmentation, shown in Figure 8. Figure 9 presents memory 
bank representation with corset sampling, and Figure 10 presents 
anomaly heatmap of bottle and pill.

4. Results Analysis
The PatchCore was assessed using the standard train-test split 

provided by the MVTec AD, pill dataset, and bottle cap dataset. 
The results presented in Table 4 and Figures 11–14 should therefore 
be interpreted as strong initial indicators of performance on these 
benchmark datasets, with the understanding that the next critical step 
is validation under a more rigorous evaluation framework for future 
work.

For every approach across the three datasets—MVTec 
AD, pill dataset, and bottle cap dataset—performance measures 
(AUROC and F1-score). The values show the most successful 
approaches for every metric and dataset. Some techniques for the bottle 
cap dataset attained perfect scores (1.0); the table shows the relative 
performance of several AD techniques that could be readily compared 
across these significant industrial inspection datasets.
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Figure 7
Steps of patch core methodology

Parameter Predefined value Description
Backbone network WideResNet-50-2 Pretrained feature extractor (WideResNet-50-2)

Input image size 256 × 256 All images are resized to this resolution during preprocessing

Patch size 3 Size of the local patches extracted from intermediate features

Stride 4 Stride used during patch extraction

Feature layer(s) layer 2, layer 3 Backbone layers used for feature embedding (usually deeper layers)

Coreset sampling ratio 0.25 (i.e., 25%) Percentage of patch embeddings used to form the memory bank

Dimensionality reduction PCA Absolute necessity for fast NN search

Batch size (inference/train) 32 Batch size used during feature extraction

FAISS index PQ64 on GPU Provides the approximate search speed

Table 3
Hyperparameter values used for implementation
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AUROC scores performance of six distinct techniques on three 
datasets—MVTec AD, pill dataset, and bottle cap dataset are shown 
in Figure 9. AUROC scores falling between 0.70 and 1.05 are shown 

on the y-axis. With multiple methods obtaining perfect 1.000 scores, 
the bottle cap dataset usually offers the best performance among 
approaches. Particularly with DIFAR displaying its lowest score at 
0.762, the MVTec AD dataset seems to have the lowest performance 
for most techniques, with certain methods exhibiting more consistent 
performance than others.

In addition to the standard AUROC and F1-score 
(Figures 11 and 12), evaluation of models is done using metrics that are 
specifically designed for imbalanced data and segmentation tasks. The 
area under the precision-recall (AUPR) is reported as it is a more reliable 
performance measure for an AD problem where positive (anomalous) 
pixels are rare. To measure the spatial precision of anomaly localization, 
we compute the Intersection over Union (IoU) between the predicted 
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Figure 8
(a) Extracted patches of bottle and (b) extracted patches of pills

Figure 9
Memory bank representation with corset sampling

Figure 10
Anomaly heatmap of bottle and pill

Dataset→ MVTec AD Pill dataset Bottle cap dataset
Metric AUROC F1-score AUROC F1-score AUROC F1-score

Techniques

Fastflow 0.979 0.916 0.985 0.957 1.0 1.0

Efficient AD 0.988 0.970 0.961 0.932 1.0 1.0

DFKDE 0.762 0.872 0.954 0.905 0.992 0.969

DFM 0.936 0.943 0.990 0.975 1.0 1.0

PaDiM 0.891 0.916 0.993 0.956 0.996 0.996

PatchCore 0.990 0.976 0.997 0.987 0.986 0.994

Table 4
Results comparative analysis
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segmentation masks and the ground truth. Furthermore, we give the 
Matthews correlation coefficient (MCC) for a balanced evaluation 
of the pixel-wise classification performance for all thresholds. The 
comprehensive metric of MVTec AD is shown in Table 5.

As shown in Table 5, the overall metrics confirm the superior 
performance of PatchCore. It achieves a very good AUPR score of 
0.953, which is an excellent performance on the imbalanced pixel-wise 
detection task and much better than other models. This means that 
PatchCore is not only detecting the anomalies, but it does so with high 
precision and recall. 

The IoU scores give a direct indication of the segmentation 
quality. PatchCore’s IoU of 0.931 shows that there is a very strong 
spatial overlap between the predictions and the ground truth anomalies, 
which is critical for accurately localizing faults in an industrial context. 
The MCC values taking all aspects of the confusion matrix into 
consideration confirm the overall balanced nature of the performance of 
PatchCore, a value closer to 1.0 being an almost ideal predictor.

The “AUROC scores” provide a comparison of different 
techniques. The Score values extend between 0.75 and 1.05 along the 
vertical axis. Fastflow, Efficient AD, Deep Feature Kernel Density 
Estimation (DFKDE), DFM, PaDiM, and PatchCore are the six 
categories on the x-axis. Each category shows three datasets: MVTec 
AD uses blue, the pill dataset shows orange, and the bottle cap dataset 
shows green. Each category in the bottle cap dataset leads to the highest 
recorded scores, which stay near 1.000. The DFKDE category presents 
the lowest performance for the MVTec AD dataset since it scored 
0.762. The pill dataset maintains average performance while exhibiting 
significant variation when evaluated in the DFKDE category, where it 
obtained 0.954. A significant finding emerges from PatchCore because 
all datasets performed well in this aspect, according to the scoring 
results. Table 6 presents the inference speed benchmarking on MVTec 
AD.

As you can see in Table 6, PatchCore is a good trade-off between 
accuracy and speed. While not the fastest model, it has a relatively low 
inference time of ~200 ms on an edge device, which is fast enough for 
many industrial inspection applications with cycle times of 0.2 seconds 
or more (~5 FPS). The main computational bottleneck for PatchCore 
is the nearest neighbor search between the input patch features and the 
memory bank that is stored. This is a highly parallelized operation that 
lends itself well to GPU acceleration, which is confirmed by the high 
GPU utilization.

The analysis employs the “F1-score” to evaluate six techniques 
in performance comparison. The score data series extends from 0.850 
to 1.050 along the y-axis scale. The chart includes six segments on the 
x-axis: Fastflow, Efficient AD, and DFKDE, followed by DFM and 
PaDiM, while PatchCore remains outlined in red. Under the MVTec 
AD dataset, PatchCore achieved the highest result of 0.976, but 
DFKDE produced the lowest outcome, 0.872. PatchCore achieved the 
highest score of 0.987, while DFKDE had the lowest score of 0.905 
in evaluating the pill dataset. The average performance of the three 
datasets is presented in Figure 13.

The PatchCore is shown with a red dashed outline and Efficient 
AD, DFM, Fastflow, PaDiM, and DFKDE. The presented graph shows 
two metrics through Score (AUROC & F1) bar charts aligned with both 
axes. The Score (AUROC & F1) bars span a range from 0.90 to 1.04 on 
the left y-axis. The right y-axis contains a green line for the Combined 
Average Score. The methods demonstrate two bars with blue AUROC 
and orange F1 in a vertical arrangement. Among the methods evaluated, 
PatchCore delivers the best performance of 0.996 (blue) and 0.988 
(orange); Efficient AD, DFM, and Fastflow follow, while DFKDE 
demonstrates the lowest scores at 0.903 (blue) and 0.915 (orange). The 
green line within the graph moves from left to right while showing that 
PatchCore delivers superior results on all metrics through the datasets. 
Figure 14 presents the AD performance heatmap.

The heatmap under the “AD performance” label compares the 
six AD techniques (Fastflow, Efficient AD, DFKDE, DFM, PaDiM, 
and PatchCore) while evaluating their performance on MVTec AD, pill 
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Figure 11
AUROC score comparison

Model Hardware platform Avg. inference 
time (ms)

FPS GPU utilization (%) CPU utilization (%)

PatchCore NVIDIA V100 45 22 85 15
PatchCore NVIDIA Jetson Xavier AGX 210 4.8 95 40
Efficient AD NVIDIA V100 12 83 – –

PaDiM NVIDIA V100 90 11 – –

Table 6
Inference speed benchmarking on MVTec AD

Model AUROC AUPR F1-score IoU MCC
Fastflow 0.979 0.892 0.916 0.843 0.847

Efficient AD 0.988 0.931 0.970 0.912 0.925
DFKDE 0.762 0.455 0.872 0.701 0.723
DFM 0.936 0.823 0.943 0.812 0.835
PaDiM 0.891 0.761 0.916 0.793 0.808
PatchCore 0.990 0.953 0.976 0.931 0.942

Table 5
Comprehensive performance metrics on MVTec AD



dataset, and bottle cap dataset. The scores of each dataset for AUROC 
and F1-score metrics are shown through a gradient scale, which 
transitions from blue (lower scores) to dark red (higher scores). Among 
all techniques, the bottle cap dataset performs best by achieving a perfect 
score of 1.000. On MVTec AD, DFKDE demonstrates considerably 
inferior performance, achieving 0.762 AUROC and 0.872 F1-score. 
The PatchCore achieves the highest score average of 0.992 across every 

dataset. Strong results appear in all techniques for the pill dataset, yet 
performance outcomes for the MVTec AD dataset remain inconsistent. 
Overall performance statistics show that PatchCore maintains the top 
position with average results of 0.992, while DFM (0.974), Efficient 
AD (0.975), and Fastflow (0.973) occupy the following positions.

5. Discussion
Integrating PatchCore into IAD  systems represents a significant 

advancement in manufacturing quality control, yet it also presents 
several challenges. In this work, combining CNN with patch-based 
feature extraction has notably improved the identification and 
localization of anomalies across high-resolution images from the 
MVTec AD dataset. The methodology shows that training solely 
on defect-free images and then evaluating images with anomalies 
can achieve high detection accuracy while effectively reducing false 
positives compared to traditional methods. This represents a leap 
from manual and conventional automated visual inspections, where 
human error and rigid rule-based systems often fall short in adapting 
to subtle or variable defect patterns. However, deploying PatchCore 
in real-world industrial settings does present integration challenges. 
The necessity for extensive preprocessing of high-resolution images 
and the reliance on high-performance computational facilities for 
initial training may hinder immediate onsite applicability in legacy 
production lines. Additionally, ensuring balanced datasets to prevent 
model overfitting remains a critical challenge, as imbalances in defect 
representation can bias the detection performance. The patch-based 
strategy excels in efficiently localizing anomalies, but its dependence 
on optimal patch size and configuration demands further research to 
standardize these parameters across different manufacturing contexts. 
Future improvements involve incorporating adaptive augmentation 
techniques and leveraging ensemble methods to strengthen the 
robustness of AD. Despite these challenges, the potential for increased 
operational efficiency, cost savings, and enhanced product quality 
positions PatchCore as a transformative tool for industrial applications. 
This work demonstrates significant technical advancements in defect 
detection and lays the groundwork for future studies to integrate 
AI-driven solutions more seamlessly into existing industrial quality 

Figure 12
F1-score comparison
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Figure 13
Average performance comparison

Figure 14
AD performance heatmap
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control frameworks, ultimately fostering a new era of intelligent 
manufacturing practices.

The experimental results show that the standard implementation 
of PatchCore has the state-of-the-art performance on the selected 
benchmarks. In particular, the selection of the coreset subsampling 
algorithm and configuration of the memory bank (patch size, coreset 
sampling, and stride) have a direct influence on the computational 
efficiency/memory consumption/detection accuracy trade-off. Future 
work will include a more rigorous ablation analysis of the effect of 
these hyperparameters, the use of sampling algorithms other than the 
standard greedy coreset approach, and the optimization of the memory 
bank construction for specific defect types and modalities of image 
data. This will not only make the model effective but also in order to be 
fine-tuned for practical deployment scenarios.

One of the challenges identified in this research is the detection of 
small and subtle anomalies, which still present a problem for automated 
systems and cannot be identified without a high false-positive ratio. 
While patch-based correlation of PatchCore provides a certain level of 
granularity that favorably affects small defect detection, the standard 
implementation used here did not feature specific architectural changes 
(e.g., multi-scale feature extraction or dedicated attention mechanisms) 
designed specifically to improve performance on such fine-grained 
defects. To explicitly address this limitation, future work will 
address this limitation by incorporating multi-scale analysis pipelines 
and hierarchical memory banks and validate them on specialized 
benchmarks containing a higher proportion of minute anomalies to 
quantitatively show improvements.

The evaluation is that it is based on a single, dataset-wide 
threshold, which is chosen as a result of F1-score maximization on 
the validation set. A false negative (missed defect) could lead to 
compromising the product safety and reputation of the brand, whereas 
a false positive (false alarm) leads to unnecessary downtime and 
the cost of inspection. More robust thresholding strategies that are 
application-aware must therefore be a future priority. This involves 
using precision-recall curves to choose a threshold that satisfies certain 
precision (reduce false alarms) or recall (catch all defects) criteria, 
or using cost-sensitive learning to explicitly reduce financial loss, or 
even adaptive thresholding techniques that can adjust dynamically to 
changing data distributions on the production line.

5.1. Interpretability and anomaly justification
Integration of Gradient-weighted Class Activation Mapping 

(Grad-CAM): While PatchCore determines which anomalies are 
identified by the distance of features from the patch, Grad-CAM 
can be used to determine which features within the pretrained 
(WideResNet-50-2) backbone are most important for the decision.

The process would have worked as follows:
Generate PatchCore anomaly map: This gives the first localization 

of anomalous areas.
Calculate Grad-CAM: For the best anomalous image patch, 

calculate the gradients of the anomaly score (distance to the nearest 
neighbor in the memory bank) with regard to the feature maps from the 
last convolution layer in the backbone CNN.

Fused visualization: The resulting Grad-CAM heatmap is then 
overlaid on the original image, showing certain textures and structures 
the model thought to be the most abnormal, as presented in Figure 15.

On the left is the original image of the object, showing a close-up 
of the bottle and pill. In the center is the anomaly heatmap, which 
highlights the areas of the image with detected anomalies. These 
anomalies are represented in a color gradient indicating higher levels 
of detected irregularity. On the right, the heatmap is overlaid onto the 

original image to visually emphasize where the anomalies are located, 
helping to identify defects or irregularities in the object.

5.2. Challenges and solutions in IAD
Vision-based AD is being integrated into various domains to 

address inspection and quality control issues. However, automatic 
detection brings new obstacles. These problems can be classified as 
scientific or industrial. Scientific domains focus on the detection model 
and its operation, whereas industrial issues focus on the practical use 
of automated detection in industry. Key challenges include real-time 
detection, sophisticated inspections, annotations, insufficient datasets, 
data management, and system integration.

1) Real-time inspection and decision-making: Real-time model needs 
adaptability, minimal latency, and seamless processing. It is crucial 
for detecting systems to keep up with current processes. Due to 
the dynamic nature of industrial processes, new anomaly samples 
may arise during real-world operations. Due to their fixed dataset 
training, offline learning methods may not accurately recognize or 
categorize new occurrences. To address these issues, consider adding 
edge processing. Unlike cloud computing, edge processing reduces 
latency and speeds up decision-making by bringing data closer to 
the inspection system. Lightweight defect detection algorithms 
like Bergmann et al.’s [60] also balance speed and accuracy while 
reducing computing parameters. However, there is potential for 
developing speedier inspection and more efficient, lightweight fault 
detection models.

2) Small defects and annotation: When using automated inspection, 
addressing small problems that are not visible to the naked eye 
is challenging. Regardless of size, small faults can compromise 
a structure’s integrity and cause failure. Detecting minor 
flaws is challenging due to their size in the broader region of 
interest. To mitigate this issue, inspection models should have 
a low false-positive rate [62], reducing the number of defective 
occurrences misclassified as non-defective. Annotated datasets and 
minor flaws pose a continuing problem [63]. However, annotation of 
fine detail across several images is expensive and time-consuming. 
Approaches using generative models aim to overcome these issues. 
These techniques use generative networks to synthesize big labeled 
datasets using a minimal amount of manually labeled data [64].
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Figure 15
Bottle and pill anomaly heatmap and overlay



3) Unbalancing and insufficient datasets: Obtaining sufficient 
industrial datasets is a significant difficulty for learning-based 
methods.  A bias toward plentiful classes emerges from an imbalance 
between faulty and non-defective samples, with defective examples 
being harder to obtain. This may impact performance metrics, as 
high detection scores may be more typical of the overall class and not 
correspond with minority samples. Additionally, insufficient training 
datasets reduce detection accuracy as the model lacks experience 
in all categories. Small and imbalanced datasets can be addressed 
by increasing sample size using data augmentation, generative 
networks, and synthetic approaches [65]. Few-shot learning is a 
prominent method for addressing data scarcity by training models 
on a small number of samples. However, dataset reliance remains a 
key feature of IAD and is constantly being enhanced.

4) Data quality and management: This branch also manages vast 
amounts of data. Data samples must be properly collected, stored, 
and distributed for effective solutions. The inspection system uses 
feedback from evaluations, user inputs, and neighboring systems. 
Quality data is essential for inspection, as low-quality data can 
inhibit it [66, 61, 67]. To overcome quality issues, incorporate 
appropriate sensing and illumination components. Alternative 
methods include training, which enhances model resilience and 
performance under diverse lighting and imaging situations. 
Additionally, development toward Industry 5.0 will reduce technical 
and logistical data-collecting obstacles [68].

6. Conclusion and Future Scope
This study demonstrates the transformative potential of the 

PatchCore algorithm in IAD by leveraging high-resolution images 
from the MVTec AD dataset. Investigation confirms that integrating 
CNN with patch-based feature extraction significantly enhances defect 
detection capabilities for various anomalies, including scratches, 
dents, and contaminations. The presented method not only improves 
detection accuracy and reduces false positives but also streamlines 
the quality inspection process, thereby offering substantial benefits in 
efficiency and cost-effectiveness over traditional manual and automated 
inspection systems. Despite the evident advantages, our work reveals 
critical challenges, such as the demands for extensive computational 
resources during the training phase and difficulties in integrating 
advanced AI systems with legacy manufacturing infrastructures. These 
limitations underscore the need for further research into optimizing 
processing pipelines, calibrating detection thresholds, and refining 
model deployment strategies for diverse industrial environments. The 
study represents a pivotal step toward infusing smart technology into 
quality control practices, setting the stage for resilient, future-ready 
manufacturing systems.

IAD using PatchCore presents a clear path toward transformative 
advancements in manufacturing quality control. Incorporating transfer 
learning and unsupervised learning techniques to enhance detection 
capabilities further can help to address challenges such as limited 
defect-labeled data and heterogeneous production environments. Future 
efforts will focus on integrating this model with Internet of Things 
(IoT) technology, enabling real-time data acquisition from sensors 
and edge devices for immediate anomaly identification and response. 
Additionally, exploring multimodal data fusion—combining visual, 
acoustic, and thermal imaging—may yield improved accuracy in 
detecting subtle defects under varying operational conditions. Research 
can also investigate the optimization of lightweight, energy-efficient 
network architectures to ensure that robust AD algorithms are 
deployable on resource-constrained devices. Emphasis on adaptive 
learning methods to continually update detection models in response to 

changing manufacturing processes promises more resilient and scalable 
systems. Moreover, collaborations with industry stakeholders will be 
vital in tailoring these AI solutions to diverse production lines, paving 
the way for fully integrated, smart quality control systems. These efforts 
will catalyze the evolution of sustainable, intelligent manufacturing 
practices that set new efficiency and product reliability benchmarks. 
These efforts promise to establish robust, scalable AI solutions for 
future smart manufacturing.

The primary objective of our paper is to improve the accuracy 
on the public benchmarks (MVTec AD, pill, bottle cap). Despite the 
vital role that public datasets play in establishing and benchmarking 
current algorithms, they are notoriously lacking the sharp class 
imbalances, noise characteristics, and defect modes that are prevalent in 
manufacturing datasets that are currently present in the real world. For 
this, the preprocessing steps included resizing the image, normalization, 
and center cropping of the image. In order to achieve this performance, 
further implementations are carried out on choosing the patch size, 
coreset sampling ratio, and layers 2 and 3. The above features make 
the usage of the existing benchmark dataset more novel to test the 
performance.

The further research will therefore be oriented toward quantifying 
the model’s inference latency and throughput on industry-standard edge 
computing devices (e.g., NVIDIA Jetson AGX Orin) to validate the 
suitability of the model for real-time inspection. It also includes pilot 
integration through working with industry partners to implement the 
system on a live production line for a limited pilot study. This will permit 
the collection of the most important real-life measures: false-positive 
rate (FPR), which has a direct impact on production downtime, and the 
false-negative rate (FNR), which has an impact on quality control.

Ethical Statement
This study does not contain any studies with human or animal 

subjects performed by any of the authors.

Conflicts of Interest
The authors declare that they have no conflicts of interest to 

this work.

Data Availability Statement
The data that support the findings of this study are openly available 

at https://www.mvtec.com/company/research/datasets/mvtec-ad.

Author Contribution Statement
Shalini Kumari: Conceptualization, Software, analysis, 

Resources, Data curation, Writing – original draft. Chander Prabha: 
Methodology, Validation, Investigation, Writing – review & editing, 
Visualization, Supervision, Project administration.

References
[1]	 Shan, B., Zheng, S., & Ou, J. (2016). A stereovision-based 

crack width detection approach for concrete surface assessment. 
KSCE Journal of Civil Engineering, 20(2), 803–812. 
https://doi.org/10.1007/s12205-015-0461-6

[2]	 Fujita, Y., & Hamamoto, Y. (2011). A robust automatic 
crack detection method from noisy concrete surfaces. 
Machine Vision and Applications, 22(2), 245–254. 
https://doi.org/10.1007/s00138-009-0244-5

Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

13

https://www.mvtec.com/company/research/datasets/mvtec-ad
https://doi.org/10.1007/s12205-015-0461-6
https://doi.org/10.1007/s00138-009-0244-5


[3]	 Hyun, J., Kim, S., Jeon, G., Kim, S. H., Bae, K., & Kang, B. J. 
(2024). ReConPatch: Contrastive patch representation learning 
for industrial anomaly detection. In Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer Vision, 
2041–2050. https://doi.org/10.1109/WACV57701.2024.00205

[4]	 Peng, T., Zheng, Y., Zhao, L., & Zheng, E. (2024). Industrial 
product surface anomaly detection with realistic synthetic 
anomalies based on defect map prediction. Sensors, 24(1), 264. 
https://doi.org/10.3390/s24010264

[5]	 Jiang, Z., Zhang, Y., Wang, Y., Li, J., & Gao, X. (2024). 
FR-PatchCore: An industrial anomaly detection method 
for improving generalization. Sensors, 24(5), 1368. 
https://doi.org/10.3390/s24051368

[6]	 Wen, P., Gao, X., Wang, Y., Li, J., & Luo, L. (2023). 
Normalizing flow‐based industrial complex background 
anomaly detection. Journal of Sensors, 2023(1), 6690190. 
https://doi.org/10.1155/2023/6690190

[7]	 Liu, Z., Zhou, Y., Xu, Y., & Wang, Z. (2023). SimpleNet: 
A simple network for image anomaly detection and 
localization. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 20402–20411. 
https://doi.org/10.1109/CVPR52729.2023.01954

[8]	 Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., & 
Gehler, P. (2022). Towards total recall in industrial anomaly 
detection. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 14298–14308. 
https://doi.org/10.1109/CVPR52688.2022.01392

[9]	 Ishida, K., Takena, Y., Nota, Y., Mochizuki, R., Matsumura, I., & 
Ohashi, G. (2023). SA-PatchCore: Anomaly detection in dataset 
with co-occurrence relationships using self-attention. IEEE Access, 
11, 3232–3240. https://doi.org/10.1109/ACCESS.2023.3234745 

[10]	 Tang, Q., & Jung, H. (2023). Reliable anomaly 
detection and localization system: Implications on 
manufacturing industry. IEEE Access, 11, 114613–114622. 
https://doi.org/10.1109/ACCESS.2023.3324314 

[11]	 Choi, B., & Jeong, J. (2022). ViV-Ano: Anomaly detection 
and localization combining vision transformer and variational 
autoencoder in the manufacturing process. Electronics, 11(15), 
2306. https://doi.org/10.3390/electronics11152306

[12]	 Bozcan, I., Korndorfer, C., Madsen, M. W., & Kayacan, E. (2022). 
Score-based anomaly detection for smart manufacturing systems. 
IEEE/ASME Transactions on Mechatronics, 27(6), 5233–5242. 
https://doi.org/10.1109/TMECH.2022.3169724 

[13]	 Jezek, S., Jonak, M., Burget, R., Dvorak, P., & Skotak, 
M. (2021). Deep learning-based defect detection of metal 
parts: Evaluating current methods in complex conditions. 
In 2021 13th International Congress on Ultra Modern 
Telecommunications and Control Systems and Workshops, 66–71. 
https://doi.org/10.1109/ICUMT54235.2021.9631567

[14]	 Defard, T., Setkov, A., Loesch, A., & Audigier, R. (2021). 
PaDiM: A patch distribution modelling framework for anomaly 
detection and localization. In 25th International Conference 
on Pattern Recognition Workshops and Challenges, 475–489. 
https://doi.org/10.1007/978-3-030-68799-1_35 

[15]	 Zhao, H., Jia, J., & Koltun, V. (2020). Exploring Self-attention 
for Image Recognition. In 2020 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 10073–10082. 
https://doi.org/10.1109/CVPR42600.2020.01009 

[16]	 Kumari, S., Prabha, C., Karim, A., Hassan, Md. M., & 
Azam, S. (2024). A comprehensive investigation of anomaly 
detection methods in deep learning and machine learning: 

2019–2023. IET Information Security, 2024(1), 8821891. 
https://doi.org/10.1049/2024/8821891

[17]	 Kumari, S., & Prabha, C. (2024). A comprehensive review of 
deep anomaly detection techniques- An analysis. In 2024 IEEE 
9th International Conference for Convergence in Technology, 
1–6. https://doi.org/10.1109/I2CT61223.2024.10543335

[18]	 Lin, Y., Chang, Y., Tong, X., Yu, J., Liotta, A., Huang, 
G.,…, & Zhang, W. (2025). A survey on RGB, 3D, and 
multimodal approaches for unsupervised industrial image 
anomaly detection. Information Fusion, 121(C), 103139. 
https://doi.org/10.1016/j.inffus.2025.103139

[19]	 Liang, Y., Hu, Z., Huang, J., Di, D., Su, A., & Fan, L. (2025). ToCoAD: 
Two-stage contrastive learning for industrial anomaly detection. 
IEEE Transactions on Instrumentation and Measurement, 74, 
1–9. https://doi.org/10.1109/TIM.2025.3545987 

[20]	 Zonnenshain, A., & Kenett, R. S. (2020). Quality 4.0—The 
challenging future of quality engineering. Quality Engineering, 
32(4), 614–626. https://doi.org/10.1080/08982112.2019.1706744 

[21]	 Ciberlin, J., Grbic, R., Teslic, N., & Pilipovic, M. (2019). Object 
detection and object tracking in front of the vehicle using front view 
camera. In 2019 Zooming Innovation in Consumer Technologies 
Conference, 27–32. https://doi.org/10.1109/ZINC.2019.8769367

[22]	 Bansal, M., Kumar, M., & Kumar, M. (2021). 2D object 
recognition: A comparative analysis of SIFT, SURF and ORB 
feature descriptors. Multimedia Tools and Applications, 80(12), 
18839–18857. https://doi.org/10.1007/s11042-021-10646-0

[23]	 Zhou, W., Gao, S., Zhang, L., & Lou, X. (2020). Histogram of 
oriented gradients feature extraction from raw Bayer pattern images. 
IEEE Transactions on Circuits and Systems II: Express Briefs, 
67(5), 946–950. https://doi.org/10.1109/TCSII.2020.2980557

[24]	 Dhakshina Kumar, S., Esakkirajan, S., Bama, S., & 
Keerthiveena, B. (2020). A microcontroller based machine 
vision approach for tomato grading and sorting using SVM 
classifier. Microprocessors and Microsystems, 76, 103090. 
https://doi.org/10.1016/j.micpro.2020.103090 

[25]	 Ahmed, A., Jalal, A., & Kim, K. (2019). Region and decision 
tree-based segmentations for multi-objects detection and 
classification in outdoor scenes. In 2019 International 
Conference on Frontiers of Information Technology, 209–2095. 
https://doi.org/10.1109/FIT47737.2019.00047

[26]	 Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, 
R., Pandya, S.,…& Ghayvat, H. (2021). CNN variants 
for computer vision: History, architecture, application, 
challenges and future scope. Electronics, 10(20), 2470. 
https://doi.org/10.3390/electronics10202470

[27]	 Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., 
Mottaghi, A.,…, & Socher, R. (2021). Deep learning-enabled 
medical computer vision. npj Digital Medicine, 4(1), 5. 
https://doi.org/10.1038/s41746-020-00376-2

[28]	 Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, 
I.,…, & Summers, R. M. (2016). Deep convolutional 
neural networks for computer-aided detection: CNN 
architectures, dataset characteristics and transfer learning. 
IEEE Transactions on Medical Imaging, 35(5), 1285–1298. 
https://doi.org/10.1109/TMI.2016.2528162

[29]	 Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C.,…, & Jin, Y. 
(2024). IM-IAD: Industrial image anomaly detection benchmark 
in manufacturing. IEEE Transactions on Cybernetics, 54(5), 
2720–2733. https://doi.org/10.1109/TCYB.2024.3357213

[30]	 Bertolini, M., Mezzogori, D., Neroni, M., & Zammori, F. (2021). 
Machine Learning for industrial applications: A comprehensive 

Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

14

https://doi.org/10.1109/WACV57701.2024.00205
https://doi.org/10.3390/s24010264
https://doi.org/10.3390/s24051368
https://doi.org/10.1155/2023/6690190
https://doi.org/10.1109/CVPR52729.2023.01954
https://doi.org/10.1109/CVPR52688.2022.01392
https://doi.org/10.1109/ACCESS.2023.3234745 
https://doi.org/10.1109/ACCESS.2023.3324314 
https://doi.org/10.3390/electronics11152306
https://doi.org/10.1109/TMECH.2022.3169724 
https://doi.org/10.1109/ICUMT54235.2021.9631567
https://doi.org/10.1007/978-3-030-68799-1_35 
https://doi.org/10.1109/CVPR42600.2020.01009 
https://doi.org/10.1049/2024/8821891
https://doi.org/10.1109/I2CT61223.2024.10543335
https://doi.org/10.1016/j.inffus.2025.103139
https://doi.org/10.1109/TIM.2025.3545987 
https://doi.org/10.1080/08982112.2019.1706744 
https://doi.org/10.1109/ZINC.2019.8769367
https://doi.org/10.1007/s11042-021-10646-0
https://doi.org/10.1109/TCSII.2020.2980557
https://doi.org/10.1016/j.micpro.2020.103090 
https://doi.org/10.1109/FIT47737.2019.00047
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1038/s41746-020-00376-2
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1109/TCYB.2024.3357213 


literature review. Expert Systems with Applications, 175, 114820. 
https://doi.org/10.1016/j.eswa.2021.114820 

[31]	 Ahmad, H. M., & Rahimi, A. (2022). Deep learning 
methods for object detection in smart manufacturing: A 
survey. Journal of Manufacturing Systems, 64, 181–196. 
https://doi.org/10.1016/j.jmsy.2022.06.011

[32]	 Yasuda, Y. D. V., Cappabianco, F. A. M., Martins, L. E. G., & 
Gripp, J. A. B. (2022). Aircraft visual inspection: A systematic 
literature review. Computers in Industry, 141, 103695. 
https://doi.org/10.1016/j.compind.2022.103695

[33]	 Konstantinidis, F. K., Myrillas, N., Tsintotas, K. A., Mouroutsos, 
S. G., & Gasteratos, A. (2023). A technology maturity assessment 
framework for Industry 5.0 machine vision systems based 
on systematic literature review in automotive manufacturing. 
International Journal of Production Research. Advance online 
publication. https://doi.org/10.1080/00207543.2023.227058

[34]	 Jha, S. B., & Babiceanu, R. F. (2023). Deep CNN-based visual defect 
detection: Survey of current literature. Computers in Industry, 
148, 103911. https://doi.org/10.1016/j.compind.2023.103911

[35]	 Kumari, S., & Prabha, C. (2023). A comprehensive review 
on anomaly detection in images: Challenges and future 
research directions. In 2023 IEEE North Karnataka 
Subsection Flagship International Conference, 1–6. 
https://doi.org/10.1109/NKCon59507.2023.10396507

[36]	 Ameri, R., Hsu, C.-C., &amp; Band, S. S. (2024). A 
systematic review of deep learning approaches for surface 
defect detection in industrial applications. Engineering 
Applications of Artificial Intelligence, 130, 107717. 
https://doi.org/10.1016/j.engappai.2023.107717

[37]	 Hojjati, H., Ho, T. K. K., & Armanfard, N. (2024). 
Self-supervised anomaly detection in computer vision and 
beyond: A survey and outlook. Neural Networks, 172, 106106. 
https://doi.org/10.1016/j.neunet.2024.106106 

[38]	 Trilles, S., Hammad, S. S., & Iskandaryan, D. (2024). 
Anomaly detection based on artificial intelligence of things: A 
systematic literature mapping. Internet of Things, 25, 101063. 
https://doi.org/10.1016/j.iot.2024.101063 

[39]	 Shukla, V., Shukla, A., S. K., S. P., & Shukla, S. (2025). A 
systematic survey: Role of deep learning-based image anomaly 
detection in industrial inspection contexts. Frontiers in Robotics 
and AI, 12, 1554196. https://doi.org/10.3389/frobt.2025.1554196

[40]	 Kraitem, Z. (2025). A comparative study of text-to-image 
synthesis techniques using generative adversarial networks. 
American Journal of Neural Networks and Applications, 11(1), 
24–30. https://doi.org/10.11648/j.ajae.20231001.13

[41]	 Bucci, S., D’Innocente, A., Liao, Y., Carlucci, F. M., Caputo, B., 
& Tommasi, T. (2022). Self-supervised learning across domains. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
44(9), 5516–5528. https://doi.org/10.1109/TPAMI.2021.3070791 

[42]	 Hendrycks, D., Mazeika, M., Kadavath, S., & Song, D. (2019). 
Using self-supervised learning can improve model robustness and 
uncertainty. In Proceedings of the 33rd International Conference 
on Neural Information Processing Systems, 15663–15674.

[43]	 Adam, A., Rivlin, E., Shimshoni, I., & Reinitz, D. (2008). 
Robust real-time unusual event detection using multiple 
fixed-location monitors. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 30(3), 555–560. 
https://doi.org/10.1109/TPAMI.2007.70825

[44]	 Guo, J., Lu, S., Jia, L., Zhang, W., & Li, H. (2023). ReContrast: 
Domain-specific anomaly detection via contrastive reconstruction. 
In Proceedings of the 27th Conference on Neural Information 
Processing Systems, 10721–10740.

[45]	 Tang, Q., Cao, G., & Jo, K.-H. (2021). Integrated 
feature pyramid network with feature aggregation for 
traffic sign detection. IEEE Access, 9, 117784–117794. 
https://doi.org/10.1109/ACCESS.2021.3106350

[46]	 Liang, Y., Zhang, J., Zhao, S., Wu, R., Liu, Y., & 
Pan, S. (2023). Omni-frequency channel-selection 
representations for unsupervised anomaly detection. 
IEEE Transactions on Image Processing, 32, 4327–4340. 
https://doi.org/10.1109/TIP.2023.3293772

[47]	 Rudolph, M., Wandt, B., & Rosenhahn, B. (2021). Same 
same but differnet: Semi-supervised defect detection 
with normalizing flows. In 2021 IEEE Winter Conference 
on Applications of Computer Vision, 1906–1915. 
https://doi.org/10.1109/WACV48630.2021.00195

[48]	 Venkataramanan, S., Peng, K.-C., Singh, R. V., & Mahalanobis, 
A. (2020). Attention guided anomaly localization in images. In 
ECCV 2020: 16th European Conference on Computer Vision, 
485–503. https://doi.org/10.1007/978-3-030-58520-4_29

[49]	 Kong, S., & Ramanan, D. (2025). OpenGAN: Open-set 
recognition via open data generation. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 47(5), 3233–3243. 
https://doi.org/10.1109/TPAMI.2022.3184052

[50]	 Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2020). 
Uninformed students: Student-teacher anomaly detection with 
discriminative latent embeddings. In 2020 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 4182–4191. 
https://doi.org/10.1109/CVPR42600.2020.00424

[51]	 Wang, N., Zhang, Z., Zhao, X., Miao, Q., Ji, R., & Gao, Y. (2019). 
Exploring high-order correlations for industry anomaly detection. 
IEEE Transactions on Industrial Electronics, 66(12), 9682–9691. 
https://doi.org/10.1109/TIE.2019.2907441

[52]	 Sabokrou, M., Khalooei, M., Fathy, M., & Adeli, E. 
(2018). Adversarially learned one-class classifier for 
novelty detection. In 2018 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 3379–3388. 
https://doi.org/10.1109/CVPR.2018.00356

[53]	 Wang, Q., Yuan, Z., Du, Q., & Li, X. (2019). GETNET: A general 
end-to-end 2-D CNN framework for hyperspectral image change 
detection. IEEE Transactions on Geoscience and Remote Sensing, 
57(1), 3–13. https://doi.org/10.1109/TGRS.2018.2849692

[54]	 Yao, R., Liu, C., Zhang, L., & Peng, P. (2019). Unsupervised 
anomaly detection using Variational Auto-Encoder 
based feature extraction. In 2019 IEEE International 
Conference on Prognostics and Health Management, 1–7. 
https://doi.org/10.1109/ICPHM.2019.8819434

[55]	 Staar, B., Lütjen, M., & Freitag, M. (2019). Anomaly 
detection with convolutional neural networks for industrial 
surface inspection. Procedia CIRP, 79, 484–489. 
https://doi.org/10.1016/j.procir.2019.02.123ote.12394

[56]	 Jing, J., Ma, H., & Zhang, H. (2019). Automatic fabric defect 
detection using a deep convolutional neural network. Coloration 
Technology, 135(3), 213–223. https://doi.org/10.1111/cote.12394

[57]	 Perera, P., & Patel, V. M. (2019). Learning deep features for 
one-class classification. IEEE Transactions on Image Processing, 
28(11), 5450–5463. https://doi.org/10.1109/TIP.2019.2917862

[58]	 Ullah, W., Khan, S. U., Kim, M. J., Hussain, A., Munsif, M., 
Lee, M. Y.,…, & Baik, S. W. (2024). Industrial defective 
chips detection using deep convolutional neural network 
with inverse feature matching mechanism. Journal of 
Computational Design and Engineering, 11(3), 326–336. 
https://doi.org/10.1093/jcde/qwae019

Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

15

https://doi.org/10.1016/j.eswa.2021.114820 
https://doi.org/10.1016/j.jmsy.2022.06.011
https://doi.org/10.1016/j.compind.2022.103695
https://doi.org/10.1080/00207543.2023.2270588
https://doi.org/10.1016/j.compind.2023.103911
https://doi.org/10.1109/NKCon59507.2023.10396507 
https://doi.org/10.1016/j.engappai.2023.107717
https://doi.org/10.1016/j.neunet.2024.106106 
https://doi.org/10.1016/j.iot.2024.101063 
 https://doi.org/10.3389/frobt.2025.1554196
https://doi.org/10.11648/j.ajae.20231001.13
https://doi.org/10.1109/TPAMI.2021.3070791
https://doi.org/10.1109/TPAMI.2007.70825
https://doi.org/10.1109/ACCESS.2021.3106350 
https://doi.org/10.1109/TIP.2023.3293772
https://doi.org/10.1109/WACV48630.2021.00195
https://doi.org/10.1007/978-3-030-58520-4_29
https://doi.org/10.1109/TPAMI.2022.3184052
https://doi.org/10.1109/CVPR42600.2020.00424
https://doi.org/10.1109/TIE.2019.2907441
https://doi.org/10.1109/CVPR.2018.00356
https://doi.org/10.1109/TGRS.2018.2849692
https://doi.org/10.1109/ICPHM.2019.8819434
https://doi.org/10.1016/j.procir.2019.02.123ote.12394
 https://doi.org/10.1111/cote.12394
https://doi.org/10.1109/TIP.2019.2917862
https://doi.org/10.1093/jcde/qwae019


[59]	 Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., & Steger, C. 
(2021). The MVTec anomaly detection dataset: A comprehensive 
real-world dataset for unsupervised anomaly detection. 
International Journal of Computer Vision, 129(4), 1038–1059. 
https://doi.org/10.1007/s11263-020-01400-4

[60]	 Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019). 
MVTec AD—A comprehensive real-world dataset for 
unsupervised anomaly detection. In 2019 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, 9584–9592. 
https://doi.org/10.1109/CVPR.2019.00982

[61]	 Li, D., Ling, H., Kim, S. W., Kreis, K., Fidler, S., & Torralba, 
A. (2022). BigDatasetGAN: Synthesizing imagenet with 
pixel-wise annotations. In 2022 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 21298–21308. 
https://doi.org/10.1109/CVPR52688.2022.02064

[62]	 Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., 
Ahuja, N., & Genc, U. (2022). Anomalib: A deep 
learning library for anomaly detection. In 2022 IEEE 
International Conference on Image Processing, 1706–1710. 
https://doi.org/10.1109/ICIP46576.2022.9897283

[63]	 Malesa, M., & Rajkiewicz, P. (2021). Quality control of pet bottles 
caps with dedicated image calibration and deep neural networks. 
Sensors, 21(2), 501. https://doi.org/10.3390/s21020501

[64]	 Yuan, L., Chen, Y., Tang, H., Gao, R., & Wu, W. (2024). 
A lightweight deep-learning algorithm for welding 
defect detection in new energy vehicle battery current 
collectors. IEEE Sensors Journal, 24(13), 21655–21668. 
https://doi.org/10.1109/JSEN.2024.3398769

[65]	 Dong, X., Taylor, C. J., & Cootes, T. F. (2019). Small defect 
detection using convolutional neural network features 
and random forests. In ECCV 2018 Workshops: European 
Conference on Computer Vision Workshops, 398–412. 
https://doi.org/10.1007/978-3-030-11018-5_35

[66]	 Mei, S., Cheng, J., He, X., Hu, H., & Wen, G. (2022). A novel 
weakly supervised ensemble learning framework for automated 
pixel-wise industry anomaly detection. IEEE Sensors Journal, 
22(2), 1560–1570. https://doi.org/10.1109/JSEN.2021.3131908

[67]	 Liu, S., Ni, H., Li, C., Zou, Y., & Luo, Y. (2024). DefectGAN: 
Synthetic data generation for EMU defects detection with 
limited data. IEEE Sensors Journal, 24(11), 17638–17652. 
https://doi.org/10.1109/JSEN.2024.3386711

[68]	 Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., & Wang, 
C. (2023). Multimodal industrial anomaly detection 
via hybrid fusion. In 2023 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 8032–8041. 
https://doi.org/10.1109/CVPR52729.2023.00776

Artificial Intelligence and Applications Vol. 00  Iss. 00  2026

16

How to Cite: Kumari, S., & Prabha, C. (2026). Anomaly Detection Utilizing PatchCore 
for Reimagining Industrial Visual Inspection. Artificial Intelligence and Applications. 
https://doi.org/10.47852/bonviewAIA52026321

https://doi.org/10.1007/s11263-020-01400-4
https://doi.org/10.1109/CVPR.2019.00982
https://doi.org/10.1109/CVPR52688.2022.02064
https://doi.org/10.1109/ICIP46576.2022.9897283
https://doi.org/10.3390/s21020501
https://doi.org/10.1109/JSEN.2024.3398769
https://doi.org/10.1007/978-3-030-11018-5_35
https://doi.org/10.1109/JSEN.2021.3131908
https://doi.org/10.1109/JSEN.2024.3386711
https://doi.org/10.1109/CVPR52729.2023.00776
https://doi.org/10.47852/bonviewAIA52025416

